

TABLE	OF	CONTENTS
EDK	II	Secure	Code	Review	Guide

Executive	Summary

General	Guidelines	for	Secure	Code	Review

Code	Review	Guidelines	for	Boot	Firmware

External	Input

Race	Condition

Hardware	Input

Secret	Handling

Register	Lock

Secure	Configuration

Replay/Rollback

Cryptography

Other

Summary

References

Books	and	Papers

Web

EDK	II	Secure	Code	Review	Guide

2Revision	01.0

EDK	II	SECURE	CODE	REVIEW	GUIDE
Technical	Briefing

12/01/2020	06:54:44

Revision	01.0

Contributed	by
Jiewen	Yao,	Intel	Corporation

Chris	Wu,	Intel	Corporation

Vincent	J.	Zimmer,	Intel	Corporation

Special	Acknowledgements
This	document	checklist	is	collected	based	upon	the	security	experience	and	previous	security	issue
report.	We	would	like	to	thank	Sugumar	Govindarajan,	John	Mathew,	Kirk	Brannock,	and	Karunakara
Kotary	of	Intel	Corporation	who	provided	the	thought	on	hardening	the	platform.

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2019,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

01.0 Initial	release. June	2019

EDK	II	Secure	Code	Review	GuideEDK	II	Secure	Code	Review	Guide

3Revision	01.0

EDK	II	Secure	Code	Review	GuideEDK	II	Secure	Code	Review	Guide

4Revision	01.0

EXECUTIVE	SUMMARY
Introduction
This	document	describes	guidelines	for	secure	code	review	in	EDK	II	firmware.

Audience
This	document	is	intended	for	use	by	firmware	developers,	security	reviewers,	and	firmware	validation
engineers.

Executive	SummaryEDK	II	Secure	Code	Review	Guide

5Revision	01.0

GENERAL	GUIDELINES	FOR	SECURE	CODE
REVIEW

Overview
Secure	Code	Review	is	a	special	activity	compared	to	a	normal	code	review.	While	the	typical	code	review
is	focused	on	software	quality,	including	usability,	reusability,	and	maintainability,	secure	code	reviews
are	focused	on	software	security	aspects,	including	but	not	limited	to	confidentiality,	integrity,	and
availability	(C.I.A.).

In	2006,	Howard	from	Microsoft,	published	“A	Process	for	Performing	Security	Code	Reviews.”.	It	provides
some	general	guidelines	for	performing	a	security	code	review.	The	guidelines	are	still	valid	today:

1.	 Make	sure	you	know	what	you	are	doing
2.	 Prioritize
3.	 Review	the	code.

Make	sure	you	know	what	you	are	doing
Before	you	review	code,	please	make	sure	you	understand	the	following:

1.	 Threat	Model	and	Security	Architecture	of	the	feature,	including	assets,	security	objectives,
adversaries,	and	the	mitigations.

2.	 The	general	secure	design	and	coding	principles	for	EDK	II.

Prioritize
According	to	“A	Process	for	Performing	Security	Code	Reviews.”,	the	priority	of	common	software	code	is
below:

1.	 Old	code
2.	 Code	that	runs	by	default
3.	 Code	that	runs	in	an	elevated	context
4.	 Anonymously	accessible	code
5.	 Code	listening	on	a	globally	accessible	network	interface
6.	 Code	is	written	in	C/C++/assembly	language
7.	 Code	with	a	history	of	vulnerabilities
8.	 Code	that	handles	sensitive	data
9.	 Complex	code
10.	 Code	that	changes	frequently

Except	for	items	#4	and	#5,	all	other	rules	apply	to	EDK	II	firmware.

Review	the	code
Reviewing	the	code	involves	three	steps:

1.	 Rerun	all	available	code-analysis	tools.
2.	 Look	for	common	vulnerability	patterns,	such	as

i.	 Integer	arithmetic	vulnerabilities
ii.	 Buffer-overrun	vulnerabilities
iii.	 Cryptographic	vulnerabilities
iv.	 Structured	Query	Language	(SQL)	Injection	vulnerabilities

General	Guidelines	for	Secure	Code	ReviewEDK	II	Secure	Code	Review	Guide

6Revision	01.0

v.	 Cross-site	scripting	vulnerabilities
3.	 Dig	deep	into	risky	code,	such	as

i.	 Are	there	logic	or	off-by-one	errors	(for	example,	‘>’	vs.	‘>=’	or	‘||’	vs.	‘&&’)?
ii.	 Is	the	data	correctly	validated?
iii.	 Are	buffer	lengths	constrained	correctly?
iv.	 Are	integer	values	range-checked	correctly?
v.	 Are	pointers	validated?
vi.	 Can	the	code	become	inefficient	(for	example,	O(N))	due	to	some	malformed	data	(for	example,
a	hash	table	look-up	becomes	a	list	look-up)?

vii.	 Are	errors	handled	correctly?

Other	than	#2.iv	and	#2.v	above,	all	other	rules	apply	to	EDK	II	firmware.

Besides	“A	Process	for	Performing	Security	Code	Reviews.”,	Ransome	provided	some	good	suggestions
in	the	book	“Core	Software	Security:	Security	at	the	Source”	on	how	to	perform	the	SDL	activity	including
security	code	review.

EDK	II	Secure	Coding	Guidelines
We	also	provided	the	guideline	for	EDK	II	Secure	Coding.	People	need	to	fully	understand	the	EDK	II
secure	coding	best	practices	before	doing	the	security	code	review.

2

General	Guidelines	for	Secure	Code	ReviewEDK	II	Secure	Code	Review	Guide

7Revision	01.0

CODE	REVIEW	GUIDELINES	FOR	BOOT	FIRMWARE
Based	on	previous	analysis	of	firmware	issues,	vulnerabilities	fall	into	8	general	categories	that	should
be	the	focus	of	secure	code	reviews:

1.	 External	Input
2.	 Race	Conditions
3.	 Hardware	Input
4.	 Secret	Handling
5.	 Register	Lock
6.	 Secure	Configuration
7.	 Replay/Rollback
8.	 Cryptography

This	section	discusses	each	class	of	vulnerability	and	summarizes	approaches	for	review.

Code	Review	Guidelines	for	Boot	FirmwareEDK	II	Secure	Code	Review	Guide

8Revision	01.0

External	Input
External	input	describes	data	that	can	be	controlled	by	an	attacker.	Examples	include:

UEFI	capsule	image
Boot	logo	in	Bitmap	(BMP)	or	Joint	Photographic	Experts	Group	(JPEG)	format
Contents	of	file	system	partitions
Read/write	variables
System	Management	Mode	(SMM)	communication	buffer
Network	packets

Previous	Vulnerabilities:

Boot	Logo	Image
At	BlackHat	2009,	Invisible	Things	Lab	demonstrated	how	to	use	a	buffer	overflow	in	BMP	file	processing
to	construct	an	attack	and	flash	a	new	firmware.	The	BMP	file	is	an	external	input	where	an	attacker
may	input	a	large	value	for		PixelWidth		and		PixelHeight	.	This	causes		BltBufferSize		to	overflow	and	results	in
a	very	small	number.	This	is	a	typical	integer	overflow	caused	by	multiplication.

