


TABLE	OF	CONTENTS
EDK	II	Build	Specification

Tables

Figures

1	Introduction

1.1	Overview

1.2	Target	Audience

1.3	Terms

1.4	Related	Information

1.5	Conventions	Used	in	this	Document

2	Design	Discussion

2.1	Development	Environments

2.2	UEFI/PI	Firmware	Images

2.3	Boot	Sequence

2.4	Typical	Flash	Part	Layout

2.5	Generic	Build	Process

2.6	Creating	EFI	Images

2.7	SKU	Support

3	UEFI	and	PI	Image	Specification

4	EDK	II	Build	Process	Overview

4.1	EDK	II	Build	System

4.2	Build	Process	Overview

4.3	Pre-Build	Stage	Overview

4.4	Creating	Binary	EFI	Images	-	$(MAKE)	stage

4.5	Post-Build	Stage

4.6	File	Specifications

4.7	File	Extensions

5	Meta-Data	File	Specifications

5.1	Build	Meta-Data	File	Formats

5.2	tools_def.txt

5.3	target.txt	File

6	Quick	Start

6.1	Environment	Variables

6.2	Build	Scope

7	Build	Environment

7.1	Build	Scope

7.2	Third	Party	Tools

7.3	GUIDed	Tools

8	Pre-Build	AutoGen	Stage

8.1	Overview

EDK	II	Build	Specification

2Revision	1.28



8.2	Auto-generation	Process

8.3	Auto-generated	code

8.4	Auto-generated	PCD	Database	File

8.5	Auto-generated	Makefiles

8.6	Binary	Modules

8.7	Generated	AsBuilt	INF	Files

9	Build	or	$(MAKE)	Stage

9.1	Overview

9.2	Preprocess/Trim

9.3	Compile/Assembly

9.4	Static	Link

9.5	Dynamic	Link

9.6	Generate	Module	Images

9.7	Generate	Platform	Images

10	Post-Build	ImageGen	Stage	-	FLASH

10.1	Overview	of	Flash	Device	Layout

10.2	Parsing	FDF	Meta-Data	File

10.3	Build	Intermediate	Images

10.4	Create	the	FV	Image	File(s)

10.5	Create	the	FD	image	file(s)

10.6	Post	Build	Processing

11	Post-Build	ImageGen	Stage	-	Other

11.1	EFI	PCI	Option	ROM	Images

11.2	UEFI	Applications

11.3	Capsules

12	Build	Changes	and	Customizations

12.1	Building	for	Debug

12.2	Adding	Custom	Compression	Tools

12.3	Using	Custom	Build	Tools

12.4	Customizing	Compilation	for	a	Component

12.5	Platform	Specific	ASL	Tools

12.6	Build	Reproducibility

13	Build	Reports

13.1	Build	Report	Generation	Options

13.2	Sample	Launch	Steps:	NT32	platform

13.3	Output

13.4	Platform	Summary

13.5	Mixed	PCD	Section

13.6	Global	PCD	Section

13.7	FD	Section

13.8	Module	Section

13.9	Execution	Order	Prediction	Section

EDK	II	Build	Specification

3Revision	1.28



Appendix	A	Variables

Appendix	B	tools_def.txt

Appendix	C	target.txt

Appendix	D	build.exe	command

D.1	Overview

D.2	Makefile	actions

D.3	Build	Targets	and	options

D.4	Usage

Appendix	E	NT32	Platform	Emulation

Appendix	F	Firmware	Volume	INF

F.1	Firmware	Volume	INF	Description

F.2	[Attributes]	Section

F.3	[Files]	Section

F.4	[Options]	Section

Appendix	G	VS2005	Team	Suite	Performance

G.1	Step	1	-	Create	a	new	project

G.2	Step	2	-	Update	the	project

Appendix	H	Module	Types

Appendix	I	VPD	Tool

I.1	Build	System	Output	File	Format

I.2	VPD	Tool	Map	File	Format

Appendix	J	Makefiles

J.1	NMAKE	Module	Makefile	Format

Appendix	K	Third	Party	Tool	Flags

EDK	II	Build	Specification

4Revision	1.28



EDK	II	Build	Specification
Revision	1.28

12/01/2020	03:59:39

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2008-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. February
2008

1.1 Update	based	on	errata August
2008

1.2 Updates	based	on	enhancement	requests June	2009

1.21 Updates	based	on	errata	and	enhancement	requests January
2010

Definitions	in	DSC	file	[defines]	section	are	now	global	to	both	DSC	and
FDF	files

Added	language	filters:	RFC_LANGUAGES	and	ISO_LANGUAGES

Rule	processing	for	file	type	lists	is	alphabetical,	i.e.,	files	are	added	in
alphabetical	order

Added	warning	for	VFR	file	naming	convention	-	cannot	use	a	name	that
is	also	used	for	a	C	file

Use	of	the	IDENTIFIER	statement	in	tools_def.txt	is	optional

EDK	II	Build	SpecificationEDK	II	Build	Specification

5Revision	1.28



Whitespace	characters	are	permitted	in	the	meta-data	files,	so	tools
must	handle	them	(use	of	token	based	processing	is	recommended)

Tools	must	support	any	number	of	FV_EXT_ENTRY_TYPE	statements	in
an	FDF	file

The	build	tools	must	auto	compute	the	ExtHeaderOffset	in	the	FV
Header.

The	build	tools	must	auto	compute	the	ExtHeaderSize	in	the	FV	Ext
Header	based	on	the	size	of	the	FV	Ext	Header	and	all	the	FV	Ext
Header	Entries.

The	build	tools	must	auto	compute	the	ExtEntrySize	field	in	the	FV	Ext
Header	Entry	structure	based	on	the	size	of	the	file	specified	by	the
FILE	statement	or	the	number	of	bytes	in	the	byte	array	of	the	DATA
statement.	If	the	size	is	greater	than	16-bits,	the	build	should	break.

Specified	parsing	priority	rules	for	definitions	and	values

Added	report	generator	syntax	as	part	of	the	build

Add	support	for	"Auto"	alignment	for	PE32	and	TE	images

Add	support	for	specifying	block	information	for	capsules

FeatureFlagExpression	processing	should	allow	C-style	expression
syntax	and	follow	C	rules	for	processing

1.22 Grammatical	and	formatting	changes.	Added	Module	types	appendix. May	2010

1.22	w/ Updated	to	match	the	implementation	at	the	time	of	the	UDK2010	SR1
release:

December
2011

Errata	A Updated	to	support	UEFI	version	2.3.1	and	updated	spec	release	dates
in	Introduction

Clarify	UEFI's	PI	Distribution	Package	Specification

Spelling	and	punctuation	fixes

Updated	document	title,	removed	ADD_BUILD_RULE	from	target.txt,
Added	VPD	information,	Fixed		VOID*		string	format,	Break	build	if	EDK	II
modules	uses	ISO	639-2	language	codes,	updated	macro	usage	in
tools_def.txt

Allow	user	visible	language	name	to	contain	space	characters

Updated	language	code	from	RFC	3066	to	RFC	4646	as	well	as	adding
additional	content	that	matches	implementation

Update	to	specify		VOID*		data	must	be	translated	to	either	a	Hex	Byte
Array,	a	C	Format	GUID	or	a	valid	C	format	string

Update	AutoGen	section	regarding	UEFI	and	PI	specification	versions
_gUefiDriverRevisions,	_gDxeRevision	or	_gPeimRevision

Add	rules	and	file	formats	for	the	VPD	tools

Added	description	of	EDK_GLOBAL	macro	utilization	-	defined	in	DSC,
used	in	EDK	II	DSC,	EDK	II	FDF	and	EDK	INF	files	only

Added	description	of	the	SOURCE_OVERRIDE_PATH	for	EDK	INF	files	only

Added	ECP_SOURCE	system	environment	variable

Remove	SET	statements	from	DSC	processing

Use	just	the	PcdName	in	conditional	directive	statements.	$(PcdName)
and	PCD(PcdName)	are	not	permitted	in	conditional	directive
statements	defined	in	the	DSC	and	FDF	files

Document	what	the	valid	numbers	are	for	the	debug	switch	for
build.exe,	updated	EBNF	for	-D	command-line	option

EDK	II	Build	SpecificationEDK	II	Build	Specification

6Revision	1.28



Specify	normal	build	report	items,	including	the	number	of	warning
messages	that	might	come	from	the	EDK	II	build	tools	(not	the	third
party	tools,	just	the	EDK	II	build	system	tools),	correct	module	report	for
dependency	expressions,	correct	PCD	reports,	removed	notification
report	section,	added	Fixed	Address	Prediction	and	EOT	sections	to	the
reports

Prohibit	listing	multiple	library	class	instances	or	PCD	entries	within	a
single	section	in	EDK	II	Meta-data	files

Updated	to	remove	path	restriction	on	macro	values,	clarified	how
architectures	are	selected	for	the	build,	clarified	macro	precedence
tables

Updated	MACRO	EBNF	inside	of	tools_def.txt	definitions

Make	sure	that	generated	values	in	the	AutoGen	stage	have	either	a	u
or	a	ull	appended	to	the	value	to	ensure	that	they	are	unsigned	(PCD
values	are	always	unsigned	integers)

Update	description	of	the	TOOL_CHAIN_TAG	so	that	if	it	is	not	specified,
the	build	will	break

December
2011

Remove	CREATE_FILE	from	specification,	10.5.1,	as	this	was	never
supported

Updated	Create	FFS	files	from	Leaf	sections	description	in	Rules	section

Specify	how	sections	are	merged	during	parsing	of	the	EDK	II	meta-data
files

Specify	how	the	maximum	size	of	a		VOID*		PCD	is	calculated	if	it	is	not
specified

Allow	any	non-zero	number	to	evaluate	to	True

Change	"should"	to	say	recommended

Require	MdePkg/MdePkg.dec	in	the	[Packages]	section	of	all	INF	files
listed	in	the	DSC	file

updated	comments	and	operand	notes	in	table

REMOVED	"ALL"	from	the	Report	Type	list,	as	ALL	is	not	a	valid	option
value

Clarify	that	macros	are	only	expanded	when	parsing	EDK	II	INF	and	DEC
files,	and	that	Macro	values	are	expanded	or	evaluated	when	parsing
of	EDK	II	DSC	and	FDF	files

Updated	5.2.3	and	E.4.2	to	allow	lower	case	characters	in	a	MACRO
name	in	tools_def.txt.

Updated	TOOL_CHAIN_TAG	in	Appendix	C	to	match	definition	in	chapter
5

Removed	number	of	warnings	message	at	the	completion	of	the	build	-
not	for	SR1	-	13,0

Added	Support	for	C++	in	auto-generated	code

1.22	w/ Updates: June	2012

Errata	B Section	1.1,	page	1:	Added	description	regarding	build	system	tools
and	appropriate	error	conditions	for	'forward	compatibility'

Section	1.4,	page	5:	Updated	Specification	Versions	to	include
released	Errata

Section	5,	added	note	about		build_rule.txt		updates

Section	5.2.3:	Added	DOS		<EOL>		character	sequence	definition

EDK	II	Build	SpecificationEDK	II	Build	Specification

7Revision	1.28



Section	5.3:	Added	DOS		<EOL>		character	sequence	definition

Removed	Section	5.4,		build_rule.txt	.	This	file	is	for	tool	usage	and	not
for	normal	editing	purposes.

Section	8.5,	Removed	reference	to	binary	"LIB"	-	library	distribution	is
not	currently	supported

Section	10,	table	19,	updated	to	support		EFI_SECTION_FREEFORM_SUBTYPE_GUID	

Removed	section	12.5	for	EDK	Library	INF	modifications

Removed	Appendix_D_Build_rule.txt

Appendix	I	Updated	-	clarify	that	Unicode	file	is	a	UCS-2	encoded	file,
and	that	the	Language	Code	for	EDK	II	modules	must	be	RFC4646
language	codes;	EDK	components	support	UCS-2	encoded	files
containing	ISO639	language	codes

1.22	w/ Updates: August
2013

Errata	C Section	1.3,	Updated	Errata	for	UEFI	Specs.

Sections	4.3.4,	4.4,	4.5.3,	8.1,	8.4,	9.7,	10.1,	Appendix	E.2,	Removed
8.4.2,	Appendix	L.1	and	L.2,	removing	Top	level	and	Architectural	level
Makefiles	-	build	system	has	been	modified	to	have	Python	call	the
module	Makefiles	if	they	exist;	also	updating	figures	to	remove	the
'Platform'	Makefile

Section	8.5.1.2.4	-	removed	fds	target	in	the	makefile,	as	the	build
command	will	call	the	GenFds	if	the	fds	target	is	given	on	the
command-line

Section	4.1,	5,	5.3,	D.4,	Allow	DSC,	FDF	and	the	Conf	directory	to	be
located	outside	of	the	WORKSPACE	directory(--conf=CONF_DIRECTORY)

Section	5.2.3,	Table	9,	Added	ADDDEBUGFLAG	predefined	attribute

Section	6.4.4,2	remove	line	following	GenFv	--help,	as	this	is	not	the
correct	usage

Section	7.1.5,	State	that	flags	are	processed	from	left	to	right,	with	the
right	most	flag	overriding	a	flag	that	is	to	the	left

Added	new	section	8.5	added	wording	for	generating	"As	Built"	INF	files
as	part	of	the	AutoGen	process

Added	new	section	8.4	describing	the	PEI	and	DXE	Dynamic	PCD
database	generation

8.3.5.5.2	Added	statement	regarding	when	to	generate	a	#define
statement	for	Fixed	At	Build	PCDs	in	libraries

Build	system	reports	the	total	number	of	warning	messages	emitted	by
the	EDK	II	tools	(not	the	third	party	tools	invoked	by	the	EDK	II	build
system).	Added	support	for	lower	case	characters	in	the	UEFI
Compliant	Unicode	Token	entry.

Cleaned	up	EBNF	for	HII	Tokens	to	remove	ambiguity.	Added	support	for
Patchable	In	Module	PCD	for	overriding	a	Formset	Class	GUID	in	a	binary
HII	driver.

Added	additional	rules	for	PCD	Database	generation

1.22	w/ Updates: January
2014

Errata	D
Added	text	describing	new	DSC	flag	to	generate	a	special	version	of
the	PCD	database	that	contains	both	the	PCD	token	name	and	the
token	number.	New	section,	8.2.4.10	provides	text	describing	this
option.

Updated	section	10.5	to	describe	how	PCDs	are	used	in	expressions	in

EDK	II	Build	SpecificationEDK	II	Build	Specification

8Revision	1.28



the	[FD]	offset	fields.

Updated	section	10.2	to	describe	the	last	statement	taking
precedence	when	duplicate	statements	appear	for	some	entries	in	the
FDF	file.

Updated	Chapter	13	to	reflect	current	implementation

1.24 Updates: December
2014

Changed	specification	version	to	1.24

Updated	UEFI	specification	and	EDK	II	meta	data	specifications	in
section	1.3;	added	the	EDK	II	UNI	Unicode	File	Specification	and	EDK	II
Expression	Syntax	Specification

Removed	Appendix	G,	EFI	Compliant	Unicode	File	Grammar	and
Appendix	I,	HII	UEFI	Compliant	Unicode	File	Grammar	-	refer	to	the	EDK	II
UNI	Unicode	File	Specification	instead

"Clarify	that	the	"As	Built"	INF	[Depex]	section	contains	the	full
dependency	expression	including	the	linked	in	library	classes'	Depex
section	in	comments.

"Updated	options	in	Appendix	D	to	match	implementation	(removed
several	flags);	added	reserved	flag,	--tool-	profile	to	build.exe.

Added	clarification	of	PCD	rules	for	INF	files	in	8.4.1

Removed	example	text	from	tool_def.txt	and	target.txt	appendices	and
Meta-Data	File	Spec	chapter,	adding	hyper	link	to	SVN	location	for	the
template	files	used	to	create	these	two	files

1.24	w/ Updates: March
2015

Errata	A Update	link	to	the	EDK	II	Specifications,	fixed	the	name	of	the	Multi-
String	.UNI	File	Format	Specification

Updated	10.4	to	describe	how	tools	add	an	FvNameString	in	the	FV
image	extension	header

Adding	a	VPD	PCD	Sub-section	to	the	FLASH	Report	-	defined	in	new
section,	13.6.3

1.25 Updates: June	2015

Updated	to	support	UEFI	2.5	and	PI	1.4	specifications

Add	BUILDRULEORDER	attribute	to	tools_def.txt	in	chapter	5.2.3

Updated	7.1.5	to	include	the		MODULE_TYPE		modifier	in		[BuildOptions]	
sections	specified	in	the	DSC	file.

Clarify	8.4.2.10	wording	that		VOID*		PCDs	size	reservation,	when	not
present	in	the	DSC	file,	is	determined	as	the	largest	of	the	sizes	for
content	in	the	DSC,	DEC	and	INF	files.

Update	8.7.12	[Binaries]	section	in	an	As	Built	INF	to	allow	flexibility
when	determining	file	types	and	to	allow	module	relative	subdirectories
in	the	filename.

Updated	8.2.4.12	to	include	the	flag	that	generates	the	Dynamic	and
DynamicEx	HII	PCD	Variable	check	binary	in	the	FV	section

1.24	w/ Updates: August
2015

Errata	A Updated	10.4	to	describe	how	tools	add	an	FvNameString	in	the	FV
image	extension	header

Update	8.7.5	-	8.7.9	to	allow	the	build	system	to	update	usage
information	based	on	feature	flag	evaluation	during	the	build

EDK	II	Build	SpecificationEDK	II	Build	Specification

9Revision	1.28



1.26 Updates	: January
2016

Specification	revision	to	1.26

Removed	data	structure	definitions	(duplicates	from	PE/	COFF,	PI
Specifications	and	TE	headers)	in	Chapter	3	and	included	references	to
the	industry	specifications	to	remove	potential	typographical	errors
and	inconsistencies.

Removed	Setup	and	Getting	Started	sections	from	Quick	Start	chapter
6	-	this	information	is	available	on	the	TianoCore.org	web-site.

Revised	WORKSPACE	wording	for	updated	build	system	that	can	handle
packages	located	outside	of	the

WORKSPACE	directory	tree	(refer	to	the	TianoCore.org/	EDKII	website	for
additional	instructions	on	setting	up	a	development	environment).
Added	new,	optional	system	environment	variables	used	by	the	build
system	in	this	environment.

Provide	clarification	on	VPD	data	generation	and	report	for	VPD	data
content

Clarify	precedence	of	the	DPX_SOURCE	and	[Depex]	section.

Specify	the	alignment	required	for		VOID*		PCDs	based	on	the	string,
Unicode	string	or	byte-code	array	values.

Remove	Unicode	file	storage	requirement;	refer	to	the	Multi-String	UNI
File	Format	Specification	instead.

Clarify	BUILDRULEORDER

Add	support	for	INF	statement	in	an	FD	region.

1.27 Convert	to	Gitbook May	2017

#471	Build	spec:	only	copy	the	"TianoCore"	Userextension	section	into
"As	Built"	INF

#472	[Build	Spec]	Extend	macro	usage	in	the	!include	statements	for
DSC/FDF	files

#483	Build	Spec:	add	description	for	merge	Pre-build	and	Post-build
into	build	process

#490	Build	Spec:	specify	the	alignment	requirements	for	VOID*	PCDs
stored	in	a	PCD	section

#479	Build	spec:	add	description	for	nmake	long	command	line
handling

#485	Build	spec:	add	support	for	mixed	Pcd	access	method

#476	Build	spec:	add	support	for	HII	image	package

#465	DEC	spec:	document	private	definitions

#504	Update	build	report	to	support	-Y	HASH	option

#508	Build	Spec:	Add	sections	to	PCD	report	for	PCDs	only	used	in
conditions	PCDs	that	are	not	used	anywhere

#480	Build	spec:	add	description	for	Override	PCD	value	on	the
command	line

#523	Build	spec:	add	EBNF	for	the	--pcd	syntax	in	the	Section	D.4

#517	Build	spec:	chapter	5.2.2	Guided	Tools	add	description	for
Pkcs7Sign	tool	and	BrotliCompress	tool

#481	Build	Spec:	add	clarification	for	not	used	Pcd	that	build	tool	will

EDK	II	Build	SpecificationEDK	II	Build	Specification

10Revision	1.28

https://bugzilla.tianocore.org/show_bug.cgi?id=471
https://bugzilla.tianocore.org/show_bug.cgi?id=472
https://bugzilla.tianocore.org/show_bug.cgi?id=483
https://bugzilla.tianocore.org/show_bug.cgi?id=490
https://bugzilla.tianocore.org/show_bug.cgi?id=479
https://bugzilla.tianocore.org/show_bug.cgi?id=485
https://bugzilla.tianocore.org/show_bug.cgi?id=476
https://bugzilla.tianocore.org/show_bug.cgi?id=465
https://bugzilla.tianocore.org/show_bug.cgi?id=504
https://bugzilla.tianocore.org/show_bug.cgi?id=508
https://bugzilla.tianocore.org/show_bug.cgi?id=480
https://bugzilla.tianocore.org/show_bug.cgi?id=523
https://bugzilla.tianocore.org/show_bug.cgi?id=517


not	do	additional	checks	on	its	value

#518	Build	Spec:	Update	Precedence	of	PCD	Values

#669	Build	Spec:	Add	multi-arg	support	to	PREBUILD/POSTBUILD

#717	Build	Spec:	Build	report	to	display	every	module's	build	time

#689	Build	spec:	add	description	for	build	with	binary	cache

1.28 Add	clarification	for	the	binary	cache	files Mar	2018

#775	Build	spec:	Add	description	about	auto	detect	thread	number

Add	Flexible	PCD	value	format	into	spec

Update	PCD	value	and	SKU,	DefaultStore	info	in	build	report

Clarify	structure	PCD	field	value	assignment	precedence

Update	description	for	build	handles	PCDs	for	SKU	support

EDK	II	Build	SpecificationEDK	II	Build	Specification

11Revision	1.28

https://bugzilla.tianocore.org/show_bug.cgi?id=481
https://bugzilla.tianocore.org/show_bug.cgi?id=518
https://bugzilla.tianocore.org/show_bug.cgi?id=669
https://bugzilla.tianocore.org/show_bug.cgi?id=717
https://bugzilla.tianocore.org/show_bug.cgi?id=689
https://bugzilla.tianocore.org/show_bug.cgi?id=775


Tables
Table	1	EDK	Build	Infrastructure	Support	Matrix
Table	2	EFI	Section	Types
Table	3	Defined	FV	File	Types
Table	4	Basic	EFI_SECTION	Type	Codes
Table	5	Encapsulation	EFI_SECTION	Type	Codes
Table	6	Dependency	Section	Type	Codes
Table	7	Predefined	Command	Codes
Table	8	Predefined	Attributes
Table	9	System	Environment	Variable	Usage
Table	10	Reserved	Macros	Expanded	by	Tools
Table	11	Reserved	FDF	[Rule]	Section	Macro	Strings
Table	12	Operator	Precedence	and	Supported	Operands
Table	13:	[Depex]	Expression	Operator	Precedence
Table	13:	[Depex]	Expression	Operator	Precedence
Table	14	AutoGen	Stage	Input	File	Extensions
Table	15	VFR	Compatibility	Matrix
Table	16	Access	Method	Section	Tags
Table	17	$(MAKE)	Stage	Intermediate	Output	File	Extensions
Table	18	$(MAKE)	Stage	Output	File	Extensions
Table	19	GenFds	Image	Generation:	Intermediate	File	Extensions
Table	20	ImageGen	Final	Output	File	Extensions
Table	21	Variable	Descriptions
Table	22	Build	Targets	and	Command-line	Options
Table	23	EDK	II	Module	Types
Table	24	Standard	C	File	Compiler	Options
Table	25	Assembly	Flags
Table	26	C	Compiler's	Preprocessor	Options
Table	27	C	Compiler's	Preprocessor	Options	for	VFR	files	ONLY
Table	28	Pre-compiled	Header	(PCH)	Creation	Flags
Table	29	Static	Linker	Flags
Table	30	Dynamic	Linker	Flags

TablesEDK	II	Build	Specification

12Revision	1.28



Figures
Figure	1	UEFI/PI	Firmware	Image	Creation
Figure	2	EFI	PCI	Expansion	Option	ROM	and	UEFI	Application	Creation
Figure	3	PI	Firmware	Phases
Figure	4	NT32	Flash	Device	Layout
Figure	5	Typical	IA32/X64	Flash	Device	Layout
Figure	6	Typical	IPF	FD	Layout
Figure	7	General	EFI	Section	Format	(<	16MB)
Figure	8	General	EFI	Section	Format	for	Large	Size	Sections.
Figure	9	Typical	FFS	File	Layout	(<16MB)
Figure	10	File	Header	2	layout	for	files	larger	than	16Mb
Figure	11	General	FV	Layout
Figure	12	Standard	Image	to	Terse	Image	Comparison
Figure	13	EFI	Image	Files
Figure	14	Depex	File
Figure	15	Firmware	Volume	Layout
Figure	16	EFI	PCI	Expansion	Option	ROM	layout
Figure	17	EFI	Capsule	Layout
Figure	18	EDK	II	Platform	Build	Process	Flow
Figure	19	EDK	II	AutoGen	Process
Figure	20	EDK	II	Build	Process	-	Platform	Point	of	View	(PoV)
Figure	21	EDK	II	Build	Process	-	Module	PoV
Figure	22	FD	Image	Generation	Process
Figure	23	Capsule	Creation	Process.
Figure	24	Report.html
Figure	25	VS2005	Property	Page
Figure	26	VS2005	Performance	Summary
Figure	27	VS2005	Call	Tree	View

FiguresEDK	II	Build	Specification

13Revision	1.28



1	INTRODUCTION

1.1	Overview
This	document	describes	the	EDK	II	Build	Architecture.	This	specification	was	designed	to	support	new
build	requirements	for	building	EDK	II	modules	and	EDK	components	within	the	EDK	II	build	infrastructure
as	well	as	to	generate	binary	firmware	images	and	Unified	Extensible	Firmware	Image	(UEFI)
applications.

EDK	II	Build	utilities	described	in	this	document	use	INI	style	text	based	meta-data	files	to	describe
components,	modules,	libraries,	platforms,	firmware	volumes	and	firmware	device	images.

