


TABLE	OF	CONTENTS
Introduction

Executive	Summary

Memory	Protection	in	SMM

Memory	Protection	in	UEFI

Glossary

References

Authors

Figures

Figure	1	-	SMRAM	memory	protection

Figure	2	-	Mapping	of	Protection	in	SMM

Figure	3	-	Page	table	enforced	memory	layout

Figure	4	-	UEFI	memory	protection

A	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

2DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]



A	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS
DRAFT	FOR	REVIEW

12/15/2020	07:20:00

Jiewen	Yao,	Intel	Corporation

Vincent	J.	Zimmer	,	Intel	Corporation

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2007-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. March	2017

IntroductionA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

3DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]



EXECUTIVE	SUMMARY

Introduction
Data	execution	protection	(DEP)	is	intended	to	prevent	an	application	or	service	from	executing
code	from	a	non-executable	memory	region.	This	helps	prevent	certain	exploits	that	store	code	via	a
buffer	overflow.	[WindowsHeap]	shows	4	of	7	exploitation	techniques	that	can	be	mitigated	by	DEP	and
ASLR	(Address	Space	Layout	Randomization).	[DEP]	also	shows	14	of	19	exploits	from	popular	exploit
kits	that	fail	with	DEP	enabled.	Besides	Windows,	the	Unix/Linux	community	also	has	similar	non-
executable	protection	[PaX].

In	the	white	paper	[MemMap],	we	discussed	DEP	and	the	limitation	of	enabling	DEP	in	UEFI	firmware.	In
[SecurityEnhancement],	we	only	discussed	the	DEP	for	protecting	the	stack	and	setting	the	not-present
page	for	detecting		NULL		address	accesses	and	as	the	guard	page.	In	this	document	we	will	have	a
more	comprehensive	discussion	of	the	DEP	adoption	in	the	current	UEFI	firmware	to	harden	the	pre-
boot	phase.

Executive	SummaryA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

4DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://pax.grsecurity.net/
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI.pdf


MEMORY	PROTECTION	IN	SMM
The	SMM	is	an	isolated	execution	environment	according	to	Intel(R)	64	and	IA-32	Architectures	Software
Developer's	Manual	[IA32SDM].	The	UEFI	Platform	Initialization	[PI]	specification	volume	4	defines	the
SMM	infrastructure.	Figure	1	shows	the	SMM	memory	protection.	RO	designates	read-only	memory.	XD
designates	execution-disabled	memory.

Figure	1	-	SMRAM	memory	protection

Protection	for	PE	image
In	UEFI/PI	firmware,	the	SMM	image	is	a	normal	PE/COFF	image	loaded	by	the	SmmCore.	If	a	given	section
of	the	SMM	image	is	page	aligned,	it	may	be	protected	according	to	the	section	attributes,	such	as
read-only	for	the	code	and	non-executable	for	data.	See	the	top	right	of	Figure	1.

In	EDK	II,	the	PiSmmCore
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/PiSmmCore/MemoryAttributesTable.c
)	checks	the	PE	image	alignment	and	builds	an		EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/PiSmmMemoryAttributesTab
le.h)	to	record	such	information.	If	the	PI	SMM	image	is	not	page	aligned,	this	table	will	not	be
published.	If	the		EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE		is	published,	that	means	the		EfiRuntimeServicesCode	
contains	only	code	and	it	is		EFI_MEMORY_RO	,	and	the		EfiRuntimeServicesData		contains	only	data	and	it	is
	EFI_MEMORY_XP	.

Later	the	PiSmmCpu	driver
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManage
ment.c)`	SetMemMapAttributes()`	API	consumes	the		EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE		and	sets	the	page

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

5DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://software.intel.com/en-us/articles/intel-sdm
http://uefi.org
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/PiSmmCore/MemoryAttributesTable.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Guid/PiSmmMemoryAttributesTable.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManagement.c)`


table	attribute.

There	are	several	assumptions	to	support	the	PE	image	protection	in	SMM:

1.	 The	PE	code	section	and	data	sections	are	not	merged.	If	those	2	sections	are	merged,	a	#PF
exception	might	be	generated	because	the	CPU	might	try	to	write	a	RO	data	item	in	the	data
section	or	execute	a	non-executable	(NX)	instruction	in	code	section.

2.	 The	PE	image	can	be	protected	if	it	is	page	aligned.	There	should	not	be	any	self-modified-code	in
the	code	region.	If	there	is,	a	platform	should	not	set	this	PE	image	to	be	page	aligned.

A	platform	may	disable	the	XD	in	the	UEFI	environment,	but	this	does	not	impact	the	SMM	environment.
The	SMM	environment	may	choose	to	always	enable	the	XD	upon	SMM	entry,	and	restore	the	XD	state	at
the	SMM	exit	point.