EFI_STATUS	ConvertBmpToGopBlt	()

{

	///	...

		if	(BmpHeader->CharB	!=	'B'	||	BmpHeader->CharM	!=	'M')	{

				return	EFI_UNSUPPORTED;

		}

		BltBufferSize	=	BmpHeader->PixelWidth	*	BmpHeader->PixelHeight

																				*	sizeof	(EFI_GRAPHICS_OUTPUT_BLT_PIXEL);

		IsAllocated	=	FALSE;

		if	(*GopBlt	==	NULL)	{

				*GopBltSize	=	BltBufferSize;

				*GopBlt	=	EfiLibAllocatePool	(*GopBltSize);

To	handle	these	cases,	code	should	check	for	integer	overflow	using	division,	as	shown	below:

if	(BmpHeader->PixelWidth	>	MAX_UINT	/	sizeof	

(EFI_GRAPHICS_OUTPUT_BLT_PIXEL)	/	BmpHeader->PixelHeight)	{

				return	EFI_INVALID_PARAMETER;

}

SMM	Callout
At	Black	Hat	DC	2009,	Invisible	Things	Lab	demonstrated	a	way	to	inject	code	into	SMM.	The	SMM	code
referenced	(ACPINV		below)	a	function	pointer	in	Advanced	Configuration	and	Power	Interface	(ACPI)	Non-
Volatile	Storage	(NVS)	memory	and	invoked	this	function	address.	An	attacker	may	modify	the	function
pointer	address	in	ACPI	NVS	so	it	points	to	a	malicious	function.

mov	[ACPINV+x],	%rax

call	*0x18(%rax)

A	similar	issue	is	also	found	in	ThinkPad	2016.	The		SmmRuntimeCallHandle		is	the	pointer	in	ACPI	Reserved
memory.	As	such,	the	attacker	may	replace	this	function	pointer	with	any	address.

This	is	shown	in	line	with	the	statement:		RtServices	=	(EFI_SMM_RT_CALLBACK_SERVICES	*)	SmmRtStruct-
>PrivateData.SmmRuntimeCallHandle;		below.

External	InputEDK	II	Secure	Code	Review	Guide

9Revision	01.0

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
https://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html

EFI_STATUS

EFIAPI

SmmRuntimeManagementCallback	(

		IN	EFI_HANDLE													SmmImageHandle,

		IN	OUT	VOID															*CommunicationBuffer,

		IN	OUT	UINTN														*SourceSize

)

{

		SMM_RUNTIME_COMMUNICATION_STRUCTURE	*SmmRtStruct;

		EFI_SMM_RT_CALLBACK_SERVICES								*RtServices;

		RtServices		=	NULL;

		SmmRtStruct	=	(SMM_RUNTIME_COMMUNICATION_STRUCTURE	*)	CommunicationBuffer;

		RtServices		=	(EFI_SMM_RT_CALLBACK_SERVICES	*)	SmmRtStruct->PrivateData.SmmRuntimeCallHandle;

		if	(RtServices	!=	NULL)	{

				RtServices->CallbackFunction	(RtServices->Context,	mSmst,	(VOID	*)	&SmmRtStruct->PrivateData);

				SmmRtStruct->PrivateData.SmmRuntimeCallHandle	=	NULL;

		}

		return	EFI_SUCCESS;

}

It	is	critical	that	SMM	never	reference	memory	outside	System	Management	RAM	(SMRAM)	for	function
pointers.

In	the	latest	Intel	processors,	the	SMM_Code_Access_Chk	feature	can	be	used	to	block	code	execution
outside	of	the	value	set	by	the	SMRAM	Range	Register	(SMRR).	This	feature	MUST	be	enabled	if	it	is
supported.

The	latest	versions	of	EDK	II	also	enable	Executable	Disable	(XD)	for	memory	addresses	outside	of
SMRAM.

SMM	Communication
In	CanSecWest	2015,	a	new	class	of	SMM	attack	was	disclosed.	The	attacker	may	construct	a	SMM
communication	buffer	that	points	to	memory	owned	by	System	Management	RAM	(SMRAM)	or	Virtual
Machine	Monitor	(VMM),	then	pass	this	address	into	a	System	Management	Interrupt	(SMI)	handler.	This
causes	the	SMI	handler	to	perform	the	write	for	the	attacker.	This	typically	classified	as	a	“confused
deputy”	attack.	See	the	lines	with		CommBuffer		and	with	the		CopyMem		statement	below.

SmmVariableHandler	()

//		...

		SmmVariableFunctionHeader	=	(SMM_VARIABLE_COMMUNICATE_HEADER	*)CommBuffer;

		switch	(SmmVariableFunctionHeader->Function)	{

		case	SMM_VARIABLE_FUNCTION_GET_VARIABLE:

				SmmVariableHeader	=	(SMM_VARIABLE_COMMUNICATE_ACCESS_VARIABLE	*)

				SmmVariableFunctionHeader->Data;

				Status	=	VariableServiceGetVariable	(

															...

															(UINT8	*)SmmVariableHeader->Name	+	SmmVariableHeader->NameSize

);

}

VariableServiceGetVariable	(

		//	...

		OUT	VOID	*Data

)

{

	//	...

		CopyMem	(Data,	GetVariableDataPtr	(Variable.CurrPtr),	VarDataSize);

}

External	InputEDK	II	Secure	Code	Review	Guide

10Revision	01.0

http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

To	mitigate	this	attack,	the	SMI	handler	is	required	to	use	the	library	service		SmmIsBufferOutsideSmmValid()		to
check	the	communication	buffer	before	accessing	it.

ACPI	table	for	Authenticated	Code	Module	(ACM)	is	a	signed	binary	module	delivered	by	Intel.	It	is	used
to	construct	a	dynamic	root	of	trust	for	measurement	(DRTM)	environment.	In	2011,	Invisible	Things	Lab
disclosed	a	way	to	hijack	the	SINIT	ACM.	The	issue	happens	when	the	ACM	code	parses	the	untrusted
ACPI	DMA	Remapping	(DMAR)	table.	The	DMAR	table	is	used	before	validation	of	the	address.	As	such
the	attacker	may	control	the	copied	memory	length	and	override	the	Intel	Trusted	Executable
Technology	(TXT)	heap	and	SINIT	ACM	itself.	See	line		6741		below.

6675:	mov		(%edi),%esi

6677:	cmpl	$0x52414d44,(%esi)

;	(DWORD*)esi	==	’DMAR’?

667d:	je	0x6697

...

6697:	mov		(%edi),%edi

6699:	mov		%edi,%es:0xa57

;	var_a57	=	&dmar

66a0:	mov		0x4(%edi),%ecx

;	ecx	=	dmar.len

66a3:	push	%ecx

66a4:	add		%edi,%ecx

66a6:	mov		%ecx,%es:0xa5b

;	var_a5b	=	&dmar	+	dmar.len

...

6701:	mov		%es:0xa47,%edi

;	edi	=	var_a47	(memory	on	the	TXT	heap)

6708:	mov		(%edi),%eax

670a:	mov		%es:0xa5b,%ebx

;	ebx	=	&dmar	+	dmar.len

6711:	sub	%es:0xa57,%ebx

;	ebx	=	dmar.len

...

6738:	mov	%es:0xa57,%esi

;	var_a57	=	&dmar

673f:	mov	%ebx,	%ecx

6741:	rep	movsb	%ds:(%esi),%es:(%edi)

;	memcpy	(var_a47,	dmar,	dmar.len)

Adding	a	check	for	the	length	field	of	untrusted	data	source	is	mandatory.

Capsule	Image
Most	UEFI	firmware	supports	capsule	based	firmware	update.	In	2014,	MITRE	demonstrated	how	to	use
a	vulnerability	in	the	capsule	coalesce	process	to	attack	the	firmware	update	process.

This	is	another	example	of	an	integer	overflow.	NOTE:		MemorySize	if		statement	and		Size	+=		below.

