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EXECUTIVE	SUMMARY
This	document	introduces	how	to	implement	a	secure	boot	chain	in	UEFI	using	the	TianoCore	EDK	II
project.

Prerequisite

This	document	assumes	that	the	audience	has	basic	firmware	development	experience	with	UEFI	&	EDK
II,	along	with	basic	knowledge	of	UEFI	boot	flow	and	cryptography.
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OVERVIEW
System	firmware,	commonly	referred	to	as	Basic	Input	Output	System	(BIOS),	plays	an	important	role	in
platform	security.	Running	unauthorized	firmware	components	may	introduce	significant	threats	by
creating	a	permanent	denial	of	service	or	introducing	persistent	malware.	In	2011,	the	National	Institute
of	Standards	and	Technology	(NIST)	published	BIOS	Protection	Guidelines	(SP800-147).	NIST	extended
the	scope	to	all	platform	firmware	and	published	Platform	Firmware	Resiliency	Guidelines	(SP800-193)	in
2018.	The	goal	of	those	documents	is	to	provide	a	general	guideline	for	firmware	integrity.

Integrity	Models
The	UEFI	Secure	Boot	chain	can	be	applied	to	the	Clark-Wilson	integrity	policy,	developed	in	1987.	The
Clark	Wilson	model	includes	the	following	concepts:

1.	 Data	Item:

i.	 Constrained	Data	Item	(CDI)

ii.	 Unconstrained	Data	Item	(UDI)

2.	 Procedure:

i.	 Integrity	Verification	Procedure	(IVP)

ii.	 Transformation	Procedures	(TPs)

3.	 Rule:

i.	 Certification	Rule	(CR)	–	integrity	monitoring

i.	 C1:	(Basic:	IVP	Certification)	All	IVPs	must	properly	ensure	that	all	CDIs	are	in	a	valid	state.

ii.	 C2:	(Basic:	Validity)	All	TPs	must	be	certified	to	be	valid.	For	each	TP	and	each	set	of	CDI	that
it	may	manipulate,	the	security	officer	must	specify	a	“relation”	of	the	form:	(TP,	{CDI}).

iii.	 C3:	(Separation	of	Duty	Certification)	The	list	of	relation	in	E2	must	be	certified	to	meet	the
separation	of	duty	requirement.

iv.	 C4:	(Journal	Certification)	All	TPs	must	be	certified	to	write	to	an	append-only	CDI	(the	log)	all
information	necessary	to	permit	the	nature	of	the	operation	to	be	reconstructed.

v.	 C5:	(Transformation	Certification)	Any	TP	that	takes	a	UDI	as	an	input	value	must	be	certified
to	perform	only	valid	transformations,	or	no	transformations,	for	any	possible	value	of	the
UDI.	The	transformation	should	take	the	input	from	a	UDI	to	a	CDI,	or	the	UDI	is	rejected.

ii.	 Enforcement	Rule	(ER)	–	integrity	preserving

i.	 E1:	(Basic:	Enforcement	of	Validity)	The	system	must	maintain	the	list	of	relation	specified	in
C2,	and	must	ensure	that	only	TPs	certified	to	run	on	a	CDI	manipulate	that	CDI.

ii.	 E2:	(Enforcement	of	Separation	of	Duty)	The	system	must	associate	a	user	with	each	TP	and
set	of	CDIs	in	a	list	of	relations	of	the	form:	(User,	TP,	{CDI}).	It	must	ensure	that	only
executions	described	in	one	of	the	relations	are	performed.

iii.	 E3:	(User	Identity)	The	system	must	authenticate	the	identity	of	each	user	attempting	to
execute	a	TP.
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iv.	 E4:	(Initiation)	Only	the	agent	permitted	to	certify	entities	may	change	the	list	of	such
entities	associated	with	other	entities,	specifically	the	one	associated	with	a	TP.	An	agent
that	can	certify	an	entity	may	not	have	any	execute	rights	concerning	that	entity.

This	model	is	based	on	the	relationship	between	authenticated	principal,	program,	and	data	items.	The
elements	of	this	relationship	are	referred	to	as	the	“Clark-Wilson	Triple”	(User,	TP,	{CDI}).	The	Clark-
Wilson	model	shows	the	rules	required	to	meet	the	security	properties	of	integrity:	(from	Blake).

Table	1-1:	Clark-Wilson	model

Property Description Rule

Integrity An	assurance	that	CDIs	can	only	be	modified	in	constrained
ways	to	produce	valid	CDIs.

C1,	C2,	C5,
E1,	E4

Access
Control The	ability	to	control	access	to	resources. C3,	E2,	E3

Auditing The	ability	to	ascertain	the	changes	made	to	CDIs	and	ensure
that	the	system	is	in	a	valid	state. C1,	C4

Accountability The	ability	to	uniquely	associate	users	with	their	actions. E3.

Figure	1-1:	Clark-Wilson	model,	From	Lee
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Because	the	Clark-Wilson	focuses	on	duty	and	transaction,	it	is	more	applicable	to	business	and
industry	processes.	Currently,	some	papers	describe	how	to	apply	the	Clark-Wilson	integrity	model	to
the	existing	system,	such	as	Windows,	Java	or	Trusted	Computing	Group	(TCG)	security.

Introduction	to	the	Secure	Boot	Chain
According	to	NIST	SP800-147	and	SP800-193,	the	system	needs	to	maintain	integrity	and	availability
during	the	firmware	boot	process.	In	firmware,	secure	boot	(aka	verified	boot)	uses	a	set	of	policy
objects	to	verify	the	next	entity	before	execution.	For	example,	to	match	C5,	the	system	uses	the	TP
(verification	procedure)	to	verify	the	UDI	(untrusted	firmware	component),	transforms	the	UDI	into	a	CDI
(trusted	firmware	component),	and	executes	it.

In	contrast,	a	trusted	boot	(aka	measured	boot)	process	does	not	verify	the	next	entity.	It	only	records
the	digest	of	the	next	boot	entity	to	a	trusted	location,	such	as	a	Platform	Configuration	Register	(PCR)
in	the	Trusted	Platform	Module	(TPM).	This	allows	a	trusted	boot	chain	to	be	verified	later	in	the	boot
process.	Many	security	models	use	secure	boot	and	trusted	boot	capabilities	in	combination	for
maximum	effectiveness.

Table	1-2:	Clark-Wilson	model	in	Firmware

Property Description Rule Firmware	Secure	Boot

Integrity
An	assurance	that	CDIs	can	only	be
modified	in	constrained	ways	to
produce	valid	CDIs.

C1,
C2,
C5,
E1,
E4

Yes.	Firmware	needs	to	verify
the	next	component

Access
Control

The	ability	to	control	access	to
resources.

C3,
E2,
E3

No.	There	is	no	user	concept
in	secure	boot.

Auditing
The	ability	to	ascertain	the	changes
made	to	CDIs	and	ensure	that	the
system	is	in	a	valid	state.

C1,
C4

Yes,	if	TCG	trusted	boot	is
enabled.	TCG	event	log	may
record	such	information.

Accountability The	ability	to	uniquely	associate
users	with	their	actions. E3. No.	There	is	no	user	concept

in	secure	boot.

Patterns	in	the	Secure	Boot	Chain
Definition:

1.	 Firmware[N]	-	the	N	level	firmware	binary.	Any	firmware	layer	is	updatable.

Firmware[0]	means	the	component	verified	by	Hardware.

Firmware[N]	means	the	component	verified	by	Firmware[N-1].

It	may	include	both	code	(Firmware[N].Code)	and	data	(Firmware[N].Data).

2.	 Firmware[N].Code	-	the	code	of	the	N	level	firmware	binary.

It	may	include	the	verifier	(Firmware[N].Code.Verifier.)

3.	 Firmware[N].Data	-	the	data	of	the	N	level	firmware	binary.

It	may	include	the	verification	policy.	(Firmware[N].Data.Policy.)

4.	 Firmware[N].Code.Verifier	-	the	verification	function	of	the	N	level	firmware	binary.
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5.	 Firmware[N].Data.Policy	-	the	policy	data	inside	of	the	N	level	firmware	binary.	This	data	is	used	by
the	verification	function.	Both	verification	function	and	policy	data	have	below	subcategory:

i.	 Boot	-	the	firmware	boot

ii.	 FirmwareUpdate	-	the	firmware	update	(it	may	or	might	not	include	policy	data)

iii.	 PolicyUpdate	-	the	policy	update.	It	may	or	might	not	exist.

iv.	 Recovery	-	the	firmware	recovery

v.	 Communication	-	the	firmware	runtime	communication

6.	 Hardware	–	the	hardware,	including	Register	Transfer	Level	(RTL)	and	register.	The	hardware	is	not
updatable.	The	hardware	must	be	fused	when	it	is	shipped	to	the	end	user.

There	are	two	types	of	verification:

1.	 The	verifier	for	boot	(verified	boot).	The	read-only	code	and	read-only	data	are	in	this	category.	This
category	includes	both	initial	installation	and	upgrade.	For	example,	UEFI	Secure	Boot	is	for	code
installation,	or	signed	capsule	update	is	for	code/data	upgrade.	In	most	cases,	the	verification	is
based	upon	a	crypto-algorithm,	such	as	Secure	Hash	Algorithm	(SHA)	or	Rivest-Shamir-Adleman
Algorithm	(RSA).	The	policy	data	can	be	the	hash	value	of	the	firmware	or	the	public	key	hash	of	the
firmware.	Above	5.a,	5.b,	5.c,	5.d	belongs	to	this	type.