Protection	for	stack	and	heap
The	PiSmmCore	maintains	a	memory	map	internally.
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/PiSmmCore/Page.c)	If	an	SMM
module	allocates	the	data	with		EfiRuntimeServicesCode	,	this	data	is	marked	as	the	code	page.	If	the	SMM
module	allocates	the	data	with		EfiRuntimeServicesData	,	this	data	is	marked	as	the	data	page.	This
information	is	also	exposed	via	the		EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE	.

The	same	RO	and	XD	policy	is	also	applied	to	the	normal	SMM	data	region,	such	as	stack	and	heap.

Protection	for	critical	CPU	status
Besides	the	PE	image,	the	Intel	X86	architecture	has	some	special	architecture-specific	regions	that
need	to	be	protected	as	well.

SMM	EntryPoint
When	a	hardware	SMI	occurs,	the	Intel	X86	CPU	jumps	to	an	SMM	entry	point	in	order	to	execute	the
code	at	this	location.	This	SMM	entry	point	is	not	inside	of	a	normal	PE	image,	so	we	also	need	to
protect	this	region.	See	the	bottom	right	of	figure	2.

According	to	[IA32SDM],	the	SMM	entry	point	is	at	a	fixed	offset	from	SMBASE.	In	EDK	II,	the	SMBASE	and
the	SMM	save	state	area	are	allocated	at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
	PiCpuSmmEntry()	.	Both	the	SMM	entry	point	and	the	SMM	save	state	are	allocated	as	a	CODE	page.	Later
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManage
ment.c		PatchSmmSaveStateMap()		patches	the	SMM	entry	point	to	be	read-only	and	the	SMM	save	state	to	be
non-executable.

GDT/IDT
The	GDT	defines	the	base	address	and	the	limit	of	a	code	segment	or	a	data	segment.	If	the	GDT	is
updated,	the	code	might	be	redirected	to	a	malicious	region.	As	such,	the	GDT	should	be	set	to	read-
only.

The	IDT	defines	the	entry	point	of	the	exception	handler.	If	the	IDT	is	updated,	the	malicious	code	may
trigger	an	exception	and	jump	to	a	malicious	region.	As	such,	the	IDT	should	be	set	to	read-only	as	well.

This	work	is	done	by		PatchGdtIdtMap()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmFuncsArch.c.

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

6DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/PiSmmCore/Page.c
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManagement.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmFuncsArch.c


However,	the	IA32	version	GDT	cannot	be	set	to	read-only	if	the	stack	guard	feature	is	enabled.
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/Ia32/SmmFuncsArch.c)
The	reason	is	that	the	IA32	stack	guard	needs	to	use	a	"task	switch"	to	switch	the	stack,	and	the	task
switch	needs	to	write	the	GDT	and	Task-State	Segment	(TSS).	The	X64	version	of	the	GDT	does	not	have
such	a	problem	because	the	X64	stack	guard	uses	"interrupt	stack	table	(IST)"	to	switch	the	stack.	For
details	of	the	stack	switch	and	exceptions,	please	refer	to	[IA32SDM].

Page	Table
In	an	X86	CPU,	we	rely	on	the	page	table	to	set	up	the	read-only	or	non-executable	region.	In	order	to
prevent	the	page	table	itself	from	being	updated,	we	may	need	to	set	the	page	table	itself	to	be	read-
only.

The	work	is	done	at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/PageTbl.c
	SetPageTableAttributes()	.

However,	setting	a	page	table	to	be	read-only	may	break	the	original	dynamic	paging	feature	in	SMM.
There	is	a	(PCD)		PcdCpuSmmStaticPageTable		to	determine	if	the	platform	wants	to	enable	the	static	page	table
or	the	dynamic	page	table.

If		PcdCpuSmmStaticPageTable		is	FALSE,	the	PiSmmCpu	uses	the	original	dynamic	paging	policy,	namely	the	the
PiSmmCpu	only	sets	4GiB	paging	by	default.	If	the	PiSmmCpu	needs	to	access	above	4GiB	memory
locations,	a	page	fault	exception	(#PF)	exception	is	triggered	and	an	above-4GiB	mapping	is	created	in
the	page	fault	handler.

If		PcdCpuSmmStaticPageTable		is	TRUE,	the	PiSmmCpu	will	try	to	set	the	read-only	attribute	for	the	page	table.

Figure	2	shows	the	mapping	of	the	protection.

