


TABLE	OF	CONTENTS
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II

Introduction

Overview

Additional	Protocols

Additional	Modules

HTTPS	Authentication

TLS	Authentication	Modes

Self-Generated	Certificate

Start	Guide

Configure	Server	and	Build	Client

Solution	for	IPv4

Solution	for	IPv6

Run	HTTPS	Boot

Tables

Table	1	-	Certificate	Requirement

Table	2	-	Key	Pair

Figures

Figure	1	-	Authentication	Mechanism

Figure	2	-	HTTPS	Boot,	IPv4	Configuration

Figure	3	-	DHCPv4	Server	Scope

Figure	4	-	DHCPv4	Server	Options

Figure	5	-	Configure	New	Host	for	IPv4

Figure	6	-	Add	MIME	Type

Figure	7	-	Add	MIME	Type

Figure	8	-	Add	Server	Certificates

Figure	9	-	Enroll	a	Certificate	for	the	HTTPS	Server

Figure	10	-	Create	a	New	Website	for	the	HTTPS	Server

Figure	11	-	The	UEFI	Shell	file,	as	viewed	in	IIS

Figure	12	-	HTTPS	boot,	IPv6	Configuration

Figure	13	-	Configure	Forward	Lookup	Zone	for	IPv6

Figure	14	-	Configure	New	Host	for	IPv6

Figure	15	-	UEFI	Client	Certificate	Configuration

Figure	16	-	Select	Boot	Option

Figure	17	-	Boot	the	Downloaded	UEFI	Shell	Image

Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II
DRAFT	FOR	REVIEW

12/01/2020	07:08:30

Revision	1.30

WHITEPAPER

Contributed	by
Wu	Jiaxin

Fu	Siyuan

Brian	Richardson

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

0.1 Initial	release. March
2016

0.2 Add	UEFI	Client	Certificate	Configuration May
2016

0.3 Simplify	the	topology	and	configuration. May
2016

Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



0.4 Refine	the	content May
2016

0.5 Minor	content	revisions May
2016

0.6 Updated	figure	references	&	document	formatting.	Text	cleanup	for
information	related	to	IPv4	&	IPv6	configuration	(multiple	sections).

June
2016

0.7 Modified	document	title.	Added	information	on	openSUSE	implementation	of
HTTP	Boot.

July
2016

0.8 Refine	the	contents. Sep
2016

0.9 Update	the	certificate	generation	command	for	Windows	OS Sep
2016

1.0 Remove	the	consumed	OpensslTlsLib	module	since	the	ssl	building	has
been	enabled	in	OpensslLib	directly.

Dec
2016

1.1 Minor	formatting	changes.	Fixed	hyperlinks	to	tianocore.org	site	and
whitepapers.

Feb
2017

1.2 Add	the	IANA	approved	media	type	link.	Specify	the	EDKII	network	stack
version.

Feb
2017

1.3
Replace	examples	of	md5	signature	algorithm	with	sha256.	Added	note	on
PXE	to	Overview	Section	with	links	to	TianoCore	wiki.	
Conversion	to	gitBook

Apr
2017

Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



INTRODUCTION

Overview
HTTP	over	TLS	(HTTPS)	boot	is	a	standard	implementation	for	securely	booting	using	the	Unified
Extensible	Firmware	Interface	(UEFI)	over	a	network	device.	HTTPS	Boot	is	especially	important	for	clients
using	potentially	insecure	networks	outside	of	corporate	infrastructure.	Security	for	UEFI	HTTPS	Boot	is
provided	by	the	underlying	Transport	Layer	Security	(TLS).

UEFI	HTTPS	Boot	is	designed	to	overcome	limitations	of	the	Preboot	Execution	Environment	(PXE)	boot
method	currently	supported	by	UEFI	&	legacy	BIOS	firmware:

PXE	uses	UDP	as	transport	layer	protocol.	TCP	is	not	supported.
PXE	is	designed	to	work	within	a	corporate	network,	not	outside	of	a	company	firewall.
PXE	uses	TFTP	and	does	not	support	a	secure	transport	method	(ex:	HTTPS).

This	document	assumes	that	the	reader	is	familiar	with	the	EDK	II	HTTP	Boot	Getting	Started	Guide
available	on	the	TianoCore	whitepapers	page.	For	information	on	configuring	a	HTTP	Boot	server,	please
refer	to	the	UEFI	HTTP	Boot	with	OVMF	help	page	available	at	opensuse.org.

