TABLE OF CONTENTS
Getting Started with UEFI HTTPS Boot on EDK II
Introduction
Overview
Additional Protocols
Additional Modules
HTTPS Authentication
TLS Authentication Modes
Self-Generated Certificate
Start Guide
Configure Server and Build Client
Solution for IPv4
Solution for IPv6
Run HTTPS Boot
Tables
Table 1 - Certificate Requirement
Table 2 - Key Pair
Figures
Figure 1 - Authentication Mechanism
Figure 2 - HTTPS Boot, IPv4 Configuration
Figure 3 - DHCPv4 Server Scope
Figure 4 - DHCPv4 Server Options
Figure 5 - Configure New Host for IPv4
Figure 6 - Add MIME Type
Figure 7 - Add MIME Type
Figure 8 - Add Server Certificates
Figure 9 - Enroll a Certificate for the HTTPS Server
Figure 10 - Create a New Website for the HTTPS Server
Figure 11 - The UEFI Shell file, as viewed in IIS
Figure 12 - HTTPS boot, IPv6 Configuration
Figure 13 - Configure Forward Lookup Zone for IPv6
Figure 14 - Configure New Host for IPv6
Figure 15 - UEFI Client Certificate Configuration
Figure 16 - Select Boot Option
Figure 17 - Boot the Downloaded UEFI Shell Image
Getting Started with UEFI HTTPS Boot on EDK II
DRAFT FOR REVIEW
12/01/2020 07:08:44
Revision 1.30
WHITEPAPER
Contributed by
Wu Jiaxin
Fu Siyuan
Brian Richardson
Acknowledgements
Redistribution and use in source (original document form) and 'compiled' forms (converted to PDF, epub, HTML and other formats) with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code (original document form) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.
Redistributions in compiled form (transformed to other DTDs, converted to PDF, epub, HTML and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS DOCUMENTATION IS PROVIDED BY TIANOCORE PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TIANOCORE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2017, Intel Corporation. All rights reserved.
Revision History
Revision	Revision History	Date
0.1 | Initial release. | March 2016 |
0.2 | Add UEFI Client Certificate Configuration | May 2016 |
0.3 | Simplify the topology and configuration. | May 2016 |
0.4 | Refine the content | May 2016 |
0.5 | Minor content revisions | May 2016 |
0.6 | Updated figure references & document formatting. Text cleanup for information related to IPv4 & IPv6 configuration (multiple sections). | June 2016 |
0.7 | Modified document title. Added information on openSUSE implementation of HTTP Boot. | July 2016 |
0.8 | Refine the contents. | Sep 2016 |
0.9 | Update the certificate generation command for Windows OS | Sep 2016 |
1.0 | Remove the consumed OpensslTlsLib module since the ssl building has been enabled in OpensslLib directly. | Dec 2016 |
1.1 | Minor formatting changes. Fixed hyperlinks to tianocore.org site and whitepapers. | Feb 2017 |
1.2 | Add the IANA approved media type link. Specify the EDKII network stack version. | Feb 2017 |
1.3 | Replace examples of md5 signature algorithm with sha256. Added note on PXE to Overview Section with links to TianoCore wiki. Conversion to gitBook | Apr 2017 |
INTRODUCTION
Overview
HTTP over TLS (HTTPS) boot is a standard implementation for securely booting using the Unified Extensible Firmware Interface (UEFI) over a network device. HTTPS Boot is especially important for clients using potentially insecure networks outside of corporate infrastructure. Security for UEFI HTTPS Boot is provided by the underlying Transport Layer Security (TLS).
UEFI HTTPS Boot is designed to overcome limitations of the Preboot Execution Environment (PXE) boot method currently supported by UEFI & legacy BIOS firmware:
This document assumes that the reader is familiar with the EDK II HTTP Boot Getting Started Guide available on the TianoCore whitepapers page. For information on configuring a HTTP Boot server, please refer to the UEFI HTTP Boot with OVMF help page available at opensuse.org.
Additional Protocols
All protocols introduced in the EDK II HTTP Boot Getting Started Guide are necessary.
The following new protocols are related to HTTPS Boot:
Additional Modules
All modules introduced in the EDK II HTTP Boot Getting Started Guide are necessary. HttpDxe driver needs to be updated to consume the TlsDxe driver.