2.	 The	verifier	for	communication	(verified	communication).	The	read/write	data	are	in	this	category.
This	category	is	for	cross-boundary	data	passing	such	as	SMM	communication,	including	the	UEFI
non-volatile	variable.	In	most	cases,	the	verification	is	based	upon	the	boundary	check,	valid	range
check,	etc.	Above	5.e	belongs	to	this	type.

Patterns	for	Verified	Boot
Table	1-3:	Patterns	for	Verified	Boot

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.Boot
(Firmware[N].Data.Policy.Boot,
Firmware[N+1])

Firmware
Owner Same	as	Firmware[N]

CDI Firmware[N] Firmware
Owner

Originally	on	Flash,	loaded
into	RAM	by	Firmware[N-1]

UDI Firmware[N+1] Firmware
Owner

Originally	on	Flash,	loaded
into	RAM	by	Firmware[N]

NOTE:	If	N	==	0,	Firmware[-1]	means	the	hardware.

Patterns	for	Verified	Policy	Update
Table	1-4:	Patterns	for	Verified	Policy	Update

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.PolicyUpdate
(Firmware[N].Data.Policy.PolicyUpdate,
Firmware[N].Data.Policy:New)

Firmware
Owner

CDI Firmware[N].Code.Verifier.PolicyUpdate	+
Firmware[N].Data.Policy.PolicyUpdate

Firmware
Owner

In	an	isolated	execution
environment.	As	such	the	rest
of	Firmware[N]	cannot	tamper
with	it.

UDI Firmware[N].Data.Policy:New
Policy
Data

Memory,	loaded	into	an
isolated	environment,	by
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UDI Firmware[N].Data.Policy:New Data
Owner

Firmware[N].	Code.Verifier.
PolicyUpdate

Patterns	for	Verified	Firmware	Update

Table	1-5:	Patterns	for	Verified	Firmware	Update

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.FirmwareUpdate
(Firmware[N].Data.Policy.FirmwareUpdate,
Firmware[N]:New)

Firmware
Owner

CDI Firmware[N] Firmware
Owner

Flash	unlockable
environment,	loaded	by
Firmware[N-1]

UDI Firmware[N]:New Firmware
Owner

Flash	unlockable
environment,	loaded	by
original	Firmware[N]

Patterns	for	Verified	Recovery

Table	1-6:	Patterns	for	Verified	Recovery

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.Recovery
(Firmware[N].Data.Policy.Recovery,
Firmware[N+1]:Recovery)

Firmware
Owner

CDI Firmware[N] Firmware
Owner

Originally	on	flash,	loaded	into
RAM	by	Firmware[N-1]

UDI Firmware[N+1]:Recovery Firmware
Owner

Originally	on	recovery	storage
(Flash,	USB,	Hard	drive),	loaded
into	RAM	by	Firmware[N]

Patterns	for	Verified	Runtime	Communication
Table	1-7:	Patterns	for	Verified	Runtime	Communication

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.RuntimeCommunication
(Firmware[N].Data.Policy.RuntimeCommunication,
Data:New)

Firmware
Owner

CDI
Firmware[N].Code.Verifier.RuntimeCommunication
+
Firmware[N].Data.Policy.RuntimeCommunication

Firmware
Owner

In	an	isolated	execution
environment.	As	such
the	rest	of	Firmware[N]
cannot	tamper	it.

UDI Data:New Any

Memory,	loaded	into	an
isolated	environment,
by	Firmware[N].
Code.Verifier.
PolicyUpdate.	
This	can	be	any	Data,
as	long	as	the	format	is
known	by	the	producer
and	consumer.

Comparing	Clark-Wilson	and	UEFI	Secure	Boot
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The	following	table	illustrates	how	the	UEFI	Secure	Boot	Chain	maps	to	Clark-Wilson	certification	and
enforcement	rules.

Table	1-8:	Comparison	between	Clark-Wilson	and	Secure	Boot	Chain

Rule Clark-Wilson Secure	Boot	Chain

C1 The	system	will	have	an	IVP	for
validating	the	integrity	of	any	CDI.

Not	applied	today.	No	one	validates	the	CDI.	
The	integrity	may	be	verified	by	using	a	signature
check.
If	TCG	trusted	boot	is	enabled,	PCR	validation	can
also	be	done.

C2
The	application	of	a	TP	to	any	CDI
must	maintain	the	integrity	of
that	CDI

Not	applied.	No	User	in	UEFI.	
UEFI	does	not	provide	isolation.	Ideally,	the	TP
should	not	change	CDI	not	managed	by	TP.	But	the
reality	is	hard	to	enforce.	
SMM	might	be	OK.	?

C3
A	CDI	can	only	be	changed	by	a
certified	TP.	Separation	of	duties
/	least	privilege.

Not	applied.	No	User	in	UEFI.
Similar	to	C2.	Only	SMM	has	isolation.	
Data	in	SMM	can	only	be	changed	in	SMM.
But	SMM	only	used	for	UEFI	Secure	Boot
authenticated	variable	trust	anchors,	and	Intel®
BIOS	Guard	update.

C4 TP	actions	are	logged. TPM	Event	Log

C5 TP	actions	on	UDIs	result	in	valid
CDIs. YES.	Input	Verification	–	secure	boot	chain

E1 Only	certified	TPs	may	act	on
CDIs. The	verification	TP	is	inside	of	verified	firmware.

E2
Subjects	may	access	CDIs	only
through	TPs	for	which	they	are
authorized.

Not	applied.	No	User	in	UEFI.	
All	code	in	same	privilege,	except	SMM.

E3 Subjects	attempting	to	execute	a
TP	must	first	be	authenticated. SMM

E4 Only	administrators	can	specify
TP	authorizations. NO.	CPU	–	hardware	owner.
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Integrity	Models
The	UEFI	Secure	Boot	chain	can	be	applied	to	the	Clark-Wilson	integrity	policy,	developed	in	1987.	The
Clark	Wilson	model	includes	the	following	concepts:

1.	 Data	Item:

i.	 Constrained	Data	Item	(CDI)
ii.	 Unconstrained	Data	Item	(UDI)

2.	 Procedure:

i.	 Integrity	Verification	Procedure	(IVP)
ii.	 Transformation	Procedures	(TPs)

3.	 Rule:

i.	 Certification	Rule	(CR)	–	integrity	monitoring

i.	 C1:	(Basic:	IVP	Certification)	All	IVPs	must	properly	ensure	that	all	CDIs	are	in	a	valid	state.

ii.	 C2:	(Basic:	Validity)	All	TPs	must	be	certified	to	be	valid.	For	each	TP	and	each	set	of	CDI	that
it	may	manipulate,	the	security	officer	must	specify	a	“relation”	of	the	form:	(TP,	{CDI}).

iii.	 C3:	(Separation	of	Duty	Certification)	The	list	of	relation	in	E2	must	be	certified	to	meet	the
separation	of	duty	requirement.

iv.	 C4:	(Journal	Certification)	All	TPs	must	be	certified	to	write	to	an	append-only	CDI	(the	log)	all
information	necessary	to	permit	the	nature	of	the	operation	to	be	reconstructed.

v.	 C5:	(Transformation	Certification)	Any	TP	that	takes	a	UDI	as	an	input	value	must	be	certified
to	perform	only	valid	transformations,	or	no	transformations,	for	any	possible	value	of	the
UDI.	The	transformation	should	take	the	input	from	a	UDI	to	a	CDI,	or	the	UDI	is	rejected.

ii.	 Enforcement	Rule	(ER)	–	integrity	preserving

i.	 E1:	(Basic:	Enforcement	of	Validity)	The	system	must	maintain	the	list	of	relation	specified	in
C2,	and	must	ensure	that	only	TPs	certified	to	run	on	a	CDI	manipulate	that	CDI.

ii.	 E2:	(Enforcement	of	Separation	of	Duty)	The	system	must	associate	a	user	with	each	TP	and
set	of	CDIs	in	a	list	of	relations	of	the	form:	(User,	TP,	{CDI}).	It	must	ensure	that	only
executions	described	in	one	of	the	relations	are	performed.

iii.	 E3:	(User	Identity)	The	system	must	authenticate	the	identity	of	each	user	attempting	to
execute	a	TP.

iv.	 E4:	(Initiation)	Only	the	agent	permitted	to	certify	entities	may	change	the	list	of	such
entities	associated	with	other	entities,	specifically	the	one	associated	with	a	TP.	An	agent
that	can	certify	an	entity	may	not	have	any	execute	rights	concerning	that	entity.

This	model	is	based	on	the	relationship	between	authenticated	principal,	program,	and	data	items.	The
elements	of	this	relationship	are	referred	to	as	the	“Clark-Wilson	Triple”	(User,	TP,	{CDI}).	The	Clark-
Wilson	model	shows	the	rules	required	to	meet	the	security	properties	of	integrity:	(from	Blake).

Table	1-1:	Clark-Wilson	model

Property Description Rule

Integrity An	assurance	that	CDIs	can	only	be	modified	in	constrained
ways	to	produce	valid	CDIs.