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

7DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/Ia32/SmmFuncsArch.c
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/PageTbl.c


Figure	2	-	Mapping	of	Protection	in	SMM

Life	cycle	of	the	protection
In	a	normal	boot,	the	page	table	based	protection	is	configured	by	the	PiSmmCpu	driver	just	after	the
SmmReadyToLock	event	by		PerformRemainingTasks()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c.	All
read-only	data	must	be	ready	before		SmmReadyToLock	.

In	an	S3	resume,	the	protection	is	disabled	during	SMBASE	relocation	because	the	PiSmmCpu	needs	to
set	up	the	environment.	The	PiSmmCpu	uses	SmmS3Cr3,	which	is	generated	by		InitSmmS3Cr3()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
with	4G	paging	only.	After	the	SMBASE	relocation	is	done,	all	the	protection	takes	effect	up	receipt	of
the	next	SMI	by		PerformPreTasks()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c.

If	there	is	an	additional	lock	that	needs	to	be	set,	it	can	be	done	in		SmmCpuFeaturesCompleteSmmReadyToLock()		API
(defined	in
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Include/Library/SmmCpuFeaturesLib.h).

SMRAM	Size	Overhead

PE	image
In	order	to	protect	the	PE	code	and	data	sections,	we	must	set	the	PE	image	section	alignment	to	be
4K.

In	EDK	II,	the	default	PE	image	alignment	is	0x20	bytes.	Assuming	one	PE	image	has	3	sections	(1
header,	1	code	section,	1	data	section),	average	overhead	for	one	PE	image	is		(4K	*	3)	/	2	=	6K	.

If	a	platform	has	n	SMM	images,	the	average	of	the	overhead	is		6K	*	n	.

Page	Table
In	order	to	protect	the	page	table	itself,	we	must	use	the	static	page	table	instead	of	the	dynamic	on-
demand	page	table.

The	size	of	the	dynamic	paging	is	fixed.	We	need	6	fixed	pages	(24K)	and	8	on-demand	pages	(32K).	The
total	size	of	the	page	table	is	56K	in	this	case.

The	size	of	the	static	page	table	depends	upon	2	things:	1)	1G	paging	capability,	2)	max	supported
address	bit.	A	rough	estimation	is	below:

1.	 If	1G	paging	is	supported,
2.	 32	bit	addressing	need	(1+1+4)	pages	=	24K.	(still	use	2M	paging	for	below	4G	memory)
3.	 39	bit	addressing	need	(1+1+4)	pages	=	24K.
4.	 48	bit	addressing	need	(1+512)	pages	=	2M.
5.	 If	1G	paging	is	not	supported,	2M	paging	is	used.
6.	 32	bit	addressing	need	(1+1+4)	pages	=	24K.
7.	 39	bit	addressing	need	(1+1+512)	pages	=	2M.
8.	 48	bit	addressing	need	(1+512+512512)	pages	=	1G.	<	-	This	seems	*not	acceptable.

The	maximum	address	bit	is	determined	by	the	(CPU_HOB)	if	it	is	present,	or	the	physical	address	bit
returned	by	the	CPUID	instruction	if	the	CPU_HOB	is	not	present.
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/PageTbl.c,

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

8DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Include/Library/SmmCpuFeaturesLib.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/X64/PageTbl.c


	CalculateMaximumSupportAddress()	)	A	platform	may	set	the	CPU_HOB	based	upon	the	addressing	capability	of
the	memory	controller	or	the	CPU.

Performance	Overhead
1.	 The	SMRAM	protection	setup	is	a	one-time	activity.	It	happens	just	after	the	SmmReadyToLock	event.
We	do	not	observe	too	much	impact	to	the	system	firmware	boot	performance.	The	activity	only
takes	some	small	number	of	milliseconds.

2.	 The	SMRAM	runtime	protection	is	based	upon	the	page	table.	No	additional	CPU	instruction	is
needed.	As	such,	there	is	zero	SMM	runtime	performance	impact	to	have	this	protection.

Non	SMRAM	access	in	SMM
Besides	the	SMRAM,	the	SMM	memory	protection	also	limits	the	access	to	the	non-SMRAM	region.

First,	the	non-SMRAM	region	must	be	set	to	be	non-executable	because	the	SMM	entities	should	not	call
any	code	outside	SMRAM.	Code	outside	of	SMRAM	might	be	controlled	by	malicious	software.

This	protection	work	is	done	by		InitPaging()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c

Second,	because	of	the	security	concerns	regarding	SMM	entities	accessing	VMM	memory,
[WindowsWSMT]	[Wsmt.docx]	and	[MicrosoftHV]	introduced	the	Windows	SMM	Security	Mitigations	Table
(WSMT).	A	platform	needs	to	report	the	WSMT	table	in	order	to	declare	that	the	SMI	handler	will	validate
the	SMM	communication	buffer.