Introduction
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://github.com/tianocore/tianocore.github.io/wiki/PXE
https://github.com/tianocore/tianocore.github.io/wiki/EDK%20II%20White%20papers
https://en.opensuse.org/UEFI_HTTPBoot_with_OVMF


Additional	Protocols
All	protocols	introduced	in	the	EDK	II	HTTP	Boot	Getting	Started	Guide	are	necessary.

The	following	new	protocols	are	related	to	HTTPS	Boot:

EFI_TLS_SERVICE_BINDING_PROTOCOL
EFI_TLS_PROTOCOL
EFI_TLS_CONFIGURATION_PROTOCOL

Additional	Protocols
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Additional	Modules
All	modules	introduced	in	the	EDK	II	HTTP	Boot	Getting	Started	Guide	are	necessary.		HttpDxe		driver
needs	to	be	updated	to	consume	the		TlsDxe		driver.

The	following	new	TLS	modules	are	also	required	by	HTTPS	boot:

OpenSSL	Crypto	and	TLS	module
	CryptoPkg/Library/OpensslLib/OpensslLib.inf	

Base	Crypto	Library	
	CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf	

TLS	Library
	CryptoPkg/Library/TlsLib/TlsLib.inf	

TLS	Driver
	NetworkPkg/TlsDxe/TlsDxe.inf	

TLS	Authentication	Config	Driver
	NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf	

Additional	Modules
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



HTTPS	AUTHENTICATION
Figure	1	shows	the	regular	HTTPS	authentication	mechanism	for	both	the	server	providing	the	boot
image,	and	the	client	booting	from	the	image.	Leveraging	an	asymmetric	crypto	system,	the	client	and
server	can	be	authenticated	by	each	other.	The	steps	for	mutual	authentication	are	as	follows:

1.	 Server	and	Client	request	the	corresponding	asymmetric	key	pair	from	the	Certification	Authority
(CA).	Both	requested	certificates	can	be	verified	by	the	CA.

2.	 The	CA	distributes	the	key	pair	(	servercert/serverkey	)	and	its	own	certificate	(	rootcert	)	to	the	Server.
The	distributed	certificate	(servercert)	has	been	signed	by	its	rootkey.

3.	 The	CA	distributes	the	key	pair	(	clientcert/clientkey	)	and	its	own	certificate	(	rootcert	)	to	the	Client.
The	distributed	certificate	(	clientcert	)	has	been	signed	by	its	rootkey.

4.	 Both	Server	and	Client	present	their	own	certificate	to	each	other	for	mutual	authentication.
5.	 When	the	Server	receives	the	Client	certificate	(	clientcert	)	the	certificate	will	be	verified	by	rootcert,
since	it	has	been	signed	with	the	rootkey	(and	vice	versa).

Figure	1	Authentication	Mechanism

HTTPS	Authentication
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



TLS	Authentication	Modes
TLS	supports	three	authentication	modes:

1.	 Two-way	authentication:	authentication	of	both	parties.	In	this	mode,	both	server	and	client	will	be
authenticated.

2.	 One-way	authentication:	server	authentication	with	an	unauthenticated	client.	That	means	only	the
server	is	authenticated	by	the	client,	and	the	client	won’t	be	authenticated	by	the	server.

3.	 Total	anonymity:	the	server	and	client	won’t	authenticate	each	other.

Table	1	shows	the	certificate	requirement	in	each	authentication	mode	for	the	HTTPS	client	and	HTTPS
server.

Part	→
---

Mode↓
Authentication	of
both	parties

Server	authentication	with	an
unauthenticated	client

Total
anonymity

HTTPS
Client

rootcert,	clientcert,
clientkey Rootcert NULL

HTTPS
Server

rootcert,	servercert,
serverkey servercert,	serverkey servercert,

serverkey

Table	1	Certificate	Requirement

TLS	Authentication	Modes
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Self-Generated	Certificate
This	example	shows	how	vendors	can	generate	custom	certificates	for	HTTPS	Boot:

(1.)	Install	OpenSSL.	
Windows:	
Download	and	install	an	OpenSSL	binary	distribution.	This	document	uses	Win32	OpenSSL	as	an
example.
Linux	(Ubuntu	as	example):	
	sudo	apt-get	install	openssl	

(2.)	Create	a	self-signed	CA	Certificate:	
Note:	(Use		type		command	instead	of		cat		in	Windows)	in	the	following	examples

openssl	req	-new	-sha256	-keyout	rootkey.pem	-out	rootreq.pem	-days	3650

openssl	x509	-req	-in	rootreq.pem	-sha256	-signkey	rootkey.pem	-out	rootcert.pem	-days	3650

cat	rootcert.pem	rootkey.pem	>	root.pem

(3.)	Create	a	server	certificate	signed	by	the	CA	certificate:

openssl	req	-new	-sha256	-keyout	serverkey.pem	-out	serverreq.pem	-days	3650

openssl	x509	-req	-in	serverreq.pem	-sha256	-CA	root.pem	-CAkey	root.pem	-CAcreateserial	-out	servercert.pem	-days	3650

cat	servercert.pem	serverkey.pem	root.pem	>	server.pem

openssl	pkcs12	-export	-in	server.pem	-out	server.pfx

Note:	The	.pem	file	is	encoded	as	BASE64,	but	only	PKCS12	format	key	can	be	used	when	booting	to	a
Microsoft	Windows	server.	This	requires	the	last	step	in	process	above,	converting		server.pem		to
	server.pfx	.

(4.)	Create	a	client	certificate	signed	by	the	CA	certificate:

openssl	req	-new	-sha256	-keyout	clientkey.pem	-out	clientreq.pem	-days	3650

openssl	x509	-req	-in	clientreq.pem	-sha256	-CA	root.pem	-CAkey	root.pem	-CAcreateserial	-out	clientcert.pem	-days	3650

cat	clientcert.pem	clientkey.pem	root.pem	>	client.pem

Using	the	steps	above,	the	required	key	pairs	are	generated	as	shown	in	Table	2:

CA 	rootkey.pem,	rootcert.pem,	root.pem	

Server 	serverkey.pem,	servercert.pem,	server.pem,	server.pfx	

Client 	clientkey.pem,	clientcert.pem,	client.pem	

Table	2	Key	Pair

The	next	section	demonstrates	how	to	use	‘	rootcert.pem	’	and	‘	server.pfx	’	to	enable	server	authentication
with	an	unauthenticated	client	(one-way	authentication).

Self-Generated	Certificate
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://www.openssl.org/community/binaries.html
https://slproweb.com/products/Win32OpenSSL.html


Self-Generated	Certificate
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



START	GUIDE
This	guide	gives	instructions	on	how	to	set	up	a	UEFI	HTTPS	Boot	environment	for	both	IPv4	and	IPv6
network	environments.	This	section	assumes	the	reader	has	installed	EDK	II,	and	can	build	and	run	the
NT32	simulator.	The	NT32	simulator	serves	as	the	UEFI	HTTPS	client.

Start	Guide
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://github.com/tianocore/tianocore.github.io/wiki/Getting-Started-with-EDK-II


Configure	Server	and	Build	Client
A	UEFI	HTTPS	boot	server	has	three	main	roles:

1.	 DHCP	server
2.	 DNS	server
3.	 HTTPS	server

Depending	on	server	requirements,	two	test-bed	solutions	are	presented	for	reference:	one	simple
approach	for	IPv4,	and	an	advanced	solution	using	IPv6.	Users	can	select	the	proper	scenario	based	on
individual	requirements.	Self-generated	certificates	from	Table	2	(‘	rootcert.pem	’	and	‘	server.pfx	’)	are	used
for	HTTPS	one-way	authentication.

Solution	for	IPv4
The	solution	documented	in	this	section	uses	a	single	server	for	the	DHCP,	DNS	and	HTTPS	functions.
This	is	considered	the	simplest	server	configuration	for	UEFI	HTTPS	Boot.

Network	Topology	for	IPv4
This	example	is	based	on	Microsoft	Windows	Server	2012	R2.	Internet	Information	Services	(IIS)	are	used
to	configure	HTTPS	server.	The	server	and	NT32	simulator	use	the	same	IPv4	subnet	(192.168.10.0)	as

shown	in	Figure	2.	

