


TABLE	OF	CONTENTS
EDK	II	Security	Coding	Guide

Executive	Summary

Secure	Coding	Guidelines:	General

Secure	Coding	Guidelines:	Boot	Firmware

Secure	Coding	Guidelines:	Intel	Platforms

SMM

Intel®	Boot	Guard

Intel®	Bios	Guard

Appendix	-	Threat	Model	for	EDK	II

Asset:	Flash	Content

Asset:	Boot	Flow

Asset:	S3	Resume

Asset:	Management	Mode

Asset:	Build	Tool

References

Books	and	Papers

Web

Firmware	Specific

EDK	II	Secure	Coding	Guide

2Revision	02.0



EDK	II	SECURE	CODING	GUIDE
Technical	Briefing

12/01/2020	06:48:48

Revision	02.0

Contributed	by
Jiewen	Yao,	Intel	Corporation

Vincent	J.	Zimmer,	Intel	Corporation

Special	Acknowledgements
This	document	checklist	is	collected	based	upon	the	security	experience	and	previous	security	issue
report.	We	would	like	to	thank	Sugumar	Govindarajan,	John	Mathew,	Kirk	Brannock,	and	Karunakara
Kotary	of	Intel	Corporation,	who	provided	the	thought	on	hardening	the	platform.

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2019,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

01.0 Initial	release. June	2019

02.0 Add	"Threat	model	for	EDK	II"	as	the	appendix	section Aug	2019

EDK	II	Security	Coding	GuideEDK	II	Secure	Coding	Guide

3Revision	02.0



EDK	II	Security	Coding	GuideEDK	II	Secure	Coding	Guide

4Revision	02.0



EXECUTIVE	SUMMARY
Introduction
The	purpose	of	this	document	is	to	help	build	robust	firmware	using	EDK	II.	This	supplements	other
documents	related	to	secure	design	of	EDK	II	code.

Audience
This	document	is	intended	for	firmware	security	developers,	security	reviewers,	and	firmware	security
validation	engineers.

Executive	SummaryEDK	II	Secure	Coding	Guide

5Revision	02.0



SECURE	CODING	GUIDELINES:	GENERAL
Guidelines	general

General
#GENERAL.1:	The	code	in	trusted	region	MUST	check	any	date	from	an	untrusted	region,	such	as	a
Portable	and	Executable	(PE)	image,	capsule	image,	System	Management	Mode	(SMM)	communication
buffer,	Memory	Mapped	Input/Output	(MMIO)	Base	Address	Register	(BAR),	etc.

#GENERAL.2:	When	a	code	processes	the	untrusted	data,	it	MUST	avoid	buffer	overflows.	Please	do
not	access	(write	or	read)	the	buffer	beyond	the	size	field.

#GENERAL.3:	When	code	processes	the	untrusted	data,	it	MUST	avoid	integer	overflow.	Please	use
addition	instead	of	subtraction,	use	division	instead	of	multiplication.

#GENERAL.4:	When	code	processes	the	untrusted	data,	it	MUST	avoid	untrusted	data	overlap	with	the
trusted	region.

#GENERAL.5:	When	code	processes	the	untrusted	data,	it	MUST	check	the	untrusted	data	in	all
possible	paths.

#GENERAL.INPUT.1:	The	code	MUST	check	for	valid	input	and	reject	everything	else

#GENERAL.INPUT.2:	The	code	MUST	perform	sanity	checks	and	bounds	checks,	such	as	check	type,
length,	range,	format.

#GENERAL.INPUT.3:	The	code	MUST	use	canonical	representation.	Always	use	fully	qualified
pathnames	for	files	that	get	opened

#GENERAL.INPUT.4:	The	code	MUST	beware	of	character	encoding	and	watch	out	for	escape
characters	if	using	a	shell	script

#GENERAL.INPUT.5:	The	code	MUST	validate	as	much	and	as	deep	as	possible	to	prevent
unintentional	errors	if	the	code	is	changed;	balance	against	coding	time/performance.

#GENERAL.INPUT.6:	The	code	MUST	be	careful	of	boundary	conditions	(e.g.,	off	by	one	error,	array
indices)	and	conditionals	(e.g.,	reverse	logic)

#GENERAL.BUFFER.1:	The	code	MUST	check	buffer	sizes,	copies,	and	indices	(esp.	sizeof)

#GENERAL.BUFFER.2:	The	code	MUST	check	for	appropriate	buffer	size.	Maximums	should	be	defined
globally	where	possible	to	avoid	assumptions	in	lower	code	layers.

#GENERAL.BUFFER.3:	The	code	MUST	check	for	NULL	Pointers	dereferenced	in	the	code.

#GENERAL.BUFFER.4:	The	code	MUST	check	NULL	for	NIL-terminate	strings.

#GENERAL.ARITH.1:	The	code	MUST	check	based	on	data	type	limitations	(e.g.,	integer	underflows
and	overflows).

#GENERAL.ARITH.2:	The	code	MUST	properly	cast	numeric	variables	involved	in	string	manipulation.

#GENERAL.ARITH.3:	The	code	SHOULD	use	SafeInt	library	to	handle	integer	of	external	input.

#GENERAL.FAIL.1:	Once	the	check	fails,	the	code	MUST	fail	secure	–	fail	closed.

#GENERAL.FAIL.2:	Once	the	check	fails,	the	code	MUST	not	provide	hints	to	hackers	(e.g.,	by
disclosing	information	on	failure).	Don’t	help	an	attacker	with	‘guiding’	error	messages.

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

6Revision	02.0



ASSERT
#ASSERT.1:	ASSERT	MUST	be	used	for	something	that	NEVER	occurs.	If	something	MIGHT	occur,	use
ERROR	HANDLING,	please.	Check	function	return	values	in	a	consumed	API.	(from	Code	Complete)

#ASSERT.Variable.1:	GetVariable	with	Non-Volatile	(NV)+Runtime	(RT)	without	Authentication
(AU)/ReadOnly(RO)	attribute	MUST	NOT	ASSERT(),	or	at	least	have	error	handling	code	followed	by.

#ASSERT.Variable.2:	SetVariable	with	NV	attribute	MUST	NOT	ASSERT(),	or	at	least	have	error	handling
code	followed	by.

#ASSERT.Variable.3:	GetVariable	with	AU/RO	attribute	MAY	ASSERT(),	if	driver	assumes	variable	must
exist.

#ASSERT.Variable.4:	SetVariable	without	NV	attribute	MAY	ASSERT(),	before	EndOfDxe.

#ASSERT.Resource.1:	Memory	Allocation	MUST	NOT	ASSERT()	after	EndOfDxe.

#ASSERT.Resource.2:	Memory	Allocation	MAY	ASSERT()	before	EndOfDxe,	if	the	allocation	failure
prevents	the	system	from	booting.	E.g.	SEC/PEI	phase,	the	error	means	configuration	error	or	hardware
error.	If	we	need	return,	we	might	return	to	the	CPU	reset	vector,	which	is	meaningless.

#ASSERT.Resource.3:	MMIO/IO	Allocation	for	external	devices	MUST	NOT	use	ASSERT().

#ASSERT.Resource.4:	MMIO/IO	Allocation	for	onboard	devices	MAY	use	ASSERT()	before	EndOfDxe.

#ASSERT.SMM.1:	SMI	handler	MUST	NOT	use	ASSERT	for	external	input,	after	EndOfDxe.

#ASSERT.SMM.2:	SMM	driver	MAY	use	ASSERT	in	the	entrypoint	to	construct	the	environment.

#ASSERT.NETWORK.1:	Network	driver	MUST	NOT	use	ASSERT	for	the	packet	from	the	remote.

#ASSERT.SHELL.1:	Shell	MUST	NOT	use	ASSERT	for	the	resource	request,	or	user	input.

Deprecated	API
#DEPRECATEDAPI.1:	The	code	MUST	not	use	any	deprecated	API.

Table	1.1	EDK	II	Deprecated	APIs

Category Deprecated	API Replacement

BaseLib StrCpy StrCpyS

StrnCpy StrnCpys

StrCat StrCatS

StrnCat StrnCats

AsciiStrCpy AsciiStrCpyS

AsciiStrnCpy AsciiStrnCpys

AsciiStrCat AsciiStrCatS

AsciiStrnCat AsciiStrnCats

UnicodeStrToAsciiStr UnicodeStrToAsciiStrS

AsciiStrToUnicodeStr AsciiStrToUnicodeStrS

PcdLib [Lib]PcdSet[Ex]8 [Lib]PcdSet[Ex]8S

[Lib]PcdSet[Ex]16 [Lib]PcdSet[Ex]16S

[Lib]PcdSet[Ex]32 [Lib]PcdSet[Ex]32S

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

7Revision	02.0



[Lib]PcdSet[Ex]64 [Lib]PcdSet[Ex]64S

[Lib]PcdSet[Ex]Ptr [Lib]PcdSet[Ex]PtrS

[Lib]PcdSet[Ex]Bool [Lib]PcdSet[Ex]BoolS

PrintLib UnicodeValueToString UnicodeValueToStringS

AsciiValueToString AsciiValueToStringS

UefiLib GetVariable GetVariable2

GetEfiGlobalVariable GetEfiGlobalVariable2

Race	Condition
#RACECONDITION.1:	The	code	MUST	be	careful	of	Time-of-Check/Time-of-Use	(TOC/TOU)	attack	for	the
data	crossing	a	trusted	region,	such	as	flash	region	access,	SMM	communication	buffer	access.	The
right	way	is	to	copy	the	data	from	an	untrusted	region	to	a	trusted	region	and	only	access	the	data	in
the	trusted	region.