EFI_STATUS

EFIAPI

CapsuleDataCoalesce	(

		IN	EFI_PEI_SERVICES																**PeiServices,

		IN	EFI_PHYSICAL_ADDRESS												*BlockListBuffer,

		IN	MEMORY_RESOURCE_DESCRIPTOR						*MemoryResource,

		IN	OUT	VOID																								**MemoryBase,

		IN	OUT	UINTN																							*MemorySize

)

{

External	InputEDK	II	Secure	Code	Review	Guide

11Revision	01.0

https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
https://www.mitre.org/sites/default/files/publications/14-2221-extreme-escalation-presentation.pdf

		//...

				if	(*MemorySize	<=	(CapsuleSize	+	DescriptorsSize))	{

						return	EFI_BUFFER_TOO_SMALL;

		}

		//...

}

EFI_STATUS

GetCapsuleInfo	(

		IN	EFI_CAPSULE_BLOCK_DESCRIPTOR			*Desc,

		IN	OUT	UINTN																						*NumDescriptors	OPTIONAL,

		IN	OUT	UINTN																						*CapsuleSize	OPTIONAL,

		IN	OUT	UINTN																						*CapsuleNumber	OPTIONAL

)

{

//		...

				}	else	{

						Size	+=	(UINTN)	Desc->Length;

						Count++;

		...

}

Before	the	code	performs	the	addition,	the	code	must	use	subtraction	to	check	if	the	addition	will
cause	an	integer	overflow.

Read/Write	Variable
A	read/write	variable	is	another	potential	attack	surface	because	it	is	easily	controlled	by	an	attacker.	In
CanSecWest	2014,	MITRE	demonstrated	how	to	modify	the	“Setup”	variable	to	bypass	UEFI	secure	boot
ImageVerificationPolicy.

The	attack	taught	us	that	it	is	a	bad	idea	to	embed	security	policy	in	a	read/write	“Setup”	variable.

S3	Boot	Script
The	S3	Boot	Script	is	used	to	restore	the	register	settings	during	the	ACPI	S3	resume	process.	In
CanSecWest	2015,	Invisible	Things	Lab	found	some	firmware	implementations	did	not	protect	the	S3
script	or	the	dispatch	function	code,	so	it	remained	in	an	OS-accessible	ACPI	memory	region.	This
allowed	an	attacker	to	inject	malicious	boot	script	content	to	bypass	the	silicon	lock	register	setting	in
the	S3	Boot	Script.
See	the	use	of		EntryFunc		and		EntryPoint		below.

BootScriptExecuteDispatch	(IN	UINT8	*Script)

{

			...

			EntryFunc	=	(DISPATCH_ENTRYPOINT_FUNC)	(UINTN)	(ScriptDispatch.EntryPoint);

			Status	=	EntryFunc	(NULL,	NULL);

}

As	a	mitigation,	the	lockbox	should	be	used	to	protect	data	used	in	the	S3	resume	phase.

Network	for	AMT
Intel®	Active	Management	Technology	(Intel®	AMT)	is	a	remote	management	feature	in	the	Intel	vPRO
platform.	In	2017,	Embed	disclosed	an	issue	with	Intel	AMT	where	providing	an	empty	response	will
cause	password	verification	to	succeed	as	if	the	attacker	provided	the	admin	password.	See	the	use	of
	strncmp		and		response.length		below.

/*	NETSTACK_CODE:20431FC8	*/

if(strncmp(computed_response,	response.value,	response.length))

External	InputEDK	II	Secure	Code	Review	Guide

12Revision	01.0

https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
https://cansecwest.com/slides/2015/AttacksOnUEFI_Rafal.pptx
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
https://www.blackhat.com/docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough.pdf

{

			goto	error;

}

return	0;

To	avoid	similar	issues,	network	packet	processing	code	should	always	be	carefully	reviewed.

External	InputEDK	II	Secure	Code	Review	Guide

13Revision	01.0

Race	Condition
There	are	two	typical	race	conditions	found	in	firmware:

1.	 Race	condition	in	a	data	buffer
2.	 Race	condition	in	a	register	unlocking	mechanism.

Previous	Vulnerabilities:

Race	condition	for	data	buffer
The	typical	example	is	the	SMM	communication	buffer.	If	the	check	function	verified	the	non-SMRAM	copy
of	communication	buffer	and	then	uses	it,	the	attacker	may	use	another	CPU	thread	to	perform	Time-of-
Check/Time-of-Use	(TOC/TOU)	attack	to	modify	the	buffer	content	after	it	is	checked.

To	mitigate	this,	the	communication	buffer	must	be	copied	into	SMRAM	before	it	is	checked.

Another	example	is	the	motherboard	flash	content.	When	Intel	Boot	Guard	is	enabled,	the
Authenticated	Code	Module	(ACM)	loads	Initial	Boot	Block	(IBB)	flash	into	cache	and	validates	the
cached	copy.	An	attacker	may	use	the	flash	programmer	to	update	the	IBB	flash	copy	after	it	is	loaded
by	ACM.	This	is	a	variation	of	a	Time-of-Check/Time-of-Use	attack.

The	IBB	cache	copy	mechanism	needs	to	ensure	that	no	code	or	data	in	the	IBB	flash	can	be
referenced.

Race	condition	for	register	unlock
In	2014,	MITRE	found	a	race	condition,	named	Speed	Racer,	which	allows	an	attacker	to	subvert	a
component	of	the	firmware	flash	protection	mechanisms.

Secure	code	review	must	verify	that	SMM	code	does	not	leave	threads	outside	of	SMRAM	when	there	is
flash	protection	is	in	an	unlocked	state.

Race	ConditionEDK	II	Secure	Code	Review	Guide

14Revision	01.0

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/system/attachments/2565/original/speed_racer_whitepaper.pdf

Hardware	Input
Hardware	input	is	a	special	class	of	external	input.	If	an	attacker	controls	hardware,	the	input	from
hardware	is	considered	to	be	untrusted.	This	includes,	but	is	not	limited	to,	Memory	Mapped
Input/Output	(MMIO),	cache,	Direct	Memory	Access	(DMA),	Universal	Serial	Bus	(USB)	descriptors,	and
Bluetooth	Low	Energy	(BLE)	advertisement	data.

Previous	Vulnerabilities:

MMIO	BAR	Overlap
In	BlackHat	2008,	Invisible	Things	Lab	demonstrated	how	to	program	the	remap	Base	Address	Register
(BAR)	to	make	the	remap	memory	overlap	with	VMM	or	SMRAM,	thus	allowing	for	subsequent
modification	of	the	VMM	or	SMRAM	contents.

pci_write_word	(dev,	TOUUD_OFFSET,	(new_remap_limit+1)<<6);

pci_write_word	(dev,	REMAP_BASE_OFFSET,	new_remap_base);

pci_write_word	(dev,	REMAP_LIMIT_OFFSET,	new_remap_limit);

In	BlackHat	2009,	Invisible	Tings	Lab	also	found	the	remap	register	bar	can	make	the	remap	memory
overlap	with	Management	Engine	(ME)	RAM,	thus	allowing	for	a	modification	of	the	contents	in	ME
firmware.