C1,	C2,	C5,
E1,	E4

Access
Control The	ability	to	control	access	to	resources. C3,	E2,	E3
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Auditing The	ability	to	ascertain	the	changes	made	to	CDIs	and	ensure
that	the	system	is	in	a	valid	state. C1,	C4

Accountability The	ability	to	uniquely	associate	users	with	their	actions. E3.

Figure	1-1:	Clark-Wilson	model,	From	Lee

Because	the	Clark-Wilson	focuses	on	duty	and	transaction,	it	is	more	applicable	to	business	and
industry	processes.	Currently,	some	papers	describe	how	to	apply	the	Clark-Wilson	integrity	model	to
the	existing	system,	such	as	Windows,	Java	or	Trusted	Computing	Group	(TCG)	security.
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Introduction	to	the	Secure	Boot	Chain
According	to	NIST	SP800-147	and	SP800-193,	the	system	needs	to	maintain	integrity	and	availability
during	the	firmware	boot	process.	In	firmware,	secure	boot	(aka	verified	boot)	uses	a	set	of	policy
objects	to	verify	the	next	entity	before	execution.	For	example,	to	match	C5,	the	system	uses	the	TP
(verification	procedure)	to	verify	the	UDI	(untrusted	firmware	component),	transforms	the	UDI	into	a	CDI
(trusted	firmware	component),	and	executes	it.

In	contrast,	a	trusted	boot	(aka	measured	boot)	process	does	not	verify	the	next	entity.	It	only	records
the	digest	of	the	next	boot	entity	to	a	trusted	location,	such	as	a	Platform	Configuration	Register	(PCR)
in	the	Trusted	Platform	Module	(TPM).	This	allows	a	trusted	boot	chain	to	be	verified	later	in	the	boot
process.	Many	security	models	use	secure	boot	and	trusted	boot	capabilities	in	combination	for
maximum	effectiveness.

Table	1-2:	Clark-Wilson	model	in	Firmware

Property Description Rule Firmware
Secure	Boot

Integrity
An	assurance	that	CDIs
can	only	be	modified	in
constrained	ways	to
produce	valid	CDIs.

C1,
C2,
C5,
E1,
E4

Yes.	Firmware
needs	to	verify
the	next
component

Access
Control

The	ability	to	control
access	to	resources.

C3,
E2,
E3

No.	There	is	no
user	concept	in
secure	boot.

Auditing

The	ability	to	ascertain
the	changes	made	to
CDIs	and	ensure	that
the	system	is	in	a	valid
state.

C1,
C4

Yes,	if	TCG	trusted
boot	is	enabled.
TCG	event	log
may	record	such
information.

Accountability
The	ability	to	uniquely
associate	users	with
their	actions.

E3.
No.	There	is	no
user	concept	in
secure	boot.
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According	to	NIST	SP800-147	and	SP800-193,	the	system	needs	to	maintain	integrity	and	availability
during	the	firmware	boot	process.	In	firmware,	secure	boot	(aka	verified	boot)	uses	a	set	of	policy
objects	to	verify	the	next	entity	before	execution.	For	example,	to	match	C5,	the	system	uses	the	TP
(verification	procedure)	to	verify	the	UDI	(untrusted	firmware	component),	transforms	the	UDI	into	a	CDI
(trusted	firmware	component),	and	executes	it.

In	contrast,	a	trusted	boot	(aka	measured	boot)	process	does	not	verify	the	next	entity.	It	only	records
the	digest	of	the	next	boot	entity	to	a	trusted	location,	such	as	a	Platform	Configuration	Register	(PCR)
in	the	Trusted	Platform	Module	(TPM).	This	allows	a	trusted	boot	chain	to	be	verified	later	in	the	boot
process.	Many	security	models	use	secure	boot	and	trusted	boot	capabilities	in	combination	for
maximum	effectiveness.
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Property Description Rule Firmware
Secure	Boot

Integrity

An	assurance	that	CDIs
can	only	be	modified	in

C1,
C2,
C5,

Yes.	Firmware
needs	to	verify
the	next
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produce	valid	CDIs. E1,
E4

component

Access
Control

The	ability	to	control
access	to	resources.

C3,
E2,
E3

No.	There	is	no
user	concept	in
secure	boot.

Auditing

The	ability	to	ascertain
the	changes	made	to
CDIs	and	ensure	that
the	system	is	in	a	valid
state.

C1,
C4

Yes,	if	TCG	trusted
boot	is	enabled.
TCG	event	log
may	record	such
information.

Accountability
The	ability	to	uniquely
associate	users	with
their	actions.

E3.
No.	There	is	no
user	concept	in
secure	boot.
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According	to	NIST	SP800-147	and	SP800-193,	the	system	needs	to	maintain	integrity	and	availability
during	the	firmware	boot	process.	In	firmware,	secure	boot	(aka	verified	boot)	uses	a	set	of	policy
objects	to	verify	the	next	entity	before	execution.	For	example,	to	match	C5,	the	system	uses	the	TP
(verification	procedure)	to	verify	the	UDI	(untrusted	firmware	component),	transforms	the	UDI	into	a	CDI
(trusted	firmware	component),	and	executes	it.

In	contrast,	a	trusted	boot	(aka	measured	boot)	process	does	not	verify	the	next	entity.	It	only	records
the	digest	of	the	next	boot	entity	to	a	trusted	location,	such	as	a	Platform	Configuration	Register	(PCR)
in	the	Trusted	Platform	Module	(TPM).	This	allows	a	trusted	boot	chain	to	be	verified	later	in	the	boot
process.	Many	security	models	use	secure	boot	and	trusted	boot	capabilities	in	combination	for
maximum	effectiveness.

Table	1-2:	Clark-Wilson	model	in	Firmware

Property Description Rule Firmware	Secure	Boot

Integrity
An	assurance	that	CDIs	can	only	be
modified	in	constrained	ways	to
produce	valid	CDIs.

C1,
C2,
C5,
E1,
E4

Yes.	Firmware	needs	to	verify
the	next	component

Access
Control

The	ability	to	control	access	to
resources.

C3,
E2,
E3

No.	There	is	no	user	concept
in	secure	boot.

Auditing
The	ability	to	ascertain	the	changes
made	to	CDIs	and	ensure	that	the
system	is	in	a	valid	state.

C1,
C4

Yes,	if	TCG	trusted	boot	is
enabled.	TCG	event	log	may
record	such	information.

Accountability The	ability	to	uniquely	associate
users	with	their	actions. E3. No.	There	is	no	user	concept

in	secure	boot.
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Patterns	in	the	Secure	Boot	Chain
Definition:

1.	 Firmware[N]	-	the	N	level	firmware	binary.	Any	firmware	layer	is	updatable.

Firmware[0]	means	the	component	verified	by	Hardware.

Firmware[N]	means	the	component	verified	by	Firmware[N-1].

It	may	include	both	code	(Firmware[N].Code)	and	data	(Firmware[N].Data).

2.	 Firmware[N].Code	-	the	code	of	the	N	level	firmware	binary.

It	may	include	the	verifier	(Firmware[N].Code.Verifier.)

3.	 Firmware[N].Data	-	the	data	of	the	N	level	firmware	binary.

It	may	include	the	verification	policy.	(Firmware[N].Data.Policy.)

4.	 Firmware[N].Code.Verifier	-	the	verification	function	of	the	N	level	firmware	binary.

5.	 Firmware[N].Data.Policy	-	the	policy	data	inside	of	the	N	level	firmware	binary.	This	data	is	used	by
the	verification	function.	Both	verification	function	and	policy	data	have	below	subcategory:

i.	 Boot	-	the	firmware	boot

ii.	 FirmwareUpdate	-	the	firmware	update	(it	may	or	might	not	include	policy	data)

iii.	 PolicyUpdate	-	the	policy	update.	It	may	or	might	not	exist.

iv.	 Recovery	-	the	firmware	recovery

v.	 Communication	-	the	firmware	runtime	communication

6.	 Hardware	–	the	hardware,	including	Register	Transfer	Level	(RTL)	and	register.	The	hardware	is	not
updatable.	The	hardware	must	be	fused	when	it	is	shipped	to	the	end	user.

There	are	two	types	of	verification:

1.	 The	verifier	for	boot	(verified	boot).	The	read-only	code	and	read-only	data	are	in	this	category.	This
category	includes	both	initial	installation	and	upgrade.	For	example,	UEFI	Secure	Boot	is	for	code
installation,	or	signed	capsule	update	is	for	code/data	upgrade.	In	most	cases,	the	verification	is
based	upon	a	crypto-algorithm,	such	as	Secure	Hash	Algorithm	(SHA)	or	Rivest-Shamir-Adleman
Algorithm	(RSA).	The	policy	data	can	be	the	hash	value	of	the	firmware	or	the	public	key	hash	of	the
firmware.	Above	5.a,	5.b,	5.c,	5.d	belongs	to	this	type.

2.	 The	verifier	for	communication	(verified	communication).	The	read/write	data	are	in	this	category.
This	category	is	for	cross-boundary	data	passing	such	as	SMM	communication,	including	the	UEFI
non-volatile	variable.	In	most	cases,	the	verification	is	based	upon	the	boundary	check,	valid	range
check,	etc.	Above	5.e	belongs	to	this	type.