#RACECONDITION.2:	The	code	MUST	be	careful	of	race	conditions	for	the	Bootstrap	Processor	(BSP)
and	Application	Processors	(AP).	The	BSP	and	AP	may	run	different	code	in	different	trusted	regions.
Identify	and	Keep	security	critical	sections	short	and	simple.

Policy

#POLICY.BLAKLIST.1:	If	a	prohibited	list	is	used,	a	system	error	on	getting	prohibited	list	data	MUST
cause	a	prohibited	list	match	and	verification	failure.

#POLICY.BLAKLIST.2:	If	a	prohibited	list	is	used,	the	prohibited	list	match	MUST	always	cause	a
verification	failure,	no	matter	if	the	allowed	list	matches	or	not.

#POLICY.WHITELIST.1:	If	an	allowed	list	is	used,	any	error	on	getting	allowed	list	data	MUST	cause
verification	failure.

Environment
#ENVIRONMENT.RUNTIME.1:	The	runtime	module	MUST	be	built	with	4K	alignment	so	that	a	Runtime
image	can	be	protected	by	the	OS.	(SecurityEnhancement)

#ENVIRONMENT.UEFI.1:	The	boot	module	MAY	be	built	with	4K	alignment	so	that	it	can	be	protected	by
firmware.

#ENVIRONMENT.NX.1:	The	Code	region	SHOULD	be	set	to	ReadOnly	(RO),	and	Data	region	SHOULD	be
set	to	NonExecutable	(NX).	(SecurityEnhancement)

#ENVIRONMENT.NX.2:	The	unallocated	memory	SHOULD	be	non-present	or	at	least	Non-Executable.

#ENVIRONMENT.STACK.1:	Stack	SHOULD	be	set	to	be	NX.	(SecurityEnhancement)

#ENVIRONMENT.STACK.2:	Stack	Guard	SHOULD	be	enabled	to	catch	stack	overflow.

#ENVIRONMENT.HEAP.1:	Heap	SHOULD	be	set	to	be	NX	for	data.	[SecurityEnhancement]

#ENVIRONMENT.HEAP.2:	A	platform	MAY	use	heap	guard	before	release	to	check	potential	heap
overflow.

#ENVIRONMENT.ASLR.1:	A	platform	MAY	enable	Address	Space	Layout	Randomization	(ASLR).
(SecurityEnhancement)

#ENVIRONMENT.ASLR.2:	If	ASLR	is	used,	the	platform	MUST	not	expose	any	randomized	information,
such	as	a	function	address	in	a	module,	global	data	address,	or	the	CPU	architecture	state	address.

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

8Revision	02.0

https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/details


#ENVIRONMENT.ASLR.3:	If	ASLR	is	used,	the	platform	MUST	choose	appropriate	entropy.	Too	small	of
entropy	may	make	ASLR	not	useful.	Too	much	entropy	may	impact	memory	allocation	in	a	resource-
constrained	environment.

#ENVIRONMENT.CONTROLFLOW.1:	Control	Flow	Guard	MAY	be	enabled	to	prevent	Return	Oriented
Program	(ROP),	Call	Oriented	Program	(COP)/Jump	Oriented	Program	(JOP)	attack.	(CET	EDKII)

Crypto
#CRYPTO.1:	A	platform	SHOULD	NOT	use	any	deprecated	crypto-algorithm.

#CRYPTO.2:	A	platform	SHOULD	NOT	implement	its	personally	owned	crypto	algorithms	or	protocols.

#CRYPTO.3:	A	platform	MUST	follow	cryptographic	standards	exactly.

#CRYPTO.HASH.1:	A	platform	SHOULD	use	Secure	Hash	Algorithm	(SHA)	256	equivalent	or	stronger.

#CRYPTO.HASH.2:	A	platform	SHOULD	NOT	use	SHA1	or	Message	Digest	(MD)	4,	MD5.

#CRYPTO.SYM.1:	A	platform	SHOULD	use	Advanced	Encryption	Standard	(AES)	equivalent	or	stronger.

#CRYPTO.SYM.2:	The	key	MUST	NOT	be	saved	in	flash	as	plain	text.

#CRYPTO.ASYM.1:	A	platform	SHOULD	use	Rivest-Shamir-Adleman	algorithm	(RSA)	or	Elliptic	curve
cryptography	(ECC)	equivalent	or	stronger.

#CRYPTO.ASYM.2:	The	private	key	MUST	NOT	be	saved	in	flash	as	plain	text.

#CRYPTO.RANDOM.1:	A	platform	SHOULD	use	an	approved	random	number	generator.

Password
#PASSWORD.1:	The	password	plaintext	MUST	NOT	be	saved	to	a	variable.	Alternative:	1)	save
SALT+HASH	to	a	variable,	2)	save	to	Hardware	directly,	3)	save	to	System	Management	RAM	(SMRAM)	for
S3.

#PASSWORD.2:	The	password	update	MUST	be	in	a	secure	environment,	such	as	SMM,	or	before
EndOfDxe.

#PASSWORD.3:	The	password	in	firmware	MUST	meet	common	password	criteria	(strength,	update,
algorithm,	retry	time,	old	password	check,	password	lost,	etc)

#PASSWORD.4:	The	password	MAY	be	used	to	for	authentication,	(Entering	setup	page,	setup	variable
access,	WIFI	PSK),	for	decryption	(TLS	private	certificate)

#PASSWORD.5:	The	password	in	memory	MUST	be	cleared	after	use.	NOTE:	The	secrete	MAY	be	in	a
global	data	region,	stack	or	heap.

#PASSWORD.6:	The	password	MUST	NOT	be	hardcoded	in	the	code.

#PASSWORD.7:	If	the	code	needs	to	compare	the	plain	text	password,	the	code	MUST	always	compare
all	characters	of	the	string,	instead	of	breaking	on	the	first	mismatch.

#PASSWORD.8:	Salt	MUST	be	added	to	resist	rainbow	table	attack.

#PASSWORD.9:	Hash	generation	MUST	add	enough	iteration	to	make	sure	the	hash	calculation	is
slow.

Secret

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

9Revision	02.0

https://github.com/tianocore/tianocore.github.io/wiki/CET-in-SMM


#SECRET.1:	The	secret	MUST	NOT	be	saved	in	a	variable	or	disk	directly	as	plain	text.	The	secret
includes	but	is	not	limited	to	the	user	password,	hard	drive	password,	Trusted	Computing	Group	(TCG)
OPAL	password,	or	Trusted	Platform	Module	(TPM)	platform	author	value,	network	password,	or	private
certificate	password.

#SECRET.2:	The	secret	in	memory	MUST	be	cleared	after	use,	including	usernames,	passwords,	keys,
and	other	sensitive	security	information.	NOTE:	The	secret	MAY	be	in	a	global	data	region,	stack	or
heap.	The	buffer	content	should	be	zeroed	before	released.

#SECRET.3:	The	secret	MUST	NOT	be	hardcoded	in	the	code.

#SECRET.4:	If	the	code	needs	to	compare	the	secret,	the	code	MUST	always	compare	the	entire	data
before	completion.

#SECRET.5:	The	length	of	the	secret	MUST	be	large	enough	to	resist	a	brute	force	attack.

Network
#NETWORK.1:	The	network	driver	MUST	always	validate	the	packet	from	the	network.	Don’t	trust	any
length,	size,	offset	field.

#NETWORK.2:	Each	layer	if	the	network	driver	MUST	validate	its	own	header.

#NETWORK.TLS.1:	The	public	cert	MUST	be	stored	in	the	UEFI	authenticated	variable	or	read-only
region	flash	region.

#NETWORK.TLS.2:	The	private	cert	plain	text	MUST	NOT	be	stored	to	readable	flash	region.

#NETWORK.WIFI.1:	The	WIFI	password	plain	text	MUST	NOT	be	stored	to	readable	flash	region.

Hardware
#HARDWARE.1:	The	untrusted	input	from	hardware	MUST	be	verified,	such	as	Dual-Inline-Memory-
Modules	(DIMM)	Serial	Presence	Detect	(SPD)	data,	Universal	Serial	Bus	(USB)	descriptor,	Bluetooth	Low
Energy	(BLE)	advisory	information,	etc.

DMA
#DMA.1:	The	device	Direct	Memory	Access	(DMA)	MUST	be	disabled	by	default,	either	via	Peripheral
Component	Interconnect	(PCI)	Bus	Master	Enable	(BME)	or	Input/Output	Memory	Management	Unit
(IOMMU)	engine.	(IOMMU	EDK	II)

#DMA.2:	The	device	DMA	MUST	be	enabled	if	and	only	if	it	is	requested	to	perform	a	transaction.	After
completing	the	transaction,	the	device	DMA	MUST	be	disabled.

#DMA.3:	If	an	IOMMU	engine	is	used	for	DMA	protection,	the	IOMMU	MUST	cover	all	physical	DRAM
regions.

#DMA.4:	The	DMA	capable	region	MUST	have	no	overlap	with	any	other	existing	code	region	or	data
region.