This	document	describes	the	high	level	EDK	II	Build	Architecture,	which	has	the	following	goals:

Compatible

The	EDK	II	build	environment	must	maintain	backward	compatibility	with	the	existing	EDK	files.	This
means	that	the	changes	made	to	this	specification	must	not	require	changes	to	existing	files.

Compatibility	is	maintained	by	providing	the	EDK	Tools	in	the	EDK	Compatibility	package.	Also,	some	INF
files	may	require	modification	for	the	EDK	II	build	environment	if	they	are	used	to	access	Flash	firmware	-
the	PI	1.0	specification	modified	the	flash	data	structures	and	defined	some	new	GUID	values.

EDK	II	Build	system	tools	must	test	the	format	of	the	EDK	II	meta-data	files.	The	EDK	II	build	tools	must
provide	an	error	if,	during	parsing	of	the	EDK	II	meta-data	files,	a	version	of	the	files	is	encountered	that
is	higher	than	the	version	of	the	files	that	the	tools	support.

Simplified	platform	build	and	configuration

One	goal	of	this	format	is	to	simplify	the	build	setup	and	configuration	for	a	given	platform.	It	was	also
designed	to	simplify	the	process	of	adding	EDK	and	EDK	II	firmware	components	to	a	firmware	volume	on
a	given	platform.

Specification	Conformance

The	EDK	II	Build	infrastructure	supports	building	UEFI	2.5	and	PI	1.4	compliant	platforms.	Existing	EDK
components	may	need	to	be	updated	to	align	with	these	specifications.

Table	1	EDK	Build	Infrastructure	Support	Matrix

EDK
DSC

EDK	II
DSC

EDK
FDF

EDK	II
FDF

EDK
INF EDK	II	INF

EDK	Build	Tools YES NO YES NO YES NO

EDK	II	Build
Tools NO YES NO YES YES YES

1.2	Target	Audience
This	document	is	intended	for	persons	performing	EFI	development	and	support	for	different	platforms.

1	IntroductionEDK	II	Build	Specification

14Revision	1.28



1.3	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

BaseTools

The	BaseTools	are	the	tools	required	for	an	EDK	II	build.

BDS

Framework	Boot	Device	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form."	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DEC

EDK	II	Package	Declaration	File.	This	file	declares	information	about	what	is	provided	in	the	package.	An
EDK	II	package	is	a	collection	of	like	content.

DEPEX

Module	dependency	expressions	that	describe	runtime	process	restrictions.

Dist

This	refers	to	a	distribution	package	that	conforms	to	the	UEFI	Platform	Initialization	Distribution
Packages	Specification.

DSC

EDK	II	Platform	Description	File.	This	file	describes	what	and	how	modules,	libraries	and	components	are
to	be	built,	as	well	as	defining	library	instances	which	will	be	used	when	linking	EDK	II	modules.

DXE

Framework	Driver	Execution	Environment	phase.

DXE	SAL

A	special	class	of	DXE	module	that	produces	SAL	Runtime	Services.	DXE	SAL	modules	differ	from	DXE
Runtime	modules	in	that	the	DXE	Runtime	modules	support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE
SAL	modules	support	intermixing	Virtual	or	Physical	mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	module	that	is	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

Special	class	of	DXE	module	that	provides	Runtime	Services

EBNF

1.3	TermsEDK	II	Build	Specification

15Revision	1.28



Extended	"Backus-Naur	Form"	meta-syntax	notation	with	the	following	additional	constructs:	square
brackets	"[...]"	surround	optional	items,	suffix	"*"	for	a	sequence	of	zero	or	more	of	an	item,	suffix	"+"	for
one	or	more	of	an	item,	suffix	"?"	for	zero	or	one	of	an	item,	curly	braces	"{...}"	enclosing	a	list	of
alternatives	and	super/subscripts	indicating	between	n	and	m	occurrences.

EDK

Extensible	Firmware	Interface	Development	Kit,	the	original	implementation	of	the	Intel(R)	Platform
Innovation	Framework	for	EFI	Specifications	developed	in	2007.

EDK	II

EFI	Development	Kit,	version	II	that	provides	updated	firmware	module	layouts	and	custom	tools,
superseding	the	original	EDK.

EDK	Compatibility	Package	(ECP)

The	EDK	Compatibility	Package	(ECP)	provides	libraries	that	will	permit	using	most	existing	EDK	drivers
with	the	EDK	II	build	environment	and	EDK	II	platforms.

EFI

Generic	term	that	refers	to	one	of	the	versions	of	the	EFI	specification:	EFI	1.02,	EFI	1.10	or	any	of	the
UEFI	specifications.

FDF

EDK	II	Flash	definition	file.	This	file	is	used	to	define	the	content	and	binary	image	layouts	for	firmware
images,	update	capsules	and	PCI	option	ROMs.

FLASH

This	term	is	used	throughout	this	document	to	describe	one	of	the	following:

An	image	that	is	loaded	into	a	hardware	device	on	a	platform	-	traditional	ROM	image

An	image	that	is	loaded	into	an	Option	ROM	device	on	an	add-in	card

A	boot	able	image	that	is	installed	on	removable,	boot	able	media,	such	as	a	Floppy,	CD-ROM	or	USB
storage	device.

An	image	that	is	contains	update	information	that	will	be	processed	by	OS	Runtime	services	to
interact	with	EFI	Runtime	services	to	update	a	traditional	ROM	image.

A	UEFI	application	that	can	be	accessed	during	boot	(at	an	EFI	Shell	Prompt),	prior	to	hand-off	to
the	OS	Loader.

Foundation

The	set	of	code	and	interfaces	that	glue	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consists	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	EFI	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	A	unique	GUID	can	be
generated	by	an	individual	without	the	help	of	a	centralized	authority.	This	allows	the	generation	of
names	that	will	never	conflict,	even	among	multiple,	unrelated	parties.	GUID	values	can	be	registry
format	(8-4-4-4-12)	or	C	data	structure	format.

GUID	also	refers	to	an	API	named	by	a	GUID.

1.3	TermsEDK	II	Build	Specification

16Revision	1.28



HII

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font,	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

HOB

Hand-off	blocks	are	key	architectural	mechanisms	that	are	used	to	hand	off	system	information	in	the
early	pre-boot	stages.

INF

EDK	II	Module	Information	File.	This	file	describes	how	the	module	is	coded.	For	EDK,	this	file
describes	how	the	component	or	library	is	coded	as	well	as	providing	some	basic	build	information.

Source	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	a	[Sources]	section	and	it
does	not	contain	a	[Binaries]	section.	If	the	[Binaries]	section	is	empty	or	the	only	entries	in	the
[Binaries]	section	are	of	type	DISPOSABLE,	then	the	[Binaries]	section	is	ignored.

Binary	INF	-	An	EDK	II	Module	Information	file	that	has	a	[Binaries]	section	and	does	not	contain	a
[Sources]	section	or	the	[Sources]	section	is	empty.

Mixed	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	both	[Sources]	and	[Binaries]
sections	and	there	are	entries	in	the	[Binaries]	section	are	not	of	type	DISPOSABLE

AsBuilt	INF	-	An	EDK	II	Module	Information	file	generated	by	the	EDK	II	build	system	when	building
source	content	(listed	in	a	[Sources]	section).

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is	coded	to	the
library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file	that	is	published	by	a
package.

Library	Instance

An	implementation	of	one	or	more	library	classes.

Module

A	module	is	either	an	executable	image	or	a	library	instance.	For	a	list	of	module	types	supported	by
this	package,	see	module	type.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	DXE_CORE	,		SMM_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER	,	or		UEFI_APPLICATION	.
These	definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module
that	is	of	module	type		BASE	,	depends	only	on	headers	and	libraries	provided	in	the	MDE,	while	a	module
that	is	of	module	type		DXE_DRIVER		depends	on	common	DXE	components.	For	a	definition	of	the	various
module	types,	see	Appendix	Module	Types.	The	EDK	II	build	system	also	permits	modules	of	type
	USER_DEFINED	.	These	modules	will	not	be	processed	by	the	EDK	II	Build	system.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	one	of	the	following	types	of	modules:

source	modules,	containing	all	source	files	and	descriptions	of	a	module

1.3	TermsEDK	II	Build	Specification

17Revision	1.28



binary	modules,	containing	EFI	Sections	or	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD).

mixed	modules,	with	both	binary	and	source	modules

Multiple	modules	can	be	combined	into	a	package,	and	multiple	packages	can	be	combined	into	a
single	package.

PCD

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase.

PEIM

An	API	named	by	a	GUID.

PPI

A	PEIM-to-PEIM	Interface	that	is	named	by	a	GUID.

Protocol

An	API	named	by	a	GUID.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.	These	services	become	active	during	the	boot	process	but
also	persist	after	the	OS	loader	terminates	boot	services.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

SKU

Stock	Keeping	Unit.

SMM

System	Management	Mode.	A	generic	term	for	the	execution	mode	entered	when	a	CPU	detects	an	SMI.
The	firmware,	in	response	to	the	interrupt	type,	will	gain	control	in	physical	mode.	For	this	document,
"SMM"	describes	the	operational	regime	for	IA32	and	x64	processors	that	share	the	OS-transparent
characteristics.

UEFI	Application

An	application	that	follows	the	UEFI	specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	specification.

1.3	TermsEDK	II	Build	Specification

18Revision	1.28



UEFI	Specification	Version	2.5

Current	UEFI	version.

UEFI	Platform	Initialization	Distribution	Package	Specification	Version	1.0

The	current	version	of	this	specification	includes	Errata	B.

UEFI	Platform	Initialization	Specification	1.4

Current	version	of	the	PI	specification.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	http://www.uefi.org.

VFR

Visual	Forms	Representation.

VPD

Vital	Product	Data	that	is	read-only	binary	configuration	data,	typically	located	within	a	region	of	a	flash
part.	This	data	would	typically	be	updated	as	part	of	the	firmware	build,	post	firmware	build	(via	patching
tools),	through	automation	on	a	manufacturing	line	as	the	'FLASH'	parts	are	programmed	or	through
special	tools.

1.3	TermsEDK	II	Build	Specification

19Revision	1.28

http://www.uefi.org


1.4	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification:

Unified	Extensible	Firmware	Interface	Specification,	Version	2.5,	Unified	EFI,	Inc,	2015,
http://www.uefi.org.

Platform	Initialization	Specification,	Version	1.4,	Unified	EFI,	Inc.,	2015,	http://www.uefi.org.

UEFI	Platform	Initialization	Distribution	Package	Specification,	Version	1.0	with	Errata	B,	Unified	EFI,
Inc.,	2014,	http://www.uefi.org.

Intel(R)	Platform	Innovation	Framework	for	EFI	Specifications,	Intel,	2007,
http://www.intel.com/technology/framework/.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

EDK	II	Module	Writers	Guide,	Intel,	2010.
EDK	II	User	Manual,	Intel,	2010.
EDK	II	C	Coding	Standard,	Intel,	2015.
EDK	II	DEC	Specification,	Intel,	2016.
EDK	II	DSC	Specification,	Intel,	2016.
EDK	II	FDF	Specification,	Intel,	2016.
EDK	II	INF	Specification,	Intel,	2016.
Multi-String	UNI	File	Format	Specification,	Intel,	2016.
EDK	II	Expression	Syntax	Specification,	Intel,	2015.
VFR	Programming	Language,	Intel,	2015.
UEFI	Packaging	Tool	(UEFIPT)	Quick	Start,	Intel,	2015.
EDK	II	Platform	Configuration	Database	Infrastructure	Descriptions,	Intel,	2009.

INI	file,	Wikipedia,	http://www.uefi.org.

C	Now	-	C	Programming	Information,	Langston	University,	Tulsa	Oklahoma,	J.H.	Young,	1999-2011,
http://en.wikipedia.org/wiki/INI_file

NASM,	the	netwide	assembler,	http://www.nasm.us

1.4	Related	InformationEDK	II	Build	Specification

20Revision	1.28

http://www.uefi.org
http://www.uefi.org
http://www.uefi.org
http://www.intel.com/technology/framework/
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications
http://www.uefi.org
http://en.wikipedia.org/wiki/INI_file
http://www.nasm.us


1.5	Conventions	Used	in	this	Document
This	document	uses	typographic	and	illustrative	conventions	described	below.

1.5.1	Data	Structure	Descriptions
Intel(R)	processors	based	on	32	bit	Intel(R)	architecture	(IA	32)	are	"little	endian"	machines.	This
distinction	means	that	the	low-order	byte	of	a	multi	byte	data	item	in	memory	is	at	the	lowest	address,
while	the	high-order	byte	is	at	the	highest	address.

Processors	of	the	Intel(R)	Itanium(R)	processor	family	may	be	configured	for	both	"little	endian"	and	"big
endian"	operation.	All	implementations	designed	to	conform	to	this	specification	will	use	"little	endian"
operation.

In	some	memory	layout	descriptions,	certain	fields	are	marked	reserved.	Software	must	initialize	such
fields	to	zero	and	ignore	them	when	read.	On	an	update	operation,	software	must	preserve	any
reserved	field.

The	data	structures	described	in	this	document	generally	have	the	following	format:

STRUCTURE_NAME
The	formal	name	of	the	data	structure.

Summary
A	brief	description	of	the	data	structure.

Prototype
An	EBNF-type	declaration	for	the	data	structure..

Example
Sample	data	structure	using	the	prototype.

Description
A	description	of	the	functionality	provided	by	the	data	structure,	including	any	limitations	and	caveats	of
which	the	caller	must	be	aware.

Related	Definitions
The	type	declarations	and	constants	that	are	used	only	by	this	data	structure.

1.5.2	Pseudo-Code	Conventions
Pseudo	code	is	presented	to	describe	algorithms	in	a	more	concise	form.	None	of	the	algorithms	in	this
document	are	intended	to	be	compiled	directly.	The	code	is	presented	at	a	level	corresponding	to	the
surrounding	text.

In	describing	variables,	a	list	is	an	unordered	collection	of	homogeneous	objects.	A	queue	is	an	ordered
list	of	homogeneous	objects.	Unless	otherwise	noted,	the	ordering	is	assumed	to	be	FIFO.

1.5	Conventions	Used	in	this	DocumentEDK	II	Build	Specification

21Revision	1.28



Pseudo	code	is	presented	in	a	C-like	format,	using	C	conventions	where	appropriate.	The	coding	style,
particularly	the	indentation	style,	is	used	for	readability	and	does	not	necessarily	comply	with	an
implementation	of	the	Extensible	Firmware	Specification.

1.5.3	Typographic	Conventions
This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

Bold In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,
a	Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		Bold	Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyper	link.

	$(VAR)	 This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non-underlined		BOLD	Monospace		typeface.	Find	the	first	instance	of	the
name	(in	the	underlined		Bold	Monospace		typeface)	on	the	page	and	click	on	the	word	to	jump	to	the
function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

Typographic
Convention Typographic	convention	description

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a
given	line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

	(range-range)	

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)
indicates	a	single	digit.

"item" Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must
appear	in	the	output	text	file.

1.5	Conventions	Used	in	this	DocumentEDK	II	Build	Specification

22Revision	1.28



	?	 The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

	*	 The	star	character	denotes	zero	or	more	occurrences	of	an	item.

	+	 The	plus	character	denotes	one	or	more	occurrences	of	an	item.

	item{n}	

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be
used.	Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so
01234567	is	valid,	while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	brackets,	preceded	by	a	comma	","indicates
a	maximum	number	of	occurrences	of	the	item.

	item{n,m}	

A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates
that	the	number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,
inclusive.

1.5	Conventions	Used	in	this	DocumentEDK	II	Build	Specification

23Revision	1.28



2	DESIGN	DISCUSSION
This	section	of	the	document	provides	an	overview	to	the	build	process	for	UEFI	and	PI	compliant
modules.	This	includes	existing	EDK	components	and	EDK	II	modules.	EDK	II	build	tools	process	the
following	meta-data	files:

EDK	II	build	configuration	files

EDK	Component	and	EDK	II	Module	(INF)	Files

EDK	Library	(only	used	by	EDK	Components)	INF	Files

EDK	II	Package	Declaration	(DEC)	Files

EDK	II	Platform	Description	(DSC)	Files

EDK	II	Flash	Description	(FDF)	Files

The	meta-data	file	content	is	used	to	generate:

Module	specific	C	files,	both	.c	and	.h	files

PI	compliant	dependency	files

Makefiles	used	by	third	party	compiler	utilities

PCI	Option	ROM	images

UEFI	compliant	image	files

Platform	firmware	images

Platform	update	capsules

Note:	Path	and	Filename	elements	within	the	EDK	II	Meta-Data	files	and	command	line	arguments	are
case-sensitive	in	order	to	support	building	on	UNIX	style	operating	systems.

Note:	The	total	path	and	file	name	length	is	limited	by	the	operating	system	and	third	party	tools.	It	is
recommended	that	for	EDK	II	builds	that	the	project	directories	under	a	subst	drive	in	Windows	(s:/	build
as	an	example)	or	be	located	in	either	the	/opt	directory	or	in	the	user's	/home/username	directory	for
Linux	and	OS/X.This	will	minimize	the	path	lengths	of	filenames	for	the	command-line	tools.

Reference	Implementation
The	EDK	II	build	system	is	a	reference	implementation.	Its	description	starts	with	chapter	EDK	II	Build
Process,	after	discussing	the	design	and	architectural	elements	of	UEFI/PI	compliant	files.

2	Design	DiscussionEDK	II	Build	Specification

24Revision	1.28



2.1	Development	Environments
The	EDK	II	build	environment	must	support	development	workstations	running	Microsoft*	Windows
operating	systems,	Linux	operating	systems	or	Apple\	Mac	OS*/X	operating	systems.	In	addition,	multiple
compiler	tools	chains	such	as	from	Microsoft,	Intel	and	GCC,	must	be	supported.	All	provided	source
code	must	be	POSIX	compliant.	Module	modules	that	will	be	distributed	outside	of	an	organization,	it	is
recommended	that	if	assembly	source	code	is	used,	NASM	files	should	be	created.	For	backward
compatibility,	both	GCC	(GAS)	and	Microsoft	(MASM)	style	files	may	be	provided.	See	the	EDK	II	C	Coding
Standard	for	additional	information.

2.1	Development	EnvironmentsEDK	II	Build	Specification

25Revision	1.28



2.2	UEFI/PI	Firmware	Images
UEFI	and	PI	specifications	define	the	standardized	format	for	EFI	firmware	storage	devices	(FLASH	or
other	non-volatile	storage)	which	are	abstracted	into	"Firmware	Volumes".	Build	systems	must	be
capable	of	processing	files	to	create	the	file	formats	described	by	the	UEFI	and	PI	specifications.	The
tools	provided	as	part	of	the	EDK	II	BaseTools	package	process	files	compiled	by	third	party	tools,	as
well	as	text	and	Unicode	files	in	order	to	create	UEFI	or	PI	compliant	binary	image	files.	In	some
instances,	where	UEFI	or	PI	specifications	do	not	have	an	applicable	input	file	format,	such	as	the	Visual
Forms	Representation	(VFR)	files	used	to	create	PI	compliant	IFR	content,	tools	and	documentation
have	been	provided	that	allows	the	user	to	write	text	files	that	are	processed	into	formats	specified	by
UEFI	or	PI	specifications.

A	Firmware	Volume	(FV)	is	a	file	level	interface	to	firmware	storage.	Multiple	FVs	may	be	present	in	a
single	FLASH	device,	or	a	single	FV	may	span	multiple	FLASH	devices.	An	FV	may	be	produced	to	support
some	other	type	of	storage	entirely,	such	as	a	disk	partition	or	network	device.	For	more	information
consult	the	Platform	Initialization	Specification,	Volume	3.

In	all	cases,	an	FV	is	formatted	with	a	binary	file	system.	The	file	system	used	is	typically	the	Firmware
File	System	(FFS),	but	other	file	systems	may	be	possible	in	some	cases.	Hence,	all	modules	are	stored
as	"files"	in	the	FV.	Some	modules	may	be	"execute	in	place"	(linked	at	a	fixed	address	and	executed
from	the	ROM),	while	others	are	relocated	when	they	are	loaded	into	memory	and	some	modules	may	be
able	to	run	from	ROM	if	memory	is	not	present	(at	the	time	of	the	module	load)	or	run	from	memory	if	it
is	available.

Files	themselves	have	an	internally	defined	binary	format.	This	format	allows	for	implementation	of
security,	compression,	signing,	etc.	Within	this	format,	there	are	one	or	more	"leaf"	images.	A	leaf	image
could	be,	for	example,	a	PE32	image	for	a	DXE	driver.

Therefore,	there	are	several	layers	of	organization	to	a	full	UEFI/PI	firmware	image.	These	layers	are
illustrated	below	in	Figure	1.	Each	transition	between	layers	implies	a	processing	step	that	transforms
or	combines	previously	processed	files	into	the	next	higher	level.	Also	shown	in	Figure	1	are	the
reference	implementation	tools	that	process	the	files	to	move	them	between	the	different	layers.

2.2	UEFI/PI	Firmware	ImagesEDK	II	Build	Specification

26Revision	1.28



Figure	1	UEFI/PI	Firmware	Image	Creation

In	addition	to	creating	images	that	initialize	a	complete	platform,	the	build	process	also	supports
creation	of	stand-alone	UEFI	applications	(including	OS	Loaders)	and	Option	ROM	images	containing
driver	code.	Figure	2,	below,	shows	the	reference	implementation	tools	and	creation	processes	for	both
of	these	image	types.

2.2	UEFI/PI	Firmware	ImagesEDK	II	Build	Specification

27Revision	1.28



Figure	2	EFI	PCI	Expansion	Option	ROM	and	UEFI	Application	Creation

The	final	feature	that	is	supported	by	the	EDK	II	build	process	is	the	creation	of	Binary	Modules	that	can
be	packaged	and	distributed	for	use	by	other	organizations.	Binary	modules	do	not	require	distribution
of	the	source	code.	This	will	permit	vendors	to	distribute	UEFI	images	without	having	to	release
proprietary	source	code.

This	packaging	process	permits	creation	of	an	archive	file	containing	one	or	more	binary	files	that	are
either	Firmware	Image	files	or	higher	(EFI	Section	files,	Firmware	File	system	files,	etc.).	The	build	process
will	permit	inserting	these	binary	files	into	the	appropriate	level	in	the	build	stages.

2.2	UEFI/PI	Firmware	ImagesEDK	II	Build	Specification

28Revision	1.28



2.3	Boot	Sequence
PI	compliant	system	firmware	must	support	the	six	phases:	security	(SEC),	pre-efi	initialization	(PEI),
driver	execution	environment	(DXE),	boot	device	selection	(BDS),	run	time	(RT)	services	and	After	Life
(transition	from	the	OS	back	to	the	firmware)	of	system.	Refer	to	Figure	3	below.

Figure	3	PI	Firmware	Phases

2.3.1	Security	(SEC)
The	Security	(SEC)	phase	is	the	first	phase	in	the	PI	Architecture	and	is	responsible	for	the	following:

Handling	all	platform	restart	events
Creating	a	temporary	memory	store
Serving	as	the	root	of	trust	in	the	system
Passing	handoff	information	to	the	PEI	Foundation

The	security	section	may	contain	modules	with	code	written	in	assembly.	Therefore,	some	EDK	II	module
development	environment	(MDE)	modules	may	contain	assembly	code.	Where	this	occurs,	both	Windows
and	GCC	versions	of	assembly	code	are	provided	in	different	files.

2.3.2	Pre-EFI	Initialization	(PEI)
The	Pre-EFI	Initialization	(PEI)	phase	described	in	the	PI	Architecture	specifications	is	invoked	quite	early
in	the	boot	flow.	Specifically,	after	some	preliminary	processing	in	the	Security	(SEC)	phase,	any	machine
restart	event	will	invoke	the	PEI	phase.

2.3	Boot	SequenceEDK	II	Build	Specification

29Revision	1.28



The	PEI	phase	initially	operates	with	the	platform	in	a	nascent	state,	leveraging	only	on-processor
resources,	such	as	the	processor	cache	as	a	call	stack,	to	dispatch	Pre-EFI	Initialization	Modules
(PEIMs).	These	PEIMs	are	responsible	for	the	following:

Initializing	some	permanent	memory	complement
Describing	the	memory	in	Hand-Off	Blocks	(HOBs)
Describing	the	firmware	volume	locations	in	HOBs
Passing	control	into	the	Driver	Execution	Environment	(DXE)	phase

2.3.3	Drive	Execution	Environment	(DXE)
Prior	to	the	DXE	phase,	the	Pre-EFI	Initialization	(PEI)	phase	is	responsible	for	initializing	permanent
memory	in	the	platform	so	that	the	DXE	phase	can	be	loaded	and	executed.	The	state	of	the	system	at
the	end	of	the	PEI	phase	is	passed	to	the	DXE	phase	through	a	list	of	position	independent	data
structures	called	Hand-Off	Blocks	(HOBs).	HOBs	are	described	in	detail	in	the	Platform	Initialization
Specification.

There	are	several	components	in	the	DXE	phase:

DXE	Foundation
DXE	Dispatcher
A	set	of	DXE	Drivers

2.3.4	Boot	Device	Selection	(BDS)
The	Boot	Device	Selection	(BDS)	phase	is	implemented	as	part	of	the	BDS	Architectural	Protocol.	The
DXE	Foundation	will	hand	control	to	the	BDS	Architectural	Protocol	after	all	of	the	DXE	drivers	whose
dependencies	have	been	satisfied	have	been	loaded	and	executed	by	the	DXE	Dispatcher.	The	BDS
phase	is	responsible	for	the	following:

Initializing	console	devices
Loading	device	drivers
Attempting	to	load	and	execute	boot	selections

2.3.5	Transient	System	Load	(TSL)	and	Runtime	(RT)
The	Transient	System	Load	(TSL)	is	primarily	the	OS	vendor	provided	boot	loader.	Both	the	TSL	and	the
Runtime	Services	(RT)	phases	may	allow	access	to	persistent	content,	via	UEFI	drivers	and	UEFI
applications.	Drivers	in	this	category	include	PCI	Option	ROMs.