Patterns	for	Verified	Boot
Table	1-3:	Patterns	for	Verified	Boot

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.Boot
(Firmware[N].Data.Policy.Boot,
Firmware[N+1])

Firmware
Owner Same	as	Firmware[N]

CDI Firmware[N] Firmware Originally	on	Flash,	loaded
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CDI Firmware[N] Owner into	RAM	by	Firmware[N-1]

UDI Firmware[N+1] Firmware
Owner

Originally	on	Flash,	loaded
into	RAM	by	Firmware[N]

NOTE:	If	N	==	0,	Firmware[-1]	means	the	hardware.

Patterns	for	Verified	Policy	Update
Table	1-4:	Patterns	for	Verified	Policy	Update

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.PolicyUpdate
(Firmware[N].Data.Policy.PolicyUpdate,
Firmware[N].Data.Policy:New)

Firmware
Owner

CDI Firmware[N].Code.Verifier.PolicyUpdate	+
Firmware[N].Data.Policy.PolicyUpdate

Firmware
Owner

In	an	isolated	execution
environment.	As	such	the	rest
of	Firmware[N]	cannot	tamper
with	it.

UDI Firmware[N].Data.Policy:New
Policy
Data
Owner

Memory,	loaded	into	an
isolated	environment,	by
Firmware[N].	Code.Verifier.
PolicyUpdate

Patterns	for	Verified	Firmware	Update
Table	1-5:	Patterns	for	Verified	Firmware	Update

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.FirmwareUpdate
(Firmware[N].Data.Policy.FirmwareUpdate,
Firmware[N]:New)

Firmware
Owner

CDI Firmware[N] Firmware
Owner

Flash	unlockable
environment,	loaded	by
Firmware[N-1]

UDI Firmware[N]:New Firmware
Owner

Flash	unlockable
environment,	loaded	by
original	Firmware[N]

Patterns	for	Verified	Recovery
Table	1-6:	Patterns	for	Verified	Recovery

Item Entity Provider Location

TP
Firmware[N].Code.Verifier.Recovery
(Firmware[N].Data.Policy.Recovery,
Firmware[N+1]:Recovery)

Firmware
Owner

CDI Firmware[N] Firmware
Owner

Originally	on	flash,	loaded	into
RAM	by	Firmware[N-1]

UDI Firmware[N+1]:Recovery Firmware
Owner

Originally	on	recovery	storage
(Flash,	USB,	Hard	drive),	loaded
into	RAM	by	Firmware[N]

Patterns	for	Verified	Runtime	Communication
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Item Entity Provider Location

TP
Firmware[N].Code.Verifier.RuntimeCommunication
(Firmware[N].Data.Policy.RuntimeCommunication,
Data:New)

Firmware
Owner

CDI
Firmware[N].Code.Verifier.RuntimeCommunication
+
Firmware[N].Data.Policy.RuntimeCommunication

Firmware
Owner

In	an	isolated	execution
environment.	As	such
the	rest	of	Firmware[N]
cannot	tamper	it.

UDI Data:New Any

Memory,	loaded	into	an
isolated	environment,
by	Firmware[N].
Code.Verifier.
PolicyUpdate.	
This	can	be	any	Data,
as	long	as	the	format	is
known	by	the	producer
and	consumer.
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Comparing	Clark-Wilson	and	UEFI	Secure	Boot
The	following	table	illustrates	how	the	UEFI	Secure	Boot	Chain	maps	to	Clark-Wilson	certification	and
enforcement	rules.

Table	1-8:	Comparison	between	Clark-Wilson	and	Secure	Boot	Chain

Rule Clark-Wilson Secure	Boot	Chain

C1 The	system	will	have	an	IVP	for
validating	the	integrity	of	any	CDI.

Not	applied	today.	No	one	validates	the	CDI.	
The	integrity	may	be	verified	by	using	a	signature
check.
If	TCG	trusted	boot	is	enabled,	PCR	validation	can
also	be	done.

C2
The	application	of	a	TP	to	any	CDI
must	maintain	the	integrity	of
that	CDI

Not	applied.	No	User	in	UEFI.	
UEFI	does	not	provide	isolation.	Ideally,	the	TP
should	not	change	CDI	not	managed	by	TP.	But	the
reality	is	hard	to	enforce.	
SMM	might	be	OK.	?

C3
A	CDI	can	only	be	changed	by	a
certified	TP.	Separation	of	duties
/	least	privilege.

Not	applied.	No	User	in	UEFI.
Similar	to	C2.	Only	SMM	has	isolation.	
Data	in	SMM	can	only	be	changed	in	SMM.
But	SMM	only	used	for	UEFI	Secure	Boot
authenticated	variable	trust	anchors,	and	Intel®
BIOS	Guard	update.

C4 TP	actions	are	logged. TPM	Event	Log

C5 TP	actions	on	UDIs	result	in	valid
CDIs. YES.	Input	Verification	–	secure	boot	chain

E1 Only	certified	TPs	may	act	on
CDIs. The	verification	TP	is	inside	of	verified	firmware.

E2
Subjects	may	access	CDIs	only
through	TPs	for	which	they	are
authorized.

Not	applied.	No	User	in	UEFI.	
All	code	in	same	privilege,	except	SMM.

E3 Subjects	attempting	to	execute	a
TP	must	first	be	authenticated. SMM

E4 Only	administrators	can	specify
TP	authorizations. NO.	CPU	–	hardware	owner.
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SECURE	BOOT	CHAIN	IN	UEFI
This	section	describes	the	overview	of	the	UEFI	Secure	Boot	chain	including	the	following:

UEFI	Secure	Boot
Intel®	Boot	Guard
Boot	Chain	–	Putting	it	all	together
Signed	Capsule	Update

Intel®	BIOS	Guard
Signed	Recovery
S3	Resume
SMM	Runtime	Communication
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UEFI	Secure	Boot
UEFI	Secure	Boot	is	a	feature	defined	in	the	UEFI	Specification.	It	guarantees	that	only	valid	3 	party
firmware	code	can	run	in	the	Original	Equipment	Manufacturer	(OEM)	firmware	environment.	UEFI	Secure
Boot	assumes	the	system	firmware	is	a	trusted	entity.	Any	3 	party	firmware	code	is	not	trusted,
including	the	bootloader	installed	by	the	Operating	System	Vendor	(OSV)	and	peripherals	provided	by	an
Independent	Hardware	Vendor	(IHV).	The	end	user	may	choose	to	enroll	and	revoke	entries	in	the	UEFI
Secure	Boot	image	security	database	as	part	of	managing	verification	policy.

UEFI	Secure	Boot	includes	two	parts	-	verification	of	the	boot	image	and	verification	of	updates	to	the
image	security	database.	Figure	2-1	shows	the	UEFI	Secure	Boot	verification	flow.	Table	2-1	shows	the
key/image	security	database	used	in	UEFI	Secure	Boot.

Figure	2-1:	UEFI	Secure	Boot

Table	2-1:	Key	Usage	in	UEFI	Secure	Boot

Key Verifies Update	is	verified	by NOTES

PK

New	PK	
New	KEK	
New	db/dbx/dbt/dbr	
New	OsRecoveryOrder	
New	OsRecovery####

PK Platform	Key

KEK
New	db/dbx/dbt/dbr	
New	OsRecoveryOrder	
New	OsRecovery####

PK Key	Exchange	Key

db UEFI	Image PK/KEK Authorized	Image	Database

rd

rd
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dbx UEFI	Image PK/KEK Forbidden	Image	Database

dbt UEFI	Image	+	dbx PK/KEK Timestamp	Database

dbr New	OsRecoveryOrder	
New	OsRecovery#### PK/KEK Recovery	Database

UEFI	Secure	Boot	Image	Verification
Table	2-2:	UEFI	Secure	Boot	Image	Verification

Item Entity Provider Location

TP UEFI	Secure	Boot	Image
Verification OEM Originally	on	flash,	loaded	into	DRAM

CDI Manufacture	Firmware	Code OEM Originally	on	flash,	loaded	into	DRAM

UEFI	Secure	Boot	Image
Security	Database	(Policy)

End	user	(or
OEM	default)

Originally	on	flash,	authenticated
variable	region,	loaded	into	DRAM

UDI 3 	party	Firmware	Code,
(OS	boot	loader) OSV Originally	on	external	storage	(e.g.	Hard

drive,	USB),	loaded	into	DRAM

3 	party	Firmware	Code,
(PCI	Option	ROM) IHV Originally	on	PCI	card,	loaded	into	DRAM

3 	party	Firmware	Code,
(UEFI	Shell	Tool) Any External	Storage	(e.g.	hard	drive,	USB),

loaded	into	DRAM

Table	2-2	shows	the	component	involved	in	the	UEFI	Secure	Boot	Image	Verification.

Signing
In	UEFI	Secure	Boot,	the	UDI	is	any	3 	part	firmware	code,	including	the	OS	boot	loader,	PCI	option
ROMs,	or	a	UEFI	shell	tool.	The	component	provider	needs	to	sign	these	components	with	a	private	key
and	publish	the	public	key.

Public	Key	Storage
The	OEM	or	end	user	may	enroll	the	public	key	as	a	CDI	(UEFI	Secure	Boot	Image	Security	Database).
The	database	is	in	a	UEFI	Authenticated	Variable	region.	The	database	can	also	be

updated	during	runtime.	It	can	be	read	by	anyone	but	only	be	written	after	data	authentication.	See
Table	2	below.