#DMA.5:	The	IOMMU	engine	SHOULD	be	configured	for	fine	granularity	control.	The	DMA	capable	region
SHOULD	be	per	device	in	the	DXE	phase.

#DMA.6:	The	DMA	in	a	debug	device	in	debug	image	MAY	be	enabled	at	all	times.

Other
#SIDECHANNEL.1:	The	high	privilege	code	(SMM)	MUST	use	SpeculationBarrier()	after	validation	of
untrusted	data	but	before	use	to	mitigate	Bounds	Check	Bypass.	(SideChannel)

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

10Revision	02.0

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass


#SIDECHANNEL.2:	The	high	privilege	code	(SMM)	MUST	use	StuffRsb	before	RSM	to	mitigate	Branch
Target	Injection.	(SideChannel)

#MDS.1:	The	high	privilege	code	(SMM)	MUST	rendezvous	all	logical	processors	both	on	entry	to	and
exit	from	SMM	to	ensure	that	a	sibling	logical	processor	does	not	reload	data	into	microarchitectural
structures	after	the	automatic	flush.	(MDS)

Secure	Coding	Guidelines:	GeneralEDK	II	Secure	Coding	Guide

11Revision	02.0

https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling


SECURE	CODING	GUIDELINES:	BOOT	FIRMWARE
Flash
#FLASH.1:	The	platform	MUST	lock	flash	part	no	later	than	EndOfDxe.

#FLASH.2:	The	flash	lock	MUST	happen	in	all	boot	mode	(normal,	S3,	S4,	capsule	update,	recovery,
etc).

Flash	Update
#FLASH.UPDATE.1:	Firmware	Flash	Update	MUST	check	the	integrity	of	a	new	Firmware	image.
(CapsuleRecovery)

#FLASH.UPDATE.2:	Firmware	Flash	Update	MUST	check	the	version	of	a	new	Firmware	image.

#FLASH.UPDATE.3:	The	verification	process	MUST	happen	in	the	trusted	execution	environment.

#FLASH.UPDATE.4:	The	new	Firmware	MUST	exist	in	a	trusted	region	when	the	verification	performs.

#FLASH.UPDATE.5:	The	verification	and	update	MUST	happen	in	the	same	trusted	execution
environment	and	with	no	interruption.

#FLASH.UPDATE.6:	System	Firmware	Update	requests	MUST	be	handled	before	EndOfDxe.

#FLASH.UPDATE.7:	Device	Firmware	Update	requests	MAY	be	handled	after	EndOfDxe.

Recovery
#FLASH.RECOVERY.1:	Firmware	recovery	MUST	check	the	integrity	of	a	Firmware	recovery	image	if	it	is
from	an	external	source.	(CapsuleRecovery)

#FLASH.RECOVERY.2:	Firmware	recovery	MUST	check	the	version	of	a	Firmware	recovery	image	if	it	is
from	an	external	source.

Variable
#VARIABLE.1:	A	platform	MUST	lock	the	variable	before	EndOfDxe	if	it	is	critical,	such	as	memory
configuration,	TPM	Physical	Presence	(PP)	flag.	NOTE:	This	locked	variable	can	still	be	updated	in	SMM.
(Variable)

#VARIABLE.2:	A	platform	MUST	use	the	same	lock	policy	in	a	normal	boot	and	S4.

#VARIABLE.3:	A	platform	MAY	define	the	variable	property	(attribute,	max	size,	min	size).	This	variable
property	can	be	a	list	defined	by	the	platform.

#VARIABLE.4:	The	return	status	for	variable	access	MUST	be	verified.

#VARIABLE.SET.1:	A	platform	MUST	use	error	handling	on	variable	set	if	the	variable	NOT	locked,	such
as	OUT_OF_RESOURCE,	or	attribute	mismatch.

#VARIABLE.SET.2:	A	platform	MUST	provide	a	way	to	handle	variable	out	of	resource.	Such	as	clean
unknown	variable.

#VARIABLE.GET.1:	A	platform	MUST	use	error	handling	variable	get	if	the	variable	is	NOT	locked.	Such
as	NOT_FOUND,	or	unexpected	value.

#VARIABLE.GET.2:	A	platform	MUST	not	assume	to	get	the	correct	variable	content/size	if	the	variable
is	NOT	locked.

Secure	Coding	Guidelines:	Boot	FirmwareEDK	II	Secure	Coding	Guide

12Revision	02.0

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_UEFI_Authenticated_Variables_in_SMM_with_EDKII_V2.pdf


#VARIABLE.ATTRIB.1:	A	platform	MUST	NOT	set	variable	RT	attribute	unless	it	is	needed.

#VARIABLE.ATTRIB.2:	A	platform	MUST	NOT	set	variable	NV	attribute	unless	it	is	needed.

#VARIABLE.CHECK.1:	A	platform	MUST	enable	Human	Interface	Infrastructure	(HII)	variable	check.

#VARIABLE.CHECK.2:	A	platform	MUST	enable	Platform	Configuration	Database	(PCD)	variable	check.

#VARIABLE.CHECK.3:	A	platform	MUST	enable	UEFI	variable	check.

#VARIABLE.QUOTA.1:	A	platform	MUST	define	a	reasonable	variable	quota.

#VARIABLE.CONFIDENTIALITY.1:	Current	variable	driver	does	not	provide	confidentiality	support.	If	the
variable	confidentiality	is	needed,	the	caller	MUST	encrypt	it	and	decrypt	it.

#VARIABLE.CONFIDENTIALITY.2:	The	encryption	and	decryption	MUST	be	in	a	secure	execution
environment,	such	as	SMM.

S3
#S3.1:	S3	BootScript	MUST	be	saved	in	a	secure	place	(lockbox)	(S3Resume)

#S3.2:	S3	BootScript	image	dispatch	and	parameter	MUST	be	saved	in	a	secure	place	(lockbox).

#S3.3:	S3	CPU	data	MUST	be	saved	in	a	secure	place	(SMM).

#S3.4:	S3	configuration	data	(memory,	chipset)	MUST	be	saved	in	a	secure	place	(ReadOnly	variable,
SMM).

Secure	Boot
#SECUREBOOT.1:	Platform	MUST	NOT	provide	a	way	to	disable	secure	boot	without	authentication.

#SECUREBOOT.2:	Platform	MUST	verify	all	images	in	the	secure	boot	path.	The	bypass	of	any	image
verification	is	NOT	ALLOWED.

#SECUREBOOT.3:	If	a	firmware	update	is	supported,	the	new	firmware	image	must	be	signed.

#SECUREBOOT.4:	If	a	firmware	recovery	is	supported,	the	recovery	firmware	image	must	be	signed.	The
recovery	firmware	image	is	from	an	external	source.

#SECUREBOOT.5:	The	verification	MUST	happen	in	all	boot	path	(normal,	S3,	S4,	capsule	update,
recovery,	etc).

#SECUREBOOT.UEFI.1:	UEFI	secure	boot	MUST	be	used	to	verify	the	3 	part	image,	such	as	PCI
Option	ROM,	or	OS	loader.

#SECUREBOOT.UEFI.2:	If	UEFI	secure	boot	is	used,	any	3 	part	image	MUST	be	verified.

#SECUREBOOT.UEFI.3:	If	UEFI	secure	boot	is	used,	a	platform	MUST	implement	the	PlatformSecureLib
to	provide	a	secure	platform-specific	method	to	detect	a	physically	present	user.

#SECUREBOOT.Key.1:	If	signing	verification	is	required,	the	public	key	or	hash	MUST	be	stored	in
hardware,	or	boot	block	or	UEFI	authenticated	variable.

TCG
#TCG.1:	If	TCG	trusted	boot	is	enabled,	a	platform	MUST	do	measurement	following	the	TCG
specification.	(TPM2	EDK	II)

#TCG.2:	All	parent	Firmware	Volumes	(FV)	MUST	be	reported	and	measured.	The	child	FV	MAY	NOT	be
measured.

rd

rd

Secure	Coding	Guidelines:	Boot	FirmwareEDK	II	Secure	Coding	Guide

13Revision	02.0

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII_V2.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support_in_EDKII.pdf


#TCG.3:	If	an	image	is	not	in	a	FV,	it	MUST	be	measured.	The	image	inside	of	a	FV	MAY	NOT	be
measured.

#TCG.4:	Any	FV	MUST	be	measured,	including	external	FV	from	firmware	update	capsule,	or	recovery.

#TCG.5:	The	platform	MUST	link	Tcg2MeasurementLib	to	be	the	last	NULL	instance	for	SecurityStub.

#TCG.SMBIOS.1:	The	platform	MUST	make	sure	the	measured	SMBIOS	record	is	the	same	cross	boot.
(If	the	record	might	be	different,	it	MUST	NOT	be	measured)

#TCG.MOR.1:	Memory	Override	(MOR)	request	MUST	be	handled	by	the	platform/Memory	Reference
Code	(MRC).

#TCG.MOR.2:	Storage	MOR	request	MUST	be	handled	by	platform	BDS	before	EndOfDxe.

#TCG.MOR.3:	If	the	MOR	variable	is	not	got,	the	platform	MUST	treat	it	as	MOR	requested.

#TCG.MOR.4:	Secure	MOR	MUST	be	used	for	the	platform.	(SecureMOR)

#TCG.PP.1:	TCG	TPM	Physical	Presence	(PP)	request	MUST	be	handled	before	EndOfDxe.