To	mitigate	this	class	of	attack,	verify	register	bars	are	properly	locked

MMIO	BAR	Access
In	RECon	2017,	Intel	disclosed	the	MMIO	BAR	access	issue	in	SMM.	The	attacker	may	configure	the	MMIO
BAR	to	make	it	overlap	with	SMRAM.	After	this,	subsequent	access	to	MMIO	in	SMM	becomes	accesses	to
SMRAM.	See	statements	with		bar		assignment	within		if		statement	below.

static	void	mainboard_smi_brightness_down	(void)

{

		u8	*bar;

		if	((bar	=	(u8	*)pci_read_config32(PCI_DEV(1,	0,	0),	0x18)))	{

				printk(BIOS_DEBUG,	“bar:	%08X,	level	%02X\n”,	(unsigned	int)bar,

				*(bar+LVTMA_BL_MOD_LEVEL)	&=	0xf0;

				if	(*(bar+LVTMA_BL_MOD_LEVEL)	>	0x10)

						*(bar+LVTMA_BL_MOD_LEVEL)	-=	0x10;

		}

}

There	are	several	ways	for	firmware	to	mitigate	this	class	of	attack.	For	example,	SMM	can	verify	the
MMIO	bar	does	not	overlap	with	SMRAM	or	is	not	in	DRAM	before	access.	SMM	can	revert	the	MMIO	bar
value	to	the	default	setting,	perform	an	operation,	then	restore	it	to	the	original	value.

Care	must	be	taken	when	code	checks	the	MMIO.	In	2009,	Invisible	Things	Lab	showed	an	incorrect
check	for	MMIO	BAR.	This	code	checks	the	Memory	Controller	Hub	(MCH)	BAR	value,	but	only	for	the
lower	32	bits.	Since	the	MCH	BAR	is	36	bits,	the	attacker	may	configure	the	MCH	BAR	value	above	4G
and	exploit	ACM	due	to	the	error	in	validation.	This	can	results	in	an	improper	setup	for	the	Intel®
Virtualization	Technology	for	Direct	I/O	(Intel®	VT-d)	engine.	See	the	usage	of		MCHBAR	address		below

pusha

mov	eax,	0x48	;	MCHBAR	address

call	pci_get_long

and	ebx,	0xfffffffe

Hardware	InputEDK	II	Secure	Code	Review	Guide

15Revision	01.0

https://invisiblethingslab.com/resources/bh08/part2-full.pdf
https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf
http://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf
https://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

mov	DWORD	PTR	es:MCHBAR,	ebx

cmp	ebx,	0xfec04000

ja	continue

mov	al,	0x4

mov	ah,	0xc

call	sinit_error

continue:

or	ebx,	0x1

call	pci_write_long

popa

ret

Cache
In	CanSecWest	2009,	Cache	poisoning	was	used	to	attack	SMRAM	in	2009.	The	attacker	modifies	the
Memory	Type	Range	Register	(MTRR)	to	make	it	overlap	with	SMRAM,	then	updates	the	SMRAM	cache	and
triggers	an	SMI.

Recent	Intel	processors	have	introduced	the	SMRAM	Range	Register	(SMRR)	to	resist	cache	poison
attack.	SMRR	must	be	setup	for	all	logical	processors.	This	prevents	the	MTRR	overlap	with	SMRAM	from
taking	effect.

DMA
In	BlackHat	2013,	the	NCC	group	demonstrated	a	DMA	attack	using	Thunderbolt.	In	2017,	OS	password
theft	was	demonstrated	using	PCIleech	hardware.

DMA	attacks	can	be	mitigated	by	setting	up	the	Input/Output	Management	Unit	(IOMMU)	to	block	DMA
access	to	full	system	memory.	In	firmware,	this	can	be	achieved	using	the	IOMMU	or	disabling	the
Peripheral	Component	Interconnection	(PCI)	Bus	Master	Enable	(BME)	bit.	However,	if	an	untrusted
device	driver	requires	PCI	BME	access,	the	IOMMU	must	be	setup	to	accommodate	the	untrusted	device.

USB
Because	attackers	can	create	devices	with	bad	USB	descriptors,	USB	data	is	considered	untrusted.
Projects	like	Facedancer	are	good	examples	of	USB	fuzzing	tools.	In	BlackHat	2014,	a	demo	shows	how
to	do	fuzz	for	the	USB	device	driver.

USB	firmware	drivers	must	assume	USB	descriptors	are	untrustworthy	and	always	verify	before
consumption.	This	policy	should	also	be	applied	to	other	drivers	that	consume	potentially	untrustworthy
data,	such	as	Bluetooth	device	advertisement	messages.

TPM	Genie
In	2018,	the	NCC	group	demonstrated	that	a	Trusted	Platform	Module	(TPM)	Genie	may	cause	memory
corruption	in	different	TPM	stacks,	including	Linux,	tboot,	and	UEFI.	This	is	possible	when	data	returned
by	the	TPM	is	not	validated	by	the	TPM	stack.	See	the	usage	of		recd		in	the	statements	below.

int	tpm_get_random(u32	chip_num,	u8	*out,	size_t	max)	{

		struct	tpm_chip	*chip;

		struct	tpm_cmd_t	tpm_cmd;

		u32	recd,	num_bytes	=	min_t(u32,	max,	TPM_MAX_RNG_DATA);

		...

		tpm_cmd.header.in	=	tpm_getrandom_header;

		tpm_cmd.params.getrandom_in.num_bytes	=	cpu_to_be32(num_bytes);

		err	=	tpm_transmit_cmd(chip,	&tpm_cmd,

		TPM_GETRANDOM_RESULT_SIZE	+	num_bytes);

		...

		recd	=	be32_to_cpu(tpm_cmd.params.getrandom_out.rng_data_len);

		memcpy(out,	tpm_cmd.params.getrandom_out.rng_data,	recd);

		...

Hardware	InputEDK	II	Secure	Code	Review	Guide

16Revision	01.0

https://cansecwest.com/csw09/csw09-duflot.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
http://blog.frizk.net/2017/01/attacking-uefi-and-linux.html
http://goodfet.sourceforge.net/hardware/facedancer21/
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers.pdf
https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest_2018_-_TPM_Genie_-_Jeremy_Boone.pdf

}

As	mitigation,	the	TPM	driver	must	perform	robust	checks	of	the	response	buffer	size.

Hardware	InputEDK	II	Secure	Code	Review	Guide

17Revision	01.0

Secret	Handling
In	some	cases,	the	users	are	required	to	input	passwords	in	the	firmware,	such	as	setup	administrator
password,	hard	drive	password,	and	Trusted	Computing	Group	(TCG)	OPAL	password.	Sometimes	the
firmware	also	includes	some	password	or	access	key.	We	need	a	good	way	to	handle	these	secrets.

Previous	Vulnerabilities:

Password	not	cleared	in	memory
In	DefCon	2008,	iViZ	disclosed	a	way	to	get	the	password	from	the	BIOS	Data	Area	(BDA)	because	the
BIOS	does	not	clear	the	keyboard	buffer	which	contains	the	password	information.

After	the	password	is	used,	the	code	should	always	clear	it	in	its	various	locations:	input	key	buffer,
stack,	heap,	global	variable,	etc.

