

TABLE	OF	CONTENTS
A	Tour	Beyond	BIOS	-	Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI

Executive	Summary

Stack	Canaries

Stack	Check	Support	in	Microsoft	Visual	Studio

Stack	Check	Support	in	GCC

Enable	Stack	Check	in	EDK	II

Future	work

Data	Execution	Protection

DEP	in	X86	Processor

DEP	in	UEFI	specification

Enable	DEP	in	EDK	II

Future	work

Address	Space	Layout	Randomization

ASLR	in	Windows

ASLR	in	*nix

ASLR	requirement	in	UEFI	firmware

Enable	ASLR	for	UEFI	in	EDK	II

Enable	ASLR	for	SMM	in	EDK	II

Future	work

Additional	Overflow	Detection

Stack	Overflow	Detection

Heap	Management	in	EDKII

Heap	Overflow	Detection	(for	Page)

Heap	Overflow	Detection	(for	Pool)

NULL	Pointer	Protection	in	EDK	II

Read-only	page	table

Limitation

Compatibility	Consideration

Call	for	action

Future	work

Summary

Policy	Control

References

Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

A	TOUR	BEYOND	BIOS	-	SECURITY
ENHANCEMENT	TO	MITIGATE	BUFFER	OVERFLOW
IN	UNIFIED	EXTENSIBLE	INTERFACE	(UEFI)
WHITEPAPER

DRAFT	FOR	REVIEW

12/01/2020	07:02:37

Revision	02.0

Contributed	by
Jiewen	Yao,	Intel	Corporation

Vincent	J.	Zimmer,	Intel	Corporation

Jian	Wang,	Intel	Corporation

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2018,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

01.0 Initial	release. Oct	2016

02.0
Added:	enabling	of	a	special	pool	feature,	how	does	it	work,	how	to
debug,	etc….,	

March
2018

A	Tour	Beyond	BIOS	-	Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Convert	to	Gitbook 2018

A	Tour	Beyond	BIOS	-	Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Introduction	A	buffer	overflow	is	“one	of	the	most	important	exploitation	techniques	in	the	history	of
computer	security.”	[Tanenbaum] 	“Buffer	overflows	are	ideally	suited	for	introducing	three	of	the
most	important	protection	mechanisms	available	in	most	modern	systems:	stack	canaries,	data
execution	protection,	and	address-space	layout	randomization.”	[Tanenbaum]	 	However,	the	current
UEFI	firmware	implementation	only	adopted	a	few	of	these	mechanisms.	This	paper	will	introduce	how	to
enable	the	protection	mechanisms	in	UEFI	firmware	to	harden	the	pre-boot	phase.

[1]	[Tanenbaum]	Modern	Operating	Systems,	4th	edition,	Andrew	S.	Tanenbaum,	Herbert	Bos,	Pearson,
2014,	ISBN:	978-0133591620

[1]

[1]

Executive	Summary
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andrew+S.+Tanenbaum&search-alias=books&text=Andrew+S.+Tanenbaum&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andrew+S.+Tanenbaum&search-alias=books&text=Andrew+S.+Tanenbaum&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andrew+S.+Tanenbaum&search-alias=books&text=Andrew+S.+Tanenbaum&sort=relevancerank

STACK	CANARIES
One	of	the	most	important	buffer	overflow	attacks	is	the	first	Internet	worm,	written	by	Robert	Morris	Jr.
in	1988.	It	modified	the	return	address	on	the	stack,	injected	malicious	code,	then	it	controlled	the
system.	(See	figure	1-1	Stack	Smashing	Buffer	Overflow	Attack)

Figure	1-1	Stack	Smashing	Buffer	Overflow	Attack	(Source:	[StackCheck])

In	1999,	StackCheck	was	introduced	to	prevent	buffer	overflow	attack	on	a	stack.[StackCheck] >

When	the	program	makes	a	function	call,	it	puts	a	random	digital	canary	on	top	of	the	return	address
on	the	stack.	When	the	function	returns,	the	program	checks	if	the	canary	data	is	modified.	If	it	is
modified,	there	must	be	something	wrong	and	a	special	failure	reporting	function	is	invoked	before	the
program	returns	back	to	the	function	address	on	the	stack.	(See	figure	1-2	Canary	Word	Next	to	Return
Address)

[1]

[1]

Stack	Canaries
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Figure	1-2	Canary	Word	Next	to	Return	Address	(Source:	[StackCheck])

Stack	canary	is	a	software	feature.	It	is	supported	by	most	compilers.

[1]	[StackCheck]	StackGuard:	Automatic	Adaptive	Detection	and	Prevention	of	Buffer-Overflow	Attacks.
Cowan,	C.,	Pu,	C.,	Maier,	D.,	Hintongif,	H.,	Walpole,	J.,	Bakke,	P.,	Beattie,	S.,	Grier,	A.,	Wagle,	P.,	Zhang,	Q.
Proceedings	of	the	7th	USENIX	Security	Symposium	(January	1998)

[1]

Stack	Canaries
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Stack	Check	Support	in	Microsoft	Visual	Studio*
Microsoft	Visual	Studio	supports	a	stack	guard	function.	“Compiler	Security	Checks	In	Depth”	[MSVC]	
introduces	the	detail	on	how	it	works.	There	are	2	compiler	options	related:	/GS		and		/RTC	.

	/GS	[MSVC_GS]	 	is	designed	to	detect	some	buffer	overruns	that	overwrite	a	function's	return
address.	It	is	similar	to	the	stack	guard	feature	described	above.

	/RTCs	[MSVC_RTC]	 	is	designed	to	put	2	tags	around	(before	and	after)	all	individual	buffers	allocated
on	the	stack.	Therefore,	both	overruns	and	underflows	can	be	caught.

See	figure	1-3	Microsoft*	Stack	Check.

Figure	1-3	–	Microsoft	Stack	Check

[1]	[MSVC]	Compiler	Security	Checks	In	Depth

[2]	[MSVC_GS]	/GS	(Buffer	Security	Check)

[3]	[MSVC_RTC]	/RTC	(Run-Time	Error	Checks)

[1]

[2]

[3]

Stack	Check	Support	in	Microsoft	Visual	Studio
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://msdn.microsoft.com/library/aa290051.aspx
https://msdn.microsoft.com/en-US/library/8wtf2dfz.aspx
https://msdn.microsoft.com/library/aa290051.aspx
https://msdn.microsoft.com/en-US/library/8wtf2dfz.aspx

Stack	Check	Support	in	GNU	Compiler	Collection*
(GCC)
The	first	stack	guard	is	supported	in	GCC.	Current	GCC	supports:		-fstack-protector,	-fstack-protector-all,	and	-
fstack-protector-strong	.[StackCanaries]	 	.

	-fstack-protector-strong	is	recommended	because	“this	option	tries	to	hit	the	balance	between	an	over-
simplified	version	and	an	over-killing	protection	schema”.	[GCC]	

[1]	[StackCanaries]	Buffer	overflow	protection	-	Wikipedia.org

[2]	[GCC]	Proposal	to	add	a	new	stack-smashing-attack	protection	mechanism	“-fstack-protector-
strong”

[1]

[2]

Stack	Check	Support	in	GCC
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://en.wikipedia.org/wiki/Buffer_overflow_protection
https://docs.google.com/document/d/1xXBH6rRZue4f296vGt9YQcuLVQHeE516stHwt8
http://en.wikipedia.org/wiki/Buffer_overflow_protection
https://docs.google.com/document/d/1xXBH6rRZue4f296vGt9YQcuLVQHeE516stHwt8

Enable	Stack	Check	in	EDK	II
Current	EDK	II	uses		/GS-		for	MSVC	and		-fno-stack-protector		for	GCC.	The	stack	check	feature	is	disabled	by
default.	The	reason	is	that	EDK	II	does	not	link	against	any	compiler	provided	libraries.	If		/GS		or		-fstack-
protector		is	enabled,	the	link	will	fail	due	to	no	symbol	detected	for		__security_cookie/	__security_check_cookie()	or
__stack_chk_guard/__stack_chk_fail()	.

In	order	to	enable	a	stack	check,	we	provide	an	implementation	for	the	above	symbols	at
https://github.com/jyao1/SecurityEx/tree/master/StackCheckPkg/Library/StackCheckLib.

As	such,	any	drivers	or	applications	can	use		/GS		or		-fstack-protector-strong		to	prevent	the	stack	smash
attack.	The	sample	driver
https://github.com/jyao1/SecurityEx/tree/master/StackCheckPkg/Test/StackCookieTest	shows	how	stack
check	works	in	UEFI.

Enable	Stack	Check	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/jyao1/SecurityEx/tree/master/StackCheckPkg/Library/StackCheckLib
https://github.com/jyao1/SecurityEx/tree/master/StackCheckPkg/Test/StackCookieTest

Future	work
The	current	stack	error	handler	just	uses		CpuDeadLoop()	.	It	is	enough	in	preboot	phase,	but	it	is	a	bad
idea	in	OS	runtime.	If	a	UEFI	runtime	module	enables	stack	check,	we	need	figure	out	a	better	way	to
signal	the	error	to	operating	system.	For	example,	we	can	use		__fastfail		to	notify	OS	kernel.	“The
__fastfail	intrinsic	provides	a	mechanism	for	a	fast	fail	request—a	way	for	a	potentially	corrupted
process	to	request	immediate	process	termination.”[MSVC_FASTFAIL]	
If	a	System	Management	Mode	(SMM)	module	enables	stack	check,	the	fail	program	cannot	use
__fastfail	directly.	It	can	choose	deadloop,	reset	system,	or	inject	System	Control	Interrupt	(SCI)	and	do	a
long	jump	to	a	known	good	point	to	finish	resource	cleanup	and	execute	RSM	instruction	to	return	to
OS,	then	fail	in	OS	eventually.	From	a	software	engineering	standpoint,	the	UEFI	Platform	Initialization	[PI]
	Specification	defines	a		ReportStatusCode		service	for	SMM,	generalized	to	“MM”	for	SMM	and	TrustZone,

and	DXE,	which	extends	into	UEFI	runtime.	Exception	handling	code	can	invoke		ReportStatusCode		so	that	a
platform	can	provide	market	or	product-specific	behavior,	including	a	while	(1)	loop	that	pulses	an	LED
for	a	closed	box	client,	all	the	way	up	to	a	multi-socket	server	that	might	record	the	result	of	the	failure
in	a	baseboard	management	controller	Baseboard	Management	Controller	(BMC).

Summary
This	section	introduces	the	concept	of	stack	canaries	and	how	to	enable	this	feature	in	EDK	II.

[1]	[MSVC_FASTFAIL]	Microsoft.com-	_fastfail,	[2]	[PI]	UEFI	Platform	Initialization	Specification,	Version	1.5

[1]

[2]

Future	work
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://msdn.microsoft.com/en-us/library/dn774154.aspx
http://www.uefi.org/sites/default/files/resources/PI%201.5.zip
https://msdn.microsoft.com/en-us/library/dn774154.aspx
http://www.uefi.org/sites/default/files/resources/PI%201.5.zip

DATA	EXECUTION	PROTECTION
Stack	smash	attacks	may	inject	code.	The	other	possible	way	to	prevent	such	an	attack	is	to	prevent
malicious	code	from	executing.	Some	modern	OS’s	already	have	Data	Execution	Protection	(DEP)
support	[DEP]	 	[PaX]	 .	DEP	may	be	applied	to:	[WindowsInternal]

User	mode	stacks
User	mode	pages	not	specifically	marked	as	executable
Kernel	mode	Stacks
kernel	paged	pool	(X64)
kernel	session	pool	(X64)

Research	shows	14	of	19	exploits	from	popular	exploit	kits	fail	with	DEP	enabled.	[DEP]	 .