As	we	discussed	in	[SecureSmmComm],	the	SMI	handler	should	check	if	the	SMM	communication	buffer
is	from	a	fixed	region,	(EfiReservedMemoryType/	EfiACPIMemoryNVS/	EfiRuntimeServicesData/
EfiRuntimeServicesCode).	However,	this	is	a	passive	check.	If	a	SMI	handler	does	not	include	such	a
check,	it	is	hard	to	detect.

A	better	way	is	to	use	an	active	check.	The	PiSmmCpu	driver	sets	the	non-fixed	DRAM	region
(EfiLoaderCode/	EfiLoaderData/	EfiBootServicesCode/	EfiBootServicesData/	EfiConventionalMemory/
EfiUnusableMemory/	EfiACPIReclaimMemory)	to	be	not-present	in	the	page	tables	after	the
SmmReadyToLock	event.

As	such,	if	a	platform	SMI	handler	does	not	include	the	check	recommended	in	[SecureSmmComm],	the
system	will	get	#PF	exception	within	SMM	on	such	an	attack.

This	protection	work	is	done	by		SetUefiMemMapAttributes()		at
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManage
ment.c.

Figure	3	shows	final	image	layout.

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

9DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
https://msdn.microsoft.com/en-us/library/windows/hardware/dn495660(v=vs.85).aspx#wsmt
http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn614617
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManagement.c


Figure	3	-	Page	table	enforced	memory	layout

The	assumption	for	non-SMRAM	access	in	SMM	is	described	in	[SecureSmmComm].	Besides	that,	this
solution	assumes	that	all	DRAM	regions	are	added	to	the	Global	Coherency	Domain	(GCD)	management
before	EndOfDxe,	so	that	the	UEFI	memory	map	can	return	all	DRAM	regions.	If	there	are	more	regions
added	to	the	GCD	after	EndOfDxe,	those	regions	are	not	set	to	not-present	in	the	page	table.	NOTE:
The	SMM	does	not	set	the	not-present	bit	for	the	GCD	EfiGcdMemoryTypeNonExistent	memory,
because	this	type	of	memory	may	be	converted	to	the	other	types,	such	as
EfiGcdMemoryTypeReserved,	or	EfiGcdMemoryTypeMemoryMappedIo,	which	might	be	accessed
by	the	SMM	later.

Limitation
Setting	up	RO	and	NX	attribute	for	SMRAM	is	a	good	enhancement	to	prevent	a	code	overriding	attack.
However	it	has	some	limitations:

1.	 It	cannot	resist	a	Return-Oriented-Programming	(ROP)	attack.	[ROP].	We	might	need	ASLR	to	mitigate
the	ROP	attack.	[ASLR]	With	the	code	region	randomized,	an	attacker	cannot	accurately	predict	the
location	of	instructions	in	order	to	leverage	gadgets.

2.	 Not	all	important	data	structure	are	set	to	Read-Only.	This	is	the	current	SMM	driver	limitation.	The
SMM	driver	can	be	updated	to	allocate	the	important	structures	to	be	read-only	instead	of	a	read-
write	global	variable.

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

10DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Address_space_layout_randomization


To	set	not-present	bit	for	non-fixed	DRAM	region	in	SmmReadyToLock	is	a	good	enhancement	to	enforce
the	protection	policy.	However,	it	cannot	cover	below	cases:

1.	 Memory	Hot	Plug.	Take	a	server	platform	as	the	example,	A	RAS	server	may	hot	plug	more	DRAM
during	OS	runtime,	and	rely	on	SMM	to	initialize	those	DRAM.	This	SMM	Memory	Initialization	module
may	need	access	the	DRAM	for	the	memory	test.

2.	 Memory	Mapped	IO	(MMIO).	Ideally,	not	all	MMIO	regions	are	configured	to	be	accessible	to	SMM.
Some	MMIO	BARs	are	important	such	as	VTd	or	SPI	controller.	VTd	BAR	is	important	because	OS
need	setup	VTd	to	configuration	the	DMA	protection.	SPI	controller	BAR	is	important	because	BIOS
SMM	handler	need	access	it	to	program	the	flash	device.	It	should	be	a	platform	policy	to	configure
which	one	should	be	accessible.	The	SMI	handler	must	consider	the	case	that	the	MMIO	BAR	might
be	modified	by	the	malicious	software	and	check	if	the	MMIO	BAR	is	in	the	valid	region.

Compatibility	Considerations
1.	 So	far,	we	have	not	observed	self-modified-code	in	SMM	image	or	executable	code	in	data	section.
As	such,	we	believe	the	PE	image	protection	is	compatible.

2.	 The	protection	for	the	SMM	communication	buffer	may	cause	a	#PF	exception	in	SMM	if	the	SMI
handler	does	not	perform	the	check	recommended	in	[SecureSmmComm].