2.3.6	After	Life	(AL)
The	After	Life	(AL)	phase	consists	of	persistent	UEFI	drivers	used	for	storing	the	state	of	the	system
during	the	OS	orderly	shutdown,	sleep,	hibernate	or	restart	processes.

2.3	Boot	SequenceEDK	II	Build	Specification

30Revision	1.28



2.4	Typical	Flash	Part	Layout
While	a	flash	part	layout	is	specific	to	a	given	platform,	there	are	some	generalizations	that	apply.	The
SEC	and	PEI	code	is	typically	put	into	a	"RECOVERY"	location,	while	all	remaining	sections	are	put	into
the	"MAIN"	location.	The	MAIN	section	may	be	compressed	for	size	optimization,	provided	the	PEI	or	SEC
code	contains	appropriate	decompression	drivers.	The	PI	specification	defines	only	standard	EFI
compression;	if	other	compression	mechanisms	(or	verification	mechanisms,	such	as	CRC32)	are
required,	then	both	the	tools	for	creating	a	compressed	image	and	a	library	for	decompressing	the
image	must	be	provided.	These	non-standard	compression,	encryption,	signing	or	verification
mechanisms	are	applied	to	a	GUIED	encapsulation	section.	Each	method	needs	a	unique	GUID,	however
the	methods	may	be	applied	to	images	more	than	once	per	FD	image.	This	is	done	in	order	to	facility
recovery	and	updates	(called	capsules).	Other	areas	in	flash	may	be	reserved	for	non-volatile	(NV)	data
storage,	fault	tolerant	working	(FTW)	space	or	vital	product	data	(VPD)	areas.	These	other	regions	are
not	defined	in	the	PI	specification,	and	implementation	is	left	to	the	platform	integrator.	The	reference
design	Nt32	Platform	emulation	environment	contains	a	virtual	flash	device.	The	content	within	this
virtual	FD	is	laid	out	per	Figure	4.

Figure	4	NT32	Flash	Device	Layout

Figure	5	represents	a	typical	IA32/X64	FD	layout,	where	SEC	and	PEI	code	is	located	in	the	FV	Recovery
section,	and	the	remaining	drivers	are	located	in	a	GUIDED	encapsulation	(compressed)	section
designated	as		FVMAIN_Compact	.

2.4	Typical	Flash	Part	LayoutEDK	II	Build	Specification

31Revision	1.28



Figure	5	Typical	IA32/X64	Flash	Device	Layout

Figure	6	represents	a	typical	IPF	FD	layout.

2.4	Typical	Flash	Part	LayoutEDK	II	Build	Specification

32Revision	1.28



Figure	6	Typical	IPF	FD	Layout

All	of	these	layouts	assume	only	one	flash	device,	with	the	virtual	memory	addresses	listed	for	each
section	within	the	FD.

Note:	More	than	one	flash	device	may	be	present	within	a	platform,	so	the	images	may	be	split	over
multiple	devices.

2.4	Typical	Flash	Part	LayoutEDK	II	Build	Specification

33Revision	1.28



2.5	Generic	Build	Process
All	code	starts	out	as	either	C	sources	and	header	files,	assembly	sources	and	header	files,	UCS-2	HII
strings	in	Unicode	files,	Virtual	Forms	Representation	files	or	binary	data	(native	instructions,	such	as
microcode)	files.	Per	the	UEFI	and	PI	specifications,	the	C	and	Assembly	files	must	be	compiled	and
linked	into	PE32/PE32+	images.

While	some	code	is	designed	to	execute	only	from	ROM,	most	UEFI/PI	modules	are	written	to	be
relocate-able.	These	are	written	and	built	different.	For	example,	Execute	In	Place	(XIP)	module	code	is
written	and	compiled	to	run	from	ROM,	while	the	majority	of	the	code	is	written	and	compiled	to	execute
from	memory,	which	requires	that	the	code	be	relocate	able.

Some	modules	may	also	permit	dual	mode,	where	it	will	execute	from	memory	only	if	memory	is	available,
otherwise	it	will	execute	from	ROM.	Additionally,	modules	may	permit	dual	access,	such	as	a	driver	that
contains	both	PEI	and	DXE	implementation	code.	Code	is	assembled	or	compiled,	then	linked	into
PE32/PE32+	images,	the	relocation	section	may	or	may	not	be	stripped	and	an	appropriate	header	will
replace	the	PE32/PE32+	header.	Additional	processing	may	remove	more	non-essential	information,
generating	a	Terse	(TE)	image.

The	binary	executables	are	converted	into	EFI	firmware	file	sections.	Each	module	is	converted	into	an
EFI	Section	consisting	of	an	Section	header	followed	by	the	section	data	(driver	binary).

2.5.1	EFI	SECTION	Files
The	general	section	format	for	sections	less	than	16MB	in	size	is	shown	in	Figure	7.	Figure	8	shows	the
section	format	for	sections	16MB	or	larger	in	size	using	the	extended	length	field.

Figure	7	General	EFI	Section	Format	(<	16MB)

2.5	Generic	Build	ProcessEDK	II	Build	Specification

34Revision	1.28



Figure	8	General	EFI	Section	Format	for	Large	Size	Sections.

Table	2	below	lists	the	different	architecturally	defined	section	types,	refer	to	the	PI	Specification,
Volume	3	for	additional	details.

Table	2	EFI	Section	Types

Name Description

	EFI_SECTION_COMPRESSION	 Encapsulation	section	where	other	sections	are	compressed

	EFI_SECTION_GUID_DEFINED	
Encapsulation	section	where	other	sections	have	a	format	defined
by	a	GUID.

	EFI_SECTION_DISPOSABLE	
Encapsulation	section	used	during	the	build	process	but	not
required	for	execution.

	EFI_SECTION_PE32	 PE32+	Executable	Image

	EFI_SECTION_PIC	 Position-Independent	Code.

	EFI_SECTION_TE	 Terse	Executable	image.

	EFI_SECTION_DXE_DEPEX	 DXE	Dependency	Expression.

	EFI_SECTION_VERSION	 Version,	Text	and	Numeric	(UNICODE)

	EFI_SECTION_SMM_DEPEX	
Leaf	section	type	for	determining	the	dispatch	order	for	an	SMM
driver.

	EFI_SECTION_USER_INTERFACE	 User-Friendly	name	of	the	driver	(UNICODE)

	EFI_SECTION_COMPATIBILITY16	 DOS-style	16-bit	executable.

	EFI_SECTION_FIRMWARE_VOLUME_IMAGE	 PI	Firmware	Volume	Image.

	EFI_SECTION_FREEFORM_SUBTYPE_GUID	 Raw	data	with	GUID	in	header	to	define	format.

	EFI_SECTION_RAW	 Raw	data	(for	example,	a	logo).

	EFI_SECTION_PEI_DEPEX	 PEI	Dependency	Expression.

2.5.2	Firmware	Files
Multiple	EFI	Sections	are	combined	into	a	Firmware	file	(FFS)	which	consists	of	zero	or	more	EFI	sections.
Each	FFS	consists	of	a	FFS	header	plus	the	data.	Figure	9	show	the	basic	FFS	File	layout	and	Figure	10
shows	the	FFS	File	layout	for	files	of	16MB	or	larger.

2.5	Generic	Build	ProcessEDK	II	Build	Specification

35Revision	1.28



Figure	9	Typical	FFS	File	Layout	(<16MB)

2.5	Generic	Build	ProcessEDK	II	Build	Specification

36Revision	1.28



Figure	10	File	Header	2	layout	for	files	larger	than	16Mb

Table	3	lists	the	different	FV	file	types	architecturally	defined	in	the	PI	Specification	describing	the
content	(FFS)	of	the	Firmware	Volume	Data.

Table	3	Defined	FV	File	Types

Name Description Code

	EFI_FV_FILETYPE_RAW	 Binary	data. 0x01

	EFI_FV_FILETYPE_FREEFORM	 Sectioned	Data. 0x02

	EFI_FV_FILETYPE_SECURITY_CORE	 Platform	core	code	used	during	the	SEC	phase. 0x03

	EFI_FV_FILETYPE_PEI_CORE	 PEI	Foundation	code. 0x04

	EFI_FV_FILETYPE_DXE_CORE	 DXE	Foundation	code. 0x05

	EFI_FV_FILETYPE_PEIM	 PEI	Module	(PEIM) 0x06

	EFI_FV_FILETYPE_DRIVER	 DXE	driver. 0x07

	EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER	 Combined	PEIM/DXE	driver 0x08

	EFI_FV_FILETYPE_APPLICATION	 Application 0x09

	EFI_FV_FILETYPE_SMM	
Contains	a	PE32+	image	that	will	be	loaded	into
SMRAM. 0x0A

	EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE	 An	embedded	Firmware	Volume	Image. 0x0B

	EFI_FV_FILETYPE_COMBINED_SMM_DXE	

Contains	PE32+	image	that	will	be	dispatched	by
the	DXE	Dispatcher	and	will	also	be	loaded	into 0x0C

2.5	Generic	Build	ProcessEDK	II	Build	Specification

37Revision	1.28



SMRAM.

	EFI_FV_FILETYPE_SMM_CORE	 SMM	Foundation 0x0D

	EFI_FV_FILETYPE_OEM_*	 OEM	File	Types 0xC0..0xDF

	EFI_FV_FILETYPE_DEBUG_*	 Debug/Test	File	Types 0xE0..0xEF

	EFI_FV_FILETYPE_FFS_*	 Firmware	File	System	Specific	File	Types 0xF0..0xFF

	EFI_FV_FILETYPE_FFS_PAD	 Pad	file	for	FFS. 0xF0

2.5.3	Firmware	Volumes
One	or	more	FFS	files	are	combined	into	a	Firmware	Volume	(FV).	The	format	for	an	FV	is	a	header
followed	by	an	optional	extended	header,	followed	by	zero	or	more	FFS	files.	Figure	11	illustrates	the
layout	of	the	FV.

2.5	Generic	Build	ProcessEDK	II	Build	Specification

38Revision	1.28



2.5	Generic	Build	ProcessEDK	II	Build	Specification

39Revision	1.28



Figure	11	General	FV	Layout

Multiple	FV	files,	each	of	which	is	just	a	logical	firmware	device,	can	be	combined	into	a	single	FD	image.

Within	the	context	of	modules,	error	messages	within	the	code	are	written	in	plain	text	(English	-	ASCII)
while	messages	that	are	displayed	as	part	of	the	menu	system	or	are	stored	for	display	later,	are
written	in	Unicode	(UCS2-LE	encoded)	format.	The	UEFI/PI	specifications	define	the	structure	for	Human
Interface	Infrastructure	(HII)	as	well	as	Visual	Forms	Representation	(VFR).	Vital	Product	Data	(VPD)
areas	are	also	supported.	The	VPD	format	is	unique	to	a	platform	implementation,	and	not	defined	by
any	specification.	The	EDK	II	build	system	does	provide	tools	to	generate	VPD	binary	data	files	and	text
based	map	files	that	show	the	layout	of	the	VPD	PCDs.

2.5.4	Special	Files	-	VTF	&	BSF
The	Volume	Top	File	(VTF)	is	a	file	that	must	be	located	such	that	the	last	byte	of	the	file	is	also	the	last
byte	of	the	firmware	volume.	Regardless	of	the	actual	file	type,	a	VTF	file	must	have	the	file	name	GUID
of		EFI_FFS_VOLUME_TOP_FILE_GUID	.	The	file	name	is	a	GUID,	and		EFI_FFS_VOLUME_TOP_FILE_GUID		is	the	C	define	that	is
used	by	code	and	the	build	system	in	place	of	the	GUID	value.

The	build	system	must	be	aware	of	this	GUID	and	insert	a	pad	file	if	necessary	to	guarantee	the	VTF	is
located	correctly	at	the	top	of	the	firmware	volume.	This	is	also	required	for	update	and	write
operations.

The	Bootstrap	file	is	firmware	file	that	is	aligned	to	the	top	of	the	32-bit	address	space.	It	is	responsible
for	encapsulating	the	reset	vector	for	the	Itanium	processor	family	and	IA-32	It	also	contains	fixed
information,	such	as	the	PEIM	return	link	for	IA-32	and	the	entry	point	to	the	PEI	core.	Also	of	interest,	it
contains	the	base	of	the	boot	FV	to	enable	successive	module	discovery	in	PEI.

2.5.5	EFI_FV_FILETYPE_SECURITY	Notes
The	security	section	is	always	executed	from	ROM.	For	size	optimization,	the	relocation	(	.reloc	)	section
of	security	executables	may	be	stripped.

Security	drivers	run	directly	from	flash	need	to	have	the	BaseAddress	re-based	to	the	location	the	driver
occupies	in	ROM	prior	to	putting	the	driver	into	a	Firmware	Volume	(FV).

2.5.6	EFI_FV_FILETYPE_PEI_CORE	Notes
The	last	step	of	the	security	section	was	to	hand-off	execution	to	the	PEI	foundation,	which	is	typically
executed	in	three	phases,	pre-memory,	during	memory	detection	and	after	memory	is	available.	For	size
optimization,	it	is	recommended	to	have	the	prememory	and	memory	detection	PEI	core	modules	ROM
resident,	to	have	the	PE32+	image	converted	to	a	terse	image,	and	to	have	the	.reloc	section	stripped.
After	memory	is	present,	it	is	recommended	that	the	PEI	Core	modules	be	shadowed	in	memory	to
speed	up	execution.	These	modules	can	also	contain	signing,	decryption	and/or	decompression
routines	to	handle	verification,	uncompressing	or	decrypting	algorithms	for	GUIDED	encapsulation
sections	or	for	compressed	PEIMs	and	any	remaining	FVs	that	contain	the	DXE	Foundation	and	all
drivers	and	applications	that	are	used	in	the	DXE	phase	or	later.	The	decompression	must	always	occur
after	memory	is	available.

The	PEI	Foundation	modules	that	run	directly	from	flash,	need	to	have	the	BaseAddress	re-based	to	the
location	it	occupies	in	ROM,	prior	to	putting	the	driver	into	an	FV.	By	default,	the	EDK	II	build	system	will
strip	the	.reloc	section	of	all	modules.

2.5.7	EFI_FV_FILETYPE_PEIM	Notes
There	are	three	types	of	PEIMs:

2.5	Generic	Build	ProcessEDK	II	Build	Specification

40Revision	1.28



XIP	must	execute	from	ROM,
PEIMs	that	must	be	executed	from	memory	and
PEIMs	that	will	execute	in	from	memory	if	memory	is	available.	If	no	memory	is	available,	then	the
PEIMs	can	execute	from	ROM.

For	PEIMs	executed	only	from	ROM,	it	is	recommended	that	the	image	be	converted	to	a	terse	image,
the		.reloc		section	stripped	for	size	optimization	and	module	cannot	be	compressed	-	the	images	must
be	re-based	to	the	location	in	ROM.

PEIMs	that	execute	from	memory	must	never	have	the	.reloc	section	stripped,	but	may	be	converted	to
terse	images	and	may	be	compressed.

PEIMs	that	are	coded	to	register	for	shadow,	i.e.,	they	may	be	run	from	memory	if	memory	is	present,
must	not	have	the		.reloc		section	stripped.	The	EDK	II	build	system	uses	a	keyword,		SHADOW	,	in	the
module's	INF	file	to	indicate	this	mode,	setting		SHADOW	=	TRUE	.	By	default,	the	EDK	II	build	system	will	strip
the		.reloc		section	of	PEIMs;	PEIMs	must	specify	the		SHADOW	=	TRUE		in	the	module's	INF	file	to	prevent	this.
Additional	flags	in	the	FDF	file,		RELOCS_RETAINED		and		RELOCS_STRIPPED	,	are	provided	to	over-ride	stripping	of
the		.reloc		section.

Like	the	PEI	Foundation,	it	is	recommended	that	PEIMs	that	are	able	to	run	from	memory,	be	shadowed
in	memory	to	speed	up	execution.

Once	the	PEI	Foundation	has	been	loaded,	PEIMs	are	dispatched,	and	if	a	PEIM	is	dependent	on	the
existence	of	another	PEIM,	an		EFI_SECTION_PEI_DEPEX		section	is	used	to	define	the	dependency	relationship.
The	PEI	Foundation	will	use	this	section	(if	present	in	an	FFS)	to	ensure	the	required	PEIMs	are	available
prior	to	dispatch.

2.5.8	EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER	Notes
Dual	function	(PEI/DXE)	drivers	(PEIMs	that	are	coded	to	register	for	shadow)	must	never	have	the
	.reloc		section	stripped.	Additionally,	compression	of	these	modules	may	decrease	the	overall	size	of
the	FD	image	in	hardware.	Using	the	terse	image	format	for	drivers	of	this	type	is	not	permitted	by	the
PI	specification.	For	this	class	of	driver,	one	PEI	and/or	one	DXE	dependency	section	can	be	added	to
the	FFS	file	containing	the	image.

2.5.9	DXE,	BDS,	TLS	and	AL	Notes
Stripping	the		.reloc		section	from	these	modules	and	any	UEFI	applications	is	not	recommended,	but	is
allowed	in	certain	cases.	Additionally,	these	images	cannot	be	converted	to	the	terse	format	-	only
elements	of	the	PEI	Foundation	(PEI	Core)	and	PEIMs	can	be	converted	to	use	the	terse	format
headers.	Compression	of	the	images	is	permitted,	however,	as	most	compression	algorithms	work
better	over	a	larger	data	set,	it	is	recommended	that	the	images	be	combined	into	a	Firmware	Volume,
and	the	entire	FV	can	be	compressed.

The	modules	(after	the	DXE	Foundation	has	been	given	control)	may	have	other	dependent	drivers.
Similar	to	the		EFI_SECTION_PEI_DEPEX		section,	a	dependency		EFI_SECTION_DXE_DEPEX		section	may	be	required.
These	files	are	used	by	the	DXE	foundation	to	ensure	required	drivers	are	available	when	needed.

Another	feature	of	some	of	these	modules,	the	BDS	is	particular,	has	to	do	with	the	Human	Interface
Infrastructure	(HII).	The	HII	uses	internal	forms	representation	(IFR)	coded	files.

2.5	Generic	Build	ProcessEDK	II	Build	Specification

41Revision	1.28



2.6	Creating	EFI	Images

2.6.1	Compiling	Code
EDK	II	modules	include	both	libraries,	drivers	and	applications.	Library	modules	are	compiled	and	linked
as	static	libraries.	Drivers	and	applications	are	compiled	to	object	files,	then	linked	with	the	static
libraries	they	require.	After	the	static	image	has	been	created,	the	resulting	image	is	run	through	the
dynamic	linker	to	generate	the	relocateable	binary	images	(DLL).	All	EFI	images	must	be	formatted
PE32/PE32+/COFF.

Note:	ELF	images	created	by	GCC	on	UNIX-based	systems	need	additional	processing	to	convert	the
image	into	the	PE32+/COFF	format.

Since	UEFI/PI	images	are	not	standard	executables,	these	dynamically	linked	(DLL)	files	must	be
processed	to	become	UEFI/PI	compliant	images.	This	processing	involves	replacing	the	standard	header
with	an	EFI	header	that	reflects	the		EFI_SECTION		type.	Prior	to	creating	the	EFI	section	files,	PEI
Foundation	and	PEIM	images	may	be	processed	into	either	a	terse	image,	or	have	the	.reloc	section
removed	(for	images	that	will	always	execute	directly	from	ROM).

2.6.2	Creating	a	Terse	Image
The	following	is	an	partial	view	of	the	process;	omissions	may	exist.

To	create	a	Terse	image:

1.	 The	DOS,	PE	and/or	optional	headers	must	be	replaced	with	a	minimal	header.	The	TE	header	will
have	a	signature	of	"VZ".	Per	the	PE/COFF	specification,	at	offset	0x3C	in	the	file	is	a	32-bit	offset
(from	the	start	of	the	file)	to	the	PE	signature,	which	always	follows	the	MSDOS	stub.	The	PE
signature	is	immediately	followed	by	the	COFF	file	header.

2.	 After	verifying	the	DOS	header's	magic	number	(0x5A4D),	the	PE	signature	("PE\0\0")is	verified,	then
obtains	the	Machine	type	from	the	optional	header's	subsystem	field.

Since	this	process	removes	bytes	from	the	file,	the	number	of	bytes	stripped	must	be	calculated
based	on	the	location	of	the	PESigOffset	(0x3C)	plus	the	4	bytes	containing	the	offset	pointer
plus	the	size	of	the	Coff	header	plus	the	size	of	any	Optional	Header	(from	the	Coff	header's
	SizeOfOptionalHeader	).

The	number	of	bytes	stripped	must	always	be	less	than	64K	bytes.	The	original	file	size	minus
the	number	of	bytes	stripped	is	then	inserted	into	the	TE	header's	StrippedSize	value.

The	optional	header's	magic	number	is	used	to	determine	whether	the	Optional	Header	data
structure	is	IPF	(	EFI_OPTIONAL_IMAGE_HEADER64	)	or	non-IPF	(	EFI_OPTIONAL_IMAGE_HEADER32	)	.

Using	the	correct	optional	header	format,	the	TE	header's		AddressOfEntryPoint		is	set	to	the
optional	header's		AddressOfEntryPoint	.	Additionally,	the		Subsystem		entry	from	the	optional	header's
	Subsystem		entry	will	be	packed	into	one	byte.

Additional	entries,		BaseOfCode		and		ImageBase		in	the	TE	header	come	from	the	optional	Header.	If
the	optional	header's		NumberOfRvaAndSizes		is	greater	than	0,	then	the	relocation	data	from	the
optional	header		DataDirectory[0].VirtualAddress		and		Size		is	set	based	on	the	content	of	the	optional
header's		DataDirectory[0]		values.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

42Revision	1.28



Likewise,	if	the		NumberOfRvaAndSizes		is	greater	than	1,	then	the	debug	data	from	the	optional
header's		DataDirectory[1].VirtualAddress		and		Size		is	set	in	the	TE	header's		DataDirectory[1]		entry.

3.	 As	a	last	step	before	creating	the	image,	the	COFF	header	specifies	the	value	of	the		NumberOfSections	
in	the	file	which	needs	to	be	packed	into	a	single	byte	of	the	TE	header.	The	number	of	sections
must	be	less	than	255	for	this	to	succeed.

4.	 After	the	header	is	created,	then	the	rest	of	the	original	image	-	all	header	information	stripped	is
appended	to	the	TE	header.

Figure	10	shows	the	relationship	of	original	image	to	the	TE	image.

Figure	12	Standard	Image	to	Terse	Image	Comparison

2.6.3	Removing	.reloc	sections
Removing	the	relocation	section	of	either	a	PE	or	TE	image	can	only	be	done	if	the		.reloc		section	is	at
the	end	of	the	file.	While	most	.reloc	sections	are	fairly	small	in	comparison	to	the	other	sections	of	the
files,	removing	all	of	the	.reloc	sections	in	combination	with	using	Terse	images	for	the	PEI	foundation
and	PEIMs	that	do	not	register	for	shadow	(see	UEFI/PI	specs)	can	shrink	a	platform	image	by	several
hundred	bytes.

For	a	TE	image,	the	file	size	(	StrippedSize	)	is	adjusted	by	subtracting	the	length	of	the		.reloc		section.
The		DataDirectory[0]	VirtualAddress		is	set	to	0,	as	is	the		Size		parameter.

Removing	the	relocation	section	of	a	PE	image	is	slightly	more	complicated.	The	PE32+	image	header
(which	contains	both	the		EFI_IMAGE_DOS_SIGNATURE		-		0x5A4D		and	an		EFI_IMAGE_NT_SIGNATURE		-		0x00004545	)	will	be
modified	by	setting	the		EFI_IMAGE_FILE_HEADER		Characteristics'		EFI_IMAGE_FILE_RELOCS_STRIPPED		bit.	The	IPF	header
uses	a	similar	data	structure	to	IA32,	X64	and	EBC	data	structures.	The	naming	within	the	data
structures	is	consistent.	Therefore,	regardless	of	the	machine	type,	both	the		SizeOfImage		and
	SizeOfInitializedData		are	adjusted	by	subtracting	the	length	of	the		.reloc		section.	If	the		NumberOfRvaAndSizes	

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

43Revision	1.28



is	greater	than	the		EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC	,	then	the		DataDirectory[0]			VirtualAddress		and	the		Size	
are	both	set	to	0.	Finally,	the		.reloc		section's	header	is	modified,	setting	the		Misc.VirtualSize		and
	SizeOfRawData		to	0.

2.6.4	Generating	LEAF	EFI_SECTION	Files
This	section	provides	the	overview	for	generating		EFI	SECTION		files.	EFI_SECTION	headers	must	be	present
on	all	leaf	sections.	The	EFI	Section	header	(see	above)	will	be	prefixed	to	the	file	or	data	section
(	VERSION		and		USER_INTERFACE		data	can	be	generated	"on-the-fly"	rather	than	creating	a	separate	Unicode
file	first).

For	the	files	that	are	PE32	code	(	EFI_SECTION_PE32	,		EFI_SECTION_TE		and		EFI_SECTION_PIC	,	the		.text	,		.debug	,
	.reloc		and		.data		section	headers	(if	they	exist)	are	overwritten	with	the		EFI_IMAGE_SECTION_HEADER	.

The	section	name	(i.e.,	.	text	)	is	copied	into	the		Name		entry,	while	the	remaining	sections	are	set	as
follows:

Hdr->Misc.VirtualSize					=	Size;

Hdr->VirtualAddress							=	Offset;

Hdr->SizeOfRawData								=	Size;

Hdr->PointerToRawData					=	Offset;

Hdr->PointerToRelocations	=	0;

Hdr->PointerToLinenumbers	=	0;

Hdr->NumberOfRelocations		=	0;

Hdr->NumberOfLinenumbers		=	0;

Hdr->Characteristics						=	Flags;

For	a		.text		section,	the		Flags		value	is	a	bit-wise	OR	of		EFI_IMAGE_SCN_CNT_CODE	,		EFI_IMAGE_SCN_MEM_EXECUTE	
and		EFI_IMGE_SCN_MEM_READ		(	0x60000020	).

For	a		.data		section,	the	Flags	value	is	a	bit-wise	OR	of		EFI_IMAGE_SCN_CNT_INITIALIZED_DATA	,
	EFI_IMAGE_SCN_MEM_WRITE		and		EFI_IMAGE_SCN_MEM_READ		(	0xC0000040	).