[1][DEP]	Exploit	Mitigation	Improvements	in	Windows	8,	Ken	Johnson,	Ma,	Miller

[2][PaX]	PaX	Home	Page,	https://pax.grsecurity.net/

[3][WindowsInternal]	Windows	Internals,	6th	edition,	Mark	E.	Russinovich,	David	A.	Solomon,	Alex
Ionescu,	2012,	Microsoft	Press.	ISBN-13:	978-0735648739/978-0735665873

[1] [2] [3]

[1]

Data	Execution	Protection
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://pax.grsecurity.net/
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735

DEP	in	X86	Processor
Data	Execution	Protection	(DEP)	is	a	hardware	feature.	Intel	X86	processor	supports	the		XD		(eXecution
Disable)	bit	in	the	page	table.	[IA32SDM] 	This		XD		bit	can	be	used	to	indicate	that	a	page	is	an
Execute-Disable	Page.	In	order	to	enable	Data	Execution	Protection,	the	operating	system	needs	to	set
the		IA32_EFER.NXE		(No-eXecution	Enable)	bit	in		IA32_EFER		model	specific	register	(MSR),	and	then	set	the
	XD		bit	in	the	CPU	physical	address	extensions	(PAE)	page	table.

[1][IA32SDM]	Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual,

[1]

DEP	in	X86	Processor
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.intel.com
https://www.intel.com

DEP	in	UEFI	specification
The	Unified	Extensible	Firmware	Interface	(UEFI)	[www.uefi.org]	specification	allows	“Stack	may	be
marked	as	non-executable	in	identity	mapped	page	tables.”	UEFI	also	defines		EFI_MEMORY_ATTRIBUTES_TABLE		to
let	the	OS	know	which	addresses	represent	runtime	code	pages	and	runtime	data	pages,	respectively.
As	such,	the	OS	may	refer	to	this	information	in	order	to	setup	the	protection	during	OS	runtime.	The
details	of	this	design	are	discussed	in	the	white	paper,	A	Tour	Beyond	BIOS	Memory	Map	And	Practices
in	UEFI	BIOS	.

DEP	in	UEFI	specification
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://uefi.org
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf

Enable	DEP	in	EDKII
In	the	white	paper,	A	Tour	Beyond	BIOS-	Memory	Protection	in	UEFI	BIOS,	we	discussed	the	how	to	enable
DEP	for	stack,	heap,	and	PE	image	in	Driver	eXecution	Environment	(DXE)	and	System	Management
Mode	(SMM)	environment.

We	support	Non-Executable	stack,	ReadOnly	Portable	Executable	(PE)	image	code,	Non-Executable	PE
image	data.

Enable	DEP	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Future	work
As	discussed	in	the	white	paper,	A	Tour	Beyond	BIOS	Memory	Map	And	Practices	in	UEFI	BIOS,	there	are
some	limitations	if	one	wants	to	enable	an	entire	DEP	environment	in	UEFI	pre-boot	environment.	If	the
limitation	is	eliminated	in	the	future,	we	may	configure	a	DEP	environment	in	the	pre-boot	environment.

Summary
This	section	introduces	the	data	execution	protection	and	how	to	enable	it	in	EDK	II.	For	more	details,
please	refer	to	the	white	paper	A	Tour	Beyond	BIOS	Memory	Map	And	Practices	in	UEFI	BIOS,	where	we
have	provided	a	detailed	discussion	before.

Future	work
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

16DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf

ADDRESS	SPACE	LAYOUT	RANDOMIZATION
Another	possible	way	to	prevent	such	these	attacks	is	to	provide	a	random	address.	With	Address	Sace
Layout	Randomization	(ASLR),	the	address	of	every	function	or	data	between	every	run	of	program	is
random	so	that	it	is	hard	for	an	attacker	to	exploit	the	system	to	know	where	to	return.

ASLR	is	a	software	feature.	It	is	supported	by	operating	systems	today.

Address	Space	Layout	Randomization
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

17DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Address	Sace	Layout	Randomization	(ASLR)	in
Windows*
Windows	supports	Address	Sace	Layout	Randomization	(ASLR).	[WindowsInternal]	 	desribes	the	detail
on	how	executable	images,	DLL,	stack,	heap	are	randomized.

Figure	3-1	Windows	OS	space	layout,	source:	[WindowsInternal]	

[ASLR1] 	shows	the	Windows8	HE-ASLR	design	and	entropy	number.

[1]

[1]

[2]

ASLR	in	Windows
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

18DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

Figure	3-2	Win8	HE-ASLR,	source:	[ASLR1]

[ASLR2] 	shows	different	image	layouts	during	boot.

The	following	Diagram	showing	how	the	physical	memory	location	of	various	system	DLLs	changes
between	a	first	and	second	boot

[2]

[3]

[3]

ASLR	in	Windows
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

19DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-memory-protections-in-ie10.aspx

Figure	3-3	Image	layout	during	boot,	source:	[ASLR2]

[1]	[WindowsInternal]	Windows	Internals,	6th	edition,	Mark	E.	Russinovich,	David	A.	Solomon,	Alex
Ionescu,	2012,	Microsoft	Press.	ISBN-13:	978-0735648739/978-0735665873

[2][ASLR1]	Exploit	Mitigation	Improvements	in	Windows	8,	Ken	Johnson,	Ma,	Miller

[3][ASLR2]	Enhance	Memory	Protections	in	IE10

[3]

ASLR	in	Windows
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

20DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-memory-protections-in-ie10.aspx
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-memory-protections-in-ie10.aspx

Address	Sace	Layout	Randomization	(ASLR)	in	*nix
[PaX]	 	also	provides	an	ASLR	patch	for	Linux	and	OpenBSD.	[OpenBSD] 	and	[PIE] 	provide
detailed	information	on	the	randomized	image	layout.

[1]	[PaX]	PaX	presentation,	Brad	Spengler,

[2][OpenBSD]	Exploit	Mitigation	Techniques,	Theo	de	Raadt

[3][PIE]	OpenBSD’s	Position	Independent	Executable	(PIE)	Implementation,	Kurt	Miller

[1] [2] [3]

ASLR	in	*nix
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

21DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://grsecurity.net/PaX-presentation.ppt
http://www.openbsd.org/papers/ven05-deraadt
http://www.openbsd.org/papers/nycbsdcon08-pie/
https://grsecurity.net/PaX-presentation.ppt
http://www.openbsd.org/papers/ven05-deraadt
http://www.openbsd.org/papers/nycbsdcon08-pie/

Address	Sace	Layout	Randomization	(ASLR)
requirement	in	UEFI	firmware
The	current	EDK	II	code	does	not	support	address	space	randomization.	The	memory	allocation
algorithm	is	top-down.	In	order	to	support	the	randomization	in	the	pre-boot	environment,	we	define
below	requirement:

1.	 The	randomization	algorithm	should	keep	UEFI	firmware	boot	behavior	consistent.	If	a
system	has	enough	memory	for	boot,	it	should	be	able	to	boot	at	any	time.	If	a	system	is	out	of
memory,	it	should	be	out	of	memory	for	any	boot.	If	a	UEFI	firmware	boots	at	some	time	because	the
memory	is	enough,	but	it	may	fail	at	some	other	time	because	the	randomization	cause	memory
being	exhausted,	then	it	is	not	acceptable	solution.	This	is	very	important	for	a	resource
constrained	environment,	such	as	System	Management	Mode	(SMM)	or	the	Pre-EFI	Initialization	(PEI)
phase.

2.	 The	randomization	algorithm	should	keep	OS	resume	from	sleep	states	required	memory
being	consistent.	An	OS	may	needs	to	support	S4	or	S3	resume	feature.	The	OS	resume	may	have
some	assumption	that	some	special	memory	is	unchanged,	such	as	the	runtime	memory,	or	the
ACPI	memory.

3.	 Any	individual	component	may	have	its	own	randomization	algorithm.	For	example,	the
Global	Descriptor	Table	(GDT),	Interrupt	Descriptor	Table	(IDT),	or	Page	Table	are	allocated	from	heap
memory.	Even	if	the	heap	has	randomized,	the	CPU	driver	can	have	additional	randomization	for
GDT/IDT/PageTable	specifically.

ASLR	requirement	in	UEFI	firmware
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

22DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Enable	Address	Sace	Layout	Randomization	(ASLR)
for	UEFI	in	EDK	II
In	order	to	enable	address	space	layout	randomization,	we	provide	a	sample	implementation	for
randomization	in	UEFI.

Randomization	control.	The		gEfiAslrPkgTokenSpaceGuid.PcdASLRMinimumEntropyBits	
(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/AslrPkg.dec)	to	indicate	the	ASLR	entropy
bits.	0	means	no	randomization.	The	entropy	bit	controls	the	how	much	randomness	we	want	to
achieve.

UEFI	stack	randomization.	The	stack	for		DxeCore		is	allocated	in		HandOffToDxeCore()	
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/DxeIplPeim/Dx
eLoad.c.	Before	the	Driver	eXecution	Environment	(DXE)	stack	is	allocated	from	heap	in	the	Pre-EFI
Initialization	(PEI)	phase,		AllocateRandomPages()		is	called	to	allocate	some	random	pages	to	shift	the	PEI
heap.

DxeCore	randomization.	The		DxeCore		is	also	loaded	from	PEI	heap	by		DxeIplFindDxeCore()	
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/DxeIplPeim/Dx
eLoad.c.		AllocateRandomPages()		also	helps	shift	the		DxeCore		memory.

UEFI	heap	randomization.	The	heap	for		DxeCore		is	reported	by	PEI	and	discovered	by		DxeCore		in
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/Dxe/Gcd/Gcd.c
.	After		CoreInitializeMemoryServices()		adds	available	memory	to	UEFI	heap,		AllocateRandomPages()		is	called	to
allocate	some	random	pages	to	shift	the	UEFI	heap.

NOTE:	The	OS	aware	memory,	such	as	runtime,	ACPI,	and	reserved	memory	are	pre-reserved	in	PEI
phase.	They	are	not	impacted	by	the	UEFI	heap	randomization.

The	final	memory	layout	in	UEFI	is	shown	in	figure	3-4.

Enable	ASLR	for	UEFI	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

23DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/AslrPkg.dec
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/DxeIplPeim/DxeLoad.c
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/DxeIplPeim/DxeLoad.c
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/Dxe/Gcd/Gcd.c

Figure	3-4	UEFI	memory	layout

UEFI	image	randomization.	The	UEFI	randomized	heap	shifts	are	implemented	with	a	fixed	offset.
As	such,	even	memory	allocation	shifts	occur	with	the	fixed	offset.	It	is	not	good	enough	for	a
Portable	Executable	(PE)	Common	Object	File	Format(COFF)	(PE/COFF)	image	load.

For	PE/COFF	images	we	use	“image	shuffle”	to	randomize	the	image	load	order.	Whenever	the
	DxeCore		discovers	a	new	firmware	volume	(FV),	the		DxeCore		unconditionally	load	all	the	images	in	this
FV	with	a	random	order.	See	figure	3-5	Image	shuffle.

Enable	ASLR	for	UEFI	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

24DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Figure	3-5	Image	Shuffle

For	example,	if	a	FV	contains	4	images	–	A,	B,	C,	D.	The	loaded	image	order	in	memory	is	different
among	the	1 	boot,	the	2 	boot,	and	the	3 	boot.