#TCG.PP.2:	TCG	storage	PP	request	MUST	be	handled	before	EndOfDxe.

#TCG.PP.3:	TCG	TPM	PP	flag	MUST	be	locked	in	normal	boot	and	S4.

#TCG.PP.4:	TCG	storage	PP	flag	MUST	be	locked	in	normal	boot	and	S4.

#TCG.TPM.1.	A	Platform	MUST	generate	random	TPM2	PlatformAuth	and	discard	it	in	normal	boot.

#TCG.TPM.2:	A	Platform	MUST	generate	random	TPM2	PlatformAuth	and	discard	it	in	S3	if	device	error
in	S3.

#TCG.TPM.3:	A	platform	MAY	disable	TPM	if	the	TPM	device	returns	an	error.

#TCG.TPM.4:	A	platform	MUST	handle	TPM	device	error	in	both	normal	boot	and	S3.

#TCG.TPM.5:	If	S3	Startup(STATE)	fails,	the	platform	MUST	send	Startup(Clear)	and	extend	error	code
to	PCRs.

Option	ROM
#OROM.1:	Any	3 	party	option	ROM	MUST	NOT	be	dispatched	before	EndOfDxe.	The	3 	party	option
ROM	means	a	PCI	option	ROM	on	the	3 	party	PCI	card.	If	a	PCI	option	ROM	is	integrated	inside	of	the
firmware,	it	is	NOT	considered	as	a	3 	party	option	ROM	and	it	MAY	be	dispatched	before	EndOfDxe.

#OROM.2:	Platform	BDS	MUST	handle	the	deferred	PCI	option	ROM	after	EndOfDxe.

Console
#CONSOLE.1:	A	trusted	console	SHOULD	be	available	before	EndOfDxe,	based	upon	the	need.	A
trusted	console	means:	1)	Integrated	device	such	as	a	PS2/USB	keyboard/mouse	without	any	option
ROM,	2)	A	chipset-integrated	video	card	which	is	welded	to	the	board	and	whose	driver	is	inside	of	the
boot	firmware	instead	of	in	a	PCI	option	ROM,	3)	A	3 	party	video	card	which	is	welded	to	the	board	and
whose	driver	is	inside	of	the	boot	firmware	instead	of	in	a	PCI	Option	ROM.

#CONSOLE.2:	The	trusted	console	MAY	support	features,	such	as	TCG	Physical	Presence,	hard	drive
Password	or	TCG	OPAL	password.

#CONSOLE.3:	If	a	remote	console	is	used,	additional	authentication	MAY	be	used,	such	as	user
password.

Storage

rd rd
rd

rd

rd

Secure	Coding	Guidelines:	Boot	FirmwareEDK	II	Secure	Coding	Guide

14Revision	02.0

https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-requirements


#STORAGE.1:	A	platform	MUST	connect	trusted	storage	device	before	EndOfDxe,	based	upon	the
need.	A	trusted	storage	means:

1.	 Integrated	device,	such	as	a	Universal	Serial	Bus	(USB),	Advanced	Technology	Attachment	(ATA),	AT
Attachment	Packet	Interface	(ATAPI),	Non-Volatile	Memory	express	(NVMe),	Universal	Flash	Storage
(UFS),	Embedded	MultiMedia	Card	(eMMC),	Secure	Digital	(SD)	Card,	without	any	option	ROM,

2.	 A	chipset-integrated	storage	card,	such	as	Redundant	Arrays	of	Independent	Drives	(RAID),	which	is
welded	to	the	board	and	whose	driver	is	inside	of	the	boot	firmware	instead	of	in	a	PCI	Option	ROM,

3.	 A	3rd	party	storage	card,	such	as	Small	Computer	System	Interface	(SCSI),	Fiber	Channel	(FC),	which
is	welded	to	the	board	and	whose	driver	is	inside	of	the	boot	firmware	instead	of	in	a	PCI	Option
ROM.

#STORAGE.2:	A	platform	MUST	send	TPer	Reset	to	storage	device	if	there	is	a	MOR	request.

#STORAGE.3:	A	platform	MUST	let	user	input	hard	drive	password	or	TCG	OPAL	password	to	unlock	the
hard	drive	if	the	hard	drive	is	locked.

#STORAGE.4:	A	platform	MUST	disable	the	DMA	on	the	storage	if	it	is	not	a	boot	device.	(Disconnect
Device)

Silicon
#SILICON.1:	The	lockable	silicon	register	MUST	be	locked	before	EndOfDxe,	include	SMRAM,	Flash,	Top
Swap,	Remap	Bar,	etc

#SILICON.2:	The	lockable	silicon	register	MUST	be	locked	in	all	booth	path	including	S3,	S4,	Capsule,
Recovery,	etc.

Secure	Coding	Guidelines:	Boot	FirmwareEDK	II	Secure	Coding	Guide

15Revision	02.0



SECURE	CODING	GUIDELINES:	INTEL	PLATFORMS
SMM
Intel®	Boot	Guard
Intel®	BIOS	Guard

Secure	Coding	Guidelines:	Intel	PlatformsEDK	II	Secure	Coding	Guide

16Revision	02.0



SMM
#SMM.0:	Applications	and	functions	should	use	the	least	privilege	that	will	get	the	job	done.	If	DXE	or
Runtime	can	finish	the	work,	don’t	use	SMM.

#SMM.1:	SMM	module	MUST	lock	SMM,	at	SmmReadyToLock.

#SMM.1.1:	Boot	firmware	MUST	set	SMRAM	Range	Register	(SMRR)	for	Top	Segment	(TSEG)	correctly
at	SmmReadyToLock	for	all	processors.
#SMM.1.2:	Boot	firmware	MUST	use	TSEG	only	and	MUST	NOT	use	A/B	Segment	(ABSEG)	as	SMRAM.
#SMM.1.3:	Boot	firmware	MUST	remove	SMRAMC_D_OPEN	at	SmmReadyToLock.
#SMM.1.4:	Boot	firmware	MUST	set	SMRAMC_D_LOCK	at	SmmReadyToLock.
#SMM.1.5:	Boot	firmware	MUST	close	all	unnecessary	services	at	SmmReadyToLock,	such	as	the
capability	to	register	a	new	SMM	driver	into	SMRAM.
#SMM.1.6:	All	the	above	locks	MUST	be	performed	in	the	S3	resume	path	before	the	control	is
transferred	to	OS	waking	vector.

#SMM.2:	SMM	module	MUST	NOT	call	any	code	outside	of	SMRAM,	after	SmmReadyToLock.
(SMMProtection)

#SMM.2.1:	Boot	firmware	MUST	make	sure	there	is	an	SMM	code	call	outside	of	SMRAM	after
SmmReadyToLock.
#SMM.2.2:	UEFI/PI	Boot	firmware	MUST	make	sure	there	is	NOT	boot	services	or	UEFI	protocols	are
called	from	SMM	code	after	SmmReadyToLock.
#SMM.2.3:	UEFI/PI	Boot	firmware	MUST	make	sure	there	is	NOT	runtime	services	are	called	from
SMM	code	after	SmmReadyToLock.
#SMM.2.4:	UEFI/PI	Boot	firmware	MUST	make	sure	there	are	NOT	dynamic	PCDs	that	are	accessed
from	SMM	code	after	SmmReadyToLock.
#SMM.2.5:	UEFI/PI	Boot	firmware	MUST	choose	the	library	or	MACRO	correctly	to	make	sure	these
libraries	or	MACROs	do	not	call	outside	of	SMRAM	after	SmmReadyToLock.
#SMM.2.6:	All	the	above	restrictions	MUST	be	performed	in	the	S3	resume	path.
#SMM.2.7:	Boot	firmware	MUST	enable	ExecutionDisable	(XD)	feature	provided	by	Intel	CPU.
#SMM.2.8:	If	the	hardware	supports	SMM_Code_Access_Chk	Model	Specific	Register	(MSR),	boot
firmware	MUST	enable	SMM_CODE_ACCESS	for	all	processors.

#SMM.3:	SMM	module	MUST	check	any	communication	memory	between	SMM	and	non-SMM,	to	make
sure	it	does	not	impact	the	integrity,	confidentiality	or	availability	of	SMM.	(SmmComm)

#SMM.3.1:	Boot	firmware	SMM	module	MUST	check	any	data	from	a	non-SMM	component,	to	make
sure	the	data	buffer	is	NOT	overlapped	with	SMRAM.
#SMM.3.2:	If	the	data	buffer	contains	a	pointer,	the	Boot	firmware	SMM	module	MUST	check	the
pointer	to	make	sure	the	buffer	pointed	is	NOT	overlapped	with	SMRAM.
#SMM.3.3:	If	the	data	buffer	is	from	MMIO	BAR,	the	Boot	firmware	SMM	module	MUST	check	the
pointer	to	make	sure	the	buffer	pointed	is	NOT	overlapped	with	SMRAM.
#SMM.3.4:	Boot	firmware	SMM	module	MUST	calculate	the	data	buffer	carefully	to	avoid	integer
overflow.
#SMM.3.5:	Boot	firmware	SMM	module	MUST	copy	the	communication	buffer	to	SMRAM	before	the
check,	to	resist	TOC/TOU	or	DMA	attacks.