For	a	.	reloc		section,	the	Flags	value	is	a	bit-wise	OR	of		EFI_IMAGE_SCN_CNT_INITIALIZED_DATA,
EFI_IMAGE_SCN_MEM_DISCARDABLE		and		EFI_IMAGE_SCN_MEM_READ		(	0x42000040	).

For	a	.	debug		section,	the	Flags	value	is	a	bit-wise	OR	of		EFI_IMAGE_SCN_CNT_INITIALIZED_DATA,
EFI_IMAGE_SCN_MEM_DISCARDABLE		and		EFI_IMAGE_SCN_MEM_READ		(	0x42000040	).

Once	these	have	been	modified,	the		EFI_COMMON_SECTION_HEADER		will	be	prefixed	to	the	file.

Each		EFI_COMMON_SECTION_HEADER		"type"	field	defines	the	data	that	follows.	Table	4	lists	the	section	type	value.
All	EFI	section	files	start	with	the		EFI_COMMON_SECTION_HEADER	.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

44Revision	1.28



Figure	13	EFI	Image	Files

Table	4	Basic	EFI	SECTION	Type	Codes

Section	Type Value

	EFI_SECTION_PE32	 0x10

	EFI_SECTION_PIC	 0x11

	EFI_SECTION_TE	 0x12

	EFI_SECTION_VERSION	 0x14

	EFI_SECTION_USER_INTERFACE	 0x15

	EFI_SECTION_COMPATIBILITY16	 0x16

	EFI_SECTION_FIRMWARE_VOLUME_IMAGE	 0x17

	EFI_SECTION_FREEFORM_SUBTYPE_GUID	 0x18

	EFI_SECTION_RAW	 0x19

The	size	for	these	standard	sections	is	defined	as	a	24-bit	unsigned	integer	that	contains	the	total	size
of	the	section	in	bytes,	including	the		EFI_COMMON_SECTION_HEADER	.	For	example,	a	zero-length	section	has	a
	Size		of		4		bytes.

Except	for	the		EFI_SECTION_VERSION		and	the		EFI_SECTION_USER_INTERFACE	,	the	format	of	each	section	is	the
	EFI_COMMON_SECTION_HEADER		prefixed	to	a	file	containing	data.	Refer	to	the	definitions	for		EFI_SECTION_VERSION		and
	EFI_SECTION_USER_INTERFACE		in	the	UEFI	specifications	for	more	information.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

45Revision	1.28



2.6.5	Generating	Encapsulation	EFI_SECTION	Files
This	section	provides	the	overview	for	generating	the	two	Encapsulation		EFI_SECTION		files.	The		EFI_SECTION	
header	must	be	present	along	with	additional	header	information.	The	encapsulation	EFI	Section
header	will	be	prefixed	to	the	file	or	data	section.	There	are	three	encapsulation		EFI_SECTION		types.	The
first	two	types	listed	have	extended	header	information.

Table	5	Encapsulation	EFI	SECTION	Type	Codes

Section	Type Value

	EFI_SECTION_COMPRESSION	 0x01

	EFI_SECTION_GUID_DEFINED	 0x02

	EFI_SECTION_DISPOSABLE	 0x03

A	compression	section	uses	the		EFI_SECTION_COMPRESSION		header,	while	the	GUID	defined	section	uses	an
	EFI_SECTION_GUID_DEFINED		header.

The	size	for	these	sections	is	defined	as	a	24-bit	unsigned	integer	that	contains	the	total	size	of	the
section	in	bytes,	including	the	size	of	the	header.

For	the		EFI_SECTION_COMPRESSION	,	the		CompressionType		field	must	be	set	to	0x01	for	standard	compression,	or
0x00	if	the	image	is	not	compressed.

Note:	In	the	specification,	only		PI_STD		compression	is	supported	for	this	section	type.

For	the		EFI_GUID_DEFINED_SECTION,		which	is	used	for	non-standard	compression	(see	above)	the	named	GUID
that	defines	the	section	follows	the		EFI_COMMON_SECTION_HEADER	.	After	this	GUID	are	two	additional		UINT16	
parameters,	the	first	is	the		DataOffset		which	contains	the	offset	in	bytes	from	the	beginning	of	the
common	header	to	the	first	byte	of	the	data.	An	Attributes	parameter	is	a	bit	field	code	which	declares
specific	characteristics	of	the	section	contents.

These	headers	are	prefixed	to	the	data	files,	which	may	include	the	standard	PE32	headers.

2.6.6	Generating	DEPEX	EFI_SECTION	Files
This	section	provides	the	overview	for	creating	PEI,	DXE	and	SMM	DEPEX	sections.	The	DEPEX	grammar
is	defined	in	the	PI	Specification	Volume	1,	Dependency	Expression	Grammar	chapter,	while	the	OP
codes	for	the	Mnemonic	are	defined	in	Volume	2,	DXE	Dispatcher	chapter.	The	translation	of	the
mnemonic	and/or	GUID	involves	creating	a	binary	file	using	postfix	notation.	The	file	does	not	conform	to
PE32+/COFF,	and	no	header	information	is	attached	prior	to	generating	the		EFI_SECTION		files.	The	format
of	the	binary	data	is	8-bit	aligned,	with	a	single	byte	per	op-code,	with	op-codes	that	require	a	GUID
value	(	BEFORE	,		AFTER		and		PUSH	)	being	followed	by	16	bytes	to	contain	the	GUID	value.	See	Table	6	below.

Table	6	Dependency	Section	Type	Codes

Section	Type Value

	EFI_SECTION_PEI_DEPEX	 0x1B

	EFI_SECTION_DXE_DEPEX	 0x13

	EFI_SECTION_SMM_DEPEX	 0x1C

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

46Revision	1.28



Once	the	binary	file	is	created	an		EFI_SECTION		file	can	be	created,	and	the		EFI_COMMON_SECTION_HEADER		will	be
prefixed	to	the	file.

Figure	14	Depex	File

2.6.7	Generating	Visual	Forms	(IFR	-	HII)	Files
This	section	covers	the	generation	of	the	Human	Interface	Infrastructure	(HII)	format	files	used	for
displaying	information	on	the	console.	While	all	error	messages	from	the	EFI	drivers	are	written	in
English,	displaying	data	on	the	console	-	selection	and	configuration	menus	-	is	performed	using	HII
formats.	This	permits	the	user	to	select	an	alternate	language	for	these	displays.

Strings	intended	for	these	displays	must	be	written	in	Unicode	(UCS-2LE)	format,	rather	than	plain	ASCII
text.	The	Unicode	strings	for	these	forms	must	be	kept	in	separate	files	(.uni	extension),	or	optionally,
within	C	code	(either	.c	source	or	.h	header)	files.	Forms,	strings,	fonts	and	images	are	stored	in	an	HII
database	encoded	to	an	Internal	Forms	Representation	(IFR)	-	with	each	object	and	attribute	a	byte
stream.

All	HII	files	are	included	as	part	of	a	driver	module's	code	-	the	data	that	makes	up	IFR	content	is
compiled	into	standard	object	code	and	linked	in	to	the	driver.

2.6.8	Generating	EFI	FFS	Files
This	section	provides	the	overview	for	generating	an	FFS	file.	Once	the	EFI	Section	files	have	been
created,	they	need	to	be	placed	within	an	FFS	file.	An	FFS	file	contains	an	FFS	header	and	one	or	more
section	files.	The	ordering	of	the	section	files	within	the	FFS	is	not	specified	by	the	PI	specification,	so
sections	may	appear	in	any	order.	The	Name	of	the	FFS	file,	which	is	placed	in	the		FfsFileHeader		data
structure	is	a	GUID	value	with	a	structure	of		UINT64	,		UINT32	,		UINT32	,		UINT8[8]	.

The	alignment	of	data	within	the	FFS	must	match	the	alignment	specified	for	a	given	section,	so
padding	may	be	required	between	the	FFS	header	and	the	section	headers.	Alignment	must	be	set	and
padding	inserted	prior	to	calculating	the	size	or	performing	the	Integrity	check	(checksum	on	the
header	itself	and	all	of	the	section	data).

The	size	of	the	FFS,	in	the		FfsFileHeader.Size		array	is	computed	using	the	size	of	all	files,	including	all	pad
files,	plus	the	size	of	the	header.	The	size	value	must	be	less	than		0x01000000	(16MB).

The		FfsFileHeader.IntegrityCheck.Checksum.Header		is	set	to		0	,	as	are	the		Checksum.File		and		FileHeader.State	,	prior
to	calculating	(and	setting)	the	checksum	of	the	header.	If	the		FFS_ATTRIB_CHECKSUM		bit	is	set	in	the
	FfsFileHeader.Attributes	,	then	the	checksum	for	the	remainder	of	the	FFS	content	must	be	generated	and
placed	in	the		Checksum.File		part	of	the		FfsFileHead.IntegrityCheck		structure.

The		FfsFileHeader.State		is	zeroed,	the		EFI_FILE_HEADER_CONSTRUCTION	,		EFI_FILE_HEADER_VALID		and		EFI_FILE_DATA_VALID	
bits	are	set.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

47Revision	1.28



2.6.8.1	FDF	file
The	build	system	uses	the	FDF	file	to	specify	construction	of	the	FD,	FVs	and	FFS	files,	as	well	as	how	to
construct	the	different	EFI	Sections	(what	content	is	put	into	each	section).	Flags	for	attributes	and
alignment	values	are	specified	in	the	FDF	file.	These	values	are	used	to	set	the	bits	in	FFS	Header.	As
an	example,	if	multiple	sections	are	specified	with	different	alignment	values,	only	the	maximum	value	of
the	alignment	is	used,	and	all	sections	are	aligned	to	that	value.	Additionally,	the	sections	are	placed
into	the	FFS	in	the	order	they	appear	in	the	FDF	or	specified	by	the	Rules	section	of	the	FDF
configuration	file.	Each	driver	is	put	into	an	FFS	of	its	own.	Also,	EDK	II	expects	the	ordering	of	PEIM	and
DXE	FFS	files	to	start	with	an	optional	dependency	section,	followed	by	the	PE32,	user	interface	and
finally	the	version	sections.

2.6.9	APRIORI	Files
At	most,	here	can	be	at	most	one	PEI		APRIORI		and	one	DXE		APRIORI		file	in	a	given	firmware	volume.

The	PEI	file,	named	by	GUID	of		PEI_APRIORI_FILE_NAME_GUID	,	will	specify	the	order	of	invocation	of	PEIMs	by	the
PEI	foundation.	This	is	a	special	file,	of	the	type,		EFI_FV_FILETYPE_FREEFORM		with	a	single		EFI_SECTION_RAW		and
has	the	format:

typedef	struct	{

		EFI_GUID		FileNamesWithinVolume[NumberOfModulesInVolume];

}	PEI_APRIORI_FILE_CONTENTS;

The	DXE	file,	named	by	GUID	of		DXE_APRIORI_FILE_NAME_GUID	,	will	specify	the	dispatch	order	of	drivers	by	the
DXE	foundation.	This	is	a	special	file,	of	the	type		EFI_FV_FILETYPE_FREEFORM		with	a	single		EFI_SECTION_RAW		and
has	the	same	format	as	the		PEI_APRIORI_FILE_CONTENTS	.

2.6.10	Generating	EFI	Firmware	Volume	(FV)	Files
This	section	provides	the	overview	for	generating	an	FV	file,	which	contains	an	FV	header	and	a
sequence	of	FFS	files.	FVs	are	usually	implemented	so	that	the	SEC	and	PEI	Foundation	are	not
compressed,	while	most	PEIMs	are	executed	from	ROM	(see	above).	As	a	result,	these	images	are
typically	placed	in	a	separate	FV,	with	post-PEI	phase	modules	placed	in	one	or	more	FVs	that	are
compressed.	Reference	Section	2.6.11	below.

The	FV	files	are	combinations	of	FFS	files.	For	SEC,	PEI	Foundation	and	most	PEIMs	that	execute	directly
from	ROM,	will	need	to	have	the	BaseAddress	re-based	to	the	location	of	the	driver	in	ROM.	There	are
three	different	types	of	rebase	actions.	The	first	action	is	for	the	initial	Boot	drivers,	while	the	most
common	is	for	execute	in	place	(XIP)	drivers.	Some	Runtime	drivers	may	also	need	to	be	re-based.	As
part	of	the	rebase	these	execute	from	ROM	drivers	may	need	to	be	aligned	to	the	natural	alignment	of
the	machine	architecture	(or	section	alignment).

2.6.10.1	Combining	FFS	files	into	FV	files
The	build	system	uses	the	Flash	Description	File	(FDF)	to	describe	how	to	combine	FFS	files	into	different
FV	files,	as	well	as	the	layout	of	the	FD	files	within	an	FD	description.	Each	FV	definition	within	the	FDF	is
used	to	complete	a	data	structure	for	constructing	the	FV.	The		FvName		in	the		FV_INFO		structure	is	used	to
identify	the	name	of	the	files	that	will	be	created	in	the	FV	directory.

typedef	struct	{

		BOOLEAN																	BaseAddressSet;

		EFI_PHYSICAL_ADDRESS				BaseAddress;

		EFI_GUID																FvFileSystemGuid;

		BOOLEAN																	FvFileSystemGuidSet;

		CHAR8																			FvExtHeaderFile[_MAX_PATH];

		UINTN																			Size;

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

48Revision	1.28



		EFI_FVB_ATTRIBUTES						FvAttributes;

		CHAR8																			FvName[_MAX_PATH];

		EFI_FV_BLOCK_MAP_ENTRY		FvBlocks[MAX_NUMBER_OF_FV_BLOCKS];

		CHAR8																			FvFiles[MAX_NUMBER_OF_FILES_IN_FV][_MAX_PATH];

		UINT32																		SizeOfFvFiles[MAX_NUMBER_OF_FILES_IN_FV];

		BOOLEAN																	IsPiFvImage;

		INT8																				ForceRebase;

}	FV_INFO;

The	FV	file	header	(see		EFI_FIRMWARE_VOLUME_HEADER		definition	in	Section	3)	is	constructed	using	the	following
information.

The	first	16	bytes	(	ZeroVector	)	are	set	to	zero.	The		FvFileSystemGuid		is	assigned	a	PI	Specification	defined
GUID	(	EFI_FIRMWARE_FILE_SYSTEM2_GUID	)	that	identifies	it	as	a	PI	compliant	Firmware	Volume.	The		Signature		is	set
to	"	_FVH	"	and	the	reserved	byte	is	set	to	zero.	The	PI	Specification	defined		Revision		is	set	to		0x02	.

As	FFS	files	are	added	to	the	FV,	the	length	of	the	FFS	is	added	to	the		FvLength		field,	such	that	the	final
	FvLength		is	complete	length	of	the	firmware	volume,	including	the	header	(and	extended	header
information).	Also,	as	an	FFS	file	is	added	to	the	FV,	if	the	driver	executes	from	ROM,	the	base	address
of	the	driver	will	be	adjusted	(re-based)	within	the	FFS	file	to	the	physical	location	in	ROM	(	BaseAddress	+
offset	).

	Attributes		(defined	in	the	FDF	file)	are	set	that	define	the	capabilities	and	power-on	defaults	of	this	FV.
These	come	from	the		FvAttributes		of	the	FV_INFO	data	structure.	The		HeaderLength		is	set	to	size	of	header,
including	the	size	of	the		{0,0}		terminated		BlockMap		data	array.

The		BlockMap		data	array	is	a	mapping	of	the	FFS	files	-	giving	the	length	(in	blocks)	and	block	size	for
each	FFS	file	in	the	FV,	starting	with	the	first	FFS	file.	This	is	an	index	of	the	blocks,	and	does	not	specify
each	FFS	by	name.	If	an	extended	header	is	required,	it	must	be	placed	immediately	following	the
	BlockMap		data	array.	The		ExtHeaderOffset		is	set	to	the	location	of	the	extended	header.	Each	block	will	be
aligned	on	the	largest	value	specified	by	the		EFI_FVB2_ALIGNMENT		attribute.	Note	that	it	is	permissible	to	use
variable	block	length	devices,	and	as	such,	each	block	entry	would	have	the		BlockMap[index].NumBlocks	=	1	,
while	the		BlockMap[index].BlockLength		would	vary	according	to	the	size	of	the	FFS	file	(plus	any	padding	value
needed	to	align	the	next	block	on	a	natural	boundary).

If	the	extended	header	is	not	included,	then	the		ExtHeaderOffset		is	set	to	zero.	If	an	extended	header	is
present,	it	is	followed	by	zero	or	more	variable	length	extension	(	EFI_FIRMWARE_VOLUME_EXT_ENTRY	)	entries.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

49Revision	1.28



Figure	15	Firmware	Volume	Layout

Prior	to	adding	the	last	FFS	file	(as	specified	in	the	FDF	file),	the	FFS	file	must	be	modified	to	comply	with
the	Volume	Top	File	specification.

After	the	last	FFS	file	has	been	added	(so	that	the		FvLength		is	complete),	the		Checksum		field	is	set	to	zero
and	a	checksum	is	calculated	on	the	header	so	that	a	valid	header	will	sum	to	zero	(and	placed	into	the
	Checksum		field).

2.6.11	Implementing	Compression
As	stated	in	earlier	sections,	images	that	are	executed	from	ROM	may	not	be	compressed.	Images	that
contain	.reloc	sections,	or	that	are	executed	post	PEI	phase	may	be	compressed	to	save	space	in	ROM.
For	best	space	savings	and	performance,	an	entire	FV	(containing	all	post	PEI	phase	code)	can	be
compressed,	rather	than	compressing	individual	drivers.	Decompression	routines	take	a	finite	amount
of	time	which	can	be	additive	-	especially	on	copy	commands	-	which	can	result	in	an	unacceptable	boot
speed.	Additionally,	most	compression	algorithms	provide	better	compression	over	larger	data	sets.

The	EDK	II	Build	system	supports	EFI	standard	compression	as	well	as	CRC32	validation	within	the	tools.

For	any	other	form	of	compression,	encoding	or	signing	must	be	through	external	tools.	TianoCompress
and	LZMA	tools	are	provided	with	the	EDK	II	build	system.

The	GUIDED	encapsulation	section	method	is	used	to	control	these	additional	tools.	By	definition
(UEFI/PI	specifications)	a	named	GUID	for	a	GUIDED	encapsulation	section	is	used	to	provide	information
about	how	to	process	the	section.

Assigning	a	GUID	to	a	tool,	such	as	TianoCompress,	in	the		tools_def.txt		file	(refer	to	Section	5)	the
TianoCompress.exe	application	can	be	used	to	compress	an	EFI	image	-	FV,	FFS	and/or	SECTION.	The
following	shows	two	lines	that	are	in	the		tools_def.txt		file	to	identify	the	TianoCompress	tool.

*_MYTOOLS_*_TIANO_PATH	=	TianoCompress.exe

*_MYTOOLS_*_TIANO_GUID	=	A31280AD-481E-41B6-95E8-127F4C984779

2.6.11.1	GUIDED	encapsulation	sections

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

50Revision	1.28



When	the	Build	system	encounters	a	GUIDED	encapsulation	section	in	the	FDF	file,	the	GUID	is	tested
against	GUIDs	registered	in	the		tools_def.txt		file.	If	a	match	is	found,	then	the	executable	tool
associated	in	the	GUID	is	executed	on	the	encapsulated	data	defined	in	the	FDF	file.	Since	the	tool	is
not	present	during	a	system	boot,	any	optional	tool	must	be	able	to	provide	code	that	can	be	used	by
any	decompression,	signing	or	verification	drivers	during	boot.	The	following	shows	the	use	of	the
	TianoCompress		GUID	in	a	sample	FDF	file	for	an	FVMAIN	image	that	contains	all	post-PEI	modules.

FILE	FV_IMAGE	=	E76CB2EC-A71A-42e8-8F34-56237870BD12	DEBUG_MYTOOLS_IPF	{

		SECTION	GUIDED	A31280AD-481E-41B6-95E8-127F4C984779	{

				SECTION	FV_IMAGE	=	FVMAIN

		}

}

In	the	example	above,	the	first	GUID	(starting	with		E76CB2EC	)	is	the	EFI	Name	for	the	firmware	volume,
while	the	second	(following	the		SECTION	GUIDED		statement)	identifies	the	tool	(TianoCompress.exe)	that
will	be	used	on	the	FV	section	specified	within	the	curly	brackets	after	the	GUID.

The	EDK	II	build	system	requires	that	all	such	tools	take	a	minimum	of	three	options	on	the	command
line.	The	-e	option	specifies	that	the	tool	will	encrypt,	compress,	encode	or	sign	the	file	specified	on	the
command	line.	The	-o	option	specifies	the	name	of	the	output	file	to	be	created	when	using	the	-e
option.	A	third	option,	-d,	is	used	to	decrypt,	decompress,	decode	or	verify	the	file	specified	on	the
command	line.

Note:	Additional	options	may	be	included	with	the	tool,	however,	the	build	system	only	requires	these
three	options.

2.6.12	Implementing	Encryption	or	Signing
The	same	techniques	used	for	implementing	custom	compression	can	be	used	for	tools	that	are	used
for	signing	or	encrypting	an	image.

2.6.13	Generating	an	FD	image	file
This	section	provides	the	overview	for	generating	a	platform	flash	file.	When	generating	the	FD	file,	the
flash	device	is	assumed	to	be	"partitioned"	into	different	areas,	with	the	content	of	each	added	in
sequence	(with	zero	filled	padding	of	any	partial	blocks	to	the	next	specified	offset).

2.6.13.1	Data	structures
The	EDK	II	build	system	will	create	an	FD	file	in	the	FV	output	directory,	and	using	the	information	in	the
FDF	file,	will	add	all	FV	files,	as	well	as	any	data	structures	that	are	specified	in	the	FDF	file.	Each	FV	will
be	added	to	the	FD	file	in	the	order	specified	by	the		[FD]		section	at	the	location	specified.	Data
structures	in	the	FDF	are	typically	used	to	initialize	the	data	area	for	use	by	EFI	drivers,	and	as	such,
may	require	an	FV	header	to	identify	the	region	(such	as	NV	storage)	in	Flash.

2.6.14	Generating	Applications
This	section	provides	an	overview	to	generating	UEFI	applications	which	may	or	may	not	be	resident	in	a
flash	device.	Applications	fall	into	three	different	types,	applications	that	execute	from	within	a	flash
image,	applications	that	execute	from	the	EFI	Shell	and	applications	that	execute	from	an	Operating
System	(accessing	UEFI	runtime	services	or	need	to	access	UEFI	System	Table	fields).	The	build	only

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

51Revision	1.28



provides	support	for	UEFI	applications	that	execute	from	within	the	flash	image	and	applications	that
execute	from	the	EFI	Shell.	These	statically	linked	applications	cannot	make	use	of	OS	standard	libraries
or	headers.

Applications	that	are	executed	within	the	flash	image	must	be	stored	in	an	FFS	file,	along	with	the
optional	version	and	user	interface	sections.	These	applications	are	installed	as	part	of	the	standard
shell	commands.	The	only	way	to	execute	a	command	that	is	executed	within	the	flash	image	is	to	install
it	along	with	the	shell	commands.	Otherwise,	they	cannot	be	executed.

Applications	that	execute	from	the	EFI	shell	are	PE32/COFF	applications	that	have	a	modified	header,
and	do	not	need	to	be	placed	within	an	FFS	file.	The	.efi	file	generated	by	the	$(MAKE)	stage	is	capable
of	being	executed	from	the	shell	command	prompt.

2.6.15	Generating	an	Option	ROM	file
This	section	provides	the	overview	for	generating	an	external	PCI	Option	ROM,	where	the	driver	is	on	a
PCI	add-in	card.	PCI	devices	that	are	laid	down	on	a	platform	board,	rather	than	on	an	add-in	card
(Ethernet,	Video,	Audio,	etc.	devices),	will	most	likely	have	the	driver	resident	in	an	FFS/FV/FD	with	the
device	vendor	providing	the	driver	code	to	the	board	vendor.	A	PCI	Option	ROM	is	typically	discovered
during	system	initialization,	and	the	driver	will	be	dispatched	by	the	DXE	Foundation.	PCI	Option	ROM
drivers	are	constructed	from	either	EFI	files	or	Binary	files	or	a	combination	of	both.

Most	EFI	implementations	of	PCI	Option	ROMs	can	use	EFI	compression	for	the	driver,	so	that	the	ROM
image	fits	into	a	smaller	size	device	on	the	PCI	add-in	card.	These	drivers	can	use	NV	storage	space	in
the	primary	on-board	flash	device,	provided	they	register	the	system	table	data.	If	the	driver	is
compressed,	the	size	of	the	compressed	file	must	be	an	even	multiple	of	512	bytes.

Note:	The	maximum	size	for	the	driver	code	is	16MB,	so	drivers	that	are	larger	than	16MB	must	be
compressed.

The	EFI	file	(PE32+	with	modifications	to	the	.data,	.text,	.reloc	and	.debug	sections	-	see	Generating
Leaf		EFI_SECTION		Files	above)	will	have	an		EFI_PCI_EXPANSION_ROM_HEADER		prefixed	to	the	EFI	file	(aligned	on	a	4-
byte	boundary).	The	header	structure	is	defined	in	the	PCI	industry	standard	specification,	and	is	shown
below.

typedef	struct	{

		UINT16		Signature;

		UINT16		InitializationSize;

		UINT32		EfiSignature;

		UINT16		EfiSubsystem;

		UINT16		EfiMachineType;

		UINT16		CompressionType;

		UINT8			Reserved[8];

		UINT16		EfiImageHeaderOffset;

		UINT16		PcirOffset;

}	EFI_PCI_EXPANSION_ROM_HEADER;

The		Signature		value	of	the	PCI	3.0	version	header	is	defined	as		0xAA55	,	and	the		EfiSignature		is	defined	as
	0x0EF1	.	The		InitializationSize		is	the	number	of	512-byte	blocks	of	the	driver	image	plus	the	size	of	this
header.	The		EfiSubsystem		is	set	to	the	value	of	PE32	Optional	Header's	Subsystem	value,	while	the
	EfiMachineType		is	set	to	the		EFI_IMAGE_FILE_HEADER	's	Machine	Type.	The		CompressionType		field	is	set	to	either
	0x0000		for	no	compression,	or		0x0001		for	standard	EFI	compression	-	no	other	compression	types	are
permitted.	The	reserved	bits	are	typically	set	to	0	However	they	may	be	used.	The		EfiImageHeaderOffset		is
set	to	the	size	of	this	header,	while	the		PcirOffset		is	the	offset	to	the	EFI	header,	(the	Option	ROM
header	size	plus	any	padding	bytes	to	align	the	driver	on	its	natural	alignment	boundary).	Additionally,

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

52Revision	1.28



the	PCI	Data	Structure	(PCI	3.0	compliant	is	the	default)	is	also	inserted.	The	Vendor	ID	and	Device	ID
are	inserted	into	the	PCI	Data	Structure.	The		ClassCode		and		CodeRevision		are	determined	from	the	input
file	header	information,	while	the		ImageLength		field	is	set	to	the	Option	ROM	Header's	InitializationSize
field.	All	other	fields	are	currently	set	to	0	by	the	reference	implementation's	EfiRom	tool.