Now	let’s	see	how	the	Core	shuffles	images.

The		DxeCore		maintains	the	image	information	in	below	data	structure:

Figure	3-6	Core	Image	Database

The	top	left	most		mDiscoveredList		is	a	linked	list	for	all	discovered	images	in	the	firmware	volume.	The
	mScheduledQueue		is	a	subset	of		mDiscoveredList		and		mScheduledQueue		records	the	linked	list	of	the	image	whose
dependency	is	satisfied	and	ready	to	run.

The	pseudo	code	for	current	core	dispatch	is	below:

==============================

Scan	FV,	put	to	DiscoveredList.

Check	Apriori,	put	to	Scheduled	List.

While	(TRUE)	{

		For	image	in	ScheduledList	{

				LoadImage()

				call	entrypoint	//	StartImage()

		}

		Check	dependency,	put	to	Scheduled	List.

}

==============================

st nd rd

Enable	ASLR	for	UEFI	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

25DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

With	ASLR	capability,	the	core	dispatch	logic	is	updated	to	below:

==============================

Scan	FV,	put	to	DiscoveredList.

For	image	in	DiscoveredList	{

		Copy	Information	to	local	cache

}

Shuffle	image	order	in	local	cache

For	image	in	local	cache	{

			LoadImage()

}

The	code	above	is	the	additional	step	to	implement	the	image	shuffle.	The		LoadImage()		is	moved	earlier.

Check	Apriori,	put	to	Scheduled	List.

While	(TRUE)	{

		For	image	in	ScheduledList	{

				call	entrypoint	//	StartImage()

		}

		Check	dependency,	put	to	Scheduled	List.

}

==============================

The	image	shuffle	capability	is	controlled	by	the	Platform	Configuration	Database	(PCD)	Variable:
	gEfiAslrPkgTokenSpaceGuid.PcdImageShuffleEnable	(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/AslrPkg.
dec).

When	this	PCD	is	TRUE,	the		DxeCore		dispatcher	function
	CoreFwVolEventProtocolNotify()	(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModuleP
kg/Core/Dxe/Dispatcher/Dispatcher.c)	calls		DxeCoreLoadImages()		to	load	all	images	with	shuffled	order
before	the	dependency	section	is	evaluated,	as	we	discussed	above.

Image	shuffle	just	controls	image	load,	it	does	not	control	image	start.	The	image	start	process	is
unchanged.		DxeCore		only	starts	an	image	after	its	dependency	is	satisfied.

Enable	ASLR	for	UEFI	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

26DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/AslrPkg.dec
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/Dxe/Dispatcher/Dispatcher.c

Enable	Enable	Address	Sace	Layout	Randomization
(ASLR)	for	System	Mamangement	Mode	(SMM)	in
EDK	II
System	Management	Mode	(SMM)	is	a	resource	constrained	environment.

SmmCore	randomization.

The		SmmCore		is	loaded	by		SmmIpl	,	and		SmmIpl		need	find	all	SMRAM	and	allocate	the	top	of	SMRAM	for
	SmmCore	.		ExecuteSmmCoreFromSmram()	
(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/PiSm
mIpl.c)	allocates	the	SMRAM	for		SmmCore	,	plus	the	maximum	pages	needed	by	randomization.	Then	it
shifts	the		SmmCore		inside	of	the	whole	allocated	memory.	This	is	designed	to	meet	the	requirement	1	–	to
make	sure	the	SMRAM	consumption	is	consistent.

SMM	heap	randomization.	The	SMM	heap	randomization	is	handled	in
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Pa
ge.c.	When	a	new	SMRAM	block	is	found,	the		SmmAddMemoryRegion()		function	reserves	the	some	fixed
length	pages	and	shift	the	valid	SMRAM	inside	of	whole	SMRAM.	The	same	design	philosophy	can	be
adopted	by	any	randomization	in	SMM,	such	as	stack,	page	table,	GDT,	IDT,	etc.	The	key	is	to
allocate	MAX	fixed	length	pages,	and	shift	content	inside	of	it,	in	order	to	ensure	that	the	SMRAM
consumption	is	consistent	in	every	boot.

Figure	3-7	shows	the	SMM	memory	layout.

Enable	ASLR	for	SMM	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

27DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/PiSmmIpl.c
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Page.c

Figure	3-7	SMM	memory	layout

SMM	image	randomization.	SMM	image	randomization	is	similar	to	UEFI	image	randomization.
When		PcdImageShuffleEnable		is	TRUE,	the		SmmCore		dispatcher	function		SmmDriverDispatchHandler()	
(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Di
spatcher.c)	calls		SmmCoreLoadImages()		to	load	all	images	with	shuffled	order	before	the	dependency
section	is	evaluated	as	we	discussed	above.	Just	as	for	UEFI,	the	SMM	image	shuffle	only	controls
image	load.	It	does	not	control	image	start.	The	image	start	process	is	unchanged.		SmmCore		only
starts	an	image	after	its	dependency	is	satisfied.

SMM	information	leak	prevention.	SMM	is	considered	as	an	isolated	and	secure	execution
environment.	We	randomize	the	component	in	SMM	to	prevent	attacks.	However,	if	the	randomized
information	is	exposed,	it	is	considered	as	an	information	leak.	In	the	current	EDK	II,	the	SmmCore
installs	an		EFI_LOADED_IMAGE_PROTOCOL		into	DXE	protocol	database	for	each	SMM	images.	This
	EFI_LOADED_IMAGE_PROTOCOL		contains	the	SMM	image	base	and	size	information.	This	is	a	typical	SMM
information	leak	and	make	SMM	image	randomization	useless.

In	order	to	mitigate	this,		SmmLoadImage()	
(https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Dispa
tcher.c)	installs	the		EFI_LOADED_IMAGE_PROTOCOL		into	SMM	protocol	database	to	make	SMM	information	self-
contained.

Enable	ASLR	for	SMM	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

28DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Dispatcher.c
https://github.com/jyao1/SecurityEx/blob/master/AslrPkg/Override/MdeModulePkg/Core/PiSmmCore/Dispatcher.c

Enable	ASLR	for	SMM	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

29DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Future	work
Entropy	bit	selection	is	one	important	task	for	randomization.	Insufficient	entropy	may	not	be	able	to
resist	an	attack.	Too	strong	entropy	may	easily	exhaust	the	memory.	We	might	need	more	work	to	see
what	the	best	entropy	bit	is	for	the	different	execution	environments.

Current		AslrPkg		just	selects	some	important	components	for	randomization	as	a	sample.	We	might	need
to	evaluate	if	we	need	to	randomize	more	components,	such	as	the	core	protocol	handle	database,
system	table,	etc.

Summary
This	section	introduces	the	address	space	layout	randomization	technique	and	how	to	enable	different
randomization	features	in	EDK	II.

Future	work
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

30DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

ADDITIONAL	OVERFLOW	DETECTION
Besides	the	mechanism	discussed	above,	we	may	use	other	mechanisms	to	detect	buffer	overflow.

Additional	Overflow	Detection
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

31DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Stack	Overflow	Detection
The	UEFI	specification	defined	128	KiB	stack	size	as	the	minimal	requirement.	There	is	no	explicit
requirement	for	System	Management	Mode	(SMM).	A	Platform	Configuration	Database	(PCD)
	gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStackSize	(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/UefiCpu
Pkg.dec)	defines	the	SMM	stack	size	for	each	processor.	The	default	size	is	8KiB,	and	we	observed	some
platforms	set	it	to	be	128KiB.

Since	the	stack	size	is	not	so	large,	there	is	risk	that	stack	overflows	and	overlaps	with	the	data	in	heap
below	stack.	We	need	to	devise	an	effective	mechanism	to	detect	if	the	stack	is	healthy	in	order	to
assist	the	developer	in	debugging	potential	issues.	To	that	end	we	use	the	stack	guard	page.	See
figure	4-1.

Figure	4-1	StackGuard	for	Overflow	Detection

The	core	marks	the	last	page	in	the	bottom	of	stack	as	a	“GuardPage”,	which	works	as	a	guard.	The
GuardPage	is	set	be	NOT	PRESENT	in	the	page	table.	When	the	stack	overlaps	with	the	GuardPage,	an
exception	will	be	triggered.

An	interesting	thing	is	that	if	the	current	stack	is	NOT	PRESENT,	the	CPU	cannot	push	the	error	code
and	architecture	status	(CS/RIP/RFLAGS/SS/RSP)	to	the	current	stack.	The	core	must	setup	a	special
exception	stack	for	the	exception	handler,	which	is	the	“ExceptionStack”.	This	page	is	reserved
separately	and	only	used	by	the	exception	handler.	It	guarantees	the	stack	is	always	valid	when	an
exception	happens.	For	a	multi-processor	system,	each	processor	has	its	own	stack,	its	own	guard
page	and	its	own	exception	stack.

In	IA32	protected	mode,	the	core	sets	up	an	exception	task	state	segment	(TSS)	and	puts	the
exception	TSS	segment	in	the	page	fault	exception	entry.	This	is	done	so	that	when	the	exception
happens,	the	CPU	does	a	task	switch	to	the	new	stack.	In	X64	long	mode,	the	core	just	reuses	the	TSS
and	sets	up	the	IST	bit	in	the	page	fault	exception	entry	to	indicate	a	stack	switch.

Stack	Overflow	Detection
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

32DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/UefiCpuPkg.dec

In	SMM,	this	stack	guard	feature	is	already	done	in
https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/PiSmmCpuDxeSmm	and	controlled	by	PCD
	gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStackGuard		in
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/UefiCpuPkg.dec

In	UEFI,	this	stack	guard	feature	is	done	in
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/DxeIplPeim	and	controlled	by	PCD
	gEfiMdeModulePkgTokenSpaceGuid.PcdCpuStackGuard		in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec.	If	the		PcdCpuStackGuard	
is	TRUE,	the		DxeIpl		clears	the	PRESENT	bit	in	the	page	table	for	the	guard	page	of	the	BSP	stack.	The
guard	page	of	the	AP	stack	is	initialized	in		CpuDxe		driver,
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Library/MpInitLib/DxeMpLib.c	by	using	DXE
service		SetMemorySpaceAttributes()	.

Besides	CPU	driver,	the		CpuExceptionHandlerLib	
(https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/Library/CpuExceptionHandlerLib)	is	also
updated	to	support	Stack	Overflow	detection.	The	new	API	–		InitializeCpuExceptionHandlersEx()		is	introduced
to	initialize	the	exception	TSS.		InitializeCpuExceptionHandlersEx()	is	invoked	by		DxeCore		to	setup	the	exception
TSS	for	the	Boot	Strap	Processor	(BSP),	and		InitializeCpuExceptionHandlersEx()	is	invoked	by		CpuDxe		driver	to
setup	the	exception	TSS	for	the	Application	Processor	(AP).

Stack	Overflow	Detection
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

33DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/PiSmmCpuDxeSmm
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/UefiCpuPkg.dec
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/DxeIplPeim
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Library/MpInitLib/DxeMpLib.c
https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/Library/CpuExceptionHandlerLib

Heap	Management	in	EDK	II
In	UEFI,	the		DxeCore		maintains	the	heap	usage.	The	UEFI	driver	or	application	may	call
	AllocatePages/FreePages/AllocatePool/FreePool		to	allocate	or	free	the	resource,	or	call		GetMemoryMap()		to	review	all
of	the	memory	usage.