#SMM.4:	SMM	module	MUST	check	any	communication	memory	between	SMM	and	non-SMM,	to	make
sure	it	does	not	impact	the	integrity,	confidentiality	or	availability	of	VMM.	(SmmComm)

#SMM.4.1:	Boot	firmware	SMM	module	MUST	check	any	data	from	a	non-SMM	component,	to	make
sure	the	data	buffer	is	a	fixed	communication	buffer	range.	“Fixed”	here	means	a	buffer	used	for
Boot	firmware	SMM	only,	such	as	ReservedMemory,	ACPINvs,	or	UefiRuntimeServicesData.

SMMEDK	II	Secure	Coding	Guide

17Revision	02.0

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf


#SMM.4.2:	If	the	data	buffer	contains	a	pointer,	the	Boot	firmware	SMM	module	MUST	check	the
pointer	to	make	sure	the	buffer	pointed	is	in	a	fixed	communication	buffer	range.
#SMM.4.3:	If	the	data	buffer	is	from	MMIO	BAR,	the	Boot	firmware	SMM	module	MUST	check	the
pointer	to	make	sure	the	buffer	pointed	is	in	MMIO	range.
#SMM.4.4:	Boot	firmware	SMM	module	MUST	calculate	the	data	buffer	carefully	to	avoid	integer
overflow.
#SMM.4.5:	Boot	firmware	SMM	module	MUST	set	the	DRAM	region	to	be	not-present	other	than
SMRAM	and	the	fixed	communication	buffer	range.

#SMM.5:	SMM	module	MUST	check	MMIO	access,	to	make	sure	it	does	not	impact	any	bits	which	can
only	be	accessed	in	SMM,	or	which	only	need	to	be	accessed	in	VMM.	Such	as	Intel	Virtualization
Technology	for	Direct	I/O	(VTd)	BAR	or	Serial	Peripheral	Interface	(SPI)	BAR.

#SMM.5.1:	If	the	data	buffer	is	from	MMIO	BAR,	Boot	firmware	SMM	module	MAY	check	if	the	BAR	is
the	same	as	the	original	value	in	preboot,	and	deny	the	access	if	the	BAR	is	changed.

#SMM.6:	SMM	module	MUST	be	built	with	4K	alignment	so	that	the	SMM	image	can	be	protected	with
section	attributes	by	SMM.	(MemoryProtection)

#SMM.6.1:	SMM	module	MUST	be	built	with	4K	alignment.
#SMM.6.2:	The	code	section	of	the	SMM	image	MUST	be	set	as	read-only	in	the	page	table.
#SMM.6.3:	The	data	section	of	the	SMM	image	MUST	be	set	as	non-executable	in	the	page	table.
#SMM.6.4:	The	SMM	entrypoint	code	MUST	be	read-only.
#SMM.6.5:	The	platform	MUST	configure	SMM	with	a	static	page	table.
#SMM.6.6:	The	page	table	itself	MUST	be	Read-Only.
#SMM.6.7:	The	Global	Descriptor	Table	(GDT),	Interrupt	Description	Table	(IDT)	MUST	be	Read-Only.
(The	only	exception	is	IA32	GDT	with	stack	guard	enabled	because	stack	switch	need	task	switch)
#SMM.6.8:	All	other	SMRAM	data	must	be	non-executable.	(Stack,	Heap)

#SMM.7:	A	platform	MUST	remove	any	unnecessary	System	Management	Interrupt	(SMI)	handlers.
(Profile)

#SMM.7.1:	A	platform	MAY	enable	SMI	handler	profile	feature	to	check	all	SMI	handlers.

#SMM.8:	An	SMM	module	SHOULD	use	a	read-only	page	to	save	the	critical	data	structure.	As	such	this
critical	data	structure	is	locked	after	SmmReadyToLock.

#SMM.10:	An	SMM	module	MUST	use	a	read-only	page	for	any	S3	data,	that	needs	to	be	referred
before	SMM	rebase	in	the	S3	resume	phase.

#SMM.11:	If	Control	Flow	Enhancement	Technology	(CET)	is	supported,	the	SMM	MUST	enable	CET	to
prevent	ROP	attack.	(CET	EDK	II)

SMMEDK	II	Secure	Coding	Guide

18Revision	02.0

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_Profiling_in_EDK_II.pdf
https://github.com/tianocore/tianocore.github.io/wiki/CET-in-SMM


Intel®	Boot	Guard
#BootGuard.1:	A	full	secure/verified	boot	flow	MUST	include	Intel®	Boot	Guard,	OEM	Boot	Block	(OBB)
Verification.

#BootGuard.2:	Intel®	Boot	Guard	SHOULD	be	used	to	verify	the	Initial	Boot	Block	(IBB).

#BootGuard.3:	If	Intel®	Boot	Guard	is	used,	all	IBB	portion	MUST	be	signed.

#BootGuard.4:	If	Intel®	Boot	Guard	is	used,	the	verification	MUST	happen	in	all	boot	path,	including
normal,	S3,	S4,	capsule	update,	recovery.

#BootGuard.5:	After	the	memory	is	initialized,	the	code	in	the	IBB	flash	region	MUST	not	be	invoked.
Only	the	memory	copy	MAY	be	invoked,	including	PSI	service,	PPI,	and	a	callback	function.

#BootGuard.6:	After	the	memory	is	initialized,	the	data	in	the	IBB	flash	region	MUST	not	be	referred.
Only	the	memory	copy	MAY	be	referred,	including	HOB,	global	data	in	PPI,	system	state,	GDT,	IDT,
Firmware	Information	Table	(FIT),	Boot	Policy	Manifest	(BPM),	Key	Manifest	(KM),	etc.

#BootGuard.7:	Once	Intel®	Boot	Guard	is	enabled,	there	MUST	be	no	way	to	disable	it.

#ObbVereification.1:	The	IBB	MUST	be	used	to	verify	the	OEM	Boot	Block	(OBB).

#ObbVereification.2:	Any	OBB	Firmware	Volume	images	MUST	be	signed.

#ObbVereification.3:	The	verification	MUST	occur	for	the	OBB	code	in	memory.

Intel®	Boot	GuardEDK	II	Secure	Coding	Guide

19Revision	02.0



Intel®	Bios	Guard
#BiosGuard.1:	Intel®	Bios	Guard	SHOULD	be	used	for	a	firmware	update.

#BiosGuard.2:	The	platform	MUST	make	sure	all	the	processes	are	in	SMM	when	performing	the	Intel®
Bios	Guard	update.

#BiosGuard.3:	Once	Intel®	Bios	Guard	is	enabled,	there	MUST	be	no	way	to	disable	it.

Intel®	Bios	GuardEDK	II	Secure	Coding	Guide

20Revision	02.0



APPENDIX:THREAT	MODEL	FOR	EDK	II
This	chapter	provides	the	basic	assumptions	for	the	threat	model	of	EDK	II	firmware.	The	threat	model
discussed	here	is	a	general	guide	and	serves	as	the	baseline	of	the	EDK	II	firmware.	For	each	specific
feature	in	EDK	II	firmware,	there	might	be	additional	feature-based	threat	models	in	addition	to	the
general	threat	model.

In	UEFI	Threat	Model,	we	discussed	the	asset,	threat	and	mitigation.	Here	we	will	revisit	these	items	and
based	upon	STRIDE).

Threat Desired	Property

Spoofing Authentication

Tampering Integrity

Repudiation Non-Repudiation

Information	Disclosure Confidentiality

Denial	of	Service Availability

Elevation	of	Privilege Authorization

In	EDK	II	firmware,	the	denial	of	service	can	be	temporary	in	the	current	boot,	or	permanent	in	which
case	the	system	never	boot	again.	The	latter	is	more	serious	and	it	is	named	as	permanent	denial	of
service	(PDoS).

We	will	consider	the	below	adversary	for	the	EDK	II	firmware:

Adversary Capability

Network
Attacker

The	attacker	may	connect	to	the	system	by	network	in	order	to	eavesdrop,
intercept,	masquerade,	or	modify	the	network	packet.

Unprivileged
Software
Attacker

The	attacker	may	run	ring-3	software	in	an	OS	application	layer.	The	attacker	may
perform	a	software	based	side	channel	attack	(such	as	using	cache	timing).

System
Software
Attacker

The	attacker	may	run	ring-0	software	in	the	OS	kernel	or	hypervisor,	or	run	3rd
party	firmware	code	in	firmware	boot	phase.	The	attacker	may	perform	the
software	based	side	channel	attack	(such	as	using	cache	timing,	performance
counters,	branch	information,	or	power	status).

Simple
Hardware
Attacker

The	attacker	may	touch	the	platform	hardware	(such	as	power	button	or	jumper)
and	attach/remove	a	simple	malicious	device	(such	as	hardware	debugger,	PCI
Leach	to	the	external	port,	PCIE	card	to	the	PCIE	slot,	memory	DIMM,	NIC	cable,
hard	drive,	keyboard,	USB	device,	Bluetooth	device).	The	attacker	may	hijack	the
simple	system	bus	(such	as	the	SPI	bus	or	I2C	bus).

Skilled
Hardware
Attacker

The	attacker	may	hijack	the	complex	system	bus	(such	as	memory	bus,	or	PCI
express	bus).	The	attacker	may	perform	the	hardware	based	side	channel	attack,
such	as	power	analysis,	thermal	analysis,	or	electromagnetic	analysis.	The
attacker	may	perform	a	glitch	attack.

We	will	consider	the	below	mitigations	for	the	EDKII	firmware:

Mitigation Objective

Protection The	mitigation	is	to	prevent	such	an	attack	for	damaging	the	system.