PCI	device	Expansion	ROMs	may	contain	code	for	multiple	processor	architectures.	This	may	be
implemented	in	a	single	physical	ROM	image,	which	can	contain	as	many	code	images	as	desired	for
different	system	and	processor	architectures,	Figure	16,	below.

Figure	16	EFI	PCI	Expansion	Option	ROM	layout

Each	image	must	start	on	a	512-byte	boundary	and	must	contain	the	PCI	Expansion	ROM	header.	The
starting	point	of	each	image	depends	on	the	size	of	previous	images.

The	last	image	in	a	ROM	has	a	special	encoding	in	the	header	to	identify	it	as	the	last	image	(PCI
Firmware	Specification,	Revision	3.0).

Legacy	Option	ROM	images	must	be	the	first	image	in	the	ROM	image.	The	following	is	a	list	of	the	image
combinations	that	may	be	placed	in	a	PCI	option	ROM.	This	is	not	an	exhaustive	list.	Instead,	it	provides
what	will	likely	be	the	most	common	PCI	option	ROM	layouts.	EFI	complaint	system	firmware	must	work
with	all	of	these	PCI	option	ROM	layouts,	plus	any	other	layouts	that	are	possible	within	the	PCI
Specification.	The	format	of	a	Legacy	Option	ROM	image	is	defined	in	the	PCI	Specification.

Legacy	Option	ROM	image

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

53Revision	1.28



Legacy	Option	ROM	image	+	IA-32	EFI	driver
Legacy	Option	ROM	image	+	Itanium	Processor	Family	EFI	driver
Legacy	Option	ROM	image	+	IA-32	EFI	driver	+	Itanium	Processor	Family	EFI	driver
Legacy	Option	ROM	image	+	IA-32	EFI	driver	+	x64	EFI	driver
Legacy	Option	ROM	image	+	EBC	Driver
IA-32	UEFI	driver
Itanium	Processor	Family	EFI	driver
IA-32	UEFI	driver	+	Itanium	Processor	Family	EFI	driver
EBC	Driver

It	is	also	possible	to	place	an	application	in	a	PCI	Option	ROM.	The	exact	mechanism	by	which
applications	can	be	loaded	and	executed	from	a	PCI	Option	ROM	is	outside	the	scope	of	this	document.

2.6.15.1	Binary	Option	ROM	code
Pre-existing	Binary	Option	ROM	code	can	also	be	provided	by	hardware	vendors.	These	images	are
verified	to	be	of	the	correct	format	and	length.	If	the	length	of	the	provided	image	is	not	an	exact	512-
byte	multiple,	padding	bytes	are	added	to	ensure	the	image	is	an	exact	multiple	of	512	bytes.	If	this
occurs,	a	new	checksum	is	calculated	and	replaces	an	existing	checksum	value.

2.6.16	Generating	Capsule	Update	Files
This	section	provides	the	overview	for	generating	Capsule	files.	Capsules	are	formatted	variable	length
data	structures	that	are	passed	from	runtime	back	to	the	pre	boot	phases	(PEI,	DXE,	BDS).	They	are
intended	to	be	the	major	vehicle	for	delivering	firmware	volume	changes.	Capsules	are	constructed	with
a	capsule	header	and	the	capsule	volume.	Content	within	the	capsule	volume	usually	includes	a
Firmware	Volume	as	well	as	a	Configuration	Results	(CR)	file.	The	CR	file	is	a	string	of	Internal	Forms
Representation	(IFR)	name,	value	pairs	as	defined	by	the	Human	Interface	Infrastructure	(HII).

After	identifying	and	creating	the	Firmware	Volume	that	will	be	included	in	the	capsule,	the	capsule
header	will	be	constructed.	The	header	is	constructed	as	follows.

The		CapsuleGuid		defines	the	format	of	the	capsule	data	-	including	any	optional	header	information.	The
format	for	a	capsule	is	shown	in	Figure	15.

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

54Revision	1.28



Figure	17	EFI	Capsule	Layout

2.6.16.1	Capsule	generation	and	content

The	EDK	II	build	system	provides	functionality	to	generate	capsules.	The	capsule	data	content	is	defined
in	the	FDF	file	for	a	given	platform

2.6	Creating	EFI	ImagesEDK	II	Build	Specification

55Revision	1.28



2.7	SKU	Support
The	EDK	II	build	system	provides	the	capability	of	supporting	multiple	SKUs	in	a	single	firmware	image.
SKU	selection	is	a	runtime	option	that	can	be	set	from	a	platform	driver.	The	build	system	also	supports
building	a	specific	SKU.

The	SKU	enabled	PCD	sections	(defined	by	a	PCD	section	tag	in	the	DSC	file	that	contains	a	SKUID
modifier	that	is	not	DEFAULT)	are	a	sparsely	populated	set	of	configuration	settings.	The	platform
developer	may	specify	one	or	more	PCDs	that	will	have	different	values	than	the	PCD	values	specified	by
the	default	SKU.	Additional	PCDs	not	listed	in	a	default	PCD	section	may	also	be	specified	under	a
section	with	a	SKUID	modifier.

During	runtime,	the	PCD	drivers	will	automatically	return	a	default	SKU	value	if	no	specific	SKU	value	was
specified	after	a	platform	driver	calls	SetSku().	The	configuration	elements,	PCDs,	must	be	accessed
using	either	Dynamic	or	DynamicEx	PCD	access	methods.	When	building	and	image	that	supports
multiple	SKUs,	the	Feature	Flag,	Fixed	At	Build	and	Patchable	In	Module	PCDs	will	only	use	the	default
SKU	configuration	settings.	The	default	configuration	settings	are	identified	by	PCD	section	tags	that
have	either	a	Default	SKUID	modifier	or	have	not	SKUID	modifier.	The	set	of	SKUs	that	can	be	included	is
configurable	either	through	setting	the	list	in	the	DSC	file		[Defines]		section's		SKU_IDENTIFIER		element	or
through	setting	one	or	more	-x	SKUID	command-line	options	to	the	build	command.

When	building	a	single	SKU,	it	is	possible	to	use	SKU	specific	Feature	Flag,	Fixed	At	Build	and	Patchable
In	Module	configuration	elements	along	with	the	Dynamic	and	DynamicEx	PCD	for	the	specific	SKU.	The
build	tools	will	automatically	adjust	the	SKU	specific	Dynamic	and	DynamicEx	PCD	values	overriding	the
default	values.	This	is	equivalent	of	running	SetSku	immediately	on	reset.

Note:	If	there	are	no	PcdsDynamic	or	PcdsDynamicEx	section	tags	that	use	a	SkuId	modifier,	then	only
the	DEFAULT	values	will	be	placed	into	the	PCD	Database.	The	platform	drivers	must	not	call	SetSku()	for
this	single	SKU,	as	the	'DEFAULT'	SKU	will	be	the	only	SKU	available	when	built	by	this	method.

The	following	examples	show	the	three	types	of	builds.

DEFAULT	SKUID	Build	One	or	more	SKUID	|	SKUIDENTIFIER	entries	may	appear	in	the	DSC	file's	[SkuIds]
section	as	in	the	following	example:

[SkuIds]

		0	|	DEFAULT

		1	|	ScsiSku

		2	|	SataSku

		3	|	iScsiSku

Only	the		DEFAULT		SKU	will	be	built	as	identified	by	a	single	entry	in	the		SKU_IDENTIFIER		in	the	DSC	file's
	[Defines]		section	as	in	the	following	example:

	SKU_IDENTIFIER	=	DEFAULT	

The	user	is	not	required	to	specify:

	-x	DEFAULT	

FeatureFlag,	PatchableInModule	and	FixedAtBuild	PCD	values	from	the	values	in	the	default	PCD
sections.

2.7	SKU	SupportEDK	II	Build	Specification

56Revision	1.28



Dynamic	and	DynamicEx	PCD	values	from	the	default	PCD	sections	(sections	that	do	not	contain	a	SkuId
modifier	in	the	section	tag	or	that	contain	a	SkuId	modifier	of	DEFAULT)	must	be	used.	These	values	will
then	be	placed	in	the	DEFAULT	table	of	the	PCD	Database.

WARNING:	The	platform	drivers	must	not	call	SetSku()	for	this	single	SKU,	as	the	'DEFAULT'	SKU	will	be
the	only	SKU	available	when	built	by	this	method.

Single	SKUID	Build	This	method	is	useful	for	debugging	as	well	as	for	size-optimization.

More	than	one		SKUID	|	SKUIDENTIFIER		entry	must	appear	in	the	DSC	file's		[SkuIds]		section	as	in	the	following
example:

[SkuIds]

		0	|	DEFAULT

		1	|	ScsiSku

		2	|	SataSku

		3	|	iScsiSku

Only	one	of	the	possible	SKUs	will	be	built	as	identified	by	a	single	entry	in	the		SKU_IDENTIFIER		in	the	DSC
file's		[Defines]		section	as	in	the	following	example:

	SKU_IDENTIFIER	=	ScsiSku	

Note:	A		SKU_IDENTIFIER	=	DEFAULT	|	ScsiSku		must	be	treated	by	tools	as	exactly	the	same	as	if	just
	SKU_IDENTIFIER	=	ScsiSku		had	been	specified.

If	the	users	specifies	the	following	option	on	the	build	command-line,	only	SataSku	SKUID	will	be
included:

	-x	SataSku	

The		-x	SKUIDENTIFIER		command-line	option	overrides	the		SKU_IDENTIFIER		statement	in	the		[Defines]		section.

FeatureFlag,	PatchableInModule	and	FixedAtBuild	PCD	values	from	the	PCD	section	that	contains	the
matching	SKUID	modifier	will	override	the	values	in	the	default	PCD	sections.

Dynamic	and	DynamicEx	PCD	values	from	PCD	sections	that	contain	the	matching	SKUID	modifier	will
override	the	values	from	the	default	PCD	section.	These	values	will	then	be	placed	in	the	DEFAULT	table
of	the	PCD	Database.	This	is	equivalent	of	executing	a	SetSku()	immediately	on	reset/power-on.

WARNING:	The	platform	drivers	must	not	call	SetSku()	for	this	single	SKU	build,	as	the	'DEFAULT'	SKU	will
be	the	only	SKU	available	when	built	by	this	method.

Multiple	SKUID	Build	The	DEFAULT	SKU	is	always	included	in	a	multi-SKU	platform	build	as	these	are
the	default	values	returned	by	PcdGet	statements	until	such	time	as	a	platform	driver	executes	a
SetSku()	call.

More	than	two		SKUID	|	SKUIDENTIFIER		entries	must	appear	in	the	DSC	file's		[SkuIds]		section	as	in	the
following	example:

[SkuIds]

2.7	SKU	SupportEDK	II	Build	Specification

57Revision	1.28



		0	|	DEFAULT

		1	|	ScsiSku

		2	|	SataSku

		3	|	iScsiSku

Only	two	of	the	possible	SKUs	will	be	built	as	identified	by	a	list	of		SKU_IDENTIFIER		in	the	DSC	file's		[Defines]	
section	as	in	the	following	example:

	SKU_IDENTIFIER	=	ScsiSku	|	SataSku	

Note:	A		SKU_IDENTIFIER	=	DEFAULT	|	ScsiSku	|	SataSku		must	be	treated	by	tools	as	exactly	the	same	as	if	this
	SKU_IDENTIFIER	=	ScsiSku	|	SataSku		statement	had	been	specified.

If	the	users	specifies	the	following	options	on	the	build	command-line,	all	of	the	SKUIDs	will	be	included
(DEFAULT	is	always	included):

	-x	ScsiSku	-x	SataSku	-x	iScsiSku	

FeatureFlag,	PatchableInModule	and	FixedAtBuild	PCD	values	must	come	from	the	default	PCD	sections;
PCD	sections	for	these	access	types	that	have	a	SKUID	modifier	must	be	ignored	by	the	Build	Tools.	If	a
PCD	listed	in	a	PCD	section	with	a	SKUID	modifier	is	NOT	listed	in	the	default	PCD	section,	the	PCD
cannot	be	used	by	any	module	included	in	the	build.

Dynamic	and	DynamicEx	PCD	values	from	the	DEFAULT	SKU	as	well	as	values	from	the	specified	SKUs	will
be	put	into	tables	in	the	PCD	Database.	Prior	to	a	platform	driver	is	calling	SetSku(),	drivers	accessing
the	PCD	database	will	get	values	from	the	DEFAULT	SKU.	Once	a	platform	driver	calls	SetSku(),	the	values
for	the	specific	SKU	will	be	returned	(unless	there	is	no	entry	for	the	PCD	in	the	specific	SKU	table,	in
which	case,	the	value	will	come	from	the	DEFAULT	SKU	table).

2.7	SKU	SupportEDK	II	Build	Specification

58Revision	1.28



3	UEFI	AND	PI	IMAGE	SPECIFICATION
See	the	Microsoft	Portable	Executable	and	Common	Object	File	Format	Specification	for	information	on
PE/COFF	images.

The	Platform	Initialization	Specification,	Volume	1	defines	the	data	structure	for	terse	executables.

The	Platform	Initialization	Specification,	Volume	3	defines	the	data	structures	for	UEFI/	PI	images.

The	build	tools	are	required	to	support	IFR	op-codes	defined	in	the	UEFI	specifications.	The	EDK	II
implementation	for	Visual	Forms	Representation	(VFR)	syntax	is	documented	in	the	VFR	specification
available	from	the	TianoCore	EDK	II	web-site,	under	EDK	II	Specifications.

3	UEFI	and	PI	Image	SpecificationEDK	II	Build	Specification

59Revision	1.28



4	EDK	II	BUILD	PROCESS	OVERVIEW
The	EDK	II	build	system	is	used	to	process	EDK	II	meta-data	files,	EDK	II	source	and/or	binary	files	and
some	legacy	EDK	components	and	libraries.	The	code-base	for	EDK	II	content	can	be	obtained	from
various	sources	or	various	distribution	methods.	The	EDK	II	build	system	provides	the	UEFI	Distribution
Packaging	Tool	(UEFIPT)	that	can	be	used	to	create,	install	or	remove	UEFI	distribution	packages.	The
UEFI	distribution	package	format	does	not	depend	on	any	specific	build	system.	However,	the	UEFIPT
must	be	used	within	the	context	of	the	EDK	II	build	system.

The	EDK	II	EdkCompatibilityPkg	in	the	EDK	II	source	tree	provides	backward	compatibility	for	existing	EDK
components	and	platforms;	using	EDK	processes	and	tools	will	not	be	described	in	this	document.
Some	EDK	components	may	be	built	using	the	EDK	II	build	tools,	where	those	components	are	included
in	an	EDK	II	platform	file.	The	exact	list	of	EDK	components,	or	the	compatible	component	types	are	not
provided	here	-	other	EDK	II	documentation	contains	information	on	using	EDK	components	with	EDK	II.

4	EDK	II	Build	Process	OverviewEDK	II	Build	Specification

60Revision	1.28



4.1	EDK	II	Build	System
EDK	II	build	system	produces	binary	images	that	conform	to	UEFI	and	PI	specification	file	formats.	In
some	cases,	the	tools	have	been	extended	to	follow	the	Intel	Innovation	Framework	for	EFI
Specifications.	Some	binary	content	may	also	follow	other	industry	standard	specifications,	such	as	ACPI
and	PCI	specifications.

While	the	build	system	may	seem	complex,	it	was	designed	to	be	extremely	flexible.

The	original	build	system	worked	on	files	within	a	development		WORKSPACE	.	All	content	for	the	build	had	to
be	located	within	the		WORKSPACE		directory	tree.

The	build	system	has	been	updated	to	allow	the	setting	of	multiple	paths	that	will	be	searched	when
attempting	to	resolve	the	location	of	EDK	II	packages.	This	new	feature	allows	for	more	flexibility	when
designing	a	tree	layout	or	combining	sources	from	different	sources.	The	new	functionality	is	enabled
through	the	addition	of	a	new	environment	variable:		PACKAGES_PATH	.

The		PACKAGES_PATH		variable	is	an	ordered	list	of	additional	search	paths	using	the	default	path	separator
of	the	host	OS	between	each	entry	(	";"	on	Windows,	":"	on	Linux	and	OS/X).	The	path	specified	by	the
	WORKSPACE		variable	always	has	the	highest	search	priority	over	any		PACKAGE_PATH		entries.	The	first	path	(left
to	right)	in	the		PACKAGES_PATH		list	has	the	highest	priority	and	the	last	path	has	the	lowest	priority.

As	soon	as	a	match	has	been	found	the	build	tools	will	stop	searching.

The	output	of	the	build	system	may	be	located	outside	of	the	development	workspace.	The		WORKSPACE	,
	PACKAGES_PATH		and		EDK_TOOLS_BIN		system	environment	variables	contain	directory	paths	that	must	never
contain	space	characters	even	though	they	are	permitted	by	the	operating	system.

The	build	system	works	in	the	context	of	a	platform,	using	the	Platform	Description	(DSC)	file	to	define
what	will	get	built.	When	building	a	single	driver,	or	an	application,	the	DSC	file	is	used	to	define	what	will
be	built,	along	with	the	libraries,	configuration	settings	and	custom	build	flags.

All	ASCII	source	files	(see	Table	14)	in	the	EDK	II	code	base	must	use	the	DOS	CRLF	character	sequence
for	the	end-of-line	terminator	except	those	that	are	strictly	for	GCC,	such	as	assembly	files	that	are	only
to	be	processed	by	*NIX	tools	that	use	an	extension	of	".s"	(lower	case).	Unicode	files	use	the	UCS-2
character	set.

The	Base	Tools	ASCII	source	files	(C	and	Python)	must	use	the	DOS	CRLF	character	sequence	for	the
end-of-line	terminator	as	well	as	the	DOS	batch	files	with	an	extension	of		.bat	.	The	*NIX	shell	scripts
identified	by	an	extension	of	.sh	as	well	as	the	scripts	in		BaseTools/BinWrappers/PosixLike		and	the
	BaseTools/Bin/CYGWIN_NT-5.1-i686		directories	must	always	use	the	Linux	LF	character	for	the	end-of-line
terminator.	Apple's	Mac*	OS/X	operating	system	correctly	translates	the	Linux	LF	character	into	the
native	CR	character	for	the	end-of-line	terminator.

4.1.1	Development	Environments
The	EDK	II	development	environments	include	Windows*,	Linux*	and	OS/X*	development	workstations.
Development	workstations	must	be	running	an	IA32	or	X64	operating	system.	Intel(R)	Itanium	Processor
Family	workstations	are	not	supported.

The	new	build	tools	allow	directories	containing	EDK	II	packages	to	be	located	anywhere	on	a
developer's	workstation.	The	recommended	method	for	setting	up	a	development	structure	on	a
Windows	workstation	is	create	a	directory	in	the	root	of	a	drive:

mkdir	C:\Work

cd	C:\Work

set	WORKSPACE=%CD%

4.1	EDK	II	Build	SystemEDK	II	Build	Specification

61Revision	1.28



The		edk2		directory	can	then	be	placed	in	this	directory	and	additional	directories	for	platforms	and	tools
should	be	placed	in	the	top	level	directory	as	well:

C:\Work\edk2

C:\Work\MyPlatform

C:\Work\edk2-BaseTools-win32

set	PACKAGES_PATH=C:\Work\edk2;C:\Work\MyPlatform

set	EDK_TOOLS_BIN=C:\Work\edk2-BaseTools-win32

In	order	to	complete	the	setup:

C:\Work>	mkdir	Conf

C:\Work>	edk2\edksetup.bat

After	running	this	command,	the	configuration	files,		target.txt	,		tools_def.txt		and		build_rule.txt		will	be
placed	in	the		C:\Work\Conf		directory.

The	EDK	II	Build	output	directory	is	typically	created	in	the		WORKSPACE		directory	(based	on	configuration
set	in	the	DSC	files).	After	executing	a	build.exe	command,	the		C:\Work\Build		directory	will	be	created.

When	using	this	feature,	remember	the	system	environment	variables,		WORKSPACE	,		PACKAGES_PATH		and
	EDK_TOOLS_BIN		must	be	set	before	running	the		edksetup.bat		script.

4.1.2	Supported	Development	Tools
The	list	of	validated	Third-Party	Compiler	Tool	chains	that	can	be	used	with	the	EDK	II	build	system	is
documented	in	the		tools_def.template		file	in	the	EDK	II	source	tree's		BaseTools/Conf		directory.

Install	the	tool	chains	for	compilers	and/or	additional	tools	prior	to	building	any	image.

4.1.3	Build	Process	Restrictions
The	build	process	for	all	development	environments	must	be	identical,	with	the	caveat	that	only
applicable	EDK	II	Packages	need	compile	for	any	given	operating	system.

Note:	All	EDK	II	content	is	built	in	the	context	of	a	Platform,	using	a	Platform	Description	(DSC)	file	to
describe	what	needs	to	be	built,	as	well	as	any	customization	needed	for	a	build.	The	DSC	file	is
required	even	though	the	target	may	be	only	an	application,	a	PCI	Option	ROM	or	a	binary	UEFI	driver.

System	Environment	Variables	will	not	be	overridden	by	tools.	System	Environment	Variable	names
cannot	be	overloaded	-	only	the	value	of	the	System	Environment	Variable	will	be	used.

There	is	no	restriction	on	the	location	of	the		EDK_TOOLS_PATH	,	it	may	be	located	within	a	directory	identified
as	the		WORKSPACE		directory,	or	in	any	other	location	that	is	accessible	on	the	development	workstation.

When	using	multi-directory	feature,	the	system	environment	variables,		WORKSPACE	,		PACKAGES_PATH		and
	EDK_TOOLS_BIN		must	be	set	before	running	the		edksetup.bat		script.

4.1	EDK	II	Build	SystemEDK	II	Build	Specification

62Revision	1.28



4.2	Build	Process	Overview
Prior	to	executing	a	build	command,	specific	system	environment	variables	must	be	initialized:		WORKSPACE	,
	EDK_TOOLS_PATH		are	required	for	all	builds,	while		ECP_SOURCE	,		EFI_SOURCE		and		EDK_SOURCE		are	only	required	to
build	EDK	II	platforms	that	contain	EDK	components	and	EDK	libraries.	Additionally,	the	provided	EDK	II
tool	set	must	be	present	in	a	directory	that	is	in	the	system	environment	variable:	PATH.	The	edksetup
scripts	provided	in	the	root	directory	of	the	EDK	II	development	tree	will	set	the		WORKSPACE		and
	EDK_TOOLS_PATH	,	as	well	as	modify	the	system	environment	variable,	PATH	to	ensure	that	the	tools	can
execute.	Refer	to	"Build	Environment"	for	more	information.

Command-line	options	to	the	build	command	will	override	values	defined	in	meta-data	files.

The	EDK	II	Build	Process	is	handled	in	three	major	stages:

Pre-build	or	AutoGen	stage:	parse	meta-data	files,	UCS-2LE	encoded	files	and	VFR	files	to	generate
some	C	source	code	files	and	the	Makefiles.

Build	or	$(MAKE)	stage:	process	source	code	files	to	create	PE32/PE32+/COFF	images	that	are
processed	to	EFI	format	using		NMAKE		(Microsoft	operating	system	development	platforms)	or		MAKE	
(for	UNIX	style	operating	system	development	platforms).

Post-build	or	ImageGen	stage:	takes	the	binary,	EFI	format	files	and	creates	EFI	"FLASH"	images,	EFI
update	capsules,	UEFI	applications	or	PCI	Option	ROMs.

Figure	18	shows	the	relationship	of	these	three	stages.

Figure	18	EDK	II	Platform	Build	Process	Flow

Note:	In	Figure	18,	Meta-Data	Files	indicates	build	tool	meta-data	files:		buildrule.txt	,		tools_def.txt	,
	target.txt		and	the	like.

4.2	Build	Process	OverviewEDK	II	Build	Specification

63Revision	1.28



The	Build	process	is	organized	so	that	if	a	FLASH	image	file	is	not	required,	such	as	in	generating	a
Binary	Module	that	will	be	distributed	to	other	end-users,	stage	three	can	be	skipped.	Drivers,	Option
ROM	and/or	UEFI	applications	can	also	be	distributed	in	this	fashion.

Note:	The		Nt32Pkg		(	Nt32Pkg/Nt32Pkg.dsc	)	emulation	platform	requires	Windows	header	files.	In	order	to
include	Windows	header	files,	execute	the		edk2setup.bat		utility	with	the	--nt32	option.	This	option	will
detect	the	Microsoft	Visual	Studio	installation	and	will	execute	it's	setup	command,	for	example,
	vsvars32.bat	.

4.2	Build	Process	OverviewEDK	II	Build	Specification

64Revision	1.28



4.3	Pre-Build	Stage	Overview
This	section	provides	an	overview	of	the	first	three	meta-data	files	that	are	used	to	control	different
aspects	of	the	build.	There	are	three	files	of	interest,		build_rule.txt	,		tools_def.txt		and		target.txt	.	The	next
chapter	defines	the	format	of	the		tools_def.txt		and		target.txt		files.	The		build_rule.txt		file	is	not
documented	here,	as	it	is	internal	to	the	EDK	II	build	system.	See	the		build_rule.txt		file	for	additional
information.