[Heap	Initialization]
When		DxeIpl		transfers	control	to	the		DxeCore	,	all	of	the	resource	information	is	reported	in	a	Hand-off-
Block	(HOB)	[PI] 	list.	The		DxeCore		constructs	the	heap	based	upon	the	HOB	information.	See	figure	4-2
Heap	Initialization.

1.	 The		DxeCore		needs	to	find	one	region	to	serve	as	the	initial	memory	in
CoreInitializeMemoryServices()https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Co
re/Dxe/Gcd/Gcd.c).	The	function	is	responsible	for	priming	the	memory	map	so	that	memory
allocations	and	resource	allocations	can	be	made.	If	the	memory	region	described	by	the	Phase
Handoff	Information	Table	(PHIT)	HOB	is	big	enough	to	hold	BIN	and	minimum	initial	memory,	this
memory	region	is	used	as	highest	priority.	It	can	make	the	memory	BIN	allocation	to	be	at	the	same
memory	region	with	PHIT	that	has	better	compatibility	to	avoid	memory	fragmentation.	Usually	the
BIN	size	is	already	considered	by	platform	Pre-EFI	Initialization	Module	(PEIM)	when	the	platform	PEIM
calls		InstallPeiMemory()		to	PEI	core.

2.	 Then	the		DxeCore		allocates	runtime	memory	for	EFI	system	table	and	runtime	services	table.	It
triggers	BIN	initialization	in		CoreAddMemoryDescriptor()	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c),	when
	mMemoryTypeInformationInitialized		is	FALSE.	The	memory	type	information	HOB	is	consumed	to	pre-allocate
memory	region	for	each	memory	type	defined	in	this	HOB.	[MemMap]	described	the	purpose	and
usage	of	the	BIN.

3.	 Other	small	DXE	service	allocation	also	happed	in	this	region,	before	full	memory	is	ready.	For
example,		CoreInitializeImageServices()		installs		EFI_LOADED_IMAGE_PROTOCOL		for		DxeCore	,	so	that	we	can	have	an
Image	Handle	for		DxeCore	,	which	will	be	used	for	Global	Coherency	Domain	(GCD).

4.	 Now		DxeCore			CoreInitializeGcdServices()	
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Gcd/Gcd.c)	needs	figure
out	all	memory	and	IO	resources,	add	them	to		mGcdMemorySpaceMap		and		mGcdIoSpaceMap	.	The	tested
memory	is	marked	as		EfiGcdMemoryTypeSystemMemory		or		EfiGcdMemoryTypeMoreReliable	.	The	other	memory	is
marked	to	be		EfiGcdMemoryTypeReserved		or		EfiGcdMemoryTypePersistentMemory	.	After	the	GCD	memory	map	is
constructed,	the		DxeCore		calls		CoreAddMemoryDescriptor()		to	add	all		EfiGcdMemoryTypeSystemMemory		and
	EfiGcdMemoryTypeMoreReliable	.	Now	all	available	memory	is	ready	for	use.

5.	 The	last	step	in		CoreInitializeGcdServices()		is	to	relocate	the	HOB	List	to	an	allocated	pool	buffer.	The
relocation	should	be	at	after	all	the	tested	memory	resources	are	added	because	the	memory
resource	found	in		CoreInitializeMemoryServices()	m	ay	have	not	enough	remaining	resource	for	the	HOB
List.

Now	the		DxeCore		heap	initialization	is	done.	The	rest	of		DxeCore		and	any	drivers	may	use	the	UEFI	services
	AllocatePages/AllocatePool		to	allocate	a	chunk	of	memory.	The		DxeCore		uses	the	below	priority	in
	FindFreePages()		to	find	a	free	memory	location.

*			If	the	memory	type	matches	the	one	described	in	the	memory	type	information,	the	memory	in	BIN	is	used	as	first	priority.

*			If	the	memory	type	is	not	in	memory	type	information,	or	there	is	no	enough	memory	in	the	pre-allocated	BIN,	the	DxeCore	l

ooks	for	the	free	memory	with	top-down	algorithm.

*			If	there	is	not	enough	memory,	the	DxeCore	does	a	special	**“memory	promotion”**.	`PromoteMemoryResource()`([https://githu

[1]

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

34DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://www.uefi.org/sites/default/files/resources/PI%201.5.zip
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Gcd/Gcd.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Gcd/Gcd.c

b.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c](https://github.com/tianocore/edk2/blob/master/MdeModulePkg/

Core/Dxe/Mem/Page.c))	is	called	to	add	UNTESTED	memory	region	to	be	system	memory.	Then	`FindFreePages()`	tries	to	find	some	f

ree	memory	again.

				In	the	late	DXE/BDS	phase,	there	might	be	a	memory	test	driver,	such	as	[https://github.com/tianocore/edk2/tree/master/Mde

ModulePkg/Universal/MemoryTest](https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/MemoryTest),	to	test	all	

untested	memory	and	add	them	to	the	memory	map.	After	this	point	all	the	memory	is	added	to	UEFI	memory	map.

Figure	4-2	Heap	Initialization

[Page	Management]
After	the	heap	is	initialized,	the		DxeCore		maintains	a	list	of	memory	map	entries.	See	figure	4-3	Page
management.	This	is	a	linked	list	with	the	memory	addresses	in	ascending	order.	It	contains	memory
address,	length,	type	and	attribute	at	the	page	level.	When	the	UEFI	service		GetMemoryMap()		is	called,	the
contents	of	this	linked	list	are	returned,	together	with	other	Memory	Mapped	I/O	(MMIO)	with
	EFI_MEMORY_RUNTIME		attribute	and	the	reserved	memory	in	the	GCD	resource	list.

Figure	4-3	Page	Management

When		gBS->AllocatePages()		is	called,		CoreInternalAllocatePages()		calls		FindFreePages()		to	find	out	which
address	can	be	allocated.	The		gMemoryMap		linked	list	is	traversed	in
	CoreFindFreePagesI()	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c).
If	the		Type		of	an	entry	is		EfiConventionalMemory	,	and	the		Length		field	of	the	entry	is	larger	than	the

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

35DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c

requested	length,	and	the	Start	field	of	the	entry	is	the	highest,	then	the	target	allocated	address	is
found	in	this	entry.	At	this	point		CoreInternalAllocatePages()	calls		CoreConvertPages()		to	update	this	memory	map
linked	list	entry.

The	original	entry	which	contains	the	target	allocated	address	will	be	separated	(or	CLIP	operation	will
occur)	into	2	or	more	entries	because	the	memory	type	is	now	different.

Figure	4-4.1	Page	Management	–	Clip:	Step	1

Besides	the		gMemoryMap		linked	list,	there	are	2	data	structures	involved	in	the	CLIP.		mMapStack		contains	6
MEMORY_MAP	entries	as	a	global	variable.	mFreeMemoryMapEntryList	maintains	a	list	of	unused
MEMORY_MAP	entries.	The	details	of	the	“CLIP”	process	is	shown	at	figure	4-4.1	~	4-4.5.

Step	1:	The		CoreConvertPagesEx()		discovers	which	memory	map	entry	(the	GREEN	one)	contain	the	target
allocated	address.

Figure	4-4.2	Page	Management	–	Clip:	Step	2

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

36DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Step	2:	The	content	of	this	target	MEMORY_MAP	entry	is	updated	to	contain	the	part	of	reset	memory
after	allocation.	If	the	allocated	memory	is	in	the	middle	of	the	entry,	one	entry	(the	YELLOW	one)	in
	mMapStack		is	popped	and	added	to	the	memory	map	linked	list.	This	entry	covers	the	rest	of	memory.	This
new	MEMORY_MAP	entry	must	be	from	mMapStack	because	we	are	not	able	to	allocate	memory	again	in
the	allocate	process.	We	cannot	get	an	entry	from		mFreeMemoryMap	,	because	this	linked	list	might	be	empty
at	that	time.

#	Figure	4-4.3	Page	Management	–	Clip:	Step	3

Step	3:		CoreConvertPagesEx()		calls		CoreAddRange()		to	add	the	new	MEMORY_MAP	entry	to	the	memory	map
linked	list.	This	new	entry	contains	the	allocated	memory	information.	For	the	same	reason	listed	earlier,
this	entry	is	also	from	mMapStack.

Figure	4-4.4	Page	Management	–	Clip:	Step	4

Step	4:	Last	but	not	of	least	importance,		CoreConvertPagesEx()		calls		CoreFreeMemoryMapStack()		to	move	the
MEMORY_MAP	entry	from	mMapStack	to	pool.		CoreFreeMemoryMapStack()	calls		AllocateMemoryMapEntry()		to	dequeue
a	MEMORY_MAP	entry	(the	RED	one)	from		mFreeMemoryMapEntryList	.	It	copies	the	content	to	the	new	entry

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

37DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

and	finds	the	correct	insertion	location	with	ascending	order.	The	memory	allocation	may	occur	in
	AllocateMemoryMapEntry()		if	the		mFreeMemoryMapEntryList		is	empty.

Figure	4-4.5	Page	Management	–	Clip:	Step	5

Step	5:	Finally,	after	all	entries	from		mMapStack		are	moved	to	pool,	the	memory	map	linked	list	CLIP	is
finished.	The		mMapStack		is	kept	unchanged.	The		mFreeMemoryMapEntry		is	updated.

Later,	when		FreePages()		happens,	2	or	more	MEMORY_MAP	entries	can	be	merged	into	one.	The	unused
MEMORY_MAP	entries	are	returned	to		mFreeMemoryMapEntryList	.	Those	entries	can	be	used	in	a	subsequent
	AllocatePages()	.

[Pool	Management]
Besides	page	management,		DxeCore		maintains	the	pool.	A	typical	UEFI	driver	or	application	calls		gBS-
>AllocatePool()		for	memory	allocation.

	DxeCore		assigns	one		mPoolHead		for	each	UEFI	specification	defined	memory	type
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Pool.c).	Each		mPoolHead	
includes	a	set	of	FreeList.	Each	FreeList	is	a	linked	list	for	the	fixed	size	free	pool.	The	size	of	each
FreeList	is	defined	in		mPoolSizeTable	.	It	is	a	Fibonacci	sequence,	which	allows	us	to	migrate	blocks
between	bins	by	splitting	them	up,	while	not	wasting	too	much	memory.	See	figure	4-5	Pool
Management.

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

38DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Pool.c

Figure	4-5	Pool	Management

When		gBS->AllocatePool()		is	called,		CoreInternalAllocatePool()		calls		CoreAllocatePoolI	()		to	find	out	which
FreeList	should	be	used.	If	the	requested	pool	size	is	too	big	to	fit	in	all	FreeList,	a	PoolPage	is	allocated
and	returned	directly.	The	FreeList	is	untouched.

If	the	requested	pool	size	matches	one	of	the	FreeList,	one	entry	in	this	FreeList	is	dequeued	and
returned	as	the	free	memory.

If	the	matched	FreeList	is	empty,		CoreAllocatePoolI()		checks	the	bins	holding	larger	blocks,	and	will	CARVE
one.	The	detail	“CARVE”	process	is	shown	at	figure	4-6.1	~	4-6.2.

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

39DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Figure	4-6.1	Pool	Management	–	Carve:	Step	1

Step	1:	If	the	matched	FreeList	is	empty	(such	as		FreeList[2]),		CoreAllocatePoolI()		increments	the	Index	of
FreeList	one	by	one	and	checks	if	the	next	FreeList	is	empty.	If	there	is	one	FreeList	that	is	not	empty
(such	as		FreeList[3]),	one	POOL_FREE	entry	in	this	linked	list	is	dequeued	(the	GREEN	one)	and	goes	to
the	CARVE	process.