Figure	2	HTTPS	Boot,	IPv4	Configuration

Configure	DHCPv4	Server
The	steps	to	configure	a	DHCPv4	server	are	as	follows:

1.	 Add	a	DHCP	service	in	Windows	Server.	Please	refer	to	the	installation	steps	available	here:
http://thetechnosolution.com/installing-and-configuring-dhcp-on-windows-server-2012-r2/.

2.	 Right	click	on	‘IPv4	–	New	Scope’	to	create	a	new	scope	option	for	IPv4	including	the	scope	name,
address	range,	and	IP	address	lease	duration.	See	Figure	3	for	details.	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

http://thetechnosolution.com/installing-and-configuring-dhcp-on-windows-server-2012-r2/


Figure	3	DHCPv4	Server	Scope

3.	 Right	click	‘Server	Options	–	Configure	Options…’	to	configure	IPv4	options	including	option	6,	60
and	67.	These	options	must	be	configured	for	proper	functionality.	After	configuration,	the	options
should	appear	as	shown	in	Figure	4.	If	the	corresponding	option	code	doesn’t	appear	in	‘Server
Options	–	Configure	Options…’	then	right	click	‘IPv4	–	Set	Predefined	Options’,	and	click	the	‘Add’
button	to	add	the	predefined	option.
a.	Option	6	indicates	the	DNS	server	address.
b.	Option	60	defines	the	vendor	Class	ID.	The	value	should	be	set	to	‘HTTPClient’.
c.	Option	67	contains	the	corresponding	boot	file	URI.

Figure	4	DHCPv4	Server	Options

4.	 Right	click	the	DHCP	server	name	and	select	the	‘All	Tasks	–	Restart’	option	to	restart	the	DHCPv4
service.

Configure	DNSv4	Server
The	steps	to	configure	the	DNSv4	server	are	as	follows:

1.	 Add	the	DNS	service	in	Windows	Server	Manager	–	‘Add	roles	and	features’.
2.	 Add	a	new	forward	lookup	zone	named	‘cloudboot.com’.
3.	 Add	a	new	Host	“www”	for	IPv4	(192.168.10.8).	See	Figure	5	for	reference.	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	5	Configure	New	Host	for	IPv4

4.	 Right	click	the	DHCP	server	name	and	select	the	‘All	Tasks	–	Restart’	option	to	restart	the	DHCPv4
service.

Configure	HTTPS	Server	for	IPv4
The	steps	to	configure	the	HTTPS	server	are	as	follows:

1.	 Enable	the	Internet	Information	Services	(IIS)	feature	in	Windows	Server	manager,	based	on
installation	steps	available	here:	http://www.iis.net/learn/install/installing-iis-85/installing-iis-85-on-
windows-server-2012-r2.

2.	 Open	the	Internet	Information	Services	(IIS)	Manager,	and	add	a	new	MIME	type	for	the	resources
required	by	the	HTTPS	server.	For	the	approved	media	type	by	IANA	(e.g.	.efi/.img/*.iso),	please	refer
to	the	http://www.iana.org/assignments/media-types.	In	this	example,	the	client	will	boot	to	a	UEFI
Shell	image	provided	by	the	server.	This	requires	addition	of	the		.efi		file	type.	Figure	6	and	Figure	7
show	the	detailed	steps.	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

http://www.iis.net/learn/install/installing-iis-85/installing-iis-85-on-windows-server-2012-r2
http://www.iana.org/assignments/media-types


Figure	6	Add	MIME	Type

Figure	7	Add	a	New	MIME	Type	to	IIS

3.	 Enroll	the	Server	key	pair	(	server.pfx	)	in	‘Server	Certificates’.	Refer	to	Figure	8	and	Figure	9	for
details.	Here,	we	assume	the		server.pfx		has	been	generated.	For	detailed	steps,	please	refer	to
section	Self-Generated	Certificate	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

16DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	8	Add	Server	Certificates

Figure	9	Enroll	a	Certificate	for	the	HTTPS	Server

4.	 Create	a		‘httpsroot	’	folder	in	‘	C:\inetpub	’	as	a	default	root	path	(	C:\inetpub\httpsroot	).
5.	 Right-click	on	‘Sites	–	Add	Website’	to	create	a	new	website	for	the	HTTPS	server.	The	areas
highlighted	in	Figure	10	are	required	fields.	The	‘Physical	path’	is	the	default	root	path	for	the
website.	The	‘SSL	certificate’	is	the	server	key’s	(	server.pfx	)	common	name	(	192.168.10.8	),	which	was
enrolled	in	Step	3.	The	binding	type	is	‘https’	and	the	binding	port	value	is	‘	443	’.	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

17DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	10	Create	a	New	Website	for	the	HTTPS	Server

6.	 Create	an	‘EFI’	folder	in	default	root	path,	which	was	configured	in	Step	5.	Copy	the	UEFI	Shell	binary
that	matches	your	firmware	configuration	into	this	folder	(	C:\inetpub\httpsroot\EFI	).	The	UEFI	Shell
binary	is	in	the		ShellBinPkg		package	on	EDK	II
(https://github.com/tianocore/edk2/tree/master/ShellBinPkg).The	file	should	be	renamed		Shell.efi		to
match	the	configuration	in	DHCP	option	67.	This	sets	the	UEFI	Shell	boot	path	as
https://www.cloudboot.com:443/EFI/Shell.efi	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

18DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://github.com/tianocore/edk2/tree/master/ShellBinPkg
https://www.cloudboot.com:443/EFI/Shell.efi


Figure	11	The	UEFI	Shell	file,	as	viewed	in	IIS

Note:	The	NT32	Simulator	uses	the	IA32	UEFI	Shell	binary,	while	most	production	systems	require
the	x64	UEFI	Shell	to	match	the	UEFI	firmware	configuration.	This	depends	on	your	platform	firmware
configuration.

Enable	NT32	Simulator	for	IPv4
To	enable	the	UEFI	HTTPSv4	Boot	feature,	the	EDKII	network	stack	(IPv4)	must	be	built	in	your	system
firmware,	which	is	located	at	MdeModulePkg/Universal/Network.	Here,	the	verified	version	is:
d52f9163debb523e06d49ed8a4627a0317bab92c.

Modules	in	DSC	file

The	following	libraries	and	drivers	are	required	by	HTTPSv4	boot:

Add	the	following	libraries	to	the		LibraryClasses		section:

DpcLib|MdeModulePkg/Library/DxeDpcLib/DxeDpcLib.inf

NetLib|MdeModulePkg/Library/DxeNetLib/DxeNetLib.inf

IpIoLib|MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.inf

UdpIoLib|MdeModulePkg/Library/DxeUdpIoLib/DxeUdpIoLib.inf

TcpIoLib|MdeModulePkg/Library/DxeTcpIoLib/DxeTcpIoLib.inf

HttpLib|MdeModulePkg/Library/DxeHttpLib/DxeHttpLib.inf

OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf

BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf

TlsLib|CryptoPkg/Library/TlsLib/TlsLib.inf

Add	the	following	drivers	to	the		Components		section:

MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf

MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

19DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/Network
https://github.com/tianocore/edk2/commit/d52f9163debb523e06d49ed8a4627a0317bab92c


MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf

MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf

MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf

MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf

NetworkPkg/HttpDxe/HttpDxe.inf

NetworkPkg/HttpBootDxe/HttpBootDxe.inf

NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf

NetworkPkg/DnsDxe/DnsDxe.inf

NetworkPkg/TlsDxe/TlsDxe.inf

NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf

Note:	The	network	controller’s	UNDI	driver	also	needs	to	be	in	the	list	of	platform	files.

Modules	in	FDF	file

The	following	drivers	should	be	added	to	the		FV		section	for	HTTPSv4	boot:

INF	MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

INF	MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf

INF	MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

INF	MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf

INF	MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf

INF	MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf

INF	MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf

INF	MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf

INF	NetworkPkg/HttpDxe/HttpDxe.inf

INF	NetworkPkg/HttpBootDxe/HttpBootDxe.inf

INF	NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf

INF	NetworkPkg/DnsDxe/DnsDxe.inf

INF	NetworkPkg/TlsDxe/TlsDxe.inf

INF	NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf

Build	the	NT32	Simulator

The	following	command	is	used	to	build	NT32	using	Microsoft	Visual	Studio	2013:

build	-a	IA32	–t	VS2013x86	-p	Nt32pkg\Nt32Pkg.dsc

Solution	for	IPv6
For	IPv6,	the	DHCP,	DNS	and	HTTPS	server	are	deployed	on	different	systems.	This	solution	provides	a
more	flexible	configuration	for	the	DHCP	server,	DNS	server	and	HTTPS	Server.