4.3.1	target.txt
The		$(WORKSPACE)/Conf/target.txt		file	is	created	the	first	time		edksetup		script	is	run.	The	default	version	of	this
file	is	the		$(EDK_TOOLS_PATH)/Conf/target.template		file.

The		target.txt		file	is	used	as	a	filter,	allowing	a	developer	to	build	items	of	interest	without	having	to
build	everything.	The	variables	set	in	this	file	include	the	target	platform,	the	target	architecture,	the
tool	chain	and	pointers	to	the	tool	chain	configuration	and	build	rule	files.	If	no	options	are	provided	on
the	build	command-line,	values	from	this	file	are	used	to	determine	what	to	build,	what	tool	chain	will	be
used	and	where	to	obtain	the	rules	for	processing	the	files.

4.3.2	tools_def.txt
The		$(WORKSPACE)/Conf/tools_def.txt		file	is	created	the	first	time	the		edksetup		script	is	run.	The	default	version
of	this	file	is	the		$(EDK_TOOLS_PATH)/Conf/tools_def.template	.

The		tools_def.txt		describes	sets	of	user	configurable	paths,	commands	and	default	flags	for	external
tools	(as	well	as	optional	tools	provided	with	the	build	system).	Since	advanced	developers	may	have
multiple	versions	of	tool	chains	installed,	this	file	allows	setting	up	paths	and	flags	for	different	tool
chains.	Each	tool	chain	is	identified	by	a	unique	name.

4.3.2.1	"Best	Known	Safe"	flags
The		tools_def.txt		file	flags	for	the	supported	(tested)	compiler	tool	chains	that	contain	"Best	Known
Safe"	flags	for	generating	libraries,	drivers	and	applications.	These	flags	are	set	for	speed	optimization.
The	build	system	does	provide	for	modifying	flags	for	individual	modules	and	platforms,	so	flags	may	be
modified	for	better	debug	ability.

4.3.3	build_rule.txt
The		$(WORKSPACE)/Conf/build_rule.txt		file	is	created	the	first	time	the		edksetup		script	is	run.	The	default	version
of	this	file	is	the		$(EDK_TOOLS_PATH)/Conf/build_rule.template	.

The		build_rule.txt		file	is	used	by	the	tools	to	define	how	different	file	types	are	processed.	This	includes
how	different	files	and	module	types	are	compiled,	as	well	as	how	the	build	tools	manipulate	the	binary
image	files.	Normally,	users	should	not	make	changes	to	this	file.

4.3.4	Parse	EDK	II	Meta-Data	-	AutoGen	stage
Once	the	build	system	knows	the	basic	information	needed	for	the	build,	the	build	system	parses	the
additional	EDK	II	meta-data	files.	The	meta-data	in	the	EDK	II	code	base	is	stored	in	text-based,	INI-style,
documents.	Refer	to	the	EDK	II	INF	Specification,	EDK	II	DSC	Specification,	EDK	II	DEC	Specification,	and
EDK	II	Flash	Description	File	Specification	to	see	the	format	of	these	files.

4.3	Pre-Build	Stage	OverviewEDK	II	Build	Specification

65Revision	1.28



The	DSC	file	is	the	first	of	the	EDK	II	meta-data	files	that	gets	parsed.	This	file	provides	a	list	of	the	other
EDK	II	meta-data	files	that	need	to	be	parsed.	The	DSC	file	may	be	parsed	twice	in	order	to	resolve	PCD
values	that	are	used	are	used	in	conditional	directive	statements.

The	contents	of	current	working	directory	(at	the	time	the	build	command	is	executed)	may	alter	what
gets	built.	If	the	working	directory	contains	one	INF	file,	only	the	module	gets	built.	This	is	useful	when
debugging	a	driver,	as	only	the	one	module	will	be	rebuilt.	If	more	than	one	INF	file	exists,	you	will	need
to	use	an	command-line	option	to	select	which	INF	file	you	want	to	build.	(The	INF	filename	must	be
listed	in	the		ACTIVE_PLATFORM		DSC	file's		[Components]		section.)

Note:	More	than	one	INF	file	may	exist	in	a	module	directory,	however	the	BASENAME	and		FILE_GUID		for
these	INF	files	must	be	different	if	both	modules	will	be	included	in	a	single	FV	for	platform.

Note:	The	build	system	has	also	been	modified	to	support	building	multiple	versions	of	a	single	INF
using	the	format	defined	in	the	DSC	specification.	This	permits	having	multiple	versions	of	a	module
linked	against	different	libraries.

The	second	file	to	be	parsed	will	be	the	FDF	file	if	one	is	specified	in	the	DSC	file	or	on	the	command-
line.	While	the	FDF	file	specified	what	content	gets	assembled	into	the	final	firmware	device	image,	PCD
values	from	this	file	may	be	required	for	building	specific	modules	specified	in	the	DSC	file.

Note:	INF	files	that	are	listed	in	the	DSC	file	must	include	the	package,	MdePkg/MdePkg.dec	in	order	to
build	properly	(even	if	the	module	does	not	contain	C	files).

The	parse	stage	creates	individual	module	and	library		AutoGen.c	,		AutoGen.h		and	Makefiles.	Since	EDK	II
supports	Microsoft,	Intel	and	GCC	complier	tool	chains,	the	Microsoft	Build	Tool,	NMAKE/	Makefile		is	for
Windows	developer	Workstations	using	Microsoft	or	Intel	tool	chains	on	a	Microsoft	Windows	operating
system	development	workstation.	For	UNIX	based	development	workstations,	the	GCC	build	tool,
MAKE/	GNUmakefile		is	used.

All	third	party	tools	and	flags	for	those	tools	get	expanded	in	the	generated	Makefiles.	The	following	is
an	example	of	makefile	statements	that	support	this	mode.

...

PP						=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\cl.exe

CC						=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\cl.exe

APP					=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\cl.exe

VFRPP			=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\cl.exe

DLINK			=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\link.exe

PCH					=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\cl.exe

ASM					=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\ml.exe

TIANO			=	TianoCompress.exe

SLINK			=	C:\Program	Files\Microsoft	Visual	Studio	.NET	2003\Vc7\bin\lib.exe

ASMLINK	=	C:\WINDDK\3790.1830\bin\bin16\link.exe	ASL	=	C:\ASL\iasl.exe

...

DEFAULT_PP_FLAGS						=	/nologo	/E	/TC	/FI$(DEST_DIR_DEBUG)/AutoGen.h

DEFAULT_CC_FLAGS						=	/nologo	/W4	/WX	/Gy	/c	/D	UNICODE	/O1ib2	/GL	/	FI$(DEST_DIR_DEBUG)/AutoGen.h	/EHs-c-	/GF	/Gs8192	/Zi	/

Gm

DEFAULT_APP_FLAGS					=	/nologo	/E	/TC

DEFAULT_VFRPP_FLAGS			=	/nologo	/E	/TC	/DVFRCOMPILE	/FIAutoGen.h

DEFAULT_DLINK_FLAGS			=	/NOLOGO	/NODEFAULTLIB	/IGNORE:4086	/OPT:REF	/OPT:ICF=10	/MAP	/ALIGN:32	/MACHINE:I386	/LTCG	/DLL	/ENTRY

:$(ENTRYPOINT)	/SUBSYSTEM:CONSOLE	/SAFESEH:NO	/BASE:0	/DRIVER	/DEBUG	/PDB:$(DEST_DIR_DEBUG)/$(BASE_NAME).pdb

DEFAULT_PCH_FLAGS					=	/nologo	/W4	/WX	/Gy	/c	/D	UNICODE	/O1ib2	/GL	/FI$(DEST_DIR_DEBUG)/AutoGen.h	/EHs-c-	/GF	/Gs8192	/Fp$(D

4.3	Pre-Build	Stage	OverviewEDK	II	Build	Specification

66Revision	1.28



EST_DIR_OUTPUT)/AutoGen.h.gch	/Yc	/TC	/Zi	/Gm

DEFAULT_ASM_FLAGS					=	/nologo	/W3	/WX	/c	/coff	/Cx	/Zd	/W0	/Zi

DEFAULT_TIANO_FLAGS			=

DEFAULT_SLINK_FLAGS			=	/nologo	/LTCG

DEFAULT_ASMLINK_FLAGS	=	/link	/nologo	/tiny

DEFAULT_ASL_FLAGS					=

...

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:	$(COMMON_DEPS)

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:

$(WORKSPACE)\MdePkg\Include\Library\DebugLib.h

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:	$(WORKSPACE)\MdePkg\Include\Library\BaseLib.h

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:

$(WORKSPACE)\MdePkg\Include\Library\TimerLib.h

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:

$(WORKSPACE)\MdePkg\Include\Library\BaseMemoryLib.h

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:	$(WORKSPACE)\MdePkg\Include\Library\PcdLib.h

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:

$(WORKSPACE)\MdePkg\Library\BaseLib\Ia32\WriteGdtr.c

$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	:

$(WORKSPACE)\MdePkg\Library\BaseLib\BaseLibInternals.h

		"$(CC)"	/Fo$(OUTPUT_DIR)\Ia32\WriteGdtr.obj	$(CC_FLAGS)	$(INC)	$(WORKSPACE)\MdePkg\Library\BaseLib\Ia32\WriteGdtr.c

$(OUTPUT_DIR)\Ia32\WriteDr3.obj	:	$(COMMON_DEPS)

$(OUTPUT_DIR)\Ia32\WriteDr3.obj	:

$(WORKSPACE)\MdePkg\Library\BaseLib\Ia32\WriteDr3.c

		"$(CC)"	/Fo$(OUTPUT_DIR)\Ia32\WriteDr3.obj	$(CC_FLAGS)	$(INC)

$(WORKSPACE)\MdePkg\Library\BaseLib\Ia32\WriteDr3.c

...

One	makefile	is	generated	for	each	module	under	a	combination	of		$(TARGET)_$(TOOL_CHAIN_TAG)		and		$(ARCH)	,
package	name,	module	directory,	directory	name	and	the		BASE_NAME		of	the	module's	INF	file.

Parse	DSC	file
1.	 Obtain	platform	FixedAtBuild	and	FeatureFlag	PCD	values	and	Macro	values	that	are	used	in	the
Conditional	Directives	-	if	the	value	of	a	Macro,	FixedAtBuild	PCD	or	FeatureFlag	PCD	used	in	the
conditional	directives	cannot	be	determined,	the	build	will	break	with	an	appropriate	error	message.
The	use	of	FixedAtBuild	or	FeatureFlag	PCD	names	which	are	defined	by	SET	statements	in	the	FDF
file	cannot	be	used	in	conditional	directive	statements	in	the	DSC	file.

2.	 Second	pass	over	the	DSC	files	will	crush	out	any	conditional	directives	where	the	feature	flag
expression	used	in	the	conditional	directive	is	False.

3.	 Obtain	platform	PCD	values	which	will	go	into	the	individual	module	AutoGen.h	files	where	needed.

If		VPD_TOOL_GUID		was	specified	in	the	DSC	file's		[Defines]		section,	the	build	processes	is	suspended
while	the	tool	specified	by	the	GUID	is	called	after	the	build	process	generates	a	text	file
containing	the	VPD	PCDs.	If	the	tool	returns	successfully	(an	exit	code	of	0),	the	build	system
parses	the	name	of	the	'map'	file	that	contains	an	ordered	list	of	VPD	PCDs.

There	are	some	PCD	values	that	get	set	on	the	command	line,	in	the	FDF	file,	listed	in	binary	INF
files	or	listed	in	source	INF	files,	so	generating	the	C	files	is	delayed	until	all	PCD	values	have
been	finalized.

4.	 Obtain	the	FDF	filename	and	obtain	the	Flash	related	PCDs	from	the	FDF	file.	FeatureFlag	and
FixedAtBuild	PCD	names	which	are	defined	in	the	DSC	file	can	be	used	in	conditional	directives	within
the	FDF	file.

5.	 For	each	component	listed	in	the	DSC	file,	parse	the	Module's	INF	file

Create	a	directed	graph	list	of	the	EDK	II	Library	Instances	that	will	be	used	for	the	EDK	II
modules.

Create	the	PEI,	DXE	or	SMM	DEPEX	file

4.3	Pre-Build	Stage	OverviewEDK	II	Build	Specification

67Revision	1.28



Create	the	Library	Instance's	AutoGen.c	files	containing	PCD,	Guid,	Protocol,	Ppi	and	EntryPoint
definitions	and	data	structures.	PCD	values	come	from	command	line,	FDF	file,	DSC's	INF	scoped
section,	DSC's	global	PCD	sections,	default	values	in	the	INF	file's	PCD	section,	or	the	DEC	file's
default	values.

Create	the	module's	library	instance	Makefiles

Individual	modules	may	require	different	compilation	options,	over-riding	any	global
definitions.

Create	the	AutoGen.c	files	containing	PCD,	Guid,	Protocol,	Ppi	and	EntryPoint	definitions	and
data	structures.

Create	any	Strings	header	file	required	for	VFR	processing.

The	VFR	file	name	cannot	be	same	as	a	C	file	name	in	a	module	directory.	If	so,	the	same
output	files	will	be	generated	and	overwritten.	(A.vfr	-->	A.c	-->	A.obj,	A.c	-->	A.obj)

Create	the	module	Makefiles

Individual	modules	may	require	different	compilation	options,	over-riding	any	global	definitions.	If	an
INF	file	is	not	listed	in	the	DSC	file	and	is	listed	in	the	FDF	file,	the	parsing	tools	must	check	if	the	INF
in	the	FDF	file	contains		PatchableInModule		or		DynamicEX		entries.	If	the	INF	lists	other	PCD	access
methods	(FeatureFlag,	FixedAtBuild	or	Dynamic),	and	the	INF	contains	files	listed	in	a		[Sources]	
section	and	does	not	contain	a		[Binaries]		section,	then	the	build	tools	must	break	the	build	with	an
appropriate	error	message.

6.	 The	tools	are	also	responsible	for	creating	binary	files	containing	all		DynamicEx		PCDs	that	are	listed	in
the	DSC,	FDF	and	Binary	INF	files	(listed	in	the	FDF	file).	These	binaries	are	automatically	placed	into
the	(PEIM	and	DXE)	PCD	driver	FFS	files.

7.	 If	the	build	option,	--ignore-sources	is	present	on	the	build	command-line,	none	of	the	source	files
listed	in	a	[Sources]	section	will	be	processed,	even	if	the	module	is	listed	in	the	DSC	file	and	no
files	(AutoGen.h,	AutoGen.c	or	Makefile)	will	be	generated;	the	INF	must	be	treated	as	a	Binary	only
INF	file.

4.3	Pre-Build	Stage	OverviewEDK	II	Build	Specification

68Revision	1.28



4.4	Creating	Binary	EFI	Images	-	$(MAKE)	stage
Binary	EFI	images	are	created	in	two	steps;	the	first	step	uses	3rd	party	assemblers,	compilers	and
linkers	to	generate	a	PE32/PE32+/COFF	image	file,	while	the	second	step	uses	code	from	the	GenFw
application	provided	in	EDK	II	to	modify	the	PE32/PE32+/COFF	image	file	to	create	an	EFI	file	with	an
	EFI_IMAGE_SECTION_HEADER		structure.	Since	different		EFI_SECTION		types	may	require	different	values	for
alignment	offsets,	the	GenFw	tool	must	specify	the	component	type,	which	is	derived	from	the	INF
metadata's	ModuleType	statement.

This	stage	is	executed	by	the	build	tool	calling	either	the		NMAKE		or	the	MAKE	tool	for	each	module.	The
Makefiles	(	Makefile		or		GNUMakefile	)	are	created	during	the	metadata	processing	stage.	The	Makefiles
specify	the	compiler,	linker,	assembler,	and		GenFw		tool	commands	and	options.	Once	all	modules	have
been	built	by	the	3rd	party	tools,	the	build	tool	will	call	the		GenFds		application	to	initiate	the	third	stage
of	a	build,	if	there	is	a	Flash	Definition	File	(FDF)	specified	in	the	DSC	file.	If	no	FDF	file	is	specified,	then
the	build	will	terminate	with	the	creation	of	individual	module	EFI	formatted	(EFI)	images.

4.4	Creating	Binary	EFI	Images	-	$(MAKE)	stageEDK	II	Build	Specification

69Revision	1.28



4.5	Post-Build	Stage

4.5.1	Assemble	FLASH	Images	-	ImageGen	stage
Once	all	the	modules'	EFI	image	files	have	been	created,	the	final	stage	of	a	build	process	is	called.	For
FLASH	images,	this	stage	uses	the	FDF	file,	and	some	parts	of	the	DSC	file	to	create	the	final	binary
image	files.	This	stage	processes	the	individual	EFI	files,	formatting	them	into	leaf		EFI_SECTION		types	and
combining	them	using	implied	rules	(or	custom	rules)	into	different	firmware	files	(FFS),	firmware
volumes	(FVs)	and	the	final	FLASH	images	(FDs).	The	construction	of	these	images	is	based	on	the
content	of	the	FDF	file	(with	a	very	limited	amount	of	data	being	obtained	from	the	DSC	file).

A	binary	file	with	a	file	type	of		DISPOSABLE		will	not	be	placed	into	a		EFI_SECTION_DISPOSABLE		encapsulation
section.	This	keyword	is	used	by	UEFI	Packaging	Tool	to	ensure	that	files,	such	as	debug	symbol	files,
get	packaged	correctly.

The	default	build	rules	specify	removal	of		.reloc		sections	of	the	PE32/PE32+	file	for	all		SEC	,		PEI_CORE	
and		PEIM		modules	and	components.	To	prevent	removal	of	the	.reloc	section,	a	module	developer	will
need	to	specify	a	keyword,		SHADOW		in	the	INF	file.

Assuming	that	all	FD	and	FV	images	are	going	to	be	generated	(based	on	the	default	value	of	the	top-
level	build	command),	for	each	FV	image	specified	the	following	must	occur.

1.	 The	FDF	file	is	parsed	to	create	a	directed	graph	structure	for	each	FV	image,	so	that	all	leaf	EFI
sections	are	created	first.	During	this	stage,	INF	files	that	contain	a		[Binaries]		section	and	that	do
not	contain	a		[Sources]		section	will	be	processed.	An	INF	file	that	contains	a		[Binaries]		section	that
contains	an	entry	that	starts	with		DISPOSABLE	,	that	entry	must	be	ignored	-	these	files	are	not	to	be
placed	into	an		EFI_SECTION_DISPOSABLE		encapsulation	section.

2.	 If	an	INF	not	listed	in	the	DSC	file,	but	is	listed	in	the	FDF	file	and	the	INF	contains	a		[PatchPcd]	
section,	the	tools	must	test	to	determine	if	the	PCD	is	listed	in	the	DSC	(or	FDF)	file,	and	whether
the	value	listed	in	the	DSC	(or	FDF)	file	is	different	from	the	value	in	the	INF	file.	If	the	value	is
different,	the	tools	must	patch	the	binary	.efi	file	with	the	value	from	the	FDF	or	DSC	file	prior	to
creating	the	EFI	leaf	section.

3.	 The	tools	are	also	responsible	for	creating	binary	files	containing	all	DynamicEx	PCDs	that	are	listed
in	the	DSC,	FDF	and	Binary	INF	files	(listed	in	the	FDF	file).	These	binaries	are	automatically	placed
into	the	(PEIM	and	DXE)	PCD	driver	FFS	files.

4.	 These	leaf	sections	are	either	put	into	encapsulated	sections	or	put	directly	into	an	FFS	file
following	the	implied	rules	(or	user	defined	rules)	defined	later	in	this	document.

5.	 As	each	FFS	File	is	created,	the	file	is	either	encapsulated	into	another	FFS	file	or	appended	to	an
FV	image.

6.	 Once	all	of	the	FFS	files	have	been	placed	into	an	FV	image	file,	the	FV	file	is	put	into	an	FD	file	at
the	location	specified	by	the	FD	section	of	the	FDF	file.

4.5.2	EFI	PCI	Expansion	Option	ROM	Images
There	are	two	methods	for	creating	an	option	ROM	image,	when	the	FDF	file	is	specified	and	when	an
FDF	file	is	not	present.	To	build	from	source	and	no	FDF	file	is	present,	if	the	module's	INF	file	contains
the	keywords,		PCI_DEVICE_ID	,		PCI_VENDOR_ID		and		PCI_CLASS_CODE	,	the	build	will	terminate	after	creating	EFI	files
-	there	will	be	no	call	to	the	GenFds	tool.	These	key	words	also	force	the	creation	of	an	option	ROM
image,	after	the	EFI	files	have	been	created,	using	the	EfiRom	program	to	create	the	EFI	PCI	Expansion
ROM	image.	If	an	FDF	is	present,	then	the	build	tools	will	parse	the	FDF	file	looking	for	an		[OptionRom]	

4.5	Post-Build	StageEDK	II	Build	Specification

70Revision	1.28



section,	and	create	the	option	ROM	based	on	the	contents	of	this	section.	Note	that	the	FDF
specification	permits	adding	binary	images,	such	as	the	legacy	option	rom	binary,	as	well	as	support	for
multiple	architecture	driver	images	to	the	option	ROM	image.

A	binary	flag,		PCI_COMPRESS	,	when	set	to	true,	tells	the	tools	to	use	EFI	standard	compression	to	compress
the	entire	option	ROM	image.

Option	ROM	images	are	always	created	in	the	output	FV	directory.

4.5.3	UEFI	Applications
When	building	only	UEFI	applications,	no	FDF	file	is	specified	in	the	DSC	file;	the	build	would	normal
terminate	after	creating	EFI	files	-	there	would	be	no	call	to	the	GenFds	tool.	Using	an	option	on	the
build	tool	command	line	to	specify	building	a	UEFI	Application	forces	the	parsing	stage	to	generate	the
module's		Makefile		with	an	alternate	path.	This	path	will	force	the	creation	of	a	UEFI	application,	after	the
EFI	files	have	been	created,	using	UEFI	application	specific	arguments	for	the		GenFds		tool.

4.5	Post-Build	StageEDK	II	Build	Specification

71Revision	1.28



4.6	File	Specifications
The	EDK	II	Build	is	used	to	generate	UEFI	and	PI	compliant	images.	Additional	reference	modules	may
conform	to	Intel	Framework	Specifications	only	if	there	are	no	applicable	UEFI	or	PI	specification
modules.

The	EDK	II	Build	Tools	will	only	generate	UEFI/PI	compliant	images.

The	EDK	II	Compatibility	Package	provides	libraries	and	header	files	to	permit	building	some*	EDK
Libraries	and	EDK	Components	referenced	in	an	EDK	II	platform	(DSC)	file.

Note:	*	indicates	any	EDK	libraries	or	components	that	do	not	include	assembly	files	and	do	not	access
flash	memory	can	use	the	EDK	II	compatibility	Package

For	some	development	activities,	the	EDK	II	Compatibility	package	can	be	used	to	develop	and	maintain
original	EDK	platforms,	components	and	libraries.	This	package	also	provides	all	of	the	tool	source	code
used	in	the	EDK.	These	tools	are	for	building	components	and	platform	using	the	original	EDK	code.
None	of	these	tools	is	used	for	the	EDK	II	build	process.	This	EDK	Compatibility	package	can	also	be
used	to	generate	files	conforming	to	earlier	releases	of	EFI	and	UEFI	specifications.

This	build	specification	does	not	cover	the	tools	or	build	processes	for	EDK	builds	nor	tools	provide	by
the	EDK	II	Compatibility	Package.

The	binary	image	files	generated	at	the	end	of	the	$(MAKE)	stage	conform	to	the	UEFI	Images	section	of
the	UEFI	specification.	UEFI	uses	a	subset	of	the	PE32+	image	format	with	a	modified	header	signature.
The	PE32/PE32+	files	are	modified	by	the	GenFw	application.

Note:	This	application	will	also	modify	an	ELF	image	and	generate	a	PE32/PE32+	image.

Each	PE32/PE32+	file	will	have	sections	of	the	original	"DOS	Header"	over-written,	a	new	NT_HEADER	(for
the	PeHeader)	and	possibly	one	Optional	Header	for	32-bit	or	64-bit	options.

4.6	File	SpecificationsEDK	II	Build	Specification

72Revision	1.28



4.7	File	Extensions
The	EDK	II	build	system	is	designed	to	process	files	in	the	AutoGen	stage	with	specific	extensions	for
use	in	the	$(MAKE)	stage,	producing	files	with	intermediate	extension	names.	For	some	"final"	targets,
such	as	UEFI	applications,	the	intermediate	extension	is	the	"final"	extension.	The	ImageGen	makes	use
of	the	files	with	intermediate	extensions	to	generate	the	final	images.

4.7	File	ExtensionsEDK	II	Build	Specification

73Revision	1.28



5	META-DATA	FILE	SPECIFICATIONS
This	chapter	defines	the	format	of	two	files	used	by	the	build.	The	two	files	are:		tools_def.txt	,	which
defines	the	location	and	options	for	third	party	tools	and		target.txt	,	which	defines	the	top	level	default
configuration.	A	third	file,		build_rule.txt	,	which	specifies	the	rules	for	creating	binary	files,	will	not
normally	be	modified	by	users,	however	since	this	file	is	closely	coupled	with	the	build	system,	certain
changes	to	build	tools	will	require	updating	(overwriting)	the	active	copy.	The	format	for		build_rule.txt		is
not	included	in	this	document.

Templates	for	these	files	are	in	the		$(EDK_TOOLS_PATH)/Conf		directory.	The		edksetup		script	installs	the	active
copies	of	these	files	into	the		$(WORKSPACE)/Conf		directory	only	if	they	do	not	exist.	It	is	permissible	to	have
the		Conf		directory	(the	directory	containing		target.txt	)	located	outside	of	the		WORKSPACE		directory,
however	either	the	absolute	or		WORKSPACE		relative	directory	must	be	specified	on	the	build	command-line
using	the	"--conf"	option	when	they	are	not	in	the	active		WORKSPACE/Conf		directory.

5	Meta-Data	File	SpecificationsEDK	II	Build	Specification

74Revision	1.28



5.1	Build	Meta-Data	File	Formats
The	following	subsections	describe	the	different	parts	of	the	build	system's	meta-data	files.	These	files
are	specific	to	the	build	process.	Other	EDK	II	meta-data	file	formats	are	specified	in	their	corresponding
documents	(see	Related	Information	in	the	Introduction.)