3.	 Some	legacy	Compatibility	Support	Module	(CSM)	drivers	may	need	co-work	with	SMM	module.	Then
the	SMM	driver	need	access	the	legacy	region.	As	such	these	memory	regions	should	be	allocated
as	ReservedMemory,	such	as	BIOS	data	area	(BDA)	or	extended	BIOS	data	area	(EBDA).

Call	for	action
In	order	to	support	SMM	memory	protection,	the	firmware	need	configure	SMM	driver	to	be	page
aligned:

1.	 Override	link	flags	below	to	support	SMM	memory	protection.

					[BuildOptions.common.EDKII.DXE_SMM_DRIVER,

					BuildOptions.common.EDKII.SMM_CORE]

					MSFT:*_*_*_DLINK_FLAGS	=	/ALIGN:4096

			GCC:*_*_*_DLINK_FLAGS	=	-z	common-page-size=0x1000

2.	 Evaluate	if	SMRAM	size	is	big	enough.

Summary
This	section	introduces	the	memory	protection	in	SMM.

Memory	Protection	in	SMMA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

11DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf


MEMORY	PROTECTION	IN	UEFI
In	the	white	paper	[MemMap],	we	discussed	to	how	to	report	the	runtime	memory	attribute	by	using
	EFI_MEMORY_ATTRIBUTES_TABLE	,	so	that	OS	can	apply	the	protection	for	the	runtime	code	and	data.	This	may
bring	some	compatibility	concerns	if	we	choose	to	adopt	the	full	DEP	protection	for	the	entire	UEFI
memory.

In	order	to	resolve	the	compatibility	concerns,	we	can	define	a	policy-based	setting	to	enable	partial	NX
and	RO	protection	for	the	UEFI	memory	region.	The	detailed	information	will	be	discussed	below.	

Figure	4	-	UEFI	memory	protection

Protection	for	PE	image
The	DXE	core	may	apply	a	pre-defined	policy	to	set	up	the	NX	attribute	for	the	PE	data	region	and	the
RO	attribute	for	the	PE	code	region.

1.	 The	image	is	loaded	by	the	UEFI	boot	service	-		LoadImage()	.	If	an	image	is	loaded	in	some	other	way,
the	DXE	core	does	not	have	such	knowledge	and	the	DXE	core	cannot	apply	any	protection.

2.	 The	image	section	is	page	aligned.	If	an	image	is	not	page	aligned,	the	DXE	core	cannot	apply	the
page	level	protection.

3.	 The	protection	policy	can	be	based	upon	a	PCD		PcdImageProtectionPolicy	.
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec)	Whenever	a
new	image	is	loaded,	the	DxeCore	checks	the	source	of	the	image	and	then	decides	the	policy	of
the	protection.	The	policy	could	be	to	enable	the	protection	if	the	sections	are	aligned,	or	disable
the	protection.	The	platform	may	choose	the	policy	based	upon	the	need.	For	example,	if	a	platform
thinks	the	image	from	the	firmware	volume	should	be	capable	of	being	protection,	it	can	set
protection	for	IMAGE_FROM_FV.	But	if	a	platform	is	not	sure	about	a	PCI	option	ROM	or	a	file	system
on	disk,	it	can	set	no-protection.

There	are	assumptions	for	the	PE	image	protection	in	UEFI:

1.	 [Same	as	SMM]	The	PE	code	section	and	data	sections	are	not	merged.	If	those	2	sections	are
merged,	a	#PF	exception	might	be	generated	because	the	CPU	may	try	to	write	a	RO	data	in	data

Memory	Protection	in	UEFIA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

12DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec


section	or	execute	a	NX	instruction	in	the	code	section.
2.	 [Same	as	SMM]	The	PE	image	can	be	protected	if	it	is	page	aligned.	There	should	not	be	any	self-
modifying-code	in	the	code	region.	If	there	is,	a	platform	should	not	set	this	PE	image	to	be	page
aligned.

3.	 A	platform	may	not	disable	the	XD	in	the	DXE	phase.	If	a	platform	disables	the	XD	in	the	DXE	phase,
the	X86	page	table	will	become	invalid	because	the	XD	bit	in	page	table	becomes	a	RESERVED	bit.
The	consequence	is	that	a	#PF	exception	will	be	generated.	If	a	platform	wants	to	disable	the	XD
bit,	it	must	happen	in	the	PEI	phase.