Network	Topology	for	IPv6

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

20DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	12	HTTPS	boot,	IPv6	Configuration

Configure	the	DHCPv6	Server
The	steps	to	configure	DHCPv6	on	an	Ubuntu	15.10	server	are	shown	as	follows:

1.	 Install	the	DHCP	server:		sudo	apt-get	install	isc-dhcp-server	
2.	 Edit		/etc/dhcp/dhcpd6.conf		as	shown	below	
Note:	If	there	is	no	dhcpd6.conf	file	in		/etc/dhcp/	,	create	it	first.

default-lease-time	600;`	

max-lease-time	7200;

log-facility	local7;

#option	definitions	common	to	all	supported	networks…

option	dhcp6.vendor-class	code	16	=	{	integer	32,	integer	16,	tring};

option	dhcp6.bootfile-url	code	59	=	string;

subnet6	2000:bbbb::/64	{

#Range	for	clients

		range6	2000:bbbb::100	2000:bbbb::ffff;

		option	dhcp6.domain-search	“cloudboot.com”;

		option	dhcp6.name-servers	2000:bbbb::10;

		option	dhcp6.vendor-class	0	0	“HTTPClient”;

		“https://www.cloudboot.com:443/EFI/Shell.efi”;

}

3.	 Configure	the	server	to	listen	for	DHCP	requests	on	the	correct	network	interface.	This	example
assumes	eth0	is	the	primary	interface.	Edit	the		/etc/default/isc-dhcp-server		file	to	configure		INTERFACE	=
“eth0”;	

4.	 Restart	the	DHCPv6	service:	sudo	service	isc-dhcp-server6	restart	

Configure	DNSv6	Server
The	steps	to	configure	DNSv6	for	Microsoft	Windows	Server	2002	R2	are	as	follows:

1.	 Add	the	DNS	service	in	Windows	Server	Manager	–	‘Add	roles	and	features’.
2.	 Add	a	new	forward	lookup	zone	‘	cloudboot.com	’	(see	Figure	13).	

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

21DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	13	Configure	Forward	Lookup	Zone	for	IPv6

3.	 Add	a	new	Host	“www”	for	IPv6	(	2000:bbbb::8	)	as	shown	in	Figure	14.	

Figure	14	Configure	New	Host	for	IPv6

4.	 Right	click	the	DNS	server	name	and	select	the	‘All	Tasks	–	Restart’	option	to	restart	the	DNSv6
service.

Configure	HTTPS	Server	for	IPv6
Please	refer	to	Section	Configure	HTTPS	Server	for	IPv4	above,	as	this	step	is	not	dependent	on	IPv4	or
IPv6.

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

22DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Enable	NT32	Simulator	for	IPv6
To	enable	the	UEFI	Boot	feature	for	HTTPSv6,	the	EDKII	network	stack	(IPv6)	must	be	built	in	your	system
firmware,	which	is	located	at	NetworkPkg.	Here,	the	verified	version	is:
7cf59c854f35c9680965fe83e9cfd863079ddd73.

Modules	in	DSC	file

The	following	libraries	and	drivers	are	required	by	HTTPSv6	boot:

Add	the	following	libraries	to	the		LibraryClasses		section:

DpcLib|MdeModulePkg/Library/DxeDpcLib/DxeDpcLib.inf

NetLib|MdeModulePkg/Library/DxeNetLib/DxeNetLib.inf

IpIoLib|MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.inf

UdpIoLib|MdeModulePkg/Library/DxeUdpIoLib/DxeUdpIoLib.inf

TcpIoLib|MdeModulePkg/Library/DxeTcpIoLib/DxeTcpIoLib.inf

HttpLib|MdeModulePkg/Library/DxeHttpLib/DxeHttpLib.inf

OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf

BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf

TlsLib|CryptoPkg/Library/TlsLib/TlsLib.inf

Add	the	following	drivers	to	the		Component	s	section:

MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf

MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

NetworkPkg/Ip6Dxe/Ip6Dxe.inf

NetworkPkg/TcpDxe/TcpDxe.inf

NetworkPkg/Udp6Dxe/Udp6Dxe.inf

NetworkPkg/Dhcp6Dxe/Dhcp6Dxe.inf

NetworkPkg/HttpDxe/HttpDxe.inf

NetworkPkg/HttpBootDxe/HttpBootDxe.inf

NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf

NetworkPkg/DnsDxe/DnsDxe.inf

NetworkPkg/TlsDxe/TlsDxe.inf

NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf

Note:	The	network	controller’s	UNDI	driver	also	needs	to	be	in	the	list	of	platform	files

Modules	in	FDF	file

The	following	drivers	are	required	in	the		FV		section	for	HTTPSv6	boot:

INF	MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

INF	MdeModulePkg/Universal/Network/SnpDxe/SnpDxe.inf

INF	MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

INF	NetworkPkg/Ip6Dxe/Ip6Dxe.inf

INF	NetworkPkg/TcpDxe/TcpDxe.inf

INF	NetworkPkg/Udp6Dxe/Udp6Dxe.inf

INF	NetworkPkg/Dhcp6Dxe/Dhcp6Dxe.inf

INF	NetworkPkg/HttpDxe/HttpDxe.inf

INF	NetworkPkg/HttpBootDxe/HttpBootDxe.inf

INF	NetworkPkg/HttpUtilitiesDxe/HttpUtilitiesDxe.inf

INF	NetworkPkg/DnsDxe/DnsDxe.inf

INF	NetworkPkg/TlsDxe/TlsDxe.inf

INF	NetworkPkg/TlsAuthConfigDxe/TlsAuthConfigDxe.inf

Build	the	NT32	Simulator

The	following	command	is	used	to	build	NT32	using	Microsoft	Visual	Studio*	2013:

build	-a	IA32	–t	VS2013x86	-p	Nt32pkg\Nt32Pkg.dsc

Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

23DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]

https://github.com/tianocore/edk2/tree/master/NetworkPkg
https://github.com/tianocore/edk2/commit/7cf59c854f35c9680965fe83e9cfd863079ddd73


Configure	Server	and	Build	Client
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

24DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Run	HTTPS	Boot
Currently	the	UEFI	HTTPS	Boot	feature	only	supports	server	authentication	with	an	unauthenticated
client.	To	support	this	mode,	the	Server	CA	certificate	(	rootcert.pem	)	is	required	by	the	Client.	A	private
variable	is	used	to	configure	the	CA	certificate	on	the	client	system.	The		EFI_SIGNATURE_LIST		format	is	used
for	this	variable:	TlsCaCertificate,	{0xfd2340D0,	0x3dab,	0x4349,	{0xa6,	0xc7,	0x3b,	0x4f,	0x12,	0xb4,	0x8e,	0xae}}	

Configure	the	Certificate
The	server	CA	certificate	must	first	be	configured	to	enable	UEFI	HTTPS	Boot.	The		TlsAuthConfigDxe		driver
provides	a	user	interface	to	support	the	required	certificate	configuration.	Figure	15	shows	the	UEFI
Client	configuration	in	Boot	Manager.	

Figure	15:	UEFI	Client	Certificate	Configuration

Run	HTTPS	Boot	on	the	UEFI	Client
After	the	Server	CA	certificate	(	rootcert.pem	)	has	been	configured,	the	NT32	simulator	can	perform	a
HTTPS	Boot.	Start	the	NT32	simulator,	enter	Boot	Manager,	and	select	“UEFI	HTTPv4”	or	“UEFI	HTTPv6”
depending	on	the	server	configuration	(see	Figure	16).	

Run	HTTPS	Boot
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

25DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	16:	Select	Boot	Option

Run	HTTPS	Boot
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

26DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]



Figure	17:	Boot	the	Downloaded	UEFI	Shell	Image

Run	HTTPS	Boot
Getting	Started	with	UEFI	HTTPS	Boot	on	EDK	II[DRAFT]

27DRAFT	FOR	REVIEW	[12/01/2020	07:08:30]


	Getting Started with UEFI HTTPS Boot on EDK II
	Introduction
	Additional Protocols
	Additional Modules

	HTTPS Authentication
	TLS Authentication Modes
	Self-Generated Certificate

	Start Guide
	Configure Server and Build Client
	Run HTTPS Boot