Verification
During	boot,	the	TP	(Image	Verification	Procedure)	verifies	the	UDI	(3 	party	firmware	code),	according
to	the	CDI	(UEFI	Secure	Boot	Image	Security	Database)	as	policy.	If	the	verification	passes,	the	UDI	is
transformed	into	a	CDI	and	the	3 	party	firmware	code	is	executed.	If	the	verification	fails,	the	3 	party
firmware	code	is	discarded.

Figure	2-2	shows	a	verification	flow	using	db/dbx.

rd

rd

rd

rd

rd

rd rd
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Figure	2-2:	Image	Verification	flow

Figure	2-3	shows	a	verification	flow	introducing	dbt.	An	additional	check	is	required	based	dbx
signature.
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Figure	2-3:	Image	Verification	with	timestamp	signature	database

UEFI	Authenticated	Variable	Verification	(Policy	Update)
Table	2-3:	UEFI	Authenticated	Variable	Verification

Item Entity Provider Location

TP UEFI	Authenticated	Variable
Verification OEM Originally	on	flash,	loaded	into

SMRAM

CDI Manufacture	Firmware	Code	in
SMM. OEM Originally	on	flash,	loaded	into

SMRAM

UEFI	Secure	Boot	Image	Security
Database	(Policy)

End	user	(or
OEM	default)

Originally	on	flash,	loaded	into
SMRAM

UDI New	UEFI	Secure	Boot	Image
Security	Database End	user Originally	in	normal	DRAM,

loaded	into	SMRAM

In	Table	2-2,	the	CDI	(UEFI	Secure	Boot	Image	Security	Database)	is	updatable.	The	database	itself	is	in
the	UEFI	Authenticated	Variable	region.	Table	2-3	shows	the	component	involved	in	the	UEFI
Authenticated	Variable	Verification.

Signing
To	update	the	existing	Image	Security	Database	(CDI),	the	new	Image	Security	Database	(UDI)	needs	to
be	signed	if	UEFI	Secure	Boot	is	enabled.

Public	Key	Storage
The	signer’s	public	key	must	be	enrolled	in	system	firmware.	It	is	the	same	as	the	public	key	used	for
UEFI	Secure	Boot	Image	Verification.	The	database	is	stored	in	a	UEFI	Authenticated	Variable	region.

Verification
During	runtime	update,	the	TP	(Authenticated	Variable	Verification	Procedure)	verifies	the	UDI	(new
Image	Security	Database),	according	to	the	CDI	(UEFI	Secure	Boot	Image	Security	Database)	as	policy.	If
verification	passes,	then	the	UDI	is	transformed	into	a	CDI,	and	the	new	Image	Security	Database	takes
effect	on	the	next	boot.	If	verification	fails,	the	new	Image	Security	Data	is	discarded.

For	details	on	the	authenticated	variable	flow,	please	refer	to	the	“Implementing

UEFI	Authenticated	Variables	in	SMM	with	EDK	II”	whitepaper.
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Intel®	Boot	Guard
UEFI	Secure	Boot	assumes	the	OEM	platform	firmware	is	a	Trusted	Computing	Base	(TCB)	and	trusts	it
implicitly.	A	better	implementation	relies	on	a	smaller	TCB	to	verify	the	OEM	platform	firmware.	A	solution
can	be	implemented	using	Intel®	Boot	Guard.	This	feature	verifies	the	entire	OEM	platform	firmware
image	using	two	components:

Authenticated	Code	Module	(ACM)	Initial	Boot	Block	(IBB)	Verification

Microcode	ACM	Verification.

Figure	2-4	shows	the	components	involved	in	Intel®	Boot	Guard.	Table	2-4	shows	the	key	usage	in
Intel®	Boot	Guard.

Figure	2-4:	Intel®	Boot	Guard	diagram	(credit:	“CYBER-RESILIENCY	IN	CHIPSET	AND	BIOS”	by
Dell	EMC)

Table	2-4:	Key	Usage	in	Intel®	Boot	Guard

Key Verifies Storage Verified	By

ACM	Key ACM CPU Microcode

Key	Hash Key	Manifest PCH ACM

BP	Key Boot	Policy	Manifest Key	Manifest	(Flash) ACM

IBB	Hash IBB Boot	Policy	Manifest	(Flash) ACM

Please	note	that	Intel	Boot	Guard	is	not	the	only	solution	available	for	OEM	platform	firmware
verification.	This	document	uses	it	as	an	example	to	illustrate	the	concept.

Table	2-5	shows	how	to	reduce	TCB	from	OEM	platform	firmware	to	ACM.

ACM	IBB	Verification
Table	2-5:	ACM	IBB	Verification

Item Entity Provider Location
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TP ACM	IBB	Verification Intel Originally	on	flash,	loaded	into	Authenticated
Code	RAM	(AC-RAM)

CDI ACM	Code Intel Originally	on	flash,	loaded	into	AC-RAM

Boot	Policy	Manifest
(Policy) OEM Originally	on	flash,	loaded	into	cache

Key	Manifest	(Policy) OEM Originally	on	flash,	loaded	into	cache

Key	Hash	(Policy) OEM Write	once	PCH	register,	programmed	in
manufacture	fuse.

UDI Firmware	Initial	Boot
Block,	aka	IBB OEM Originally	on	flash,	loaded	into	cache

Intel	introduced	the	Intel®	Boot	Guard	Authenticated	Code	Module	(ACM),	which	is	a	module	signed	by
Intel.	The	ACMs	modules	assume	responsibility	to	verify	OEM	platform	firmware	before	the	host	CPU
transfers	control	to	OEM	firmware.	Because	verifying	the	entire	image	is	time-consuming,	the	ACM	only
verifies	the	initial	boot	block	(IBB)	code.	The	IBB	is	then	responsible	for	verifying	the	OEM	boot	block
(OBB).

Signing
The	UDI	here	is	the	firmware	IBB,	so	only	the	IBB	needs	to	be	signed.

Public	Key	Storage
Intel®	Boot	Guard	defines	a	set	of	Manifests	to	record	the	signature	information.

1.	 Boot	Policy	Manifest	–	It	records	the	hash	of	IBB	and	is	signed	by	the	Key	Manifest	Key.

2.	 Key	Manifest	–	It	records	a	set	of	hashes	for	the	public	key	pair	which	signs	the	Boot	Policy	Manifest,
and	it	is	signed	Boot	Guard	Key.

3.	 Key	Hash	-	It	records	the	hash	for	the	public	key	pair	which	signs	the	Key	Manifest.	It	is	provisioned
into	the	PCH	hardware.

The	Key	Hash	is	read-only.	It	cannot	be	updated.

The	Boot	Policy	Manifest	and	Key	Manifest	can	be	updated	in	the	firmware.

Verification
During	runtime	update,	the	TP	–	ACM	IBB	Verification	gets	the	CDI	-	Key	Hash	from	PCH	-	and	verify	the
first	UDI	–	the	Key	Manifest.	If	the	verification	passes,	the	Key	Manifest	is	transformed	into	a	CDI.	Then
ACM	continues	to	get	the	key	hash	from	the	CDI	-	Key	Manifest	-	and	verify	the	UDI	-	Boot	Policy	Manifest.
If	the	verification	passes,	the	Boot	Policy	Manifest	is	transformed	into	a	CDI.	Then	the	ACM	gets	the	final
UDI	–	Firmware	IBB	code	-	and	verify	it	according	to	the	CDI	–	Boot	Policy	Manifest.	If	the	final	verification
passes,	then	the	Firmware	IBB	is	transformed	into	a	CDI,	and	the	ACM	transfers	control	to	the	IBB.

Microcode	ACM	Verification
The	ACM	binary	is	signed	by	Intel.	Now	the	question	becomes	who	verifies	the	ACM	binary.	The	answer	is
the	CPU	Microcode.

Table	2-6:	Microcode	ACM	Verification

Item Entity Provider Location

TP Microcode	ACM	Verification Intel CPU
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CDI Microcode Intel CPU

ACM	Key	hash Intel CPU

UDI ACM	Code Intel Originally	on	flash,	loaded	into	AC-RAM

Signing
The	UDI	is	the	ACM	binary.	As	such,	the	ACM	needs	to	be	signed	with	the	Intel	key.

Public	Key	Storage
The	hash	of	the	ACM	public	key	is	inside	of	the	CPU.	A	debug	ACM	is	signed	with	the	debug	key.	A
production	ACM	is	signed	with	the	production	key.

The	policy	can	NOT	be	updated.

Verification
During	the	ACM	launch,	the	CPU	Microcode	loads	the	UDI	-	ACM	to	authenticated	code	execution	area.
Then	the	TP	–	ACM	verification	performs	the	verification.	If	the	verification	passes,	then	the	UDI	is
transformed	to	CDI,	the	ACM	starts	executing.	If	the	verification	fails,	the	TXT	shutdown	is	signaled.

The	Intel®	Boot	Guard	is	one	implementation	to	support	boot	ROM	verification.	Some	other	projects	may
have	similar	functions,	such	as	Cerberus.

OBB	Verification
Intel®	Boot	Guard	only	verifies	the	initial	boot	block	(IBB)	of	the	whole	OEM	Firmware.	To	make	sure	the
whole	OEM	Firmware	is	unmodified,	the	IBB	needs	to	verify	the	reset	OEM	boot	block	(OBB).