If	there	is	no	available	entry	in	all	FreeList,		CoreAllocatePoolI()		calls		CoreAllocatePoolPages()		to	allocate	new
pages	as	the	candidate	and	goes	to	the	CARVE	process.

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

40DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Figure	4-6.2	Pool	Management	–	Carve:	Step	2

Step	2:	Since	the	size	of	this	POOL_FREE	candidate	entry	is	bigger	than	the	one	requested,
	CoreAllocatePoolI()		records	the	requested	entry	(the	RED	one)	and	splits	up	the	remaining	space	(the
GREEN	one)	into	free	pool	blocks	(such	as		FreeList[1]).	The	head	of	the	request	entry	is	changed	from
POOL_FREE	to	POOL_HEAD	to	record	the	pool	information,	such	as	size	and	type.

Later,	when		FreePool()		is	called,	the	information	in	POOL_HEAD	can	be	used	to	discover	into	which
FreeList	it	should	be	returned.	If	the	pool	size	is	too	big	to	fit	in	all	FreeList,	it	is	a	PoolPage	and	freed	by
	CoreFreePoolPages()	.	Alternately,	this	POOL_HEAD	is	converted	to	POOL_FREE	and	is	inserted	into	one	of	the
proper	FreeList.		CoreFreePoolI()		also	makes	an	additional	check	to	see	if	all	the	pool	entries	in	the	same
page	as	Free	are	freed	pool	entries.	If	so,	all	of	these	pool	entries	are	removed	from	the	free	loop	lists,
and		CoreFreePoolPages()		is	called	to	free	the	entire	pages.

[1][PI]	UEFI	Platform	Initialization	Specification,	Version	1.5

Heap	Management	in	EDKII
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

41DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://www.uefi.org/sites/default/files/resources/PI%201.5.zip

Heap	Overflow	Detection	(for	Page)
Heap	overflow	is	a	big	problem.	[WindowsHeap] discussed	some	machenisms	to	detect	heap	overflow.

In	EDK	II,	we	may	setup	a	guard	page	around	the	allocated	pages.	The	concept	is	similar	to	the	guard
page	for	stack.	The		gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType		indicates	which	type	page	allocation
need	guard	page.	The		gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType		indicates	which	type	pool	allocation
need	guard	page.	The		gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask		is	a	mask	to	control	Heap	Guard
behavior.	All	these	Platform	Configuration	Database	(PCDs)	are	defined	in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec.

If	heap	guard	for	page	allocation	is	enabled,	whenever	there	is	an		AllocatePage()		request,	the	core
allocates	2	more	pages.	One	page	is	before	the	allocated	pages	and	the	other	is	after.	Both	are	set	be
NOT	PRESENT	in	the	page	table.	If	the	overflow	happens,	the	page	fault	exception	is	triggered
immediately.	See	figure	4-7.

Figure	4-7	HeapGuard	for	Page	Overflow	Detection

This	enhancement	is	in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c.	If	the
	IsPageTypeToGuard()		returns	TRUE,		CoreInternalAllocatePages()		uses		CoreConvertPagesWithGuard()		to	allocate	2	more
pages	and	calls		SetGuardForMemory()	.	The	later	calls		SetGuardPage()		twice	to	set	the	guard	page	before	and
after.		SetGuardPage()		calls		SetMemoryPageAttributes()		to	clear	PRESENT	flag.

In	the	last	step,		SetGuardForMemory()		calls		SetGuardedMemoryBits()		to	mark	the	memory	range	as	guarded.	This
bitmask	will	be	checked	in		UnsetGuardForMemory()		when		FreePages()		is	called.

Care	must	be	taken	to	avoid	the	re-entry	issue.	This	re-entry	risk	stems	from	the	fact	that
	SetMemoryPageAttributes()		may	need	to	split	a	page	table	entry,	which	in	turn	needs	to	call	the		AllocatePages()	
API	again.	The	global	variable		mOnGuarding		is	used	to	record	the	protection	state.

[1]

Heap	Overflow	Detection	(for	Page)
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

42DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Page.c

One	interesting	feature	for		AllocatePages()		is	that	the	pages	can	be	freed	partially.	Figure	4-8	shows	a
possible		AllocatePages/FreePages		sequence.		AdjustMemoryF()		is	used	to	adjust	the	start	address	and	number
of	pages	to	free	according	to	Guard.	The	purpose	of	this	function	is	to	keep	the	shared	Guard	page
with	adjacent	memory	block	if	it's	still	in	guard,	or	free	it	if	no	more	sharing.	Another	purpose	is	to
reserve	pages	as	Guard	pages	in	partial	page	free	situation.

Figure	4-8	HeapGuard	in	Partial	Page	Free

Guarded	Heap	Map:

In	order	to	track	if	a	page	is	guarded	or	not,	the	core	defines	a	guarded	memory	bitmap	table.	To
simplify	the	access	and	reduce	the	memory	used	for	this	table,	the	table	is	constructed	in	the	similar
way	as	page	table	structure	but	in	reverse	direction,	i.e.	from	bottom	growing	up	to	top.	See	Figure	4-9.

Figure	4-9	Guarded	Heap	Map

This	table	uses	1	bit	to	track	1	page.	1		UINT64		entry	tracks	256K	memory.	1024		UINT64	map	table	tracks
256M	memory.	The	5	levels	of	table	can	track	any	address	of	memory	in	64bit	system.

For	a	system	with	4G	memory,	two	levels	of	tables	can	track	the	whole	memory,	because	two	levels
(L3+L4)	of	map	tables	have	already	covered	37-bit	of	memory	address.	That	means	we	just	need	1-page
(L3)	+	2-page	(L4)	memory	(3	pages)	to	track	the	memory	allocation	works.	In	this	case,	there's	no

Heap	Overflow	Detection	(for	Page)
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

43DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

need	to	setup	L0-L2	tables.	Figure	4-10	shows	a	real	example	on	how	to	get	the	guarded	page	info	from
an	address.

Figure	4-10	Guarded	Heap	Map	(example)

Given	the	memory	address		0x6DFFD000	,	the	L3	table	index	is	first	4	bits,	the	L4	table	index	is	the	10	bits
followed	by.	The	corresponding	guarded	heap	entry	in	L4	table	index		0x37F	–	0xB19CAF0B	.	The	bit	offset	is
the	6	bits	followed	by	L4	table	index.	In	this	case,	it	is		0x3D	.	Since	bit		0x3D		of		0xB19CAF0B		is	1,	we	can
know	the	page		0x6DFFD000		is	guarded.

The	guarded	heap	map	management	is	at
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c.
	mGuardedMemoryMap		is	the	pointer	to	table	tracking	the	Guarded	memory	with	bitmap,		mMapLevel		is	the
Current	depth	level	of	map	table	pointed	by		mGuardedMemoryMap.	SetGuardForMemory()		is	to	set	head	Guard	and
tail	Guard	for	the	given	memory	range.	UnsetGuardForMemory()		is	to	clear	head	Guard	and	tail	Guard	for	the
given	memory	range.

[1][WindowsHeap]	Preventing	the	exploitation	of	user	mode	heap	corruption	vulnerabilities,	2009

Heap	Overflow	Detection	(for	Page)
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

44DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/

Heap	Overflow	Detection	(for	Pool)
We	can	use	GuardPage	for	pages.	What	about	pool?

If	the	pool	guard	is	enabled,	each	pool	allocation	becomes	the	page	allocation	with	the	guarded	page.
Because	the	pool	size	might	not	be	a	multiple	of	the	page	size,	we	can	only	set	guard	page	at	the	head
of	pool	or	at	the	tail	of	pool.	This	behavior	is	controlled	by		BIT7		of
	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask	.	By	default	the	returned	pool	is	near	the	tail	guard	page
to	check	overflow.	If	the		BIT7		is	set,	the	returned	pool	is	near	the	head	guard	page	to	check	underflow.
See	figure	4-11.

Figure	4-11	HeapGuard	for	Pool	Overflow	Detection

This	enhancement	for	the	guarded	pool	is	in
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Pool.c.	If	the
	IsPoolTypeToGuard()		returns	TRUE,		CoreAllocatePoolI()		uses		CoreAllocatePoolPagesI()		directly	to	allocate	pages
for	pool	with	the	guarded	pages.	In	the	last	step,		SetGuardForMemory()		is	invoked	to	set	the	guard	page
around	the	allocated	pool.

Heap	Overflow	Detection	(for	Pool)
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

45DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/Dxe/Mem/Pool.c

NULL	Pointer	Protection	in	EDK	II
Zero	address	is	considered	as	an	invalid	address	in	most	programs.	However,	in	x86	systems,	the	zero
address	is	valid	address	in	legacy	BIOS	because	the	16bit	interrupt	vector	table	(IVT)	is	at	address	zero.
In	current	UEFI	firmware,	zero	address	is	always	mapped.

We	can	do	some	enhancement	here.	Once	the	16bit	legacy	support	is	dropped	in	UEFI	firmware,	it	is
possible	to	mark	the	first	4K	page	at	address	zero	to	be	invalid	for	X86	system.	Then,	we	can	catch	the
zero	address	reference	if	a	program	does	not	check	memory	allocation	successful	or	not.

Since	Compatible	Support	Module(CSM)	or	legacy	boot	needs	to	be	disabled	for	OS	compliance	when
using	UEFI	Secure	Boot,	few	systems	are	seen	in	the	market	requiring	this	memory	to	be	mapped	at
zero.

We	define	a
	gEfiMdeModulePkgTokenSpaceGuid.PcdNullPointerDetectionPropertyMask	(https://github.com/tianocore/edk2/blob/master/M
deModulePkg/MdeModulePkg.dec).	If	the		BIT0		of		PcdNullPointerDetectionPropertyMask		is	set,	the
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/DxeIplPeim	clears	the	PRESENT	bit
of	the	address	zero	page.	As	such,	a	Page	Fault	exception	will	be	generated	if	some	program	access	to
address	zero.	The		BIT1		of		PcdNullPointerDetectionPropertyMask		controls	the	NULL	pointer	detection	in	System
Management	Mode	(SMM)	environment,	it	is	referred	by
https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/PiSmmCpuDxeSmm.	The		BIT7	
of	PcdNullPointerDetectionPropertyMask		disables	NULL	pointer	detection	just	after		EndOfDxe	.	This	is	a	workaround
for	those	unsolvable	NULL	access	issues	in	OptionROM,	boot	loader,	etc.	It	can	also	help	to	avoid
unnecessary	exception	caused	by	legacy	memory	(0-4095)	access	after	EndOfDxe,	such	as	Windows	7*
boot	on	QEMU*.		BIT7		is	checked	by
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/Dxe.

NULL	Pointer	Protection	in	EDK	II
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

46DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/DxeIplPeim
https://github.com/tianocore/edk2/tree/master/UefiCpuPkg/PiSmmCpuDxeSmm
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Core/Dxe

Read-only	page	table
Because	we	use	CPU	page	table	to	provide	such	detection,		DxeIpl		does	one	more	enhancement	to	set
page	table	itself	to	be	read	only.
(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c
	SetPageTablePoolReadOnly())	If	the	buffer	overflow	impacts	the	page	table,	it	can	be	detected	immediately.