5.1.1	Comments
Within	a	meta-data	file,	comments	are	encouraged,	with	the	hash	"#"	character	identifying	a	comment.
In	line	comments	terminate	the	processing	of	a	line.	In	line	comments	must	be	placed	at	the	end	of	the
line,	and	may	not	be	placed	within	the	section	("[",	"]",	"<"	or	">")	tags.	Comment	characters	can	be	at
the	start	of	a	line,	or	after	a	data	element	(there	must	be	one	or	more	white	space	characters	between
the	data	element	and	the	comment	character.	Examples:

#	this	is	a	comment	line

[Unicode-Text-File]	#	This	is	also	a	valid	comment.

[Unicode-Text-File	#	This	is	not	valid]

The	last	example	is	not	valid,	as	the	section	header	data	element	format	is		[text]		with	the	square
brackets	included	as	part	of	the	data	element.

Hash	characters	within	a	quoted	string	are	permitted,	and	do	not	signify	a	comment.

5.1.2	Valid	Entries
All	entries	must	appear	on	a	single	line,	with	entries	terminated	by	either	a	new	line,	or	a	comment.

5.1	Build	Meta-Data	File	FormatsEDK	II	Build	Specification

75Revision	1.28



5.2	tools_def.txt
This	file	describes	the	tools	used	by	a	developer,	providing	the	flexibility	to	have	multiple	tool	chains	and
different	profiles	for	each	tool	chain.	In	the	simplest	of	terms,	the	file	provides	a	variable	mapping	of
compiler	tool	chains	and	flags.	The	structure	of	this	text	file	is	described	below.

There	are	three	types	of	statements,	the		IDENTIFIER		statement	which	defines	a	"User	Interface"	name	for
identifying	this	file.	The	second	statement	type	is	the		DEFINE		statement	which	is	used	to	identify	a	fully
qualified	path	macro,	while	the	third	type	of	statement	is	a	record	statement	containing	mappings	that
are	processed	by	the	build	tools	to	generate		Makefile		and		GNUMakefile		commands	that	are	executed	by	a
compiler's	"make"	utility	or	function.

The	left	side	of	the	record	is	subdivided	into	five	groups,	defined	below.	The	build	tools	will	process	the
file	and	assign	the	following	priority	during	the	parsing.	After	parsing	the	right	hand		<string>		is
substituted	into	the	makefile	using	the		build_rule.txt		templates.

If	a	wildcard	value	is	permitted,	the	wildcard	character	is	the	star	"*"	character.

For	tool	chains	that	expect	to	use	a	Windows-style	nmake	utility	one	entry,	the	NMAKE		COMMANDTYPE		is
required.	The	NIX-based	make	and	MAKE	utilities	are	typically	in	a	developer's	path	environment
(	/usr/bin	).	Specifying	a	MAKE	command	that	will	use	an	alternate	make	utility	for	NIX-based	tool	chains
is	optional.

		format:	TARGET_TOOLCHAIN_ARCH_COMMANDTYPE_ATTRIBUTE	=	<string>

		priority:

										TARGET_TOOLCHAIN_ARCH_COMMANDTYPE_ATTRIBUTE	(Highest)

										******_TOOLCHAIN_ARCH_COMMANDTYPE_ATTRIBUTE

										TARGET_*********_ARCH_COMMANDTYPE_ATTRIBUTE

										******_*********_ARCH_COMMANDTYPE_ATTRIBUTE

										TARGET_TOOLCHAIN_****_COMMANDTYPE_ATTRIBUTE

										******_TOOLCHAIN_****_COMMANDTYPE_ATTRIBUTE

										TARGET_*********_****_COMMANDTYPE_ATTRIBUTE

										******_*********_****_COMMANDTYPE_ATTRIBUTE

										TARGET_TOOLCHAIN_ARCH_***********_ATTRIBUTE

										******_TOOLCHAIN_ARCH_***********_ATTRIBUTE

										TARGET_*********_ARCH_***********_ATTRIBUTE

										******_*********_ARCH_***********_ATTRIBUTE

										TARGET_TOOLCHAIN_****_***********_ATTRIBUTE

										******_TOOLCHAIN_****_***********_ATTRIBUTE

										TARGET_*********_****_***********_ATTRIBUTE

										******_*********_****_***********_ATTRIBUTE	(Lowest)

All	entries	in	this	file	are	case-sensitive.

5.2.1	Macros	and	Other	Variable	Statements	(tools_def.txt	only)
The	use	of	MACRO	statements	is	limited	in	EDK	II		tools_def.txt		meta-data	file	to	be	local	to	the	meta-data
file.	The	format	and	usage	for	the	macro	statements	is:

DEFINE	MACRO	=	Value

DEF(MACRO)/filename.foo

Any	defined	MACRO	will	be	expanded	by	tools	when	they	encounter	the	entry	in	the	section.

The	macro	statements	are	positional,	in	that	only	statements	following	a	macro	definition	are	permitted
-	a	macro	cannot	be	used	before	it	has	been	defined.

5.2	tools_def.txtEDK	II	Build	Specification

76Revision	1.28



MACRO	statements	are	permitted	in	DSC	and	FDF	files	to	reference	PATH	statements,	assign	values	to
PCDs	and	to	provide	a	minimum	level	of	directive	statements	-	refer	to	the	corresponding	specification
for	additional	details.

System	environment	variables	may	be	used	in	value	portion	of	statements.	The	system	environment
value	is	specified	using	the	following	format:

	ENV(OsEnvironmentVariableName)	

The	following	variables,		$(MODULE_NAME)	,		$(IMAGE_ENTRY_POINT)	,		$(MODULE_ENTRY_POINT)	,		$(ARCH_ENTRY_POINT)	,
	$(DEBUG_DIR)	,		$(BASE_NAME)	,		$(DEST_DIR_DEBUG)	,		$(EDK_TOOLS_PATH)	,		$(ARCHASM_FLAGS)	,		$(PLATFORM_FLAGS)	,		$(ARCHCC_FLAGS)	,
	$(ARCHDLINK_FLAGS)	,		$(DLINKPATH_FLAG)	,		$(ASMPATH_FLAG)	,		$(CCPATH_FLAG)		and		$(SLINKPATH_FLAG)		are	never	expanded
when	data	is	emitted	to	Makefiles.

These	variables	are	used	in	values	for	statements	having	the		FLAG		attribute	or	in	macros	that	are	used
in	the	value	fields	of	entries	with	the		FLAG		attribute.

5.2.2	Guided	Tools
There	are	four	GUIDed	tools	that	are	provided	by	the	EDK	II	build	system.

	CRC32		-		FC1BCDB0-7D31-49AA-936A-A4600D9DD083	

This	tool	provides	CRC32	(Cyclic	Redundancy	Check)	methods	for	error	detection	using	the
	GenCrc32		tool.

	TIANO		-		A31280AD-481E-41B6-95E8-127F4C984779	

This	tool	provides	Tiano	Compression	using	the		TianoCompress		application.
	LZMA		-		EE4E5898-3914-4259-9D6E-DC7BD79403CF	

This	tool	provides	LZMA	Compression	using	the		LzmaCompress		application.
	VPDTOOL		-		8C3D856A-9BE6-468E-850A-24F7A8D38E08	

This	tool	provides	VPD	binary	data	and	map	file	generation	using	the		BPDG		application.
	LZMAF86		-		D42AE6BD-1352-4bfb-909A-CA72A6EAE889	

	LzmaF86Compress		tool	definitions	with	converter	for	x86	code.	It	can	improve	the	compression	ratio	if
the	input	file	is	IA32	or	X64	PE	image.	Note:	If	X64	PE	image	is	built	based	on	GCC44,	it	may	not
get	the	better	compression.

	RSA2048SHA256SIGN		-		A7717414-C616-4977-9420-844712A735BF	

This	tool	definition	uses	a	test	signing	key	for	development	purposes	only.	The	tool
	Rsa2048Sha256GenerateKeys		can	be	used	to	generate	a	new	private/public	key	and	the
	gEfiSecurityPkgTokenSpaceGuid.PcdRsa2048Sha256PublicKeyBuffer		PCD	value.	A	custom	tool/script	can	be
implemented	using	the	new	private/public	key	with	the		Rsa2048Sha256Sign		tool	and	this	tool
definition	can	be	updated	to	use	a	custom	tool/script.

	BROTLI		-		3D532050-5CDA-4FD0-879E-0F7F630D5AFB	

This	tool	provides	Brotli	Compression	using	the		BrotliCompress		application.
	PKCS7SIGN		-		4AAFD29D-68DF-49EE-8AA9-347D375665A7	

This	tool	provide	PKCS7	signing	using	the		Pkcs7Sign		application.	This	tool	definition	uses	a	test
signing	key	for	development	purposes	only.	New	keys	can	be	generated	and	be	used	to	set	the
	gEfiSecurityPkgTokenSpaceGuid.PcdPkcs7CertBuffer		PCD	value.	A	custom	tool/script	can	be	implemented
using	the	new	keys	with	the		Pkcs7Sign		tool	and	this	tool	definition	can	be	updated	to	use	a
custom	tool/script.

Additional	GUIDed	tools	may	be	added.	If	the	GUID	value	is	used	in	the	FDF	file's	GUIDed	Encapsulation,
the	tool,	named	by	the	GUID,	will	be	called	using	a	-e	option	to	encode	the	content.

5.2	tools_def.txtEDK	II	Build	Specification

77Revision	1.28



5.2.3	tools_def.txt	EBNF	Definition

Summary
EDK	II	tools	will	not	expand		<MacroVal>		statements	that	appear	within	quotation	marks;	the	expectation	is
that	external	tools	or	the	operating	system	will	expand	them	during	execution.

When	specifying	Macros	for	paths	for	Windows	tools,	paths	that	contain	space	characters	do	not	need
to	be	quoted.	When	specifying	a	path	in	a		FLAGS		section,	any	path	that	contains	a	space	character	will
need	to	be	enclosed	with	double	quotation	marks.

After	the		IDENTIFIER	=	UiString		entry	and	Macro	definition	statements,	all	other	entries	consist	of		Token	=
Value		pairings.	The	Token	is	actually	a	token	that	is	constructed	of	five	fields	which	are	separated	by	an
underscore	character.

Comments	are	only	allows	on	separate	lines	and	may	not	be	appended	appear	on	actual	entry	lines.

The	following	EBNF	defines	the	valid	entries	in	the		tools_def.txt		file.

Prototype

<ToolsDef>											::=	"IDENTIFIER"	<Eq>	<UiString>	<EOL>

																									<DefineStatements>*

																									<ToolChainEntries>*	<GuidedEntries>*

<TS>																	::=	<TabSpace>*

<MTS>																::=	<TabSpace>+

<Tab>																::=	0x09

<Space>														::=	0x20

<TabSpace>											::=	{<Tab>}	{<Space>}

<UiString>											::=	(a-zA-Z0-9)<Chars>*	<EOL>

<Chars>														::=	(0x20-0x7E)

<PathChars>										::=	{0x20}	{0x28}	{0x29}	{(0-9a-zA-Z_-)}	{0x2E}

<Eq>																	::=	<TS>	"="	<TS>

<AsciiChars>									::=	(0x21	-	0x7E)

<AsciiString>								::=	[	<TS>*	<AsciiChars>*	]*

<FlagString>									::=	<AsciiString>

<DefineStatements>			::=	<TS>	"DEFINE"	<MTS>	<MACRO>	<Eq>	<Value>	<EOL>

<MACRO>														::=	(A-Z)(a-zA-Z0-9_)*

<Value>														::=	{<Path>}	{<FlagString>}	{<Numbers>}

<Path>															::=	{<DosPath>}	{<NixPath>}	{<EnvPath>}	{<MacroPath>}

<DosPath>												::=	{<AbsPath>}	{<RelPath>}

<AbsPath>												::=	<A-Za-z>	":"	["\"	<PathChars>+]+

<RelPath>												::=	["\"	<PathChars>+]*

<NixPath>												::=	["/"	<PathChars>+]*

<Numbers>												::=	(0-9)+	["."	(0-9)*]*

<MacroVal>											::=	"DEF("	<MACRO>	")"

<MacroPath>										::=	<MacroVal>	{<NixPath>}	{<RelPath>}

<EnvPath>												::=	"ENV("	<SysEnvVar>	")"

																									[[{"\"}	{"/"}]	<PathChars>*]+

<SysEnvVar>										::=	(A-Z)(A-Z0-9_)*	#	System	Environment	Variable

<ToolChainEntries>			::=	<RequiredEntry>

																									[<TS>	<OptionalEntry>]*

<Wildcard>											::=	"*"

<RequiredEntry>						::=	<TS>	<MakeEntry>

																									<TS>	<FamilyEntry>

<MakeEntry>										::=	<Field1>	"_"	<Tagname>	"_"	<Arch>	"_"	<MakePath>	<EOL>

<FamilyEntry>								::=	<Wildcard>	"_"	<Tagname>	"_"	<Arch>	<FamilyType>

<FamilyType>									::=	"_"	<Wildcard>	"_"	<Family>

<Family>													::=	"FAMILY"	<Eq>	<SupFamily>	<EOL>

<SupFamily>										::=	{"ARMGCC"}	{"MSFT"}	{"INTEL"}	{"GCC"}	{"RVCT"}

																									{"RVCTCYGWIN"}	{"XCODE"}	{<NewFamily>}

<NewFamily>										::=	(A-Z)	(A-Z0-9)+

<MakePath>											::=	"MAKE_PATH"	<Eq>	<EXECPATH>	<Command>	<EOL>

<OptionalEntry>						::=	<Field1>	"_"	<Field2>	"_"	<Field3>

<Field1>													::=	{<Target>}	{<Wildcard>}

<Target>													::=	{<PreDefinedTargets>}	{(A-Z)	(A-Za-z0-9)*

<PreDefinedTargets>		::=	{"DEBUG"}	{"RELEASE"}	{"NOOPT"}

5.2	tools_def.txtEDK	II	Build	Specification

78Revision	1.28



<Field2>													::=	{<TagName>}	{<Wildcard>}

<Tagname>												::=	{<PreDefinedTags>}	{(A-Z)	(A-Za-z0-9)*}

<PreDefinedTags>					::=	{"ARMGCC"}	{"ARMLINUXGCC"}	{"CYGGCC"}

																									{"CYGGCCxASL"}	{"DDK3790"}	{"DDK3790xASL"}

																									{"ELFGCC"}	{"GCC44"}	{"GCC45"}	{"GCC46"}

																									{"GCC47"}	{"GCC48"}	{"GCC49"}	{"ICC"}

																									{"ICC11"}	{"ICC11x86"}	{"ICC11x86xASL"}

																									{"ICC11xASL"}	{"ICCx86"}	{"ICCx86ASL"}

																									{"ICCx86xASL"}	{"ICCxASL"}	{"MYTOOLS"}

																									{"RVCT"}	{"RVCTCYGWIN"}	{"RVCTLINUX"}

																									{"UNIXGCC"}	{"VS2003"}	{"VS2003xASL"}

																									{"VS2005"}	{"VS2005x86"}	{"VS2005x86xASL"}

																									{"VS2005xASL"}	{"VS2008"}	{"VS2008x86"}

																									{"VS2008x86xASL"}	{"VS2008xASL"}	{"VS2010"}

																									{"VS2010x86"}	{"VS2010x86xASL"}

																									{"VS2010xASL"}	{"VS2012"}	{"VS2012x86"}

																									{"VS2012x86xASL"}	{"VS2012xASL"}	{"VS2013"}

																									{"VS2013x86"}	{"VS2013x86xASL"}

																									{"VS2013xASL"}	{"XCLANG"}	{"XCODE32"}	{"XCODE5"

<Field3>													::=	<Arch>	"_"	<Field4>	"_"	<Attributes>

<Arch>															::=	{"IA32"}	{"X64"}	{"IPF"}	{"EBC"}	{"ARM"}	{<Wildcard>}

																									{(A-Z)	(A-Z0-9)*}

<Field4>													::=	{<CommandCode>}	{"*"}

<CommandCode>								::=	"}{"APP"}	{"ASL"}	{"ASLCC"}	{"ASLDLINK"}

																									{"ASLPP"}	{"ASM"}	{"ASM16"}	{"ASMLINK"}

																									{"ASMPATH"}	{"CC"}	{"CCPATH"}	{"CRC32"}

																									{"DLINK"}	{"DLINKPATH"}	{"DSYMUTIL"}	{"FLAGS"}

																									{"FROMELF"}	{"FROMELFPATH"}	{"GENFW"}	{"LZMA"}

																									{"LZMAF86"}	{"MAKE"}	{"MTOC"}	{"NASM"}

																									{"OBJCOPY"}	{"OPTROM"}	{"PP"}	{"PPPATH"}	{"RC"}

																									{"RSA2048SHA256SIGN"}	{"SLINK"}	{"SLINKPATH"}

																									{"SYMRENAME"}	{"TIANO"}	{"VFR"}	{"VFRPP"}

																									{"VFRPPPATH"}	{"VPDTOOL"}

<Attributes>									::=	{<ExecAttrs>}	{<FlagAttr>}	{<MiscAttrs>}

<ExecAttrs>										::=	"PATH"	"="	<EXECPATH>	<Command>	<EOL>

<MiscAttrs>										::=	[<DllPath>}	{<UserDefined>}	{<RuleOrder>}

<DllPath>												::=	{"DLL"}	{"DPATH"}	<Eq>	<EXECPATH>	<EOL>

<EXECPATH>											::=	{<Definition>}	{<Environ>}	{<AbsolutePath>}

<Command>												::=	<Word>	["."	<Ext>]

<Definition>									::=	"DEF("	<MACRO>	")"	<Sep>	[<Path>]*

<RuleOrder>										::=	"BUILDRULEORDER"	<Eq>	<ExtensionList>	<EOL>

<ExtensionList>						::=	<Word>	[<SP>	<Word>]*

<GuidedEntries>						::=	<TS>	<GuidDef>

																									<GuidPath>

																									[<GuidFlags>]

																									<GuidAttrs>*

<GuidedEntry>								::=	<Field1>	"_"	<Field2>	"_"	<Arch>	"_"	<Code>

<GuidDef>												::=	<GuidedEntry>	"_"	<Guid>

<Code>															::=	{"VPDTOOL"}	{"LZMA"}	{"TIANO"}	{"CRC32"}

																									{"LZMAF86"}	{"RSA2048SHA256SIGN"}	{<NewTool>}

<NewTool>												::=	(A-Z)*

<Guid>															::=	"GUID"	<Eq>	<RegistryFormatGUID>	<EOL>

<RegistryFormatGUID>	::=	<RHex8>	"-"	<RHex4>	"-"	<RHex4>	"-"	<RHex4>	"-"

																									<RHex12>

<RHex4>														::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<RHex8>														::=	<RHex4>	<RHex4>

<RHex12>													::=	<RHex4>	<RHex4>	<RHex4>

<RawH2>														::=	<HexDigit>?	<HexDigit>

<GuidPath>											::=	<GuidedEntry>	"_PATH"	<Eq>	[<EXECPATH>]

																									<Command>	<EOL>

<GuidFlags>										::=	<GuidedEntry>	"_"	<FlagAttr>

<GuidAttrs>										::=	<GuidedEntry>	"_"	<UserDefined>

<UserDefined>								::=	<Word>	"="	<UserDefinedValues>	<EOL>

<FlagAttr>											::=	"FLAG"	"="	<FlagValues>	<EOL>

<EOL>																::=	<TS>	0x0D	0x0A

Parameters

5.2	tools_def.txtEDK	II	Build	Specification

79Revision	1.28



No	space	characters	are	permitted	on	the	left	side	of	the	expression	(before	the	equal	sign).	All	of	the
keywords	that	make	up	the	left	side	of	the	expression	must	be	alphanumeric	only	-	no	special
characters	are	permitted.

FlagValues

This	is	a	string	of	zero	or	more	tool	specific	flags.	All	flags	must	be	printable	characters.	The	flag	string
starts	with	the	character	following	the	first	"="	sign	in	the	line	and	terminates	with	the	end	of	line.

Paths

The	paths	specified	in	the		tools_def.txt		file	must	be	valid	path	names	for	the	workstation	OS	that	will	be
using	the	tool	chain	identified	by	the	tag	name.	Since	this	file	can	contain	numerous	tool	chains	for
multiple	operating	systems,	only	the	tool	chain	name	specified	in		target.txt		or	on	the	command-line
needs	to	be	valid	paths.

Target

A	keyword	that	uniquely	identifies	the	build	target;	the	first	field,	where	fields	are	separated	by	the
underscore	character.	Three	values,		NOOPT	,		DEBUG		and		RELEASE		have	been	pre-defined.	This	keyword	is
used	to	bind	command	flags	to	individual	commands.

Users	may	want	to	add	other	definitions,	such	as,	PERF,	SIZE	or	SPEED,	and	define	their	own	set	of
	FLAGS		to	use	with	these	tags.	The	wildcard	character,	"*",	is	permitted	after	it	has	been	defined	one
time	for	a	tool	chain.

TagName

A	keyword	that	uniquely	identifies	a	tool	chain	group;	the	second	field.	Wildcard	characters	are
permitted	only	if	a	command	is	common	to	all	tools	that	will	be	used	by	a	developer.	As	an	example,	if
the	development	team	only	uses	IA32	Windows	workstations,	the	ACPI	compiler	can	be	specified	as
	DEBUG_*_*_ASL_PATH	and	RELEASE_*_*_ASL_PATH	.

Arch

A	keyword	that	uniquely	identifies	the	tool	chain	target	architecture;	the	third	field.	This	flag	is	used	to
support	the	cross-compiler	features,	such	as	when	a	development	platform	is	IA32	and	the	target
platform	is	X64	Using	this	field,	a	single	tag	name	can	be	setup	to	support	building	multiple	target
platform	architectures	with	different	tool	chains.

For	example,	if	a	developer	is	using	Visual	Studio	.NET	2003	for	generating	IA32	platform	and	uses	the
WINDDK	version	3790.1830	for	X64	or	IPF	platform	images,	a	single	tag.	See	the		MYTOOLS			PATH		settings	in
the	generated		Conf/tools_def.txt		or	provided		BaseTools/Conf/tools_def.template		file.

The	wildcard	character,	"*",	is	permitted	only	if	the	same	tool	is	used	for	all	target	architectures.

CommandCode

A	keyword	that	uniquely	identifies	a	specific	command;	the	fourth	field.	Several	CommandCode	keywords
have	been	predefined,	however	users	may	add	additional	keywords,	with	appropriate	modifications	to
	build_rule.txt	.	See	Table	7	below	for	the	pre-defined	keywords	and	functional	mappings.	The	wildcard
character,	"",	is	permitted	only	for	the		FAMILY	,		DLL		and		DPATH		attributes	(see	*Attributes	below).

Table	7	Predefined	Command	Codes

CommandCode Function

	APP	 C	compiler	for	applications.

	ARCHASM	 Flags	for	a	macro	assembler	that	is	specific	to	an	architecture

	ARCHCC	 Flags	for	a	C	compiler	that	is	specific	to	an	architecture

1

1

1

5.2	tools_def.txtEDK	II	Build	Specification

80Revision	1.28



	ARCHDLINK	 Flags	for	a	dynamic	linker	that	is	specific	to	an	architecture

	ASL	 ACPI	Compiler	for	generating	ACPI	tables.

	ASLCC	 A	C	compiler	for	ACPI	code	prior	to	running	the	ASL	compiler

	ASLDLINK	 A	dynamic	linker	for	the	ACPI	code

	ASLPP	 A	C	Pre-processor	for	the	ACPI	code

	ASM	 A	Macro	Assembler	for	assembly	code	in	some	libraries.

	ASM16	 A	16-bit	assembler	for	SEC	assembly	code	in	some	libraries

	ASMLINK	 The	Linker	to	use	for	assembly	code	generated	by	the	ASM	tool.

	ASMPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	CC	 C	compiler	for	PE32/PE32+/Coff	images.

	CCPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	CRC32	
This	tool	provides	CRC32	(Cyclic	Redundancy	Check)	methods	for	error
detection	using	the	GenCrc32	tool.

	DLINK	 The	C	dynamic	linker.

	DLINKPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	DSYMUTIL	 This	command	code	is	specific	to	the	XCODE32	and	XCLANG	tool	chain	tags.

	FROMELF	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	FROMELFPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	GENFW	
This	command	is	for	the	EDK	II	build	system	GenFw	utility,	and	allows	user
customization	of	the	tool's	flags.

	LZMA	 This	tool	provides	LZMA	Compression	using	the	LzmaCompress	application.

	LZMAF86	 LzmaF86Compress	tool	definitions	with	converter	for	x86	code.

	MAKE	
Required	for	tool	chains.	This	identifies	the	utility	used	to	process	the
Makefiles	generated	by	the	first	phase	of	the	build.

	MTOC	 This	command	code	is	specific	to	the	XCODE32	and	XCLANG	tool	chain	tags.

	OBJCOPY	
This	system	command	is	specific	to	GCC	tool	chains,	it	is	used	to	covert	ELF
images	to	PE32+	images.

	OPTROM	
This	command	is	for	the	EDK	II	build	system	EfiRom	utility,	and	allows	user
customization	of	the	tool's	flags.

	PLATFORM	 This	command	is	for	ARM	based	tool	chains

	PP	 The	C	pre-processor	command.

	PPPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	RC	 This	is	the	command	code	for	resource	compilers.

	RSA2048SHA256SIGN	 This	tool	definition	uses	a	test	signing	key	for	development	purposes	only.

	SLINK	 The	C	static	linker.

	SLINKPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	SYMRENAME	 This	command	code	is	by	some	of	the	GCC	family	tool	chains.

	TIANO	 This	tool	provides	Tiano	Compression	using	the	TianoCompress	application.

	VFR	
This	command	is	for	the	EDK	II	build	system	Visual	Forms	Representation	tool,
VfrCompile

1

1

1

2

1

1

1

1

1

5.2	tools_def.txtEDK	II	Build	Specification

81Revision	1.28



	VFRPP	 The	C	pre-processor	used	to	process	VFR	files.