Table	2-7:	OBB	Verification

Item Entity Provider Location

TP OBB	Verification OEM Originally	on	flash,	loaded	into
DRAM

CDI Firmware	Initial	Boot	Block,	aka	IBB OEM Originally	on	flash,	loaded	into
DRAM

OBB	Hash,	OBB	public	key	hash
(Policy) OEM Originally	on	flash,	loaded	into

DRAM

UDI Firmware	OEM	Boot	Block,	aka	OBB OEM Originally	on	flash,	loaded	into
DRAM

Signing
The	UDI	is	OBB,	which	is	not	verified	by	IBB.	Since	both	IBB	and	OBB	are	provided	by	OEM,	the	OEM	may
define	a	separate	specific	format	to	sign	the	OBB.

Public	Key	Storage
The	OBB	public	key	hash	must	be	stored	into	the	IBB	region	to	make	sure	it	is	validated	by	ACM.	As
implementation	choice,	OEM	may	store	the	OBB	hash	directly	to	the	IBB	without	using	the	public	key.

Verification
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During	Firmware	boot,	the	TP	is	the	OBB	verification	code	inside	of	IBB.	If	the	OBB	passes	the	verification,
the	OBB	is	installed	by	IBB.	If	the	OBB	fails	the	verification,	the	OBB	is	skipped.
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Boot	Chain	–	Putting	it	all	together
Figure	2-5	shows	a	complete	secure	boot	chain	constructed	using	Intel®	Boot	Guard,	OBB	Verification,
and	UEFI	Secure	Boot.

Figure	2-5:	Secure	Boot	Verification	Flow
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Signed	Capsule	Update
Platform	firmware	often	requires	an	update.	NIST	provides	multiple	guidelines	for	authenticated	updates
(SP800-147,	SP800-147B,	SP800-193).	EDK	II	implements	authenticated	updates	based	on	Signed	UEFI
Capsule	Updates	and	Capsule	Recovery.	Table	2-8	describes	firmware	update	verification.

Table	2-8:	Firmware	Update	Verification

Item Entity Provider Location

TP Firmware	Update
Verification OEM

Originally	on	flash,	loaded	into	flash	unlockable
environment.	(It	could	be	DRAM	before	the	flash	is
locked,	or	SMRAM.)

CDI Firmware	Update
TCB	Code OEM Originally	on	flash,	loaded	into	flash	unlockable

environment.

Firmware	Update
Signature	Database
(Policy)

OEM Originally	on	flash,	loaded	into	flash	unlockable
environment.

UDI Firmware	Update
Package OEM

Originally	on	external	storage	(e.g.	Hard	drive,	USB,
Memory,	or	Read-Write	Flash),	loaded	into	flash
unlockable	environment.

Signing
The	UDI	is	the	whole	new	firmware	image.	As	such,	the	whole	firmware	binary	needs	to	be	signed	by	the
OEM	private	key.

Public	Key	Storage
The	OEM	public	key	should	be	embedded	in	the	original	firmware.	As	such	it	can	be	used	to	verify	the
new	firmware	binary.

A	policy	may	be	updated	along	with	the	new	Firmware	image.

Verification
During	the	firmware	update	process,	TP	is	inside	of	the	original	firmware	image.	TP	will	load	the	new
firmware	image	from	external	storage	into	memory.	The	memory	can	be	normal	DRAM	(if	the	update
happens	before	any	3 	party	code	is	executed)	or	flash	(in	an	unlocked	state).	If	the	update	must
occur	after	3 	party	code	execution,	the	update	must	occur	in	an	isolated	execution	environment
(example:	SMRAM).	Care	must	be	taken	that	both	verification	and	update	occur	in	the	same
environment,	and	there	is	no	TOC-TOU	threat	(example:	DMA	attack).	If	TP	passes	verification,	the	new
firmware	image	is	programmed	into	flash.	If	verification	fails,	the	flash	update	process	is	aborted.

Intel®	BIOS	Guard
The	implementation	above	assumes	any	code	in	the	execution	environment	is	secure.	Reality	shows
that	this	is	difficult	to	implement	due	to	the	number	of	drivers	present	in	this	environment.	Intel	provides
the	Intel®	BIOS	Guard	solution	which	only	allows	the	flash	device	to	be	programmed	by	the	Intel®	BIOS
Guard	AC	module.	This	module	performs	firmware	verification	and	updates	in	an	Authenticated	Code
RAM	(AC-RAM)	environment.	This	is	designed	to	prevent	issues	early	in	the	firmware	boot	process	or
SMM	from	impacting	the	verification	and	update	flow.

Figure	2-6	describes	Intel®	BIOS	Guard	components.	Table	2-9	described	firmware	update	verification
using	Intel®	BIOS	Guard.

rd
rd
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Figure	2-6:	Intel®	BIOS	Guard

Table	2-9:	Firmware	Update	Verification

Item Entity Provider Location

TP ACM	FU
Verification Intel Original	on	the	flash,	loaded	into	AC-RAM

CDI Intel®	BIOS
Guard	ACM Intel Original	on	the	flash,	loaded	into	AC-RAM

PubKey	Hash
(Policy) OEM Calculated	during	Firmware	Boot	early	phase,	and	write

to	the	CPU	register.

UDI Firmware
Update	Package OEM External	Storage	(e.g.	Hard	drive,	USB,	Memory,	or

Read-Write	Flash),	loaded	into	SMRAM.

Signing
The	UDI	is	provided	a	new	firmware	image,	the	same	as	the	UEFI	Capsule	Update	implementation.	The
entire	firmware	binary	must	be	signed	using	the	OEM	private	key.

Public	Key	Storage
The	OEM	public	key	should	be	embedded	in	the	original	firmware.	During	boot,	the	early	BIOS	needs	to
program	the	public	key	hash	into	the	CPU	BIOS	Guard	register.	This	is	used	by	the	BIOS	Guard	module
during	the	verification.	The	policy	may	be	updated	along	with	the	new	BIOS	image.

Verification
During	the	firmware	update	process,	a	SMM	module	will	load	the	firmware	image	and	trigger	the	BIOS
Guard	module.	TP	is	inside	of	the	BIOS	Guard	module.	TP	first	verifies	if	the	OEM	public	key	in	the	new
firmware	image	matches	the	CPU	BIOS	Guard	register,	then	verifies	if	the	signature	of	the	new	firmware
image.	If	TP	passes	verification,	the	BIOS	Guard	module	writes	the	new	firmware	image	into	flash.	If	the
verification	fails,	BIOS	Guard	returns	with	a	failure.
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Signed	Recovery
NIST	SP800-193	defines	three	principles	supporting	platform	resiliency:

Protection,

Detection

Recovery

Signed	UEFI	capsule	update	and	Intel®	BIOS	Guard	provide	these	protections.	Intel®	Boot	Guard	and
OBB	verification	provide	detection.	If	firmware	corruption	is	detected,	the	firmware	can	perform	recovery
to	prevent	a	permanent	denial	of	service	(PDOS)	attack.	EDK	II	implements	a	signed	recovery	(see	Table
2-10).

Table	2-10:	Firmware	Recovery	Verification

Item Entity Provider Location

TP Firmware	Recovery
Verification OEM Originally	on	flash,	loaded	into	DRAM.

CDI Firmware	Recovery	TCB
Code OEM Originally	on	flash,	loaded	into	DRAM.

Firmware	Recovery
Signature	Database
(Policy)

OEM Originally	on	flash,	loaded	into	DRAM.

UDI Firmware	Recovery
Package OEM Originally	on	external	storage	(e.g.	Hard	drive,

USB,	Memory,	or	Flash),	loaded	into	DRAM

Signing
The	UDI	is	provided	a	new	firmware	image,	the	same	as	the	UEFI	Capsule	Update	implementation.	The
entire	firmware	binary	must	be	signed	using	the	OEM	private	key.

Public	Key	Storage
The	OEM	public	key	should	be	embedded	in	the	original	firmware	&	recovery	launcher	module.

Verification
If	firmware	corruption	is	detected	during	boot,	the	recovery	boot	path	is	triggered.	In	this	scenario,	TP	is
the	firmware	recovery	launcher	module.	This	module	loads	the	recovery	image	from	a	known	source	and
verifies	the	signature.	If	TP	passes	verification,	the	recovery	image	is	loaded	and	the	recovery	launcher
module	transfers	control	to	the	recovery	image.	If	recovery	verification	fails,	the	recovery	image	is
discarded	and	the	recovery	launcher	attempts	to	locate	additional	recovery	images.	If	all	recovery
images	fail	verification,	the	recovery	process	is	aborted.

NOTE:	The	signed	recovery	image	itself	may	be	updatable	even	if	it	is	on	the	flash	region.
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S3	Resume
S3	resume	is	a	special	boot	path	defined	by	the	ACPI	specification.	During	normal	boot,	firmware	may
save	the	system	configuration	and	place	the	system	in	the	S3	“sleep”	state.	During	S3	resume	phase,
firmware	loads	the	resume	state	to	quickly	“wakeup”	the	system	and	return	to	an	operational	state.