The	CPU	driver	needs	to	be	aware	of	this	and	carefully	clear		CR0_WP		bit	before	modifying	the	page	table
and	restore		CR0		after	modification.
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c)

Read-only	page	table
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

47DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c

Limitation
1.	 Size

If	the	heap	page	guard	is	enabled,	the	core	allocates	additional	2	pages	for	each		AllocatePages()	.	If
the	heap	pool	guard	is	enabled,	each		AllocatePool()		becomes		AllocatePages()	.	Even	1	byte	allocation
need	12K	memory.	The	heap	guard	feature	will	increase	memory	consumption	and	may	cause
memory	out	of	resource.	Especially,	the	System	Management	Mode	(SMM)	code	runs	in	the	limited
System	Management	Mode	RAM	(SMRAM)	(4M	or	8M).

We	have	observed	SMRAM	out	of	resource	when	this	feature	is	turned	on.	The	solution	could	be:

Enlarge	SMRAM
Enable	the	partial	of	PageGuard	or	PoolGuard	feature,	via
	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType		and		gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType		PCD.
Enable	feature	one-by-one.	The	user	can	build	2	or	more	BIOS	images,	and	each	image	include	a
subset	of	full	features.	For	example,	if	the	user	wants	to	detect	overflow	in	USB	drivers,	there	is
no	need	to	include	network	drivers.

2.	 Performance

If	the	heap	guard	is	enabled,	the	CPU	driver	need	update	the	page	table	for	every		AllocatePool()	,
flush	translation	lookaside	buffer	(TLB).	It	brings	overhead.

We	have	observed	the	performance	downgrade	in	UEFI	Shell,	such	as	the		DEVTREE		command	or	shell
script.

Some	of	the	performance	drop	can	be	resolved	by	removing	the	page	table	synchronization	from
Boot	Strap	Processor	(BSP)	to	Application	Processors	(AP)s.	When	BSP	wakes	up	APs	later,	the
page	table	is	always	rewritten.	Paging	synchronization	is	unnecessary.

3.	 PEI	Phase

The	guard	in	Pre-EFI	Initialization	(PEI)	phase	is	not	supported	yet,	because	most	Intel®
Architecture	(IA)	platforms	only	supports	32bit	PEI	and	paging	is	not	enabled.

From	technical	perspective,	we	can	add	paging-based	guard	after	the	permanent	memory	is
initialized	in	PEI.	Stack	guard,	heap	guard	or	NULL	pointer	detection	can	be	enabled.

Before	the	permanent	memory	is	initialize,	if	we	need	enabling	paging,	we	can	only	set	paging	table
on	A)	Flash	Region	with	Access	and	Dirty	bit	set.	B)	Cache	as	Ram.	C)	Static	RAM.		#A		can	only
support	read-only	paging,	while		#B		and		#C		has	size	limitation.

In	the	EDK	II	community,	Brian	Johnson	also	provided	another	way	to	enable	the	NULL	pointer
detection	(https://bugzilla.tianocore.org/show_bug.cgi?id=687).	We	can	set	“the	GDT	descriptor	for
the	data	segment	from	a	"extend	up"	type	based	at	0,	to	an	"extend	down"	type	with	a	limit	of	0.
This	disables	access	to	the	4k	page	at	0	due	to	the	way	the	limit	math	works	with	"extend	down"
descriptors.”

4.	 Pool	Underflow/Overflow	detection

For	heap	pool	detection,	we	cannot	enable	both	underflow	and	overflow	detection	in	one	image,
because	the	guard	page	must	be	4K	aligned	and	the	allocated	pool	is	either	adjacent	to	head
guard	page	or	tail	guard	page.

In	order	to	detect	underflow	and	overflow,	the	user	must	build	2	different	images	with		BIT7		of
	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask		set	or	cleared.

5.	 Emulation	Environment

Limitation
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

48DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://bugzilla.tianocore.org/show_bug.cgi?id=687

Current	emulation	environment	(such	as	NT32)	does	not	have	capability	to	modify	CPU	page	table
directly.	As	such	we	are	not	able	to	enable	such	page	table	based	protection.

In	the	future,	we	may	be	able	to	set	up	memory	for	NT32	application	process	and	then	use	this
function	to	change	page	protections	for	pages	within	that	process	to	match	what	we	have	done	for
the	real	hardware.	For	example:	[https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366898(v=vs.85).aspx]

	BOOL	WINAPI	VirtualProtect(

	In		LPVOID	lpAddress,

	In		SIZE_T	dwSize,

	In		DWORD		flNewProtect,

	Out	PDWORD	lpflOldProtect

);

	FlNewProtect		values:	[https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366786(v=vs.85).aspx]

Limitation
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

49DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85).aspx

Compatibility	Consideration
1.	 OS	compatibility

If	the	heap	guard	is	enabled	(especially	pool	guard),	the	UEFI	memory	map	is	fragmented.	We	notice
that	the	fragmentation	may	cause	OS	boot	or	installation	fail.	For	example,	Windows	Boot	Manager
sets	the	maximum	number	of	global	memory	descriptor	for	a	64-bit	UEFI	system	at	512.
(https://support.microsoft.com/en-us/help/4020050/blinitializelibrary-failed-xxx-error-when-you-install-
or-start-an-oper)

For	NULL	pointer	detection,		BIT7		of		PcdNullPointerDetectionPropertyMask	(disables	NULL	pointer	detection
just	after	EndOfDxe)	is	a	workaround	for	those	unsolvable	NULL	access	issues	in	Option	ROM,	OS
boot	loader,	such	as	Windows	7*	boot	on	Qemu*.

2.	 3rd	part	driver	(PCI	Option	ROM)

When	the	heap	guard	is	enabled,	we	observed	the		#PF		(Page	Fault)	exception	happens	and	the
instruction	address	is	within	a	3 	part	PCI	Option	ROM.

3.	 Legacy	Compatible	Support	Module	(CSM)

The	legacy	CSM	module	may	need	access	the	zero	address	and	the	first	4KiB	memory,	such	as
Interrupt	Vector	Table(IVT)	and	BIOS	Data	Area	(BDA).	Whenever	the	legacy	module	accesses	the
first	4KiB	memory,	the	code	must	be	included	by		ACCESS_PAGE0_CODE()		macro.
(https://github.com/tianocore/edk2/blob/master/IntelFrameworkPkg/Include/Protocol/LegacyBios.h).
For	example,	when	the		LegacyBios		driver	accesses	IVT	region
(https://github.com/tianocore/edk2/blob/master/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/Thun
k.c)	or	when	the		LegacyKeyboard		driver	accesses	BDA	region
(https://github.com/tianocore/edk2/blob/master/IntelFrameworkModulePkg/Csm/BiosThunk/Keyboard
Dxe/BiosKeyboard.c).

The	platform	specific		LegacyBiosPlatform		driver	also	need	update	to	add		ACCESS_PAGE0_CODE()		macro
around	the	code	to	update	IVT	or	BDA.

4.	 CPU	driver

The	EDK	II		DxeCore		relies	on	CPU	driver
	EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes	(https://github.com/tianocore/edk2/blob/master/MdePkg/Include/P
rotocol/Cpu.h)	to	update	the	page	table
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c).	The	EDK	II
	PiSmmCore		also	relies	on		PiSmmCpu		driver
	EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL	(https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include
/Protocol/SmmMemoryAttribute.h)to	update	the	page	table
(https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryMan
agement.c).	If	a	platform	uses	its	own	CPU	driver	instead	of	the	open	source	one,	this	platform	need
add	the	page	table	update	capability	in	the	CPU	driver.

rd

Compatibility	Consideration
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

50DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://support.microsoft.com/en-us/help/4020050/blinitializelibrary-failed-xxx-error-when-you-install-or-start-an-oper
https://github.com/tianocore/edk2/blob/master/IntelFrameworkPkg/Include/Protocol/LegacyBios.h
https://github.com/tianocore/edk2/blob/master/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/Thunk.c
https://github.com/tianocore/edk2/blob/master/IntelFrameworkModulePkg/Csm/BiosThunk/KeyboardDxe/BiosKeyboard.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Cpu.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/CpuDxe/CpuPageTable.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/SmmMemoryAttribute.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/PiSmmCpuDxeSmm/SmmCpuMemoryManagement.c

Call	for	action
1.	 Enable	the	Stack	Overflow	detection	to	catch	stack	overflow	(especially	in	System	Management
Mode	(SMM))

i.	 	gEfiMdeModulePkgTokenSpaceGuid.PcdCpuStackGuard	

ii.	 	gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStackGuard	

2.	 Enable	the	Heap	Overflow	detection	in	a	debug	BIOS	to	catch	potential	buffer	overflow	issue.

i.	 	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType	

ii.	 	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType	

iii.	 	gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask	

3.	 Enable	the	NULL	pointer	detection	to	catch	the	NULL	address	access.

i.	 	gEfiMdeModulePkgTokenSpaceGuid.PcdNullPointerDetectionPropertyMask	

Call	for	action
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

51DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Future	work
Both	software	and	hardware-based	advances	can	be	added	to	strengthen	code	against	this	class	of
issue.	On	the	software	front,	language-based	security	may	offer	some	relief.	This	can	span	using	a	safer
variant	of	C	[CHECKED__C]	 	to	refactoring	code	to	a	type-safe	language	[RUST] .	These	are	huge
tasks,	though,	given	the	existing	software	catalog	and	would	challenge	software	portability.	As	such,	a
language-based	approach	is	not	a	near	term	option.

As	we	go	from	software	to	hardware,	though,	one	option	appears	feasible.	Specifically,	recent	hardware
advances	include	the	Intel®	Memory	Protection	Extensions	(Intel®	MPX).	This	is	a	new	capability
introduced	into	Intel	Architecture	[IA32SDM] [MPX] .	Intel	MPX	can	help	detect	the	buffer	overflow	or
underflow	with	a	set	of	new	Intel®	MPX	instructions	and	the	compiler	support.	When	Intel®	MPX	is
enabled,	a	Bounds	Table	is	constructed	to	store	the	pointer	value,	lower	bound	of	the	buffer,	and	the
upper	bound	of	the	buffer.	See	figure	4-12.

The		BNDMK	instruction	can	create	LowerBound	(LB)	and	UpperBound	(UB)	in	bounds	register.	The
	BNDCL/BNDCU/BNDCN		instruction	can	check	the	address	of	a	memory	reference	or	address	against	the		LB		or
	UB	.	A	BOUND	Range	Exceeded	exception	(#BR)	is	raised	if	any	of	the	bounds	compare	instructions	fail.

Intel®	MPX	need	compiler	support.	Microsoft	MSVC	2015*	Update	1	and	GCC	5.1*	supports	Intel	MPX.

Figure	4-12	Bound	Table,	(source:	[MPX]

Intel®	MPX	may	also	be	considered	to	add	to	a	UEFI	firmware	to	help	catch	the	heap	pool	overflow	or
the	global	variable	overflow.

Summary
This	section	discussed	some	other	mechanism	which	can	be	used	to	detect	stack	overflow	or	heap
overflow	in	EDK	II.

[1] [2]

[3] [4]

[4]

Future	work
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

52DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.microsoft.com/en-us/research/project/checked-c/
http://www.intel.com
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide

[1][CHECKED__C]	Checked	C	[2]	[RUST]	Rust	language	[3][IA32SDM]Intel®	64	and	IA-32	Architectures
Software	Developer’s	Manual	[4][MPX]	Intel®	Memory	Protection	Extensions	Enabling	Guide

Future	work
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

53DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

https://www.microsoft.com/en-us/research/project/checked-c/
http://www.intel.com
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide

SUMMARY
Below	table	list	a	set	of	core	security	related	feature	and	their	compatibility.