Key	based	protection
In	BlackHat	2019,	Mastrov	disclosed	how	to	brute	force	search	Computrace	disable	key	in	SMRAM.	The
key	comparison	algorithm	does	not	have	a	constant	time.	Also,	the	final	key	is	only	1	byte.	See	the
statement	using		key_match		below.

key_byte	=	cpu_regs->EBX;

ComputraceState.Active	=	TRUE;

ComputraceState.DisableSecreteKey[0]	=	key_byte	&	0xff;

ComputraceState.DisableSecreteKey[1]	=	(key_byte	&	0xff00)	>>	8;

ComputraceState.DisableSecreteKey[2]	=	(key_byte	&	0xff0000)	>>	16;

ComputraceState.DisableSecreteKey[3]	=	(key_byte	&	0xff000000)	>>	24;

key_match	=	TRUE;

for	(i	=	0;	i	<	4;	i)	{

		if	(key[i]	!=	ComputraceState.DisableKey[i])	{

				key_match	=	FALSE;

				break;

		}

}

This	is	a	vulnerable	inside	channel	attack.	The	duration	of	the	verification	then	reveals	the	index	of	the
character.	The	code	should	always	use	a	mechanism	that	compares	the	entire	data	before	completion.
Note	a	single-byte	key	is	vulnerable	to	brute	force	attack.

Default	key
In	BlackHat	2011,	Accuvant	Lab	disclosed	a	way	to	access	battery	firmware	because	the	access	key	is
unchanged.	The	below	disassembly	code	shows	the	0x36720414	is	hardcoded.	It	is	also	the	default
unseal	key	in	a	public	document.	See	statements	below	moving	constants	into		edx	

UnSeal_LSW:

xor	eax,	eax

mov	edx,	0414h

call	writeSBWord

test	eax,	eax

jz	short	UnSeal_MSW

...

UnSeal_MSW:

xor	eax,	eax

mov	edx,	3672h

call	writeSBWord

test	eax,	eax

Secret	HandlingEDK	II	Secure	Code	Review	Guide

18Revision	01.0

https://www.defcon.org/images/defcon-16/dc16-presentations/brossard/defcon-16-brossard-wp.pdf
http://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Matrosov-Modern-Secure-Boot-Attacks.pdf
https://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf

jz	short	loc_26FD

The	vendor	should	always	change	the	default	password	or	key	for	a	device	to	prevent	illegal	access.
Also,	it	is	not	a	good	idea	to	hardcode	the	key	in	the	source	code.

Another	example	in	TPM2,	during	boot,	the	platform	should	always	send
Tpm2HierarchyChangeAuth(TPM_RH_PLATFORM)	command	to	a	TPM2	device	to	prevent	other	code
accessing	the	TPM2	platform	hierarchy.	The	same	action	must	be	done	in	S3	resume	too.

Secret	HandlingEDK	II	Secure	Code	Review	Guide

19Revision	01.0

Register	Lock
When	the	system	powers	on,	most	of	the	silicon	registers	are	unlocked.	The	firmware	code	needs	to
configure	the	system	and	lock	the	critical	resources	by	setting	the	lock	bit	in	a	silicon	register.	Examples
include	but	are	not	limited	to	flash	chip	lock,	SMM	lock,	SMI	lock,	MMIO	BAR	configuration	lock,	Model
Specific	Register	(MSR)	configuration	lock,	etc.

Previous	Vulnerabilities:

Flash
In	1998,	older	platforms	did	not	properly	lock	access	to	the	flash	parts,	allowing	anyone	to	overwrite
BIOS	code.	Sixty	million	computers	were	believed	to	be	infected	by	the	CIH)	virus.

In	Power	Of	Community	2007,	a	new	attack	appeared	which	took	advantage	of	the	Intel	top	swap
feature,	if	the	latter	capability	was	unlocked.

Today,	there	are	several	ways	to	lock	the	flash	part,	and	the	firmware	should	lock	all	the	possible	ways,
in	proper	time,	and	in	all	boot	paths.	These	paths	include	a	normal	boot,	S3,	S4,	capsule	update,
recovery,	etc.

SMRAM
It	is	likely	the	first	documented	SMM	attack,	which	occurred	because	the	SMM	memory	range	was	not
locked.

Platforms	must	lock	SMRAM	in	silicon	and	setup	SMRR	for	all	processors	to	protect	SMRAM.	This	lock
must	happen	in	all	boot	paths	(normal	boot,	S3,	S4,	capsule	update,	recovery,	etc.).

MMIO	BAR
In	BlackHat	2008,	Invisible	lab	demonstrated	how	to	use	unlocked	remap	registers	for	SMM	or
Management	Engine	(ME)	firmware	to	inject	code.

Today,	all	critical	MMIO	bars	are	required	to	be	locked	without	overlap.	The	configuration	is	checked	by
the	ACM	during	a	TXT	DRTM	launch.

Register	LockEDK	II	Secure	Code	Review	Guide

20Revision	01.0

https://en.wikipedia.org/wiki/CIH_(computer_virus
http://powerofcommunity.net/poc2007/sunbing.pdf
https://www.researchgate.net/publication/241643659_Using_CPU_System_Management_Mode_to_Circumvent_Operating_System_Security_Functions
https://invisiblethingslab.com/resources/bh08/part2-full.pdf

Secure	Configuration
For	security	features,	it	is	not	a	good	idea	to	use	variables	to	control	the	behavior	because	they	can	be
altered	by	an	attacker	to	bypass	protection.	The	general	configuration	also	includes	the	system	state,
memory	configuration,	different	boot	mode,	etc.

Previous	Vulnerabilities:

UEFI	Secure	Boot
In	CanSecWest	2014,	MITRE	disclosed	the	vulnerability	that	the	OEM	used	setup	a	variable	to	control	the
image	verification	policy.	That	meant	the	UEFI	secure	boot	could	be	easily	bypassed.	See	lines	below
assigning	values	to		policy		within	each		case		statement.

DxeImageVerificationHandler(EFI_EXECUTABLE	Image)	{		

		switch	(getImageOrigin(image))	{

		case	IMAGE_FROM_OPTION_ROM:

				policy	=	Setup.LOAD_FROM_OROM;

		case	IMAGE_FROM_FIXED_DRIVE:

				policy	=	Setup.LOAD_FROM_FIXED;

		case	IMAGE_FROM_REMOVABLE:

				policy	=	Setup.LOAD_FROM_REMOVABLE;

		...

		if	(policy	==	ALWAYS_EXECUTE)

				return	EFI_SUCCESS;

		else

				return	IsImageAllowed(image);

}

For	any	security	feature,	there	should	be	no	way	to	bypass	it	in	the	production.	No	variable	should	be
used	to	control	it.	If	a	Platform	Configuration	Database	(PCD)	is	used,	the	PCD	must	be	statically
configured.

Intel®	Boot	Guard
In	2016	and	DefCon	2017,	Ermolov	disclosed	how	to	bypass	Intel®	Boot	Guard.

In	BlackHat	2017	and	BlackHat	2019,	Mastrov	disclosed	how	to	bypass	Intel®	Boot	Guard.	See	lines
below	assigning	values	to		BootGuardVerifyTransitionPEItoDXEFlag		followed	by	a	check.

EFI_STATUS	BootGuardPei	(EFI_PEI_SERVICES	**PeiServices,	VOID	*Ppt)

{

		...

		if	(!((BootGuardHashKeySegment1	==	0)	{

				CalculateSha256	(BootGuardHashKeySegment1);

				CalculateSha256	(CurrentBootGuardHashKey1);

				if	(!MemCmp	(BootGuardHashKeySegment1,	CurrentBootGuardHashKey1,	32))	{

						BootGuardVerifyTransitionPEItoDXEFlag	=	1;

				}	else	{

						BootGuardVerifyTransitionPEItoDXEFlag	=	0;

						return	EFI_SUCCESS;

				}

		}

		return	Status;

}

EFI_STATUS	BootGuardDxe	(EFI_HANDLE	ImageHandle,	EFI_SYSTEM_TABLE	*SystemTable)

{

		...

		if	(BootGuardVerifyTransitionPEItoDXEFlag	==	0)	{

				BootGuardRegisterCallback();

		}

Secure	ConfigurationEDK	II	Secure	Code	Review	Guide

21Revision	01.0

https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel%20BG%20part2.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Matrosov-Betraying-The-BIOS-Where-The-Guardians-Of-The-BIOS-Are-Failing.pdf
http://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Matrosov-Modern-Secure-Boot-Attacks.pdf

		return	EFI_SUCCESS;

}

The	summary	of	the	issue	is	below:

1.	 The	Intel®	Boot	Guard	configuration	is	not	set	properly.
2.	 The	verification	does	not	always	happen	in	all	boot	modes.	For	example,	the	verification	is	done	only
once	every	12	times	a	device	is	powered	up.