During	S3	resume,	firmware	should	not	accept	untrusted	external	inputs.	The	system	configuration,
referred	to	as	the	S3	Boot	Script,	should	be	stored	in	a	secure	place.	EDK	II	implements	a	lockbox	for
the	S3	resume	state.	This	implementation	provides	no	UDI	for	S3	resume,	so	all	components	should	be
treated	as	CDI.
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SMM	Runtime	Communication
System	Management	Mode	(SMM)	is	a	special	highly	privileged	processor	execution	mode.	One	usage	of
SMM	is	that	the	Firmware	may	provide	some	special	service	in	SMM,	which	is	referred	to	as	an	SMI
handler.	The	SMI	handler	uses	a	shared	buffer	(SMM	Communication	Buffer),	to	convey	information	to
the	service	consumer	during	OS	runtime.	Table	2-11	describes	SMM	Runtime	Communication	Verification.

Table	2-11:	SMM	Runtime	Communication	Verification

Item Entity Provider Location

TP SMM	Communication	Verifier	Code OEM Originally	on	flash,	loaded	in	SMRAM

CDI SMI	handler OEM Originally	on	flash,	loaded	in	SMRAM

UDI SMM	communication	buffer Any DRAM

The	SMM	communication	buffer	is	not	signed	because	any	program	may	use	the	buffer	to	invoke	SMM
services.	SMM	communication	is	treated	as	an	attack	surface,	so	the	SMI	handler	must	verify	the
contents	of	the	SMM	communication	buffer.	Since	there	is	no	signature,	common	verification	is	limited	to
prevent	SMM	attacks	since	it	cannot	verify	the	originator.
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ADDITIONAL	SECURE	BOOT	CHAIN
IMPLEMENTATIONS
Overview	of	Secure	Boot	in	Other	Areas	including:

Machine	Owner	Key	(MOK)
coreboot
Android	verified	boot
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Machine	Owner	Key	(MOK)
Multiple	Linux	distributions	have	implemented	UEFI	Secure	Boot,	but	this	creates	problems	deploying	3
party	modules	and	custom-built	kernels	alongside	components	signed	by	the	UEFI	certificate	Authority
(CA).	The	Machine	Owner	Key	MOK	concept	can	be	used	with	a	signed	shim	loader	to	enable	key
management	at	the	user/sysadmin	level.

Figure	3-1	and	Table	3-1	provide	an	overview	of	MOK.

Figure	3-1:	Linux	MOK	Boot,	(source:	“UEFI	Secure	Boot	Webinar”)

Table	3-1:	Linux	MOK	Boot

Item Entity Provider Location

TP OS	Kernel	Verification OSV External	storage

CDI Shim OSV External	storage

MOK	list User Variable

UDI OS	Kernel User External	storage
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coreboot
The	open	source	coreboot	firmware	project	implements	verified	boot,	which	is	similar	to	a	combination
of	OBB	verification	and	UEFI	Secure	Boot.

Figure	3-2	shows	the	verified	boot	flow.	Table	3-2	shows	keys	used	in	the	verified	boot	flow.

Figure	3-2:	coreboot	Verified	Boot	(source:	“Verified	Boot	in	Chrome	OS	and	how	to	make	it
work	for	you”)

Table	3-2:	Keys	used	by	coreboot	verified	boot	(source:	“Verified	Boot:	Surviving	in	the	Internet	of
Insecure	Things”)

Key Verifies Stored
in Versioned Notes

Root	Key Firmware
Data	Key

RO
Firmware NO Private	key	in	a	locked	room	guarded	by

laser	sharks;	N	of	M	present.	RSA4096+

Firmware
Data	Key

RW
Firmware

RW	FW
Header YES Private	key	on	signing	server.	RSA4096.

Kernel
Subkey

Kernel
Data	Key

RW
Firmware

YES	(as
FW)

Private	key	only	needed	to	sign	new	kernel
data	key.	RSA4096.

Kernel
Data	Key OS	Kernel

OS
kernel
Header

YES Private	key	on	signing	server.	RSA2048.

Recovery
Key

Recovery
OS	Kernel

RO
Firmware NO

Locked	room	and	laser	sharks.	RSA4096+.
Different	than	all	keys	above.
Signs	recovery	installer,	not	payload.

Table	3-3:	coreboot	Verified	Boot	(for	firmware)

Item Entity Provider Location

TP Read/Write	Firmware	Verification OEM Flash	(Read	Only	Region)

CDI Read-Only	Firmware OEM Flash	(Read	Only	Region)

Root	key OEM RO	firmware,	Google	Binary	Blob	(GBB)

UDI Read/Write	Firmware OEM Flash	(Read	Write	Region)
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Table	3-4:	coreboot	Verified	Boot	(for	OS)

Item Entity Provider Location

TP OS	Kernel	Verification OEM Flash	(Read	Write	Region)

CDI Read-Write	Firmware OEM Flash	(Read	Write	Region)

Kernel	Subkey OSV R/W	firmware,	Google	Binary	Blob	(GBB)

UDI OS	Kernel OSV External	storage
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Android	Verified	Boot
The	Android	verified	boot	solution,	like	UEFI	Secure	Boot,	is	used	to	verify	the	integrity	of	an	OS	image.

“Verified	Boot	strives	to	ensure	all	executed	code	comes	from	a	trusted	source	(usually	device	OEMs),
rather	than	from	an	attacker	or	corruption.	It	establishes	a	full	chain	of	trust,	starting	from	a	hardware-
protected	root	of	trust	to	the	bootloader,	to	the	boot	partition	and	other	verified	partitions	including
system,	vendor,	and	optionally	OEM	partitions.	During	device	boot	up,	each	stage	verifies	the	integrity
and	authenticity	of	the	next	stage	before	handing	over	execution.”

--	“Verified	Boot”	(source.android.com)

Figure	3-3:	Android	Verified	Boot	1.0	without	A/B	(source:	Android	Verified	Boot	2.0)
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Figure	3-4:	Android	Verified	Boot	1.0	with	A/B	(source:	Android	Verified	Boot	2.0)
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Figure	3-5:	Android	Verified	Boot	2.0	(source:	Android	Verified	Boot	2.0)

For	additional	information	on	OS	kernel	verification,	see	the	following:

https://source.android.com/security/verifiedboot
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://blog.csdn.net/rikeyone/article/details/80606147
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LOOKING	FORWARD	–	PLATFORM	FIRMWARE
RESILIENCY
NIST	SP800-193	provides	guidelines	on	using	protection,	detection,	and	recovery	to	implement	platform
firmware	resiliency	(PFR).
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Platform	Firmware	Resiliency
In	modern	platforms,	system	firmware	is	only	one	of	multiple	firmware	images.	Most	system	components
rely	on	some	form	of	device	firmware.	The	scope	of	PFR	covers	both	system	firmware	and	device
firmware	images,	so	the	trust	chain	is	maintained	for	all	boot	firmware	components.	See	Figure	4-1	for
an	overview	diagram.

Figure	4-1:	Component	and	Trust	Chain,	from	NIST	SP800-193

Device	firmware	may	exist	in	a	device-specific	region	that	is	managed	by	the	device.	In	some	cases,
device	firmware	may	reside	in	the	same	location	as	the	system	firmware,	such	as	Serial	Peripheral
Interface	(SPI)	attached	to	flash,	and	the	system	firmware	is	responsible	for	loading	the	device	firmware
into	a	device	firmware	region.

Most	device	firmware	initializes	the	hardware	so	it	is	functional	at	runtime.	Examples	include:

Network	Interface	Card	(NIC)
Solid	State	Drive	(SSD)
Universal	Serial	Bus	(USB)
Battery	management

Some	device	firmware	is	involved	in	the	system	boot	process	and	may	play	an	important	role	in	system
firmware	verification.	Examples	include:

Embedded	Controller	(EC)	firmware
Baseboard	Management	Controller	(BMC)	firmware
Intel®	Converged	Security	and	Management	Engine	(Intel®	CSME)
Glue	logic	in	a	Field	Programmable	Gate	Array	(FPGA)	or	Complex	Programmable	Logic	Device	(CPLD)

There	are	multiple	existing	standards	describing	device	authentication,	including:

PCIe	Device	Security
USB	Authentication
Security	Protocol	and	Data	Model	(SPDM)
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Figure	4-2	shows	a	high-level	view	of	an	authentication	protocol.

Figure	4-2:	High-level	View	of	PCIe®	Component	Authentication	(source:	PCIe®	Component
Authentication)
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Device	Firmware	Boot
If	device	firmware	is	not	in	TCB,	it	must	be	verified	by	the	system	firmware	or	device	firmware	in	TCB.

During	system	boot,	host	firmware	may	choose	to	verify	some	device	firmware	components.	For	device
firmware	stored	in	the	device’s	internal	storage,	verification	may	happen	based	upon	device	policy.	For
device	firmware	images	in	external	storage	loaded	at	runtime,	verification	is	mandatory.	Device	firmware
verification	may	follow	the	same	rules	as	the	system	firmware	verification.	Device	firmware	is	only	loaded
after	it	is	verified.

Table	4-1:	Device	Firmware	Boot	Verification

Item Entity Provider Location

TP Device	Firmware	Verification OEM	or
IHV Flash	(Read	Only	Code),	Device	ROM.

CDI System	Firmware	or	Device
firmware	TCB

OEM	or
IHV Flash	(Read	Only	Code),	ROM

Device	Firmware	Signature
Database	(Policy)

OEM	or
IHV Flash	(Read	Only	Data),	ROM

UDI Device	Firmware IHV
Device	Internal	Storage	(or)
External	Storage	(e.g.	Hard	drive,	USB,
Memory,	or	Read-Write	Flash)
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Device	Firmware	Update
If	the	device	firmware	is	updatable,	the	update	must	be	verified.