Detection The	mitigation	is	to	detect	if	the	system	is	under	attack.

Recovery The	mitigation	is	to	recover	the	system	if	it	is	under	attack.

Appendix	-	Threat	Model	for	EDK	IIEDK	II	Secure	Coding	Guide

21Revision	02.0

https://uefi.org/sites/default/files/resources/Intel-UEFI-ThreatModel.pdf
https://en.wikipedia.org/wiki/STRIDE_(security


Asset:	Flash	Content
Asset:	Boot	Flow
Asset:	S3	Resume
Asset:	Management	Mode
Asset:	Build	Tool

Appendix	-	Threat	Model	for	EDK	IIEDK	II	Secure	Coding	Guide

22Revision	02.0



Asset:	Flash	Content
NIST	SP	800-147	and	SP	800-147B	provide	system	firmware	protection	guidelines,	including	the	detailed
information	on	system	firmware	protection	and	update.	NIST	SP	800-193	provides	platform	firmware
resiliency	guidelines.	It	extends	protection	to	3	principles:	protection,	detection,	and	recovery.	It	also
enlarges	the	scope	from	system	firmware	(BIOS)	to	all	the	firmware	on	the	platform.

The	flash	content	here	includes	both	firmware	code	(such	as	PEI,	DXE,	SMM	etc)	and	firmware	data
(such	as	UEFI	variables,	Microcode,	etc).

Threat Example

Spoofing N/A

Tampering
If	the	firmware	is	not	protected	or	locked,	the	attacker	might	modify	the	firmware
directly.
If	the	firmware	update	process	is	not	authenticated,	the	attacker	might	send	a
malicious	firmware	update	image	for	update.

Repudiation N/A

Information
Disclosure

If	the	system	software	stores	the	secret	in	the	firmware,	the	attacker	may	read	the
firmware	content	and	get	the	secret.

Denial	of
Service

If	the	attacker	can	modify	the	firmware	content	(code	or	data)	and	cause	the
firmware	crash,	the	system	might	no	longer	boot.	It	becomes	a	permanent	denial	of
service.

Elevation	of
Privilege

If	the	attacker	can	modify	the	firmware	content	(code	or	data)	and	store	a	Trojan	in
firmware,	the	Trojan	may	hide	itself	and	gain	the	higher	privilege.

Adversary Example

Network
Attacker

If	the	network	is	enabled	before	SMM	lock	and	flash	lock,	the	attacker	may	send
mal-formed	network	packets.

Unprivileged
Software
Attacker

The	attacker	may	trigger	a	firmware	update,	or	write	the	UEFI	variable.

System
Software
Attacker

The	attacker	may	access	a	silicon	register	to	unlock	the	flash	access	register.
The	attacker	may	create	a	race	condition	to	break	the	flash	write	protection	or
flash	update	authentication.

Simple
Hardware
Attacker

The	attacker	may	press	the	power	button	during	flash	update	or	recovery,	or	set	a
jumper	to	modify	the	system	boot	mode	from	normal	boot	to	recovery	or	even
manufacturing	mode.
The	attacker	may	attach	PCI	Leach	to	perform	DMA	attack	during	flash	update	or
recovery.
The	attacker	may	hijack	the	SPI	bus	to	read	or	write	to	the	chip	data.

Skilled
Hardware
Attacker

N/A

Mitigation Example

Protection

For	the	code	region,	the	flash	write	protection	must	always	be	applied.	During	the
flash	update,	the	new	firmware	image	must	be	authenticated	and	the	version	must
be	checked	to	prevent	a	rollback	attack.	In	order	to	mitigate	Time-of-check/Time-of-
use	(TOC/TOU)	attacks,	the	new	image	must	be	copied	to	a	secure	environment
before	the	check.	The	DMA	protection	must	be	enabled	during	flash	update.
For	the	data	region,	the	UEFI	authenticated	variable	write	must	happen	in	an
isolated	execution	environment.	The	authenticated	variable	data	must	be
authenticated	and	the	rollback	protection	must	be	applied.	Just	as	in	code	region
protection,	in	order	to	mitigate	TOC/TOU	attack,	new	variable	content	must	be

Asset:	Flash	ContentEDK	II	Secure	Coding	Guide

23Revision	02.0

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-147B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf


copied	to	a	secure	environment	before	the	check	and	DMA	protection	must	be
applied	to	this	environment.	In	addition,	the	secret	must	not	be	saved	to	the
firmware	code	or	data	region.

Detection

The	detection	happens	in	the	next	boot.
For	the	code	region,	the	industry	may	have	different	solutions	to	make	sure	the
initial	boot	code	is	unmodified,	such	as	Project	Cerberus,	Intel®	Boot	Guard,	etc.
For	the	data	region,	the	UEFI	variable	driver	needs	to	detect	if	the	variable	region	is
modified	without	using	UEFI	variable	services.

Recovery
If	something	wrong	is	detected,	the	entity	which	detects	the	failure	needs	to	start
the	recovery	process,	and	the	recovery	data	must	be	in	a	known	good	and	secure
configuration	and	be	delivered	from	a	trusted	and	always	available	source.

Asset:	Flash	ContentEDK	II	Secure	Coding	Guide

24Revision	02.0



Asset:	Boot	Flow
The	main	system	firmware	work	is	to	initialize	the	silicon	and	then	transfer	control	to	an	operating
system.	Because	the	firmware	is	almost	the	first	component	running	on	the	system,	another
responsibility	of	the	system	firmware	is	to	maintain	the	secure	boot	chain	(defined	in	UEFI	specification)
and	the	trusted	boot	chain	(defined	by	TCG).

Here	the	secure	boot	chain	means	that	the	first	entity	needs	to	verify	if	the	second	entity	is	good
before	running	it,	not	run	the	second	entity	if	the	verification	fails.	The	trusted	boot	chain	means	that
the	first	entity	needs	to	measure	the	second	entity	before	running	it	and	then	always	run	the	second
entity.	The	attestation	may	happen	later.	The	system	firmware	needs	to	maintain	both	boot	flows
carefully.	The	verification	and	measurement	must	not	be	bypassed.

In	addition,	the	system	firmware	may	need	to	authenticate	the	end	user,	to	determine	if	the	user	is
authorized	to	perform	some	action.	For	example,	the	user	may	be	asked	to	input	a	hard	driver	password
to	continue	the	boot.	Or	the	user	may	be	asked	to	input	an	administrator	password	to	enter	a	setup
page.	Those	actions	must	not	be	bypassed	as	well.

Threat Example

Spoofing If	the	firmware	needs	to	authenticate	the	user,	the	attacker	may	spoof	the	identity,
or	bypass	the	authentication	check.

Tampering The	attacker	may	want	to	modify	the	secure	boot	logic	or	trusted	boot	logic	(either
code	or	configuration	data)	to	bypass	the	verification	or	measurement.

Repudiation N/A

Information
Disclosure

The	user	identity	and	device	password	are	secret	information.	The	attacker	may
want	to	steal	them.

Denial	of
Service

The	attacker	may	modify	the	secure	boot	configuration	data	to	cause	a	system
crash	during	verification.

Elevation	of
Privilege

If	the	attacker	bypasses	the	user	authentication,	he	or	she	may	enter	firmware
setup	page	to	modify	the	configuration.If	the	attacker	bypasses	the	secure	boot
verification,	he	or	she	may	run	the	unauthorized	3rd	part	code	in	the	ring-0
environment.

Adversary Example

Network
Attacker

The	attacker	may	send	malformed	network	packets	to	inject	code	into	the
system.
The	attacker	may	send	a	bad	UEFI	image	to	bypass	or	break	the	secure	boot
logic.

Unprivileged
Software
Attacker

The	attacker	may	write	a	malformed	UEFI	authenticated	variable	to	break	the
secure	boot	configuration.

System
Software
Attacker

The	attacker	may	send	a	command	to	the	isolated	execution	environment	in
order	to	modify	the	secure	boot	configuration.
The	attacker	may	enable	a	side	channel	to	get	secrets	from	memory.

Simple
Hardware
Attacker

The	attacker	may	attach	PCI	Leach	to	perform	DMA	attack	to	read	the	secret
from	memory,	or	write	the	code	region	to	bypass	the	verification.

Skilled
Hardware
Attacker

The	attacker	may	hijack	the	memory	bus	to	read	secrets	from	memory,	or	write
the	code	region	to	bypass	the	verification.

Mitigation Example

Asset:	Boot	FlowEDK	II	Secure	Coding	Guide

25Revision	02.0



Protection

Do	check	for	untrusted	external	input	before	use	(such	as	network	packet,	option
ROM,	OS	loader,	and	UEFI	authenticated	variable).	Do	not	run	any	untrusted	3rd
part	code	before	verification.
If	the	secret	is	generated,	it	must	be	cleared	after	use	(such	as	temporary	input
from	HII).	If	the	secret	needs	to	be	stored,	the	choice	includes:	to	save	secret	to
hardware	directly	(such	as	OPAL	password),	to	save	hash	plus	salt	to	a	UEFI	variable
(such	as	user	password),	to	save	the	secret	in	an	isolated	environment	(such	as
TPM	MOR2).	Side	channel	prevention	must	be	applied	in	this	case.
DMA	protection	must	be	enabled.	Memory	encryption	must	be	used	if	the	memory
bus	attack	is	in	scope.