NOTE:

BLUE	means	a	production	feature	which	might	be	enabled	in	the	final	production.
YELLOW	means	a	debug	feature	which	need	be	disabled	in	the	final	production.
“V”	means	2	features	can	be	enabled	together.
“N”	means	2	feature	must	not	be	enabled	together.
(*)	means	this	feature	is	for	System	Management	Mode	(SMM)	only.
No	(*)	means	this	feature	can	be	enabled	for	DXE	or	SMM.

System	Management	Mode	(SMM)	static	paging	feature	is	the	only	one	what	cannot	be	enabled	with
other	features	if	the	other	features	need	modify	the	page	table.

Summary
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

54DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

Policy	Control

Stack	Guard:	Detect	Stack	Overflow

gEfiMdeModulePkgTokenSpaceGuid.PcdCpuStackGuard

		##	Indicates	if	UEFI	Stack	Guard	will	be	enabled.

		#		If	enabled,	stack	overflow	in	UEFI	can	be	caught,	preventing	chaotic	consequences.

		#			TRUE		-	UEFI	Stack	Guard	will	be	enabled.

		#			FALSE	-	UEFI	Stack	Guard	will	be	disabled.

gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStackGuard

		##	Indicates	if	SMM	Stack	Guard	will	be	enabled.

		#		If	enabled,	stack	overflow	in	SMM	can	be	caught,	preventing	chaotic	consequences.

		#			TRUE		-	SMM	Stack	Guard	will	be	enabled.

		#			FALSE	-	SMM	Stack	Guard	will	be	disabled.

NULL	pointer	detection:	Detect	NULL	pointer	access

gEfiMdeModulePkgTokenSpaceGuid.PcdNullPointerDetectionPropertyMask

		##	Mask	to	control	the	NULL	address	detection	in	code	for	different	phases.

		#		If	enabled,	accessing	NULL	address	in	UEFI	or	SMM	code	can	be	caught.

		#				BIT0				-	Enable	NULL	pointer	detection	for	UEFI.

		#				BIT1				-	Enable	NULL	pointer	detection	for	SMM.

		#				BIT2..6	-	Reserved	for	future	uses.

		#				BIT7				-	Disable	NULL	pointer	detection	just	after	EndOfDxe.	

		#														This	is	a	workaround	for	those	unsolvable	NULL	access	issues	in

		#														OptionROM,	boot	loader,	etc.	It	can	also	help	to	avoid	unnecessary

		#														exception	caused	by	legacy	memory	(0-4095)	access	after	EndOfDxe,

		#														such	as	Windows	7	boot	on	Qemu.

Heap	Guard:	Detect	Heap	Overflow.

gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType

		##	Indicates	which	type	allocation	need	guard	page.

		#

		#	If	a	bit	is	set,	a	head	guard	page	and	a	tail	guard	page	will	be	added	just

		#	before	and	after	corresponding	type	of	pages	allocated	if	there's	enough

		#	free	pages	for	all	of	them.	The	page	allocation	for	the	type	related	to

		#	cleared	bits	keeps	the	same	as	ususal.

		#

		#	Below	is	bit	mask	for	this	PCD:	(Order	is	same	as	UEFI	spec)

		#		EfiReservedMemoryType													0x0000000000000001

		#		EfiLoaderCode																					0x0000000000000002

		#		EfiLoaderData																					0x0000000000000004

		#		EfiBootServicesCode															0x0000000000000008

		#		EfiBootServicesData															0x0000000000000010

		#		EfiRuntimeServicesCode												0x0000000000000020

		#		EfiRuntimeServicesData												0x0000000000000040

		#		EfiConventionalMemory													0x0000000000000080

		#		EfiUnusableMemory																	0x0000000000000100

		#		EfiACPIReclaimMemory														0x0000000000000200

		#		EfiACPIMemoryNVS																		0x0000000000000400

		#		EfiMemoryMappedIO																	0x0000000000000800

		#		EfiMemoryMappedIOPortSpace								0x0000000000001000

		#		EfiPalCode																								0x0000000000002000

		#		EfiPersistentMemory															0x0000000000004000

		#		OEM	Reserved																						0x4000000000000000

		#		OS	Reserved																							0x8000000000000000

		#	e.g.	LoaderCode+LoaderData+BootServicesCode+BootServicesData	are	needed,	0x1E	should	be	used.

gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType

		##	Indicates	which	type	allocation	need	guard	page.

Policy	Control
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

55DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

		#

		#	If	a	bit	is	set,	a	head	guard	page	and	a	tail	guard	page	will	be	added	just

		#	before	and	after	corresponding	type	of	pages	which	the	allocated	pool	occupies,

		#	if	there's	enough	free	memory	for	all	of	them.	The	pool	allocation	for	the

		#	type	related	to	cleared	bits	keeps	the	same	as	ususal.

		#

		#	Below	is	bit	mask	for	this	PCD:	(Order	is	same	as	UEFI	spec)

		#		EfiReservedMemoryType													0x0000000000000001

		#		EfiLoaderCode																					0x0000000000000002

		#		EfiLoaderData																					0x0000000000000004

		#		EfiBootServicesCode															0x0000000000000008

		#		EfiBootServicesData															0x0000000000000010

		#		EfiRuntimeServicesCode												0x0000000000000020

		#		EfiRuntimeServicesData												0x0000000000000040

		#		EfiConventionalMemory													0x0000000000000080

		#		EfiUnusableMemory																	0x0000000000000100

		#		EfiACPIReclaimMemory														0x0000000000000200

		#		EfiACPIMemoryNVS																		0x0000000000000400

		#		EfiMemoryMappedIO																	0x0000000000000800

		#		EfiMemoryMappedIOPortSpace								0x0000000000001000

		#		EfiPalCode																								0x0000000000002000

		#		EfiPersistentMemory															0x0000000000004000

		#		OEM	Reserved																						0x4000000000000000

		#		OS	Reserved																							0x8000000000000000

		#	e.g.	LoaderCode+LoaderData+BootServicesCode+BootServicesData	are	needed,	0x1E	should	be	used.

gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask

		##	This	mask	is	to	control	Heap	Guard	behavior.

		#	Note	that	due	to	the	limit	of	pool	memory	implementation	and	the	alignment

		#	requirement	of	UEFI	spec,	BIT7	is	a	try-best	setting	which	cannot	guarantee

		#	that	the	returned	pool	is	exactly	adjacent	to	head	guard	page	or	tail	guard

		#	page.

		#			BIT0	-	Enable	UEFI	page	guard.

		#			BIT1	-	Enable	UEFI	pool	guard.

		#			BIT2	-	Enable	SMM	page	guard.

		#			BIT3	-	Enable	SMM	pool	guard.

		#			BIT7	-	The	direction	of	Guard	Page	for	Pool	Guard.

		#										0	-	The	returned	pool	is	near	the	tail	guard	page.

		#										1	-	The	returned	pool	is	near	the	head	guard	page.

Memory	Profile:	Provide	memory	usage	information,	detect	memory
leak

gEfiMdeModulePkgTokenSpaceGuid.PcdMemoryProfilePropertyMask

		##	The	mask	is	used	to	control	memory	profile	behavior.

		#		BIT0	-	Enable	UEFI	memory	profile.

		#		BIT1	-	Enable	SMRAM	profile.

		#		BIT7	-	Disable	recording	at	the	start.

gEfiMdeModulePkgTokenSpaceGuid.PcdMemoryProfileMemoryType

		##	This	flag	is	to	control	which	memory	types	of	alloc	info	will	be	recorded	by	DxeCore	&	SmmCore.

		#	For	SmmCore,	only	EfiRuntimeServicesCode	and	EfiRuntimeServicesData	are	valid.

		#

		#	Below	is	bit	mask	for	this	PCD:	(Order	is	same	as	UEFI	spec)

		#		EfiReservedMemoryType										0x0001

		#		EfiLoaderCode																		0x0002

		#		EfiLoaderData																		0x0004

		#		EfiBootServicesCode												0x0008

		#		EfiBootServicesData												0x0010

		#		EfiRuntimeServicesCode									0x0020

		#		EfiRuntimeServicesData									0x0040

		#		EfiConventionalMemory										0x0080

		#		EfiUnusableMemory														0x0100

		#		EfiACPIReclaimMemory											0x0200

		#		EfiACPIMemoryNVS															0x0400

		#		EfiMemoryMappedIO														0x0800

		#		EfiMemoryMappedIOPortSpace					0x1000

		#		EfiPalCode																					0x2000

		#		EfiPersistentMemory												0x4000

Policy	Control
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

56DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

		#		OEM	Reserved							0x4000000000000000

		#		OS	Reserved								0x8000000000000000

		#

		#	e.g.	Reserved+ACPINvs+ACPIReclaim+RuntimeCode+RuntimeData	are	needed,	0x661	should	be	used.

gEfiMdeModulePkgTokenSpaceGuid.PcdMemoryProfileDriverPath

		##	This	PCD	is	to	control	which	drivers	need	memory	profile	data.

		#	For	example:

		#	One	image	only	(Shell):

		#					Header																				GUID

		#					{0x04,	0x06,	0x14,	0x00,		0x83,	0xA5,	0x04,	0x7C,	0x3E,	0x9E,	0x1C,	0x4F,	0xAD,	0x65,	0xE0,	0x52,	0x68,	0xD0,	0xB4,	0x

D1,

		#						0x7F,	0xFF,	0x04,	0x00}

		#	Two	or	more	images	(Shell	+	WinNtSimpleFileSystem):

		#					{0x04,	0x06,	0x14,	0x00,		0x83,	0xA5,	0x04,	0x7C,	0x3E,	0x9E,	0x1C,	0x4F,	0xAD,	0x65,	0xE0,	0x52,	0x68,	0xD0,	0xB4,	0x

D1,

		#						0x7F,	0x01,	0x04,	0x00,

		#						0x04,	0x06,	0x14,	0x00,		0x8B,	0xE1,	0x25,	0x9C,	0xBA,	0x76,	0xDA,	0x43,	0xA1,	0x32,	0xDB,	0xB0,	0x99,	0x7C,	0xEF,	0x

EF,

		#						0x7F,	0xFF,	0x04,	0x00}

NX	stack:	Prevent	code	execution	in	stack

gEfiMdeModulePkgTokenSpaceGuid.PcdSetNxForStack

		##	Indicates	if	to	set	NX	for	stack.

		#		For	the	DxeIpl	and	the	DxeCore	are	both	X64,	set	NX	for	stack	feature	also	require	PcdDxeIplBuildPageTables	be	TRUE.

		#		For	the	DxeIpl	and	the	DxeCore	are	both	IA32	(PcdDxeIplSwitchToLongMode	is	FALSE),	set	NX	for	stack	feature	also	require