3.	 The	software	logic	issue	in	Intel	Boot	Guard	PEI	or	DXE	that	the	verification	may	be	bypassed	in
some	cases.

The	mitigation	is:

1.	 Fuse	configuration	–	always	verify	the	fuses	are	configured	for	security.
2.	 Verification	–	ensure	that	verification	occurs	in	all	boot	modes	and	boot	paths.

TCG	Trusted	Boot
In	BlackHat	2018,	Han	disclosed	an	issue	about	TPM	measurements	in	a	DRTM	environment.	This	issue
was	related	to	the	S3	resume	path,	where	TBOOT	only	measured	code	and	read-only	data	for	the
Measured	Launch	Environment	(MLE).	However,	TBOOT	did	not	measure	the	required	initialized	data.
This	created	a	condition	where	an	attacker	could	hijack	the	control	flow	and	exploit	TBOOT.	See	lines
below	with	statements		_mle_end		and		.data	.

		_mle_start	=	.;															/*	beginning	of	MLE	pages	*/

				*(.text)

				*(.fixup)

				*(.gnu.warning)

				}	:text	=	0x9090

		.rodata	:	{	*(.rodata)	*(.rodata.*)	}

		.	=	ALIGN(4096);

		_mle_end	=	.;																	/*	end	of	MLE	pages	*/

		.data	:	{												/*	Data	*/

				*(.data)

				*(.tboot_shared)

				CONSTRUCTORS

				}

Mitigation	occurs	when	MLE	sets	up	the	environment,	ensuring	that	all	critical	data	(code,	read-only
data,	and	initialized	data)	is	measured,	including	the	function	pointers.	This	demonstrates	the
importance	of	a	complete	measurement.

In	BlackHat	2019,	Han	disclosed	an	issue	using	TPM	in	a	static	root-of-trust	for	measurement	(SRTM)
environment.	During	the	S3	resume	path,	if	the	OS	does	not	send	Shutdown(STATE)	the	firmware
Startup(STATE)	will	fail.	Some	platform	firmware	only	sent	Startup(CLEAR)	which	left	all	Platform
Configuration	Registers	(PCR)	open.	See	lines	below	with	if	statement		BootMode	==	BOOT_ON_S3_RESUME		and	then
	Status	=	Tpm2Startup	(TPM_SU_CLEAR);		statement.

PeimEntryMA	()

{

		if	(BootMode	==	BOOT_ON_S3_RESUME)	{

				Status	=	Tpm2Startup	(TPM_SU_STATE);

				if	(EFI_ERROR	(Status))	{

						Status	=	Tpm2Startup	(TPM_SU_CLEAR);

The	mitigation	extends	the	PCR	with	an	EV_SEPARATOR	error,	which	takes	advantage	of	proper	error
handling.

Secure	ConfigurationEDK	II	Secure	Code	Review	Guide

22Revision	01.0

https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf
http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf

Secure	ConfigurationEDK	II	Secure	Code	Review	Guide

23Revision	01.0

Replay/Rollback
Replay	is	the	ability	to	use	a	previously	used	credential	that	was	designed	for	one-time	approval	to
access	protected	content	beyond	the	first	instance.	Typically,	a	timestamp,	nonce	value,	or	monotonic
counter	can	be	used	to	detect	replay.

Rollback	is	the	ability	to	start	at	a	newer	level	of	a	release	and	go	back	to	a	forbidden	earlier	level	of	a
release.	Typically,	the	firmware	needs	to	use	a	lowest	support	version	(LSV)	or	secure	version	number
(SVN)	to	control	the	update.

Replay/RollbackEDK	II	Secure	Code	Review	Guide

24Revision	01.0

Cryptography
Cryptography	is	also	an	indicator	we	need	to	consider	when	we	design	a	proper	solution.	Choosing	the
right	cryptographic	algorithm	is	important.	A	checksum	or	CRC	value	is	no	longer	considered	to	be
strong	protection.	Cryptographic	key	management	must	be	considered	as	part	of	a	complete	security
solution.

Previous	Vulnerabilities:

In	BlackHat	2009,	Chen	demonstrated	how	to	add	a	rootkit	to	Apple	Keyboard	firmware	via	a	firmware
update.

In	2010,	Weinmann	demonstrated	how	to	add	a	rootkit	to	ThinkPad	embedded	controller	(EC)	firmware
via	update.

In	2011,	Cui	demonstrated	how	to	add	a	rootkit	to	HP	printer	firmware	via	update.

All	of	the	cases	above	demonstrate	the	need	for	firmware	locking	and	authenticated	updates.

CryptographyEDK	II	Secure	Code	Review	Guide

25Revision	01.0

https://www.blackhat.com/presentations/bh-usa-09/CHEN/BHUSA09-Chen-RevAppleFirm-SLIDES.pdf
https://media.ccc.de/v/27c3-4174-en-the_hidden_nemesis/related
https://academiccommons.columbia.edu/doi/10.7916/D8QJ7RG3

Other
As	a	final	note,	firmware	must	not	contain	any	“back	door”	access	mechanisms.	Attackers	have
experience	in	reverse	engineering,	making	back	doors	easy	to	detect.	This	is	especially	important	for
code	related	to	SMI	handlers,	UEFI	variables,	or	key	management.

In	BlackHat	2018,	Domas	demonstrated	how	to	find	a	hidden	instruction	to	gain	supervisor	privileges	in
user	mode.	He	used	fuzzing	to	scan	the	system	and	found	a	special	“God	Mode	Bit”	(MSR	1107,	BIT	0).
Toggling	this	bit	activated	a	launch	instruction	(0F03).	By	using	a	co-located	core	with	unrestricted
access	to	the	core	register	file,	software	can	send	content	via	Ring3	to	modify	a	Ring0	register	and
obtain	hardware	privilege	escalation.

OtherEDK	II	Secure	Code	Review	Guide

26Revision	01.0

http://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf

Summary

Category Review	Detail

External	Input

What	is	the	external	input?
How	is	the	external	input	checked?
Does	the	check	happen	in	all	possible	paths?
What	is	the	action	if	the	check	failed?
If	SMM	is	involved,	how	does	SMI	handler	do	the	check	for	the	communication
buffer?
If	a	Variable	is	involved,	how	is	it	consumed?
Is	ASSERT	used?

Race	Condition
What	is	the	critical	resource?	
If	SMM	is	involved,	can	the	BSP	and	AP	access	the	same	resource?
Does	the	trusted	region	code	access	resources	in	the	untrusted	region?

Hardware
Input

What	is	the	hardware	input?
How	is	the	hardware	input	checked?
Does	the	check	happen	in	all	possible	paths?
If	MMIO	is	involved,	how	is	the	MMIO	bar	checked?