The following new TLS modules are also required by HTTPS boot:
HTTPS AUTHENTICATION
Figure 1 shows the regular HTTPS authentication mechanism for both the server providing the boot image, and the client booting from the image. Leveraging an asymmetric crypto system, the client and server can be authenticated by each other. The steps for mutual authentication are as follows:
Figure 1 Authentication Mechanism
TLS Authentication Modes
TLS supports three authentication modes:
Table 1 shows the certificate requirement in each authentication mode for the HTTPS client and HTTPS server.
Part → --- Mode↓ | Authentication of both parties | Server authentication with an unauthenticated client | Total anonymity |
---|---|---|---|
HTTPS Client | rootcert, clientcert, clientkey | Rootcert | NULL |
HTTPS Server | rootcert, servercert, serverkey | servercert, serverkey | servercert, serverkey |
Table 1 Certificate Requirement
Self-Generated Certificate
This example shows how vendors can generate custom certificates for HTTPS Boot:
(1.) Install OpenSSL.
Windows:
Download and install an OpenSSL binary distribution. This document uses Win32 OpenSSL as an example.
Linux (Ubuntu as example):
sudo apt-get install openssl
(2.) Create a self-signed CA Certificate:
Note: (Use type command instead of cat in Windows) in the following examples
openssl req -new -sha256 -keyout rootkey.pem -out rootreq.pem -days 3650
openssl x509 -req -in rootreq.pem -sha256 -signkey rootkey.pem -out rootcert.pem -days 3650
cat rootcert.pem rootkey.pem > root.pem
(3.) Create a server certificate signed by the CA certificate:
openssl req -new -sha256 -keyout serverkey.pem -out serverreq.pem -days 3650
openssl x509 -req -in serverreq.pem -sha256 -CA root.pem -CAkey root.pem -CAcreateserial -out servercert.pem -days 3650
cat servercert.pem serverkey.pem root.pem > server.pem
openssl pkcs12 -export -in server.pem -out server.pfx
Note: The .pem file is encoded as BASE64, but only PKCS12 format key can be used when booting to a Microsoft Windows server. This requires the last step in process above, converting server.pem to server.pfx.
(4.) Create a client certificate signed by the CA certificate:
openssl req -new -sha256 -keyout clientkey.pem -out clientreq.pem -days 3650
openssl x509 -req -in clientreq.pem -sha256 -CA root.pem -CAkey root.pem -CAcreateserial -out clientcert.pem -days 3650
cat clientcert.pem clientkey.pem root.pem > client.pem
Using the steps above, the required key pairs are generated as shown in Table 2:
CA | rootkey.pem, rootcert.pem, root.pem |
---|---|
Server | serverkey.pem, servercert.pem, server.pem, server.pfx |
Client | clientkey.pem, clientcert.pem, client.pem |
Table 2 Key Pair
The next section demonstrates how to use ‘rootcert.pem’ and ‘server.pfx’ to enable server authentication with an unauthenticated client (one-way authentication).
START GUIDE
This guide gives instructions on how to set up a UEFI HTTPS Boot environment for both IPv4 and IPv6 network environments. This section assumes the reader has installed EDK II, and can build and run the NT32 simulator. The NT32 simulator serves as the UEFI HTTPS client.
Configure Server and Build Client
A UEFI HTTPS boot server has three main roles:
Depending on server requirements, two test-bed solutions are presented for reference: one simple approach for IPv4, and an advanced solution using IPv6. Users can select the proper scenario based on individual requirements. Self-generated certificates from Table 2 (‘rootcert.pem’ and ‘server.pfx’) are used for HTTPS one-way authentication.
Solution for IPv4
The solution documented in this section uses a single server for the DHCP, DNS and HTTPS functions. This is considered the simplest server configuration for UEFI HTTPS Boot.
Network Topology for IPv4
This example is based on Microsoft Windows Server 2012 R2. Internet Information Services (IIS) are used to configure HTTPS server. The server and NT32 simulator use the same IPv4 subnet (192.168.10.0) as shown in Figure 2.
Figure 2 HTTPS Boot, IPv4 Configuration
Configure DHCPv4 Server
The steps to configure a DHCPv4 server are as follows:
Figure 3 DHCPv4 Server Scope
Figure 4 DHCPv4 Server Options
Configure DNSv4 Server
The steps to configure the DNSv4 server are as follows:
Figure 5 Configure New Host for IPv4
Configure HTTPS Server for IPv4
The steps to configure the HTTPS server are as follows:
Figure 6 Add MIME Type
Figure 7 Add a New MIME Type to IIS
Figure 8 Add Server Certificates
Figure 9 Enroll a Certificate for the HTTPS Server
Figure 10 Create a New Website for the HTTPS Server
Figure 11 The UEFI Shell file, as viewed in IIS
Note: The NT32 Simulator uses the IA32 UEFI Shell binary, while most production systems require the x64 UEFI Shell to match the UEFI firmware configuration. This depends on your platform firmware configuration.