		#		IA32	PAE	is	supported	and	Execute	Disable	Bit	is	available.

		#			TRUE		-	to	set	NX	for	stack.

		#			FALSE	-	Not	to	set	NX	for	stack.

DXE	NX/RO	Protection:	Prevent	code	injection

gEfiMdeModulePkgTokenSpaceGuid.PcdDxeNxMemoryProtectionPolicy

		##	Set	DXE	memory	protection	policy.	The	policy	is	bitwise.

		#		If	a	bit	is	set,	memory	regions	of	the	associated	type	will	be	mapped

		#		non-executable.

		#

		#	Below	is	bit	mask	for	this	PCD:	(Order	is	same	as	UEFI	spec)

		#		EfiReservedMemoryType										0x0001

		#		EfiLoaderCode																		0x0002

		#		EfiLoaderData																		0x0004

		#		EfiBootServicesCode												0x0008

		#		EfiBootServicesData												0x0010

		#		EfiRuntimeServicesCode									0x0020

		#		EfiRuntimeServicesData									0x0040

		#		EfiConventionalMemory										0x0080

		#		EfiUnusableMemory														0x0100

		#		EfiACPIReclaimMemory											0x0200

		#		EfiACPIMemoryNVS															0x0400

		#		EfiMemoryMappedIO														0x0800

		#		EfiMemoryMappedIOPortSpace					0x1000

		#		EfiPalCode																					0x2000

		#		EfiPersistentMemory												0x4000

		#		OEM	Reserved							0x4000000000000000

		#		OS	Reserved								0x8000000000000000

		#

		#	NOTE:	User	must	NOT	set	NX	protection	for	EfiLoaderCode	/	EfiBootServicesCode	/	EfiRuntimeServicesCode.	

		#							User	MUST	set	the	same	NX	protection	for	EfiBootServicesData	and	EfiConventionalMemory.	

		#

		#	e.g.	0x7FD5	can	be	used	for	all	memory	except	Code.	

		#	e.g.	0x7BD4	can	be	used	for	all	memory	except	Code	and	ACPINVS/Reserved.	

DXE	image	Protection:	Prevent	code	injection

Policy	Control
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

57DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

gEfiMdeModulePkgTokenSpaceGuid.PcdImageProtectionPolicy

		##	Set	image	protection	policy.	The	policy	is	bitwise.

		#		If	a	bit	is	set,	the	image	will	be	protected	by	DxeCore	if	it	is	aligned.

		#			The	code	section	becomes	read-only,	and	the	data	section	becomes	non-executable.

		#		If	a	bit	is	clear,	the	image	will	not	be	protected.

		#				BIT0							-	Image	from	unknown	device.	

		#				BIT1							-	Image	from	firmware	volume.

System	Management	Mode	(SMM)	static	paging:	Provide	code
injection	in	SMM

gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmStaticPageTable

		##	Indicates	if	SMM	uses	static	page	table.

		#		If	enabled,	SMM	will	not	use	on-demand	paging.	SMM	will	build	static	page	table	for	all	memory.

		#		This	flag	only	impacts	X64	build,	because	SMM	always	builds	static	page	table	for	IA32.

		#		It	could	not	be	enabled	at	the	same	time	with	SMM	profile	feature	(PcdCpuSmmProfileEnable).

		#		It	could	not	be	enabled	also	at	the	same	time	with	heap	guard	feature	for	SMM

		#		(PcdHeapGuardPropertyMask	in	MdeModulePkg).

		#			TRUE		-	SMM	uses	static	page	table	for	all	memory.

		#			FALSE	-	SMM	uses	static	page	table	for	below	4G	memory	and	use	on-demand	paging	for	above	4G	memory.

System	Management	Mode	Interrupt	(SMI)	Handler	Profile:	Provide
SMI	handler	information

gEfiMdeModulePkgTokenSpaceGuid.PcdSmiHandlerProfilePropertyMask

		##	The	mask	is	used	to	control	SmiHandlerProfile	behavior.

		#		BIT0	-	Enable	SmiHandlerProfile.

SMM	Profile:	Provide	non-SMRAM	access	in	SMM

gUefiCpuPkgTokenSpaceGuid.PcdCpuSmmProfileEnable

		##	Indicates	if	SMM	Profile	will	be	enabled.

Policy	Control
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

58DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

REFERENCES
[ASLR1]	Exploit	Mitigation	Improvements	in	Windows	8,	Ken	Johnson,	Ma,	Miller,
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

[ASLR2]	Enhance	Memory	Protections	in	IE10,	http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-
memory-protections-in-ie10.aspx

[CHECKEDC]	_Checked	C	https://www.microsoft.com/en-us/research/project/checked-c/

[DEP]	Exploit	Mitigation	Improvements	in	Windows	8,	Ken	Johnson,	Ma,	Miller,
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf

[GCC]	Proposal	to	add	a	new	stack-smashing-attack	protection	mechanism	“-fstack-protector-strong”,
https://docs.google.com/document/d/1xXBH6rRZue4f296vGt9YQcuLVQHeE516stHwt8M9xyU/edit

[IA32SDM]	Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual,	www.intel.com

[MemMap]	A	Tour	Beyond	BIOS	Memory	Map	And	Practices	in	UEFI	BIOS,	Jiewen	Yao,	Vincent	Zimmer,
2016	https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.p
df

[MemProtection]	A	Tour	Beyond	BIOS-	Memory	Protection	in	UEFI	BIOS,	Jiewen	Yao,	Vincent	Zimmer,	2017
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details

[MPX]	Intel®	Memory	Protection	Extensions	Enabling	Guide	https://software.intel.com/en-
us/articles/intel-memory-protection-extensions-enabling-guide

[MSVC]	Compiler	Security	Checks	In	Depth,	https://msdn.microsoft.com/library/aa290051.aspx

[MSVCGS]	/GS	(Buffer	Security	Check)_,	https://msdn.microsoft.com/en-us/library/8dbf701c.aspx

[MSVCRTC]	/RTC	(Run-Time	Error	Checks)_,	https://msdn.microsoft.com/en-US/library/8wtf2dfz.aspx

[MSVCFASTFAIL]	__fastfail,	[https://msdn.microsoft.com/en-us/library/dn774154.aspx]
(https://msdn.microsoft.com/en-us/library/dn774154.asp

[OpenBSD]	Exploit	Mitigation	Techniques,	Theo	de	Raadt,	http://www.openbsd.org/papers/ven05-deraadt

[PaX]	PaX	presentation,	Brad	Spengler,	https://grsecurity.net/PaX-presentation.ppt

[PaX]	PaX	Home	Page,	https://pax.grsecurity.net/

[PI]	UEFI	Platform	Initialization	Specification,	Version	1.5
http://www.uefi.org/sites/default/files/resources/PI%201.5.zip

[PIE]	OpenBSD’s	Position	Independent	Executable	(PIE)	Implementation,	Kurt	Miller,
http://www.openbsd.org/papers/nycbsdcon08-pie/

[RUST]	Rust	language	https://www.rust-lang.org/en-US/

[StackCanaries]	http://en.wikipedia.org/wiki/Buffer_overflow_protection

[StackCheck]	StackGuard:	Automatic	Adaptive	Detection	and	Prevention	of	Buffer-Overflow	Attacks.
Cowan,	C.,	Pu,	C.,	Maier,	D.,	Hintongif,	H.,	Walpole,	J.,	Bakke,	P.,	Beattie,	S.,	Grier,	A.,	Wagle,	P.,	Zhang,	Q.
Proceedings	of	the	7th	USENIX	Security	Symposium	(January	1998),
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

[Tanenbaum]Modern	Operating	Systems,	4th	edition,	Andrew	S.	Tanenbaum,	Herbert	Bos,	Pearson,
2014,	ISBN:	978-0133591620

References
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

59DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://blogs.msdn.com/b/ie/archive/2012/03/12/enhanced-memory-protections-in-ie10.aspx
https://www.microsoft.com/en-us/research/project/checked-c/
http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://docs.google.com/document/d/1xXBH6rRZue4f296vGt9YQcuLVQHeE516stHwt8M9xyU/edit
http://www.intel.com
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://msdn.microsoft.com/library/aa290051.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-US/library/8wtf2dfz.aspx
https://msdn.microsoft.com/en-us/library/dn774154.aspx](https://msdn.microsoft.com/en-us/library/dn774154.asp
http://www.openbsd.org/papers/ven05-deraadt
https://grsecurity.net/PaX-presentation.ppt
https://pax.grsecurity.net/
http://www.uefi.org/sites/default/files/resources/PI%201.5.zip
http://www.openbsd.org/papers/nycbsdcon08-pie/
https://www.rust-lang.org/en-US/
http://en.wikipedia.org/wiki/Buffer_overflow_protection
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andrew+S.+Tanenbaum&search-alias=books&text=Andrew+S.+Tanenbaum&sort=relevancerank

[UEFI]	Unified	Extensible	Firmware	Interface	(UEFI)	Specification,	Version	2.6	www.uefi.org

[Veen]	Memory	Errors:	the	Past,	the	Present,	and	the	Future,	Victor	van	der	Veen,	Nitish	dutt-Sharma,
Lorenzo	Cavallaro,	and	Herbert	Bos,	2012,	Research	in	Attacks,	Intrusions,	and	Defenses,	Volume	7462
of	the	series	Lecture	Notes	in	Computer	Science	pp	86-106.	Springer,	ISBN	978-3-642-33337-8

[WindowsHeap]	Preventing	the	exploitation	of	user	mode	heap	corruption	vulnerabilities,	2009,
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-
corruption-vulnerabilities/

[WindowsHeap2]	Defeating	Microsoft	Windows	XP	SP2	Heap	protection	and	DEP	bypass,	Alexander
Anisimov,	2004,	https://www.ptsecurity.com/ww-en/download/defeating-xpsp2-heap-protection.pdf

[WindowsHeap3]	Attacking	the	Vista	Heap,	Ben	Hawkes,	2008,
http://www.blackhat.com/presentations/bh-usa-08/Hawkes/BH_US_08_Hawkes_Attacking_Vista_Heap.pdf

[WindowsHeap4]	Practical	Windows	XPSP3/2003	Heap	Exploitation,	John	McDonald	and	Christopher
Valasek,	2009,	http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-
WindowsHeap-PAPER.pdf

[WindowsInternal]	Windows	Internals,	6th	edition,	Mark	E.	Russinovich,	David	A.	Solomon,	Alex	Ionescu,
2012,	Microsoft	Press.	ISBN-13:	978-0735648739/978-0735665873	https://www.amazon.com/Windows-
Internals-Part-Developer-Reference/dp/0735648735

References
Security	Enhancement	to	Mitigate	Buffer	Overflow	in	UEFI[DRAFT]

60DRAFT	FOR	REVIEW	[12/01/2020	07:02:37]

http://www.uefi.org
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjv9NPz2YDaAhUW5WMKHRqBAaUQFggpMAA&url=https%3A%2F%2Fwww.isg.rhul.ac.uk%2Fsullivan%2Fpubs%2Ftr%2Ftechnicalreport-ir-cs-73.pdf&usg=AOvVaw0dJ6u81Ibm7Cp-zJnrb2dn
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://www.ptsecurity.com/ww-en/download/defeating-xpsp2-heap-protection.pdf
http://www.blackhat.com/presentations/bh-usa-08/Hawkes/BH_US_08_Hawkes_Attacking_Vista_Heap.pdf
http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
https://www.amazon.com/Windows-Internals-Part-Developer-Reference/dp/0735648735

	A Tour Beyond BIOS - Security Enhancement to Mitigate Buffer Overflow in UEFI
	Executive Summary

	Stack Canaries
	Stack Check Support in Microsoft Visual Studio
	Stack Check Support in GCC
	Enable Stack Check in EDK II
	Future work

	Data Execution Protection
	DEP in X86 Processor
	DEP in UEFI specification
	Enable DEP in EDK II
	Future work

	Address Space Layout Randomization
	ASLR in Windows
	ASLR in *nix
	ASLR requirement in UEFI firmware
	Enable ASLR for UEFI in EDK II
	Enable ASLR for SMM in EDK II
	Future work

	Additional Overflow Detection
	Stack Overflow Detection
	Heap Management in EDKII
	Heap Overflow Detection (for Page)
	Heap Overflow Detection (for Pool)
	NULL Pointer Protection in EDK II
	Read-only page table
	Limitation
	Compatibility Consideration
	Call for action
	Future work

	Summary
	Policy Control

	References