In	EDK	II,	the	DXE	core	image	services	calls		ProtectUefiImage()		on	image	load	and		UnprotectUefiImage()		on
image	unload.	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Image/Image.c)
Then		ProtectUefiImageCommon()	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c)	calls
	GetUefiImageProtectionPolicy()		to	check	the	image	source	and	protection	policy	and	parses	PE	alignment.	If
all	checks	pass,		SetUefiImageProtectionAttributes()		calls		SetUefiImageMemoryAttributes()	.	Finally,		gCpu-
>SetMemoryAttribute()		sets	EFI_MEMORY_XP	or	EFI_MEMORY_RO	for	the	new	loaded	image	,	or	clears	the
protection	for	the	old	unloaded	image.	When	the	CPU	driver	gets	the	memory	attribute	setting	request,
it	updates	page	table.

The	X86	CPU	driver	https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuDxe.c
	CpuSetMemoryAttributes	()		calls
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c,
	AssignMemoryPageAttributes()		to	setup	page	table.

The	ARM	CPU	driver
https://github.com/tianocore/edk2/blob/master/ArmPkg/Drivers/CpuDxe/CpuMmuCommon.c
	CpuSetMemoryAttributes()		also	has	similar	capability.

If	an	image	is	loaded	before	CPU_ARCH	protocol	is	ready,	the	DXE	core	just	skips	the	setting.	Later
these	images	protection	will	be	set	in	CPU_ARCH	callback	function	-
	MemoryProtectionCpuArchProtocolNotify()	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dx
e/Misc/MemoryProtection.c).

In		ExitBootServices		event,
	MemoryProtectionExitBootServicesCallback()	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/
Dxe/Misc/MemoryProtection.c)	is	invoked	to	unprotect	the	runtime	image,	because	the	runtime	image
code	relocation	need	write	code	segment	at		SetVirtualAddressMap()	.

Protection	for	stack	and	heap
[UEFI]	specification	allows

"Stack	may	be	marked	as	non-executable	in	identity	mapped	page	tables."

As	such,	we	set	up	the	NX	stack
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c,
	CreateIdentityMappingPageTables()	).

The	heap	protection	is	based	upon	the	policy,	because	we	already	observed	some	unexpected	usage	in
[MemMap]	white	paper.	A	platform	needs	to	configure	a	PCD		PcdDxeNxMemoryProtectionPolicy	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec)	to	indicate	which
type	of	memory	can	be	set	to	NX	in	the	page	table.	The	DxeCore		ApplyMemoryProtectionPolicy()	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c)
consumes	the	PCD	after	the	memory	allocation	service	and	sets	NX	attribute	for	the	allocated	memory
by	using	CPU_ARCH	protocol.

Memory	Protection	in	UEFIA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

13DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Image/Image.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuDxe.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c
https://github.com/tianocore/edk2/blob/master/ArmPkg/Drivers/CpuDxe/CpuMmuCommon.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c
http://uefi.org
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c


Before	CPU_ARCH	protocol	is	ready,	the	protection	takes	no	effect.	In	CPU_ARCH	callback	function	-
	MemoryProtectionCpuArchProtocolNotify()	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dx
e/Misc/MemoryProtection.c),	the		InitializeDxeNxMemoryProtectionPolicy()		is	called	to	get	current	memory	map
and	setup	the	NX	protection.

In	addition,	we	may	use	some	special	techniques,	such	as	the	guard	page,	to	apply	the	protection	for
the	allocated	memory	in	order	to	detect	a	buffer	overflow.	This	is	discussed	in	[SecurityEnhancement]
white	paper.

Life	cycle	of	the	protection
The	UEFI	image	protection	starts	when	the	CpuArch	protocol	is	ready.	The	UEFI	runtime	image
protection	is	torn	down	at		ExitBootServices()	,	the	runtime	image	code	relocation	need	write	code
segment	at		SetVirtualAddressMap()	.	We	cannot	assume	OS/Loader	has	taken	over	page	table	at	that	time.

The	UEFI	heap	protection	also	starts	when	the		CpuArch		protocol	is	ready.

The	UEFI	stack	protection	starts	in		DxeIpl	,	because	the	region	is	fixed	and	it	can	set	directly.

The	UEFI	firmware	does	not	own	page	tables	after		ExitBootServices()	,	so	the	OS	would	have	to	relax
protection	of	runtime	code	pages	across		SetVirtualAddressMap()	,	or	delay	setting	protections	on	runtime
code	pages	until	after		SetVirtualAddressMap()	.	OS	may	set	protection	on	runtime	memory	based	upon
EFI_MEMORY_ATTRIBUTES_TABLE	later.

Size	Overhead
1.	 Runtime	memory	overhead	(visible	to	OS)	:	The	size	overhead	of	the	runtime	PE	image	is	the	same
as	the	overhead	of	the	SMM	PE	image.	If	a	platform	has	n	runtime	images,	the	average	amount
overhead	is		6K	*	n	.