Detection N/A

Recovery N/A

Asset:	Boot	FlowEDK	II	Secure	Coding	Guide

26Revision	02.0



Asset:	S3	Resume
S3	resume	is	a	special	boot	flow.	It	is	defined	by	ACPI	specification.	During	S3	resume,	the	system
restores	the	configuration	from	a	normal	boot	and	jumps	to	OS	waking	vector.

All	protection	applied	to	the	normal	boot	must	also	be	applied	in	S3	resume.

Threat Example

Spoofing N/A

Tampering The	attacker	may	try	to	modify	the	S3	configuration,	also	known	as	S3	boot
script.

Repudiation N/A

Information
Disclosure

If	the	s3	configuration	includes	a	secret	(such	as	HDD	password),	the	attacker
may	want	to	steal	the	secret.

Denial	of
Service

The	attacker	may	destroy	the	S3	configuration	to	prevent	the	system	from
booting.

Elevation	of
Privilege

The	attacker	may	disable	the	protections	stored	in	the	S3	configuration	such
as	register	lock.

Adversary Example

Network
Attacker N/A

Unprivileged
Software
Attacker

The	attacker	may	write	a	malformed	UEFI	variable	to	break	the	S3	configuration.

System
Software
Attacker

The	attacker	may	send	a	command	to	the	isolated	execution	environment	to
modify	the	S3	configuration.	If	there	is	a	secret	saved	in	the	isolated	environment,
the	attacker	may	send	a	commend	to	get	the	secret,	or	use	a	side	channel	to
steal	the	secret.

Simple
Hardware
Attacker

N/A

Skilled
Hardware
Attacker

N/A

Mitigation Example

Protection

The	S3	configuration	data	must	be	saved	to	a	secure	place.	For	example,
embedded	into	read	only	code	region,	a	read	only	variable,	an	isolated	execution
environment,	or	a	lock	box.
If	the	S3	configuration	data	is	secret,	then	it	must	be	saved	in	an	isolated
execution	environment	or	a	lock	box	to	prevent	unauthorized	reads.

Detection N/A

Recovery N/A

Asset:	S3	ResumeEDK	II	Secure	Coding	Guide

27Revision	02.0



Asset:	Management	Mode
Management	mode	is	a	special	system	execution	environment.	X86	systems	have	system	management
mode	(SMM),	and	ARM	has	ARM	TrustZone.	The	firmware	code	in	management	mode	is	considered	as	a
secure	world	and	having	high	privilege.

Threat Example

Spoofing N/A

Tampering The	attacker	may	update	the	management	mode	memory	to	inject	code	or	data.

Repudiation N/A

Information
Disclosure

The	management	mode	may	contain	a	secret	(such	as	password,	TPM	MOR2
entropy),	or	its	own	information	(code	and	data	structure	location).	This
information	may	be	exposed	to	normal	world.

Denial	of
Service

The	management	mode	only	has	limited	resource	(such	as	memory).	The	attacker
may	send	command	to	management	mode	code	to	make	it	run	out	of	resource.

Elevation	of
Privilege

The	attacker	may	gain	unauthorized	execution	rights	in	management	mode.	For
example,	if	the	management	code	calls	the	normal	world	code,	the	attacker	may
replace	the	original	code	with	malicious	code	to	gain	the	privilege.
The	attacker	may	construct	a	confused-deputy	attack	for	management	mode.	For
example,	the	OS	kernel	may	send	a	command	to	management	mode	to	let	it	modify
the	hypervisor	memory	or	management	mode	memory.

Adversary Example

Network
Attacker N/A

Unprivileged
Software
Attacker

N/A

System
Software
Attacker

The	attacker	may	take	advantage	of	an	implementation	flaw	in	the	management
mode	code	to	read	or	modify	the	management	mode	content,	or	content	of	a
higher	privilege	environment,	such	as	a	hypervisor.
The	attacker	may	use	a	side	channel	to	steal	a	secret	in	the	management	mode
memory.

Simple
Hardware
Attacker

N/A

Skilled
Hardware
Attacker

N/A

Mitigation Example

Protection

The	management	mode	code	must	lock	the	management	mode	after	it	is
constructed,	no	later	than	3rd	part	code	running.
The	management	mode	code	must	not	call	out	to	the	normal	world	code.
The	system	must	remove	unnecessary	management	mode	handlers.
The	required	management	mode	handler	must	check	the	untrusted	external	input,
including	the	communication	buffer,	the	pointer	inside	of	the	communication	buffer,
the	general	purpose	register	served	as	communication	buffer	pointer,	the	hardware
base	address	register.	The	checked	content	must	be	copied	into	management
mode	memory	to	prevent	TOC/TOU.
The	management	mode	handler	must	prevent	unauthorized	access	to	itself	and
high	privileged	content	such	as	hypervisor	or	OS	kernel	memory.
The	management	mode	handler	must	prevent	side	channel	attacks	for	the	secret.
The	management	mode	handler	must	not	allocate	more	resources	to	serve	the
request.	If	additional	sources	are	allocated,	they	must	be	freed	before	the	handler

Asset:	Management	ModeEDK	II	Secure	Coding	Guide

28Revision	02.0



return	to	the	normal	world.

Detection N/A

Recovery N/A

Asset:	Management	ModeEDK	II	Secure	Coding	Guide

29Revision	02.0



Asset:	Build	Tool
In	1983,	Ken	Thompson	received	the	Turing	Award	with	Dennis	Ritchie.	There	he	delivered	a	speech	-
Reflections	on	Trusting	Trust,	and	demonstrated	how	to	inject	a	Trojan	Horse	into	the	compiler.	Afterward
the	compiler	generated	a	buggy	binary.	It	is	not	impossible.

This	is	not	a	traditional	attack	to	the	final	system,	but	it	represents	an	attack	to	the	tool	chain	in	the
build	environment.

The	mitigation	is:	only	trust	the	tool	chain	from	a	trusted	source	with	the	source	code,	and	protect	the
tool	chain	in	the	build	environment.

Asset:	Build	ToolEDK	II	Secure	Coding	Guide

30Revision	02.0

https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf


REFERENCES

Books	and	Papers
[McConnell]	Code	Complete:	A	Practical	Handbook	of	Software	Construction,	Second	Edition,	Steve
McConnell,	Microsoft,	2004,	ISBN:	978-0735619678

[Maguire]	Writing	Solid	Code:	Microsoft’s	Techniques	for	Developing	Bug-Free	C	Programs,	Steve
Maguire,	Microsoft,	1993,	ISBN:	978-1556155512

[HowardLeBlanc]	Writing	Secure	Code:	Practical	Strategies	and	Proven	Techniques	for	Building	Secure
Applications	in	a	Networked	World,	Second	Edition,	Michael	Howard,	David	LeBlanc,	Microsoft,	2004,
ISBN:	978-0735617223

[Howard]	24	Deadly	Sins	of	Software	Security:	Programming	Flaws	and	How	to	Fix	Them,	Michael	Howard,
David	LeBlanc,	John	Viega,	McGraw-Hill,	2009,	ISBN:	978-0071626750

[Graff]	Secure	Coding:	Principles&Practices,	M.G.	Graff	and	K.R.	van	Wyk,	O’Reilly,	2002,	ISBN:	978-
0596002428

[Ransome]	Core	Software	Security:	Security	at	the	Source,	James	Ransome	and	Anmol	Misra,	CRC	Press,
2014,	ISBN:	978-1466560956.	Particularly,	chapters	5	and	9.

[Viega]	Secure	Programming	Cookbook	for	C	and	C++:	Recipes	for	Cryptography,	Authentication,	Input
Validation	&	More.	John	Viega,	Matt	Messier,	O'Reilly	Media,	2003,	ISBN:	978-0596003944

[ViegaMcGraw]	Building	Secure	Software:	How	to	Avoid	Security	Problems	the	Right	Way,	John	Viega,	Gary
McGraw,	Addison-Wesley	Professional,	2001,	ISBN:	978-0201721522

[Teer]	Solaris	Systems	Programming,	Chapter	9,	Secure	C	Programming,	Rich	Teer,	Prentice	Hall,	2007,
ISBN:	978-0768682236

[MITRE]	System	Engineering	Guide,	MITRE,	Page	192,	Security	Code	Review

Web
[Android]	“Android	Secure	Coding	Standard”,
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard

[Apple]	“Secure	Coding	Guide”,
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introdu
ction.html

[Banned	Function]	Microsoft	Security	Development	Lifecycle	(SDL)	Banned	Function	Calls,
https://msdn.microsoft.com/en-us/library/bb288454.aspx

[Jordan]	“Ten	dos	and	don’ts	for	secure	coding”,	Michael	Jordan,
https://searchsecurity.techtarget.com/tip/Ten-dos-and-donts-for-secure-coding

[MDS]	Deep	Dive:	Intel	Analysis	of	Microarchitectural	Data	Sampling	https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling

[Microsoft]	“Security	in	Software	Localization”,	Mohamed	Elgazzar,	https://docs.microsoft.com/en-
us/globalization/design/security-guidelines

[MicrosoftSDL]	“What	are	the	Microsoft	SDL	practices?”,	https://www.microsoft.com/en-
us/securityengineering/sdl/practices