Secret
Handling

Where	is	the	secret?	
How	is	the	secret	cleared	after	use?
Does	the	cleanup	function	clear	all	secrets	in	all	places,	such	as	stack,	heap,
global	data,	communication	buffer,	ASCII	<	=	>	Unicode,	Setup	Browser,	Key
buffer?
Is	the	secret	saved	into	a	variable?
Does	the	password	follow	the	general	rules,	such	as	strong	password
requirement,	retry	time,	history,	etc?
What	if	the	user	forgets	the	password?
Is	the	default	password/key	used?
Is	the	password/key	hardcoded?
Does	the	key	comparison	algorithm	compare	entire	data?
Is	side	channel	guidelines	followed?

Register	Lock

What	registers	need	to	be	locked?	
When	is	the	register	locked?
Is	the	register	lock	controlled	by	some	policy?
Is	the	register	lock	controlled	by	a	variable?
Is	there	any	way	to	bypass	the	lock?
Is	the	register	locked	in	normal	boot,	S3,	S4?
Is	the	register	locked	in	capsule,	recovery?
Is	the	register	locked	in	manufacture	mode?

Secure
Configuration

Is	a	variable	used	to	control	the	policy?
Is	a	PCD	used	to	control	the	policy?	If	so,	what	is	the	PCD	type?
What	is	the	default	configuration?
What	is	the	behavior	in	S3,	S4,	capsule,	recovery,	manufacture	mode	or	debug
mode?

Replay/Rollback
Is	LSV	or	SVN	used?	
Where	is	the	LSV	or	SVN	stored?
How	are	timestamps,	nonce,	or	monotonic	counters	used?

Cryptograph

Is	a	signing	verification	algorithm	used?
Is	a	deprecated	algorithm	used?
Is	Cyclic	Redundancy	Check	(CRC)	or	checksum	used?
Should	the	solution	use	hash	or	Hashed	Message	Authentication	Code	(HMAC)?
Should	the	solution	use	symmetric	encryption	or	asymmetric	encryption?
When	is	the	key	deployed	and	destroyed?
Where	is	the	key	located?
How	is	the	key	protected?
Is	the	key	root	key	or	session	key	used	to	encrypt	the	data?

SummaryEDK	II	Secure	Code	Review	Guide

27Revision	01.0

SummaryEDK	II	Secure	Code	Review	Guide

28Revision	01.0

REFERENCES

Books	and	Papers
[Cohen]	Best	Kept	Secrets	of	Peer	Code	Review,	Jason	Cohen,	Smart	Bear	Inc.,	2006,	ISBN:	978-
1599160672

[Freedman]	Handbook	of	Walkthroughs,	Inspections,	and	Technical	Reviews:	Evaluating	Programs,
Projects,	and	Products,	Daniel	P.	Freedman	and	Gerald	M.	Weinberg,	Dorset	House,	1990,	ISBN:	978-
0932633194

[Gilb]	Software	Inspection,	Tom	Gilb	and	Dorothy	Graham,	Addison-Wesley	Professional,	1994,	ISBN:	978-
0201631814

[Howard]	Howard,	M.	(2006,	July–August).	“A	Process	for	Performing	Security	Code	Reviews.”	IEEE
Security	&	Privacy,	pp.	74–79,
https://www.researchgate.net/publication/3437819_A_process_for_performing_security_code_reviews?
ev=auth_pub

[Ransome]	Core	Software	Security:	Security	at	the	Source,	James	Ransome	and	Anmol	Misra,	CRC	Press,
2014,	ISBN:	978-1466560956.

[Wiegers]	Peer	Reviews	in	Software:	A	Practical	Guide,	Karl	Wiegers,	Addison-Wesley	Professional,	2001,
ISBN:	978-0201734850

Web
[CodeProject]	Code	review	guidelines,
https://www.codeproject.com/articles/524235/codeplusreviewplusguidelines

[Howard2]	Howard,	M.	(2004,	November).	“Attack	Surface:	Mitigate	Security	Risks	by	Minimizing	the	Code
You	Expose	to	Untrusted	Users.”,	http://download.microsoft.com/download/3/a/7/3a7fa450-1f33-41f7-
9e6d-3aa95b5a6aea/MSDNMagazineNovember2004en-us.chm

[Howard3]	Howard,	M.	(2003,	November).	“Review	It:	Expert	Tips	for	Finding	Security	Defects	in	Your
Code”,	http://download.microsoft.com/download/3/a/7/3a7fa450-1f33-41f7-9e6d-
3aa95b5a6aea/MSDNMagazineNovember2003en-us.chm

[Meier]	Meier,	J.,	et	al.	(2005,	October).	“How	To:	Perform	a	Security	Code	Review	for	Managed	Code
(.NET	Framework	2.0)”.	https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff649315(v%3dpandp.10)

[OWASP]	OWASP	Code	Review	Guide,	https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-
V1_1.pdf

Research	&	Real	World	Examples
[Wojtczuk	BH	2009]	Attack	Intel	BIOS,https://www.blackhat.com/presentations/bh-usa-
09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

[Rutkowska	BH	DC	2009]	Attack	Intel	TXT,https://www.blackhat.com/presentations/bh-dc-
09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf

[Bazhaniuk	CSW	2015]	A	New	Class	of	Vulnerability	in	SMI	handlers,
http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

ReferencesEDK	II	Secure	Code	Review	Guide

29Revision	01.0

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Jason+Cohen&search-alias=books&field-author=Jason+Cohen&sort=relevancerank
https://www.amazon.com/Daniel-P.-Freedman/e/B000APETK2/ref=dp_byline_cont_book_1
https://www.amazon.com/Gerald-M.-Weinberg/e/B000AP8TZ8/ref=dp_byline_cont_book_2
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Tom+Gilb&search-alias=books&field-author=Tom+Gilb&sort=relevancerank
https://www.amazon.com/Dorothy-Graham/e/B005VWBCUO/ref=dp_byline_cont_book_2
https://www.researchgate.net/publication/3437819_A_process_for_performing_security_code_reviews?ev=auth_pub
https://www.amazon.com/Karl-Wiegers/e/B001IGNXQS/ref=dp_byline_cont_book_1
https://www.codeproject.com/articles/524235/codeplusreviewplusguidelines
http://download.microsoft.com/download/3/a/7/3a7fa450-1f33-41f7-9e6d-3aa95b5a6aea/MSDNMagazineNovember2004en-us.chm
http://download.microsoft.com/download/3/a/7/3a7fa450-1f33-41f7-9e6d-3aa95b5a6aea/MSDNMagazineNovember2003en-us.chm
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649315(v%3dpandp.10
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf
https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
https://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

[ThinkPwn	2016]	Exploring	Lenovo,http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html

[Wojtczuk	2011]	Attacking	Intel	TXT	via	SINIT	Hijacking,
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

[Kallenberg	2014]	Extreme	Privilege	Escalation	on	Windows	8	UEFI	System,
https://www.mitre.org/sites/default/files/publications/14-2221-extreme-escalation-presentation.pdf

[Kallenberg	CSW	2014]	All	your	boot	are	belong	to	us,
https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf

[Wojtczuk	CSW	2015]	Attacks	on	UEFI	Security,
https://cansecwest.com/slides/2015/AttacksOnUEFI_Rafal.pptx

[Evdokimov	BH	2017]	Intel	AMT	Stealth	Breakthrough,https://www.blackhat.com/docs/us-17/thursday/us-
17-Evdokimov-Intel-AMT-Stealth-Breakthrough.pdf

[SpeedRacer	2014]	Speed	Racer,
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/system/attachments/2565/original/speed_racer_
whitepaper.pdf