2.	 Boot	time	memory	overhead	(invisible	to	OS)	:	The	size	of	the	overhead	for	the	boot	time	PE	image	is
the	same	as	the	overhead	of	the	SMM	PE	image.	If	a	platform	has	n	boot	time	images,	the	average
overhead	is		6K	*	n	.

If	the	NX	protection	for	data	is	enabled,	the	size	of	the	page	table	is	increased	because	we	need	set
fine	granularity	page	level	protection.

The	size	overhead	of	the	boot	time	page	table	is	also	same	as	for	the	SMM	static	page	table.	Please
refer	to	the	SMM	section	for	the	size	calculation	based	upon	the	1G	paging	capability	and	max
supported	address	bit.

Limitation
The	protection	in	the	UEFI	is	limited	to	the	PE	image	and	the	stack	at	this	moment	because	of	the
compatibility	concerns.	The	limitations	of	the	UEFI	memory	protection	are:

1.	 Not	all	images	are	protected	to	be	NX	and	RO.	The	protection	is	based	upon	the	policy.
2.	 Not	all	heap	regions	are	protected	to	be	NX	due	to	the	compatibility	concern.	We	observed	that
both	Windows	boot	loader	and	Linux	boot	loader	may	use	the	LoaderData	type	for	the	code.	The
heap	protection	is	based	upon	the	policy.

3.	 [Same	as	SMM]	The	protection	cannot	resist	ROP	attack.
4.	 [Same	as	SMM]	Not	all	important	data	structures	are	set	to	ReadOnly.

Compatibility	Consideration

Memory	Protection	in	UEFIA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

14DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI.pdf


A	platform	may	need	to	evaluate	and	select	the	image	protection	policy	based	upon	the	capability	of
the	platform	image,	Option	ROM,	and	OS	loader.	For	platform	images,	the	Compatibility	Support	Module
(CSM)	and	the	EDK-I	Compatibility	Package	(ECP)	modules	should	be	considered.	If	a	platform	observes
the	compatibility	issues,	it	should	choose	1)	to	disable	the	protection,	or	2)	to	fix	the	compatibility	issue
and	enable	the	protection.

Call	for	action
In	order	to	support	UEFI	memory	protection,	the	firmware	need	configure	UEFI	driver	to	be	page	aligned:

1.	 Override	link	flags	below	to	support	UEFI	runtime	attribute	table,	so	that	OS	can	protect	the	runtime
memory.

[BuildOptions.IA32.EDKII.DXE_RUNTIME_DRIVER,	BuildOptions.X64.EDKII.DXE_RUNTIME_DRIVER]

MSFT:*_*_*_DLINK_FLAGS	=	/ALIGN:4096

GCC:*_*_*_DLINK_FLAGS	=	-z	common-page-size=0x1000

2.	 Override	link	flags	below	to	support	UEFI	memory	protection.

[BuildOptions.common.EDKII.DXE_DRIVER,

BuildOptions.common.EDKII.DXE_CORE,

BuildOptions.common.EDKII.UEFI_DRIVER,	BuildOptions.common.EDKII.UEFI_APPLICATION]

MSFT:*_*_*_DLINK_FLAGS	=	/ALIGN:4096

GCC:*_*_*_DLINK_FLAGS	=	-z	common-page-size=0x1000

3.	 Evaluate	if	the	UEFI	memory	size	is	big	enough	to	hold	the	split	page	table.

4.	 Evaluate	if	the	DXE	image	can	be	protected.

5.	 Set	proper		gEfiMdeModulePkgTokenSpaceGuid.PcdImageProtectionPolicy	.

6.	 Set	proper		gEfiMdeModulePkgTokenSpaceGuid.PcdDxeNxMemoryProtectionPolicy	.

Summary
This	section	introduces	the	memory	protection	in	UEFI.

Memory	Protection	in	UEFIA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

15DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]



GLOSSARY
ASLR	-	Address	Space	Layout	Randomization.

BDA	-	BIOS	Data	Area.

CSM	-	Compatibility	Support	Module.

DEP	-	Data	Execution	Protection.

EBDA	-	Extended	BIOS	Data	Area

HOB	-	Hand	off	block.	See	[PI].

MMIO	-	Memory	Mapped	I/O.

NX	-	No	Execution.	See	DEP.

PE/COFF	-	Portable	Executable	and	Common	Object	File	Format.	The	executable	file	format	for	UEFI.

ROP	-	Return-oriented	programming

RO	-	Read	Only.

RW	-	Read/Write.

PCD	-	Platform	configuration	database.	See	[PI].

PF	-	Page	Fault	Exception.

PI	-	Platform	Initialization.	Volume	1-5	of	the	UEFI	PI	specifications.