The	verifier	is	determined	by	the	entity	with	write	access	to	the	device	firmware	location.	The	entity
performing	verification	must	be	the	same	entity	performing	the	update.

For	example,	if	the	device	firmware	is	in	the	device	internal	location,	which	is	not	accessible	by	the	host
firmware,	such	as	TPM,	then	the	device	must	do	the	verification	and	update.	If	the	device	firmware	is	in
the	device	internal	location,	but	it	is	accessible	by	the	host	firmware,	such	as	EC,	then	the	host
firmware	may	do	the	verification	and	update.	If	device	firmware	is	on	the	external	storage	and	loaded	by
system	firmware,	then	the	system	firmware	must	do	the	verification	and	update.

Table	4-2:	Device	Firmware	Update	Verification

Item Entity Provider Location

TP Firmware	Update
Verification

OEM	or
IHV Depends

CDI Firmware	Update
TCB	Code

OEM	or
IHV Depends

Firmware	Update
Signature
Database	(Policy)

OEM	or
IHV Depends

UDI Device	Firmware
Update	Package IHV

Originally	on	external	storage	(e.g.	Hard	drive,	USB,
Memory,	or	Read-Write	Flash),	loaded	into	device
firmware	unlockable	environment.
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Project	Cerberus
As	part	of	the	Open	Compute	Project	(OCP),	Project	Cerberus	defines	a	hierarchical	Root	of	Trust	(RoT)
architecture.	All	active	components	are	required	to	support	both	hardware	and	firmware	combined
identifing	through	the	Device	Identifier	Composition	Engine	(DICE).

Figure	4-3	thru	4-6	describe	the	power	on	sequence,	boot	flow,	recovery	flow,	and	firmware	update	flow.

Figure	4-3:	Cerberus	power	on	sequence	(source:	“Project	Cerberus	Hardware	Security”)
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Figure	4-4:	Cerberus	boot	flow	(source:	“Project	Cerberus	Hardware	Security”)
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Figure	4-5:	Cerberus	recovery	flow	(source:	“Project	Cerberus	Hardware	Security”)
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Figure	4-6:	Cerberus	firmware	update	(source:	“Project	Cerberus	Hardware	Security”)

The	concept	of	Cerberus	is	similar	to	Intel®	Boot	Guard.,	but	there	are	several	key	differences:

1.	 Intel®	Boot	Guard	uses	Microcode	as	RoT,	while	Cerberus	uses	a	dedicated	RoT	device.
2.	 Intel®	Boot	Guard	can	mitigate	hardware	bus	attacks.
3.	 Intel®	Boot	Guard	only	verifies	the	host	system	firmware,	while	Cerberus	verifies	all	boot	firmware
(platform	firmware,	BMC,	etc.)

4.	 Cerberus	defines	a	detailed	flow	for	update	and	recovery.

Table	4-3:	Cerberus	Boot

Item Entity Provider Location

TP Boot	Firmware	Verification	(in	Cerberus
Microcontroller) OEM Flash	(Read	Only	Code),

Device	ROM.

CDI Cerberus	Microcontroller OEM Flash	(Read	Only	Code),
Device	ROM.

Boot	Firmware	Signature	Database	(Policy) OEM Flash	(Read	Only	Data),
ROM

UDI Boot	Firmware	(BMC,	Firmware) OEM/IHV Flash	(Read	Only	Data)	–
active	area

Table	4-4:	Cerberus	Recovery

Item Entity Provider Location

TP Boot	Firmware	Verification	(in	Cerberus
Microcontroller) OEM Flash	(Read	Only	Code),

Device	ROM.

CDI Cerberus	Microcontroller OEM Flash	(Read	Only	Code),
Device	ROM.

Boot	Firmware	Signature	Database	(Policy) OEM Flash	(Read	Only	Data),	ROM

UDI Boot	Firmware	Recovery	(BMC,	Firmware) OEM/IHV Flash	(Read	Only	Data)	-
recovery	area

Table	4-5:	Cerberus	Firmware	Update

Item Entity Provider Location

TP Boot	Firmware	Verification	(in	Cerberus
Microcontroller) OEM Flash	(Read	Only	Code),

Device	ROM.

CDI Cerberus	Microcontroller OEM Flash	(Read	Only	Code),
Device	ROM.

Boot	Firmware	Signature	Database	(Policy) OEM Flash	(Read	Only	Data),
ROM
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UDI Boot	Firmware	(BMC,	Firmware) OEM/IHV Flash	(Read	Only	Data)	–
staging	area
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Intel®	Platform	Firmware	Resilience	(Intel®	PFR)
To	reduce	firmware-related	security	risks,	Intel	developed	Intel	PFR	for	server	platforms.	This	feature
protects	critical	firmware	from	attacks	during	boot	and	runtime.	It	can	be	treated	as	an	implementation
of	Project	Cerberus	or	NIST	SP800-193.

Intel	PFR	also	enables	a	protect-in-transit	feature,	allowing	customers	to	lock	and	unlock	systems	to
guard	against	firmware	changes	during	shipment.	and	“Intel	transparent	supply	chain	with	platform
certificate	to	create	transparency	in	the	supply	chain	to	prevent	counterfeit	components	from	being
used.”

Figure	4-7	shows	the	Intel	PFR	system	diagram.	Figure	4-8	shows	the	Intel	PFR	boot	flow.	Figure	4-9
shows	the	Intel	PFR	reset	sequence.

Figure	4-7:	Intel®	PFR	Overview	(source:	csdn.net)

Figure	4-8:	Intel®	PFR	boot	flow	(source:	csdn.net)
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Figure	4-9:	Intel®	PFR	Reset	Sequence	(source:	csdn.net)
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Google	Titan
Google	developed	Titan	as	a	hardware	root-of-trust	solution	for	Google	Cloud	Platform	(GCP).	Aside	from
basic	secure	boot,	Titan	implements	remediation	and	first-instruction	integrity.	These	features	are	like
functions	found	in	Intel	Boot	Guard	and	Project	Cerberus.

“Trust	can	be	re-established	through	remediation	in	the	event	that	bugs	in	Titan	firmware	are	found	and
patched,	and	first-instruction	integrity	allows	the	platform	to	identify	the	earliest	code	that	runs	on	each
machine’s	startup	cycle.”

--	“Titan	in	depth:	Security	in	plaintext”	(cloud.google.com)

Figure	4-10	shows	the	Titan	System	Integration	diagram.	Figure	4-11	shows	the	Titan	Verified	Boot	flow.

Figure	4-10:	Titan	System	Integration	(source:	“Titan	silicon	root	of	trust	for	Google	Cloud”)

Figure	4-11:	Titan	Verified	Boot(source:	“Titan	silicon	root	of	trust	for	Google	Cloud”)
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Other	Platform	Firmware	Resiliency	(PFR)
Implementations
Additional	PFR	solutions	are	available	for	implementing	NIST	SP800-193,	such	as	the	Lattice	Root	of
Trust	FPGA	solution	(see	Figure	4-12).

Figure	4-12:	Lattice	PFR	(source:	latticesemi.com/pfr).

The	difference	in	implementations	is	hardware	RoT	device	selection.	Selections	include	processor
microcode,	CPLD	devices,	or	FPGA	devices.	Each	has	its	particular	advantages	and	disadvantages.	For
example,	processor	microcode	has	a	limited	protection	scope,	which	is	why	many	customers	use	add-on
devices	for	hardware	RoT	(CPLD,	FPGA).
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GLOSSARY
ACM	–	Authenticated	Code	Module.	See	Intel®	Boot	Guard.

AC-RAM	-	RAM	Authenticated	Code	RAM

IBB	–	Initial	Boot	Block.	See	Intel®	Boot	Guard.

OBB	–	OEM	Boot	Block.	See	Intel®	Boot	Guard.

CDI	–	Constrained	Data	Item.	See	Clark-Wilson.

UDI	–	Unconstrained	Data	Item.	See	Clark-Wilson.

TP	–	Transformation	Procedure.	See	Clark-Wilson.

IVP	–	Integrity	Verification	Procedure.	See	Clark-Wilson.

CR	–	Certification	Rule.	See	Clark-Wilson.

ER	–	Enforcement	Rule.	See	Clark-Wilson.

OEM	–	Original	Equipment	Manufacturer

ODM	–	Original	Design	Manufacturer

IBV	–	Independent	BIOS	Vendor

IFV	–	Independent	Firmware	Vendor

IHV	–	Independent	Hardware	Vendor

ISV	–	Independent	Silicon	Vendor

OSV	–	Operating	System	Vendor

TCB	–	Trust	Computing	Base

RoT	–	Root	of	Trust

RTU	–	Root	of	Trust	for	Update

RTD	–	Root	of	Trust	for	Detection

RTRec	–	Root	of	Trust	for	Recovery

DICE	-	Device	Identifier	Composition	Engine

PFR	–	Platform	Firmware	Resilience

MMIO	–	Memory	Mapped	I/O.

PI	–	Platform	Initialization.	Volume	1-5	of	the	UEFI	PI	specifications.

SMM	–	System	Management	Mode.

UEFI	–	Unified	Extensible	Firmware	Interface.	Firmware	interface	between	the	platform	and	the	operating
system.	Defined	by	the	UEFI	Forum	(uefi,org).
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