[Rutkowska	BH	2008]	Preventing	and	Detecting	Xen	Hypervisor	Subversions,
https://invisiblethingslab.com/resources/bh08/part2-full.pdf

[Tereshkin	BH	2009]	A	Ring	-3	Rootkits,https://invisiblethingslab.com/resources/bh09usa/Ring%20-
3%20Rootkits.pdf

[Bulygin	RC	2017]	Baring	the	system,
http://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf

[Wojtczuk	2009]	Another	TXT	Attack,
https://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

[Duflot	CSW	2009]	SMM	Reloaded,https://cansecwest.com/csw09/csw09-duflot.pdf

[Sevinsky	BH	2013]	Funderbolt	–	Adventures	in	thunderbolt	DMA	attacks,https://media.blackhat.com/us-
13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf

[Pcileech	2017]	Attacking	UEFI	and	Linux,	http://blog.frizk.net/2017/01/attacking-uefi-and-linux.html

[Facedancer	2012]	Facedancer,	http://goodfet.sourceforge.net/hardware/facedancer21/

[Schumilo	BH	2014]	Don’t	trust	your	USB,https://www.blackhat.com/docs/eu-14/materials/eu-14-
Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers.pdf

[Boone	CSW	2018]	TPM	Genie,
https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest2018-TPM_Genie-
_Jeremy_Boone.pdf

[Brossard	DC	2008]	Bypassing	Pre-boot	Authentication	Passwords,
https://www.defcon.org/images/defcon-16/dc16-presentations/brossard/defcon-16-brossard-wp.pdf

[Miller	BH	2011]	Battery	Firmware	Hacking,	https://media.blackhat.com/bh-us-
11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf

[Duflot	2006]	Using	CPU	System	Management	Mode	to	Circumvent	Operating	System	Security	Function,
https://www.researchgate.net/publication/241643659_Using_CPU_System_Management_Mode_to_Circum
vent_Operating_System_Security_Functions

[CIH	1998]	CIH,	https://en.wikipedia.org/wiki/CIH_(computer_virus))

[Sun	2007]	BIOS	Boot	Hijacking,	http://powerofcommunity.net/poc2007/sunbing.pdf

ReferencesEDK	II	Secure	Code	Review	Guide

30Revision	01.0

http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
https://www.mitre.org/sites/default/files/publications/14-2221-extreme-escalation-presentation.pdf
https://www.mitre.org/sites/default/files/publications/14-2221-extreme-escalation-presentation.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
https://cansecwest.com/slides/2015/AttacksOnUEFI_Rafal.pptx
https://www.blackhat.com/docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough.pdf
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/system/attachments/2565/original/speed_racer_whitepaper.pdf
https://invisiblethingslab.com/resources/bh08/part2-full.pdf
https://invisiblethingslab.com/resources/bh08/part2-full.pdf
https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf
https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf
http://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf
http://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf
https://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
https://cansecwest.com/csw09/csw09-duflot.pdf
https://cansecwest.com/csw09/csw09-duflot.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
http://blog.frizk.net/2017/01/attacking-uefi-and-linux.html
http://goodfet.sourceforge.net/hardware/facedancer21/
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers.pdf
https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest_2018_-_TPM_Genie_-_Jeremy_Boone.pdf
https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest_2018_-_TPM_Genie_-_Jeremy_Boone.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/brossard/defcon-16-brossard-wp.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/brossard/defcon-16-brossard-wp.pdf
https://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf
https://www.researchgate.net/publication/241643659_Using_CPU_System_Management_Mode_to_Circumvent_Operating_System_Security_Functions
https://en.wikipedia.org/wiki/CIH_(computer_virus
http://powerofcommunity.net/poc2007/sunbing.pdf

[Ermolov	2016]	Safeguarding	Rootkits:	Intel	Boot	Guard,
https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf

[Ermolov	DC	2017]	Safeguarding	Rootkits:	Intel	Boot	Guard
(part2),https://github.com/flothrone/bootguard/blob/master/Intel%20BG%20part2.pdf

[Matrosov	BH	2017]	Betraying	the	BIOS,	https://www.blackhat.com/docs/us-17/wednesday/us-17-
Matrosov-Betraying-The-BIOS-Where-The-Guardians-Of-The-BIOS-Are-Failing.pdf

[Matrosov	BH	2019]	Modern	Secure	Boot	Attacks,http://i.blackhat.com/asia-19/Fri-March-29/bh-asia-
Matrosov-Modern-Secure-Boot-Attacks.pdf

[Han	BH	2018]	I	don’t	want	to	sleep	tonight	–	Subverting	Intel	TXT	with	S3	Sleep,
https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-
I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf

[Han	BH	2019]	Finally	I	can	sleep	tonight	–	catching	sleep	mode	vulnerabilities	of	the	TPM	with	the
napper,	http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-
Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf

[Chen	BH	2009]	Reversing	and	exploiting	an	Apple	firmware	update,
https://www.blackhat.com/presentations/bh-usa-09/CHEN/BHUSA09-Chen-RevAppleFirm-SLIDES.pdf

[Weinmann	2010]	The	hidden	nemesis,https://media.ccc.de/v/27c3-4174-en-the_hidden_nemesis/related

[Cui	BH	2011]	Print	me	if	you	dare,https://academiccommons.columbia.edu/doi/10.7916/D8QJ7RG3

[Domas	BH	2018]	God	Mode	Unlocked	Hardware	Backdoors	in	X86	CPUs,	http://i.blackhat.com/us-
18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf

Authors

Jiewen	Yao	(jiewen.yao@intel.com)	is	a	Principal	Engineer	with	Intel	Architecture,	Graphic	and	Software
Group	at	Intel	Corporation.	He	is	security	architect	in	EDK	II	BIOS.	Jiewen	is	member	of	UEFI	Security	Sub-
team	and	PI	Security	Sub-team	in	the	UEFI	Forum.

Chris	Wu	(chris.wu@intel.com)	is	a	validation	leader	with	Intel	Architecture,	Graphic	and	Software
Group	at	Intel	Corporation.

Vincent	J.	Zimmer	(vincent.zimmer@intel.com)	is	a	Senior	Principal	Engineer	with	Intel	Architecture,
Graphic	and	Software	Group	at	Intel	Corporation.	Vincent	chairs	the	UEFI	Security	and	Network	Sub-
teams	in	the	UEFI	Forum.

ReferencesEDK	II	Secure	Code	Review	Guide

31Revision	01.0

https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel%20BG%20part2.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Matrosov-Betraying-The-BIOS-Where-The-Guardians-Of-The-BIOS-Are-Failing.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Matrosov-Betraying-The-BIOS-Where-The-Guardians-Of-The-BIOS-Are-Failing.pdf
http://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Matrosov-Modern-Secure-Boot-Attacks.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf
http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf
http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf
http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf
https://www.blackhat.com/presentations/bh-usa-09/CHEN/BHUSA09-Chen-RevAppleFirm-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/CHEN/BHUSA09-Chen-RevAppleFirm-SLIDES.pdf
https://media.ccc.de/v/27c3-4174-en-the_hidden_nemesis/related
https://academiccommons.columbia.edu/doi/10.7916/D8QJ7RG3
http://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf

	EDK II Secure Code Review Guide
	Executive Summary
	General Guidelines for Secure Code Review
	Code Review Guidelines for Boot Firmware
	External Input
	Race Condition
	Hardware Input
	Secret Handling
	Register Lock
	Secure Configuration
	Replay/Rollback
	Cryptography
	Other
	Summary

	References