Enable NT32 Simulator for IPv4
To enable the UEFI HTTPSv4 Boot feature, the EDKII network stack (IPv4) must be built in your system firmware, which is located at MdeModulePkg/Universal/Network. Here, the verified version is: d52f9163debb523e06d49ed8a4627a0317bab92c.
Modules in DSC file
The following libraries and drivers are required by HTTPSv4 boot:
Add the following libraries to the LibraryClasses section:
DpcLib|MdeModulePkg/Library/DxeDpcLib/DxeDpcLib.inf
NetLib|MdeModulePkg/Library/DxeNetLib/DxeNetLib.inf
IpIoLib|MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.inf
UdpIoLib|MdeModulePkg/Library/DxeUdpIoLib/DxeUdpIoLib.inf
TcpIoLib|MdeModulePkg/Library/DxeTcpIoLib/DxeTcpIoLib.inf
HttpLib|MdeModulePkg/Library/DxeHttpLib/DxeHttpLib.inf
OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf
TlsLib|CryptoPkg/Library/TlsLib/TlsLib.inf
Add the following drivers to the Components section:
MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf
MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf
MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf
MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf
MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf
MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf
MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf
MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf
NetworkPkg/HttpDxe/HttpDxe.inf
NetworkPkg/HttpBootDxe/HttpBootDxe.inf
NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf
NetworkPkg/DnsDxe/DnsDxe.inf
NetworkPkg/TlsDxe/TlsDxe.inf
NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf
Note: The network controller’s UNDI driver also needs to be in the list of platform files.
Modules in FDF file
The following drivers should be added to the FV section for HTTPSv4 boot:
INF MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf
INF MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf
INF MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf
INF MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf
INF MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf
INF MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf
INF MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf
INF MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf
INF NetworkPkg/HttpDxe/HttpDxe.inf
INF NetworkPkg/HttpBootDxe/HttpBootDxe.inf
INF NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf
INF NetworkPkg/DnsDxe/DnsDxe.inf
INF NetworkPkg/TlsDxe/TlsDxe.inf
INF NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf
Build the NT32 Simulator
The following command is used to build NT32 using Microsoft Visual Studio 2013:
build -a IA32 –t VS2013x86 -p Nt32pkg\Nt32Pkg.dsc
Solution for IPv6
For IPv6, the DHCP, DNS and HTTPS server are deployed on different systems. This solution provides a more flexible configuration for the DHCP server, DNS server and HTTPS Server.
Network Topology for IPv6
In this example, the DHCP server is deployed on Ubuntu 15.10. The DNS server is deployed on Windows Server 2012 R2, and the HTTPS Server is deployed on another instance of Windows Server 2012 R2. IIS is used to configure HTTPS server. The servers and NT32 simulator are located on the same IPv6 subnet (2000:bbbb::/64) as shown in Figure 12.
Figure 12 HTTPS boot, IPv6 Configuration
Configure the DHCPv6 Server
The steps to configure DHCPv6 on an Ubuntu 15.10 server are shown as follows:
default-lease-time 600;`
max-lease-time 7200;
log-facility local7;
#option definitions common to all supported networks…
option dhcp6.vendor-class code 16 = { integer 32, integer 16, tring};
option dhcp6.bootfile-url code 59 = string;
subnet6 2000:bbbb::/64 {
#Range for clients
range6 2000:bbbb::100 2000:bbbb::ffff;
option dhcp6.domain-search “cloudboot.com”;
option dhcp6.name-servers 2000:bbbb::10;
option dhcp6.vendor-class 0 0 “HTTPClient”;
“https://www.cloudboot.com:443/EFI/Shell.efi”;
}
Configure DNSv6 Server
The steps to configure DNSv6 for Microsoft Windows Server 2002 R2 are as follows:
Figure 13 Configure Forward Lookup Zone for IPv6
Figure 14 Configure New Host for IPv6
Configure HTTPS Server for IPv6
Please refer to Section Configure HTTPS Server for IPv4 above, as this step is not dependent on IPv4 or IPv6.