ReferencesEDK	II	Secure	Coding	Guide

31Revision	02.0

http://www.securecoding.org/
http://www.securecoding.org/
http://www.securecoding.org/
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://searchsecurity.techtarget.com/tip/Ten-dos-and-donts-for-secure-coding
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://docs.microsoft.com/en-us/globalization/design/security-guidelines
https://www.microsoft.com/en-us/securityengineering/sdl/practices


[Msdn]	“Guidelines	for	Writing	Secure	Code”,	https://docs.microsoft.com/en-us/previous-
versions/visualstudio/visual-studio-2010/ms182020(v=vs.100)

[Michael]	“Defend	Your	Code	with	Top	Ten	Security	Tips	Every	Developer	Must	Know”,	Howard,	Michael
and	Brown,	Keith,	https://blogs.msdn.microsoft.com/laurasa/2012/07/25/defend-your-code-with-top-ten-
security-tips-every-developer-must-know/

[Mozilla]	“Secure	Development	Guidelines”,	https://developer.mozilla.org/en-
US/docs/Mozilla/Security/Secure_Development_Guidelines

[Linux]	“Secure	Programming	for	Linux	and	Unix	HOWTO,	Background,	Sources	of	Design	and
Implementation	Guidelines”,	http://www.linux-tutorial.info/modules.php?
name=Howto&pagename=Secure-Programs-HOWTO/sources-of-guidelines.html

[OWASP]	OWASP	Secure	Coding	Practices,
https://www.owasp.org/index.php/OWASPSecure_Coding_Practices-_Quick_Reference_Guide

[RedHat]	“Secure	Coding”,	https://developers.redhat.com/topics/secure-coding/

[SEI]	“SEI	CERT	C	Coding	Standard”,
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

[SideChannel]	Host	Firmware	Speculative	Execution	Side	Channel	Mitigation,
https://software.intel.com/security-software-guidance/insights/host-firmware-speculative-execution-side-
channel-mitigation

[SideChannel2]	Deep	Dive:	Analyzing	Potential	Bounds	Check	Bypass	Vulnerabilities,
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-
check-bypass-vulnerabilities

[SideChannel3]	Security	Best	Practices	for	Side	Channel	Resistance,	https://software.intel.com/security-
software-guidance/insights/security-best-practices-side-channel-resistance

[SideChannel4]	Guidelines	for	Mitigating	Timing	Side	Channels	Against	Cryptographic	Implementations,
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-
channels-against-cryptographic-implementations

[Wheeler]	“Secure	Programming	for	Linux	and	Unix	HOWTO	--	Creating	Secure	Software”,	David	Wheeler,
http://www.dwheeler.com/secure-programs/

[Witteman]	“Secure	Application	Programming	in	the	presence	of	Side	Channel	Attack”,	Marc	Witteman,
https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

Firmware	Specific
[CapsuleRecovery]	Yao,	Zimmer,	A	Tour	Beyond	BIOS-	Capsule	Update	and	Recovery	in	EDK	II,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf

[CET]	Control	Flow	Enforcement	Technology,
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-
preview.pdf

[CET	EDK	II]	CET	in	SMM	https://github.com/tianocore/tianocore.github.io/wiki/CET-in-SMM

[HSTI]	Hardware	Security	Testability	Specification	https://msdn.microsoft.com/en-
us/library/windows/hardware/mt712332.aspx

[IOMMU	EDKII]	Yao,	Zimmer,	A	Tour	Beyond	BIOS	Using	IOMMU	for	DMA	Protection,

ReferencesEDK	II	Secure	Coding	Guide

32Revision	02.0

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms182020(v=vs.100
https://blogs.msdn.microsoft.com/laurasa/2012/07/25/defend-your-code-with-top-ten-security-tips-every-developer-must-know/
https://developer.mozilla.org/en-US/docs/Mozilla/Security/Secure_Development_Guidelines
http://www.linux-tutorial.info/modules.php?name=Howto&pagename=Secure-Programs-HOWTO/sources-of-guidelines.html
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://developers.redhat.com/topics/secure-coding/
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://software.intel.com/security-software-guidance/insights/host-firmware-speculative-execution-side-channel-mitigation
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/security-best-practices-side-channel-resistance
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
http://www.dwheeler.com/secure-programs/
https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Capsule_Update_and_Recovery_in_EDK_II.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://github.com/tianocore/tianocore.github.io/wiki/CET-in-SMM
https://msdn.microsoft.com/en-us/library/windows/hardware/mt712332.aspx


https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.p
df

[MemoryMap]	Yao,	Zimmer,	A	Tour	Beyond	BIOS	Memory	Map	And	Practices	in	UEFI	BIOS,
https://github.com/tianocoredocs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And
_Practices_in_UEFI_BIOS_V2.pdf

[MemoryProtection]	Yao,	Zimmer,	A	Tour	Beyond	BIOS-	Memory	Protection	in	UEFI	BIOS,
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details

[MOR]	TCG	Platform	Reset	Attack	Mitigation	Specification,	https://www.trustedcomputinggroup.org/wp-
content/uploads/Platform-Reset-Attack-Mitigation-Specification.pdf

[Profile]	Yao,	Zimmer,	Zeng,	Fan,	A	Tour	Beyond	BIOS	Implementing	Profiling	in	UEFI,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_Profiling_in_EDK_II.pdf

[S3Resume]	Jiewen	Yao,	Vincent	Zimmer,	A	Tour	Beyond	BIOS	Implementing	S3	Resume	with	EDK	II,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII_V2.pdf

[SecurityEnhancement]	Yao,	Zimmer,	A	Tour	Beyond	BIOS	Securiy	Enhancement	to	Mitigate	Buffer
Overflow	in	UEFI,	https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-mitigate-buffer-overflow-in-
ue/details

[SecurityDesign]	Yao,	Zimmer,	A	Tour	Beyond	BIOS	Security	Design	Guide	in	EDK	II,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf

[SecureMOR]	Secure	MOR	implementation,	https://docs.microsoft.com/en-us/windows-
hardware/drivers/bringup/device-guard-requirements

[SmmComm]	Yao,	Zimmer,	Zeng,	A	tour	beyond	BIOS	secure	SMM	communciation,
https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf

[SMMProtection]	Yao,	SMM	Protection	in	EDKII.
http://www.uefi.org/sites/default/files/resources/Jiewen%20Yao%20-
%20SMM%20Protection%20in%20%20EDKII_Intel.pdf

[TCG	OPAL]	Storage	Work	Group	Storage	Security	Subsystem	Class:	Opal,	Version	2.01	Final,	Revision
1.00,	https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf

[TCG	SIIS]	TCG	Storage	Interface	Interactions	Specification,	Version	1.06,	Revision	1.08,
https://www.trustedcomputinggroup.org/wp-
content/uploads/TCG_SWG_SIIS_Version_1_06_Revision_1_08_public-review.pdf

[TPM2]	Trusted	Platform	Module	Library	Specification,	Family	“2.0”,	Level	00,	Revision	01.38	–	September
2016,	https://trustedcomputinggroup.org/tpm-library-specification/

[TPM2	PFP]	PC	Client	Specific	Platform	Firmware	Profile	Specification	Family	“2.0”,	Level	00	Revision	1.03
Version	51,	https://trustedcomputinggroup.org/wp-content/uploads/PC-
ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf

[TPM2	EDK	II]	Yao,	Zimmer,	A	Tour	Beyond	BIOS	with	the	UEFI	TPM2	Support	in	EDKII
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support
_in_EDKII.pdf

[WSMT]	Windows	SMM	Security	Table,	https://msdn.microsoft.com/en-
us/library/windows/hardware/dn495660(v=vs.85).aspx#wsmt.aspx)

ReferencesEDK	II	Secure	Coding	Guide

33Revision	02.0

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf
https://github.com/tianocoredocs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-memory-protection-in-uefi-bios/details
https://www.trustedcomputinggroup.org/wp-content/uploads/Platform-Reset-Attack-Mitigation-Specification.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_Profiling_in_EDK_II.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII_V2.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII_V2.pdf
https://www.gitbook.com/book/edk2-docs/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/details
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Security_Design_Guide_in_EDK_II.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-requirements
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Secure_SMM_Communication.pdf
http://www.uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_SWG_SIIS_Version_1_06_Revision_1_08_public-review.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_SWG_SIIS_Version_1_06_Revision_1_08_public-review.pdf
https://trustedcomputinggroup.org/tpm-library-specification/
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v51.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support_in_EDKII.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/dn495660(v=vs.85


http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx

[Variable]	Yao,	Zimmer,	Zeng,	A	Tour	Beyond	BIOS	Implementing	UEFI	Authenticated	Variables	in	SMM
with	EDKII	–	Verion	2,	https://github.com/tianocore-
docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_UEFI_Authenticated_Variables_in
_SMM_with_EDKII_V2.pdf

ReferencesEDK	II	Secure	Coding	Guide

34Revision	02.0

http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx
https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_UEFI_Authenticated_Variables_in_SMM_with_EDKII_V2.pdf

	EDK II Security Coding Guide
	Executive Summary
	Secure Coding Guidelines: General
	Secure Coding Guidelines: Boot Firmware
	Secure Coding Guidelines: Intel Platforms
	SMM
	Intel® Boot Guard
	Intel® Bios Guard

	Appendix - Threat Model for EDK II
	Asset: Flash Content
	Asset: Boot Flow
	Asset: S3 Resume
	Asset: Management Mode
	Asset: Build Tool

	References