SPI	-	Serial	Peripheral	Interface.

TSS	-	Task-state	segment.	See	[IA32	SDM].

UEFI	-	Unified	Extensible	Firmware	Interface.	Firmware	interface	between	the	platform	and	the	operating
system.	Predominate	interfaces	are	in	the	boot	services	(BS)	or	pre-OS.	Few	runtime	(RT)	services.

VTd	-	Virtualization	for	Directed	IO.	See	[VTd]

WP	-	Write	Protect.

XD	-	Execution	Disable.	See	DEP.

XP	-	Execution	Protected.	See	DEP.

GlossaryA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

16DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

http://uefi.org
http://uefi.org
https://software.intel.com/en-us/articles/intel-sdm
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html


REFERENCES
[ASLR]	Address	Space	Layout	Randmization,
https://en.wikipedia.org/wiki/Address_space_layout_randomization

[DEP]	Exploit	Mitigation	Improvements	in	Windows	8,	Ken	Johnson,	Ma,	Miller,
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

[IA32SDM]	Intel(R)	64	and	IA-32	Architectures	Software	Developer's	Manual,	www.intel.com
https://software.intel.com/en-us/articles/intel-sdm

[MemMap]	A	Tour	Beyond	BIOS	Memory	Map	And	Practices	in	UEFI	BIOS,	Jiewen	Yao,	Vincent	Zimmer,
2016	https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.p
df

[PaX]	PaX	Home	Page,	https://pax.grsecurity.net/

[ROP]	Return-oriented	programming,	https://en.wikipedia.org/wiki/Return-oriented_programming

[SecureSmmComm]	A	Tour	Beyond	BIOS	Secure	SMM	Communication,	Jiewen	Yao,	Vincent	Zimmer,	Star
Zeng,	2016,	https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf

[SecurityEnhancement]	A	Tour	Beyond	BIOS	Securiy	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI,
Jiewen	Yao,	Vincent	Zimmer,	2016,	https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Over
flow_in_UEFI.pdf

[SecurityDesign]	A	Tour	Beyond	BIOS	Security	Design	Guide	in	EDK	II,	Jiewen	Yao,	Vincent	Zimmer,	2016,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf

[UEFI]	Unified	Extensible	Firmware	Interface	(UEFI)	Specification,	Version	2.6	www.uefi.org

[VTd]	Intel(R)	Virtualization	Technology	for	Directed	I/O:	Spec,
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html

[WindowsHeap]	Preventing	the	exploitation	of	user	mode	heap	corruption	vulnerabilities,	2009,
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-
corruption-vulnerabilities/

[WindowsInternal]	Windows	Internals,	6th	edition,	Mark	E.	Russinovich,	David	A.	Solomon,	Alex	Ionescu,
2012,	Microsoft	Press.	ISBN-13:	978-0735648739/978-0735665873

[WindowsWSMT]	Windows	SMM	Security	Table,	https://msdn.microsoft.com/en-
us/library/windows/hardware/dn495660(v=vs.85).aspx#wsmt
http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx

[MicrosoftHV]	Microsoft	Hypervisor	Requirements,	https://msdn.microsoft.com/en-
us/library/windows/hardware/dn614617

ReferencesA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

17DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

https://en.wikipedia.org/wiki/Address_space_layout_randomization
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://pax.grsecurity.net/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Securiy_Enhancement_to_Mitigate_Buffer_Overflow_in_UEFI.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://msdn.microsoft.com/en-us/library/windows/hardware/dn495660(v=vs.85).aspx#wsmt
http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn614617


Authors
Jiewen	Yao	jiewen.yao@intel.com	is	EDK	II	BIOS	architect,	EDK	II	FSP	package	maintainer,	EDK	II	TPM2
module	maintainer,	EDK	II	ACPI	S3	module	maintainer,	with	Software	and	Services	Group	at	Intel
Corporation.	Jiewen	is	member	of	UEFI	Security	Sub-team	and	PI	Security	Sub-team	in	the	UEFI	Forum.

Vincent	J.	Zimmer	vincent.zimmer@intel.com	is	a	Senior	Principal	Engineer	with	the	Software	and
Services	Group	at	Intel	Corporation.	Vincent	chairs	the	UEFI	Security	and	Network	Sub-teams	in	the	UEFI
Forum.

AuthorsA	Tour	Beyond	BIOS	-	Memory	Protection	in	UEFI	BIOS[DRAFT]

18DRAFT	FOR	REVIEW	[12/15/2020	07:20:00]

mailto:jiewen.yao@intel.com
mailto:vincent.zimmer@intel.com

	Introduction
	Executive Summary
	Memory Protection in SMM
	Memory Protection in UEFI
	Glossary
	References
	Authors