Enable NT32 Simulator for IPv6
To enable the UEFI Boot feature for HTTPSv6, the EDKII network stack (IPv6) must be built in your system firmware, which is located at NetworkPkg. Here, the verified version is: 7cf59c854f35c9680965fe83e9cfd863079ddd73.
Modules in DSC file
The following libraries and drivers are required by HTTPSv6 boot:
Add the following libraries to the LibraryClasses section:
DpcLib|MdeModulePkg/Library/DxeDpcLib/DxeDpcLib.inf
NetLib|MdeModulePkg/Library/DxeNetLib/DxeNetLib.inf
IpIoLib|MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.inf
UdpIoLib|MdeModulePkg/Library/DxeUdpIoLib/DxeUdpIoLib.inf
TcpIoLib|MdeModulePkg/Library/DxeTcpIoLib/DxeTcpIoLib.inf
HttpLib|MdeModulePkg/Library/DxeHttpLib/DxeHttpLib.inf
OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf
BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf
TlsLib|CryptoPkg/Library/TlsLib/TlsLib.inf
Add the following drivers to the Components section:
MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf
MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf
MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf
NetworkPkg/Ip6Dxe/Ip6Dxe.inf
NetworkPkg/TcpDxe/TcpDxe.inf
NetworkPkg/Udp6Dxe/Udp6Dxe.inf
NetworkPkg/Dhcp6Dxe/Dhcp6Dxe.inf
NetworkPkg/HttpDxe/HttpDxe.inf
NetworkPkg/HttpBootDxe/HttpBootDxe.inf
NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf
NetworkPkg/DnsDxe/DnsDxe.inf
NetworkPkg/TlsDxe/TlsDxe.inf
NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf
Note: The network controller’s UNDI driver also needs to be in the list of platform files
Modules in FDF file
The following drivers are required in the FV section for HTTPSv6 boot:
INF MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf
INF MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf
INF MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf
INF NetworkPkg/Ip6Dxe/Ip6Dxe.inf
INF NetworkPkg/TcpDxe/TcpDxe.inf
INF NetworkPkg/Udp6Dxe/Udp6Dxe.inf
INF NetworkPkg/Dhcp6Dxe/Dhcp6Dxe.inf
INF NetworkPkg/HttpDxe/HttpDxe.inf
INF NetworkPkg/HttpBootDxe/HttpBootDxe.inf
INF NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf
INF NetworkPkg/DnsDxe/DnsDxe.inf
INF NetworkPkg/TlsDxe/TlsDxe.inf
INF NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf
Build the NT32 Simulator
The following command is used to build NT32 using Microsoft Visual Studio* 2013:
build -a IA32 –t VS2013x86 -p Nt32pkg\Nt32Pkg.dsc
Run HTTPS Boot
Currently the UEFI HTTPS Boot feature only supports server authentication with an unauthenticated client. To support this mode, the Server CA certificate (rootcert.pem) is required by the Client. A private variable is used to configure the CA certificate on the client system. The EFI_SIGNATURE_LIST format is used for this variable:TlsCaCertificate, {0xfd2340D0, 0x3dab, 0x4349, {0xa6, 0xc7, 0x3b, 0x4f, 0x12, 0xb4, 0x8e, 0xae}}
Configure the Certificate
The server CA certificate must first be configured to enable UEFI HTTPS Boot. The TlsAuthConfigDxe driver provides a user interface to support the required certificate configuration. Figure 15 shows the UEFI Client configuration in Boot Manager.
Figure 15: UEFI Client Certificate Configuration
Run HTTPS Boot on the UEFI Client
After the Server CA certificate (rootcert.pem) has been configured, the NT32 simulator can perform a HTTPS Boot. Start the NT32 simulator, enter Boot Manager, and select “UEFI HTTPv4” or “UEFI HTTPv6” depending on the server configuration (see Figure 16).
Figure 16: Select Boot Option
During UEFI HTTPS Boot, the HttpDxe driver consumes the TlsDxe driver. This boot process supports HTTP and HTTPS, depending on the URL. This allows HttpDxe to communicate with an HTTPS or HTTP server configuration. The example in this document loads a UEFI Shell image downloaded from the server. Figure 17 shows the result of a successful UEFI HTTPS Boot.
Figure 17: Boot the Downloaded UEFI Shell Image
Table of Contents
Getting Started with UEFI HTTPS Boot on EDK II
Additional Protocols
Additional Modules
TLS Authentication Modes
Self-Generated Certificate
Configure Server and Build Client
Run HTTPS Boot