	VFRPPPATH	 This	command	code	is	specific	to	the	RVCT31CYGWIN	tool	chain	tag.

	VPDTOOL	 This	tool	provides	VPD	binary	data	and	map	file	generation	using	the	BPDG.

	These	command	codes	are	only	used	for		FLAG		attribute	statements	and	are	not	related	to	actual
executable	applications.

	This	is	the	path	to	standard	Microsoft	libraries	(	.dll	).

Attribute

A	keyword	to	uniquely	identify	a	property	of	the	command;	the	fifth	and	last	field.Several	pre-defined
attributes	have	been	defined:		DLL	,		FAMILY	,		FLAGS	,		GUID	,		OUTPUT		and		PATH	.	Use	quotation	marks	only	if
the	quotation	marks	must	be	included	in	the	flag	string.	The	following	example	shows	the	format	for	the
required	quoted	string,		"C:\Program	Files\Intel\EBC\Lib\EbcLib.lib"	.	Normally,	the	quotation	characters	are	not
required	as	everything	following	the	equal	sign	to	the	end	of	the	line	is	used	for	the	flag.

	*_*_EBC_DLINK_FLAGS	=	"C:\Program	Files\Intel\EBC\Lib\EbcLib.lib"	/NOLOGO	

Table	8	Predefined	Attributes

Attribute Description

	ADDDEBUGFLAG	 This	flag	is	used	by	objcopy	to	set	the	option:		--add-gnu-debuglink	

	BUILDRULEFAMILY	

This	flag	is	used	by	some	tool	chain	tags	to	set	a	special		FAMILY		value	when
processing	the	build_rule.txt	file.	Normally,	the		FAMILY		attribute	is	used	to	identify
the	type	of	makefile	the	tools	need	to	generate.	Tools	such	as		XCODE		will	use		GCC	
as	the		FAMILY	,	but	uses	different	(from		GCC	)	processing	rules.	If	present	and	if	a
build	rule	(in		build_rules.txt	)	contains	an	attribute	with	the	value	specified	in	this
entry,	that	rule	will	be	processed	and	the	rule	with	the		FAMILY		attribute	will	be
ignored.

	DLL	
The	path	to	the	3rd	party	tool's	required	DLLs	-	required	for	some	tools	to
generate	debug	files.

	FAMILY	

A	flag	to	the	build	command	that	will	be	used	to	ensure	the	correct	commands
and	flags	are	used	in	the	generated	Makefile	or	GNUMakefile,	as	well	as	to	use
the	correct	options	for	independent	tools,	such	as	the	ACPI	compiler.	This	is
typically	used	to	identify	the	type	of	Makefile	that	needs	to	be	generated.

	FLAG		or		FLAGS	 The	arguments	for	individual	CommandCode	tools.

	GUID	

This	defines	the	Registry	Format	GUID	(8-4-4-4-12).	The	tool	is	identified	by	the
GUID	value	specified	which	is	also	specified	in	the	DSC	file.	These	GUID	tools	call
other	tools	that	modify	the	code	outside	of	the	normal	EDK	II	build	system
process	flow.

	OUTFLAGS	 This	specified	an	output	flag	for	ACPI	(ASL	and	IASL)	tools.

	OUTPUT	 This	specifies	an	output	flag	for	the	Assembler	(ASM)	command.

	PATH	

This	is	the	full	path	and	executable	name	for	a	command	code.	For	executables
that	are	in	the	BaseTools	paths	(or	that	are	in	directories	specified	in	the	OS	PATH
environment	variable)	only	the	name	of	the	executable	is	required.

	BUILDRULEORDER	

This	attribute	is	used	by	tools	to	process	files	listed	in	INF	[Sources]	sections	in
priority	order.	If	a	filename	is	listed	with	multiple	extensions,	the	tools	will	use	only
the	file	that	matches	the	first	extension	in	the	space	separated	list.

5.2.3.1	BUILDRULEORDER	Example
The	following	is	an	example	use	of	the		BUILDRULEORDER		attribute.

[Sources]

		Foo.s

1

1

2

5.2	tools_def.txtEDK	II	Build	Specification

82Revision	1.28



		Foo.asm

		Foo.nasm

The	tools_def.txt	file	has	the	entry.

	*_*_*_*_BUILDRULEORDER	=	nasm	asm	Asm	ASM	S	s	

The	Foo.nasm	file	will	be	processed,	and	the	Foo.s	and	Foo.asm	files	will	be	ignored	during	the	build.	If	a
file	is	listed	in	the	[Sources]	section	and	the	file	extension	is	not	listed	a	section	that	is	specified	for	a
build	FAMILY	(or	BUILDRULEFAMILY	if	specified	as	an	attribute	in	the	build_rule.txt	file)	for	the	selected	tool
chain	(GCC	for	example)	in	the	build_rule.txt	file,	then	the	file	is	ignored.	For	example,	if	the	INF	has	the
following	section	listed:	UefiCpuPkg/Library/BaseUefiCpuLib/BaseUefiCpuLib.inf

[Sources.IA32]

		Ia32/InitializeFpu.asm

		Ia32/InitializeFpu.S

[Sources.X64]

		X64/InitializeFpu.asm

		X64/InitializeFpu.S

If	the	tool	chain	is	a	GCC	tool	chain,	then	only	the	.S	files	would	be	processed	and	the	.asm	files	will	be
ignored.

5.2	tools_def.txtEDK	II	Build	Specification

83Revision	1.28



5.3	target.txt	File
This	file	is	used	to	filter	the	build	so	that	only	required	components	are	used.	It	also	provides	pointers
to	the		tools_def.txt		file,	and	the	active		build_rule.txt		files.	All	file	names	are	relative	to	the	system
environment	variable,		WORKSPACE	.	No	wildcard	characters	are	permitted	in	this	file.	All	entries	in	this	file
are	case-sensitive.

While	the	values	in	this	file	filter	what	will	be	built,	the		TARGET	,		TARGET_ARCH		and		TOOL_CHAIN_TAG		values	may
also	be	overridden	on	the	build	tool's	command	line.

The	following	well	known	macro	names	may	be	used	in	other	EDK	II	meta-data	files,		$(TARGET)	,		$(ARCH)	
and		$(TOOL_CHAIN_TAG)		and	are	mapped	to	the		TARGET	,		TARGET_ARCH		and		TOOL_CHAIN_TAG		in	this	file	or	from
options	specified	on	the	command	line	which	override	the	settings	in	this	file.

Prototype

<TargetText>			::=	[<Platform>]

																			[<Target>]

																			[<TargetArch>]

																			[<ToolsDef>]

																			[<ToolTagName>]

																			[<ThreadEnable>	<EOL>]

																			[<BldRuleConf>]

<TabSpace>					::=	{0x09}	{0x20}

<TS>											::=	<TabSpace>*

<MTS>										::=	<TabSpace>+

<Eq>											::=	<TS>	"="	<TS>

<Platform>					::=	"ACTIVE_PLATFORM"	<Eq>	[PlatformFile]	<EOL>

<Target>							::=	"TARGET"	<Eq>	[<Targets>]	<EOL>

<Targets>						::=	TargetVal	["	"	TargetVal]*

<TargetArch>			::=	"TARGET_ARCH"	<Eq>	[<Archs>]	<EOL>

<Archs>								::=	Arch	["	"	Arch]*

<ToolsDef>					::=	"TOOL_CHAIN_CONF"	<Eq>	ToolDefsFile	<EOL>

<ToolTagName>		::=	"TOOL_CHAIN_TAG"	<Eq>	TagName	<EOL>

<ThreadEnable>	::=	"MAX_CONCURRENT_THREAD_NUMBER"	<Eq>	[<NumThrds>]

<NumThrds>					::=	(1-9)	[(0-9)]*

<BldRuleConf>		::=	"BUILD_RULE_CONF"	<Eq>	BuildRulesFile	<EOL>

<Paths>								::=	(a-zA-Z0-9)	(a-zA-Z0-9\_\-)*	"/"

<Filenames>				::=	<Paths>*	(a-zA-Z0-9)(a-zA-Z0-9\_\-)*	["."	<Ext>]

<Ext>										::=	(a-zA-Z0-9)+

<EOL>										::=	<TS>	0x0D	0x0A

Parameters
PlatformFile

Specify	the		WORKSPACE		relative	Path	and	Filename	of	the	platform	DSC	file	that	will	be	used	for	the	build.
This	line	is	required	only	if	the	current	working	directory	does	not	contain	one	or	more	DSC	files.

TargetVal

Zero	or	more	of	the	following:		NOOPT	,		DEBUG	,		RELEASE	,	a	user	defined	word	in	the		tools_def.txt		file;
separated	by	a	space	character.	If	the	line	is	missing	or	no	value	is	specified,	all	valid	targets	specified
in	the	DSC	file	will	attempt	to	be	built.

Arch

The	target	architectures	that	are	specified	on	the	command-line	override	the		TARGET_ARCH		entry	in	the
	target.txt		file.	The	resulting	architecture	must	also	be	listed	as	one	of	the	architectures	in	the
	SUPPORTED_ARCHITECTURES		entry	in	the	DSC	file's		[Defines]		section.	If	the	target	architecture	is	not	specified	on

5.3	target.txt	FileEDK	II	Build	Specification

84Revision	1.28



the	command-line	and	the		TARGET_ARCH		entry	does	not	exist	in	the		target.txt		file,	then	all	valid
architectures	specified	in	the	DSC	file,	for	which	tools	are	available,	will	be	built.	The	architectures	are
space	separated.

ToolDefsFile

Specify	the	name	of	the	filename	to	use	for	specifying	the	tools	to	use	for	the	build.

If	not	specified,	the	file:		WORKSPACE/Conf/tools_def.txt		will	be	used	for	the	build.	The	path	and	file	name	must
be	relative	to	the		WORKSPACE		directory.

TagName

Specify	the	name	of	the		tools_def.txt		tool	chain	tag	name	to	use.	If	not	specified	in	this	file	and	it	is	not
specified	using	the		-t		option	on	the	command-line,	then	the	build	will	break.

Integer

The	number	of	concurrent	threads.	If	not	specified	or	set	to	zero,	tool	automatically	detect	number	of
processor	threads.	Recommend	setting	this	value	to	one	less	than	the	number	of	computer	cores	or
CPUs	of	the	development	workstation.	When	value	set	to	1,	means	disable	multi-thread	build,	and	value
set	to	more	than	1,	means	user	specify	the	thread	number	to	build.

BuildRulesFile

Specify	the	file	name	to	use	for	the	build	rules	that	are	followed	when	generating	Makefiles.	If	not
specified,	the	file:		WORKSPACE/Conf/build_rule.txt		will	be	used.

The	path	and	file	name	must	be	relative	to	the		WORKSPACE		directory.

5.3	target.txt	FileEDK	II	Build	Specification

85Revision	1.28



6	QUICK	START
This	chapter	describes	the	build	environment.	Additional	chapters	describe	how	the	build	system	parse
files,	creates	C	files	and	assembles	binary	images	into	PI	compliant	firmware	images.	The	EDK	II	build
system	uses	multiple	threads	during	the	build	process.	The	maximum	number	of	threads	that	will	be
spawned	is	controlled	in	the		Conf/target.txt		file.	Typically,	this	value	will	be	one	more	than	the	number	of
cores	that	are	on	the	development	workstation.	Increasing	the	number	beyond	the	N+1	value	will	not
offer	any	performance	benefit.

Note:	Path	and	Filename	elements	within	the	Build	Meta-Data	files	and	command-line	arguments	are
case-sensitive	in	order	to	support	building	on	UNIX	style	operating	systems.

A	build	is	always	performed	within	the	context	of	a	"platform"	defined	in	a	single	workspace.	Multiple
platforms	can	be	defined	in	any	one	workspace.	While	some	developers	will	not	be	building	actual
platform	firmware;	the	platform	definition	file	(DSC)	format	is	suitable	for	Option	ROM	and	stand-alone
application	development,	as	well	as	flexible	enough	to	create	binary	distribution	code	for	individual
modules	as	well	as	a	full	platform	firmware	file.

One	set	of	EDK	II	build	tools	is	required	on	a	development	system.	The	source	code	for	these	tools	is
written	in	either	generic	C	or	Python.

Refer	to	the	TianoCore.org	Getting	Started	with	EDK	II	web	page	for	additional	information	on	setting	up
and	using	the	EDK	II	build	system.

6	Quick	StartEDK	II	Build	Specification

86Revision	1.28



6.1	Environment	Variables
There	are	two	required	system	level	environment	variables	that	must	be	set,	and	several	optional
environment	variables.

6.1.1	Required	Environment	Variables
The	first	of	the	two	required	variables	is		WORKSPACE	.	This	variable	points	to	a	directory	that	will	contain	a
Conf	directory	(containing	the	text	files	that	are	used	to	control	build	options)	and	the	typical	Build
output	directory	tree.	The	following	two	lines	are	an	example	of	setting	this	variable,	the	first	in	a
Microsoft	Windows*	Command	Prompt	Window,	while	the	second	represents	setting	the	variable	in	a
UNIX	terminal	bash	shell.

set	WORKSPACE=C:\MyWork\Proj1\edk2

export	WORKSPACE=/usr/local/src/proj1/edk2

The	second	required	environment	variable,		EDK_TOOLS_PATH	,	required	points	to	the	directory	containing	the
Conf	directory	for	the	BaseTools	directory.	The	EDK	II	project	contains	a	BaseTools	directory,that
contains	setup	scripts,	template	files	and	XML	Schema	files.	Only	one	copy	of	the		BaseTools		directories
needs	to	be	installed	on	a	workstation	(although	multiple	copies	are	permitted,	such	as	having	one	in
each	workspace).	The		EDK_TOOLS_PATH		variable	must	point	to	the	directory	containing	the		BaseTools/Conf	
directory.	The	following	lines	are	an	example	of	setting	this	variable	in	a	Microsoft	Windows*	Command
Prompt	window.	The	first	line	sets	an	absolute	path	to	single	location,	outside	of	the	workspace,	while
the	second	line	uses	tools	located	within	the	workspace.

set	EDK_TOOLS_PATH=C:\Tools

set	EDK_TOOLS_PATH=%WORKSPACE%\BaseTools

If	assembly	code	is	used	by	the	modules	and	the	NASM	assembler	is	used,	the	system	environment
variable,		NASM_PREFIX		must	be	set	as	shown	below	and	must	include	the	trailing	backslash	character:

	set	NASM_PREFIX=C:\nasm\	

6.1.2	Optional	Environment	Variables
There	are	two	types	of	optional	environment	variables.	The	first	type	are	used	for	complex	development
trees,	while	the	second	type	of	optional	environment	variables	are	needed	build	EDK	components	and
libraries	for	use	in	an	EDK	II	platform.	Some	EDK	components	and	libraries	can	be	used	without
modifications,	while	other	EDK	components	and	libraries	will	require	porting	to	the	new	EDK	II
development	environment.

When	EDK	II	Packages	are	distributed	within	different	directory	trees	on	a	developer's	workstation,	the
	PACKAGES_PATH		environment	variable	is	used	to	list	directories	(prioritized	from	left	to	right)	that	contain
EDK	II	Package	directories.	The	operating	system	delimiter,	such	as	the	semi-colon	character	for
Microsoft	operating	systems,	is	used	to	separate	the	directory	names.	If	all	development	is	performed
under	the	root	of	the	edk2	source	tree,	this	variable	is	not	required.	The	edk2	reference	build	system
will	look	for	EDK	II	packages	in	the	directory	specified	in	the		WORKSPACE	,	then	search	for	the	package
directory	in	the	directories	listed	in	the		PACKAGES_PATH	;	the	first	occurrence	of	an	EDK	II	package	found	will
be	used.

For	Microsoft	windows	environments,	the	EDK_TOOLS_BIN	environment	variable	can	be	used	to	point	to
the	directory	that	contains	the	Win32	BaseTools	binaries.	If	these	Win32	binaries	are	located	in	edk2
directory	tree	under	the		BaseTools\Bin\Win32		directory;	this	variable	is	not	required.	Since	developers	using

6.1	Environment	VariablesEDK	II	Build	Specification

87Revision	1.28



*NIX	operating	systems	must	build	the	'C'-based	tools	prior	to	using	them	and	run	the	Python	based
tools	from	source,	this	environment	variable	is	not	required.	The	edksetup	script	is	used	to	add	the
path	to	the	binaries	to	the	system	PATH	environment	variable.

The		EDK_SOURCE		environment	variable	must	point	to	either	the	head	of	an	existing	EDK	directory	tree	(not
the	EDK	II	directory)	or	the	EDK	II's		EdkCompatibilityPkg		directory.

Another	optional	environment	variable,		EFI_SOURCE	,	is	needed	if	the		EDK_SOURCE		environment	variable	is	set
and	an	EDK	component	and/or	library	is	located	outside	of	the		EDK_SOURCE		tree.	If	these	values	are	not
set,	the	EDK	II	build	system	will	automatically	set	both	values	to	point	to	the		EdkCompatibilityPkg		directory
in	the		WORKSPACE	.

The	final	optional	environment	variable,		ECP_SOURCE	,	is	used	to	define	the	location	of	the	EDK	Compatibility
Package	content	for	building	EDK	modules.	If	these	values	are	not	set,	the	build	system	will
automatically	set	the	value	to	the		EdkCompatibilityPkg		directory	in	the		WORKSPACE	.

6.1.3	Configuring	the	Environment	Variables
If	all	development	will	be	done	within	the	root	of	the	edk2	directory	tree,	and	the	Win32	BaseTools
binaries	are	in	the	BaseTools\Bin\Win32	directory,	then	the	edksetup	script	may	be	used	to	setup	the
development	workspace	by	setting	system	environment	variables,		WORKSPACE		and		EDK_TOOLS_PATH	.

If	a	more	complex	development	environment	is	used	(multiple	directories	containing	EDK	II	Packages),
then	the		WORKSPACE	,		PACKAGES_PATH		and		EDK_TOOLS_BIN		environment	variables	must	be	set	before	running	the
edksetup	script.

The	three	optional	environment	variables,		ECP_SOURCE	,		EDK_SOURCE		and		EFI_SOURCE		which	are	required	when
building	EDK	libraries	and	components	in	the	context	of	an	EDK	II	platform	will	also	be	set	if	they	have
not	been	set	previously.

The	script	must	be	executed	prior	to	building	in	a	new	command	prompt	window	or	new	terminal	shell.

Another	feature	of	the	script	is	that	it	adds	the	path	of	the	build	system	tools	into	the	OS	environment
variable,		PATH	.

6.1	Environment	VariablesEDK	II	Build	Specification

88Revision	1.28



6.2	Build	Scope
The	EDK	II	build	process	was	designed	for	maximum	flexibility.	The	meta-data	files	and	command	line
options	enable	the	developer	to	build	only	what	they	need,	rather	than	having	to	build	a	single	platform
from	scratch.	Multiple	versions	of	a	platform	and/or	module	can	be	built,	as	well	as	just	a	single	module
within	the	context	of	a	platform.	This	section	of	the	document	describes	the	techniques	provided	to	limit
what	is	built.

Typically,	the		target.txt		file	is	used	to	limit	the	scope	of	a	build,	restricting	the	build	to	specified	values
for	Platform,	Architectures,	Targets	and	Tool	Chains.	With	all	values	in	this	file	commented	out,	the	build
system	will	build	all	valid	targets	for	all	architectures	where	tools	exist.	However,	options	specified	on
the	build	tool's	command	line	will	override	the		TARGET	,		TARGET_ARCH		and		TOOL_CHAIN_TAG		values.

6.2	Build	ScopeEDK	II	Build	Specification

89Revision	1.28



7	BUILD	ENVIRONMENT
This	chapter	details	the	supported	build	environments	(developer	workstations)	for	EDK	II	development.
It	also	covers	the	tool	configuration	files	that	describe	the	developer's	tool	environments.	Note	that	the
term	"development	platform"	referenced	throughout	this	document	means	the	workstation	a	developer
using	to	write	code	and	build	a	target	binary.	The	architecture	for	the	target	binary	does	not	have	to
match	the	same	architecture	as	the	developer's	workstation.

Note:	Path	and	Filename	elements	within	the	Build	Meta-Data	files	and	command-line	arguments	are
case-sensitive	in	order	to	support	building	on	UNIX	style	operating	systems.

7	Build	EnvironmentEDK	II	Build	Specification

90Revision	1.28



7.1	Build	Scope
This	section	of	the	document	describes	the	some	of	the	rules	that	control	what	gets	built	and	rules	that
the	build	system	uses	when	parsing	meta-data	files.

7.1.1	The	precedence	of	what	(platform	or	module)	gets	built
1.	 Content	of	the	current	working	directory.	If	the	current	working	directory	contains	an	INF	file,	then
only	the	module	is	built	in	the	context	of	an		ACTIVE_PLATFORM	,	otherwise	the	following	apply.

2.	 build.exe	option	statements	(command-line	options)
3.	 	target.txt		file's		ACTIVE_PLATFORM		statement

Note:	There	are	two	different	options,	the		-p		option	specifies	the		ACTIVE_PLATFORM		to	be	used	for	a	build,
so	that	if	the	current	working	directory	contains	a	module	INF	file,	then	the	module	will	be	built	in	the
context	of	the		ACTIVE_PLATFORM	.

Note:	If	the	INF	file	is	not	listed	in	the		ACTIVE_PLATFORM	's	DSC	file,	the	build	will	result	in	an	error.	The		-m	
option	is	used	to	specify	building	an	individual	module	(in	the	context	of	the		ACTIVE_PLATFORM	.

If	the		ACTIVE_PLATFORM		value	is	not	set	using	the	methods	above,	then,	if	the	current	working	directory
contains	a	DSC	file,	then	the	platform	is	built	(unless	a	specific	module	is	specified	by	the	-m	option	on
the	command	line).

If	the	user	attempts	to	build	a	module	that	is	not	part	of	the	current		ACTIVE_PLATFORM	,	the	build	system
should	provide	an	appropriate	error	message	and	the	build	should	break.

7.1.2	The	precedence	of	the	TARGET	value
It	is	possible	to	build	more	than	one		TARGET		(i.e.,		DEBUG	,		RELEASE	,		NOOPT	,	etc.)	with	a	single	build
command.	The	precedence	of	the		TARGET		value	is:

1.	 build.exe	-b	TARGET	option	statements.	One	or	more	of	the	-b	TARGET	options	may	be	specified
on	the	command	line	of	the	build	tool.

2.	 	TARGET		statement	in	the		target.txt		file
3.	 DSC	file's		BUILD_TARGETS		statement

7.1.3	The	precedence	of	the	TARGET_ARCH	values
The	target	architectures	that	are	specified	on	the	command-line	override	the		TARGET_ARCH		entry	in	the
	target.txt		file.	The	resulting	architecture	must	also	be	listed	as	one	of	the	architectures	in	the
	SUPPORTED_ARCHITECTURES		entry	in	the	DSC	file's		[Defines]		section.	If	the	target	architecture	is	not	specified	on
the	command-line	and	the		TARGET_ARCH		entry	does	not	exist	in	the		target.txt		file,	then	all	valid
architectures	specified	in	the	DSC	file,	for	which	tools	are	available,	will	be	built.

Note:	If	a	module's	INF	file	does	not	contain	a		[Sources]		or		[Sources.common]		section,	and	does	contain	a
	[Sources.IA32]		section,	then	the	module	is	only	valid	for	IA32	builds.	The	module	will	not	be	built	for	other
architectures.

7.1	Build	ScopeEDK	II	Build	Specification

91Revision	1.28



If	an	architecture	set	on	a	command	line	or	specified	in	the		target.txt		file	is	not	in	the	list	of	the	DSC
file's		SUPPORTED_ARCHITECTURES		statement,	the	command	will	fail.

7.1.4	Third	Party	tools	using	-t	TOOL_CHAIN_TAG
It	is	possible	to	specify	a	different	set	of	third	party	tools	using	the	-t		TOOL_CHAIN_TAG		option	to	the	build
command.	This	option	takes	precedence	over	the		target.txt		file	setting.

1.	 build	command	-t		TOOL_CHAIN_TAG		option
2.	 	target.txt		file		TOOL_CHAIN_TAG		statement

If	the		TOOL_CHAIN_TAG		is	not	specified	on	the	command-line	nor	in	the		target.txt		file,	the	build	system	will
break	with	an	error.

7.1.5	Precedence	of	Build	Option	FLAGS	values
The	flags	needed	by	third	party	tools	can	be	specified	on	a	file,	module	or	platform	basis.	The	default
flags	provided	in	the		tools_def.txt		file	are	for	size	optimization.	These	flags	may	be	modified	to	provide
better	debugging	capability.	The	precedence	of	the		FLAGS		values	for	third	party	tools	follows.	The
reasoning	behind	this	precedence	is	that	flags	are	appended	to	a	single	line	from	the	lowest	to
highest,	with	third	party	tools	using	the	right	most	option.	If	a	flag	line	for	the	Microsoft	compiler
contains	/O1	(specified	in	the		tools_def.txt		file)	and	/Od	(for	example,	from	the	DSC	file's		[BuildOptions]	
section),	then	the	compiler	only	recognizes	the	/Od	flag.

Flag	entries	can	be	defined	in	the	INF	and	DSC	files	to	replace	all	previous	flags	by	using	two	equal
signs	as	in	the	following	example:

	GCC:*_*_X64_NASM_FLAGS	==	-f	elf32	

The	following	is	the	precedence	list	for	flag	entries,	and	as	such,	the	would	be	processed	in	reverse
order.

1.	 Highest	-	DSC	file,	INF		<BuildOptions>		section	statements
2.	 DSC	file,		[BuildOptions.<arch>.<codebase>.<moduletype>]		section	statements
3.	 DSC	file,		[BuildOptions.<arch>.<codebase>]		section	statements
4.	 DSC	file,		[BuildOptions.<arch>]		section	statements
5.	 DSC	file,		[BuildOptions]		section	statements
6.	 INF	file,		[BuildOptions]		section	statements
7.	 Lowest	-		tools_def.txt		file		_FLAGS		statements

The	following	demonstrates	the	way	tools	process	flags	statements.

CCFLAGS	=	ToolsDef.CC_FLAGS	+	INF.BuildOptions	+	DSC.BuildOptions.CC_FLAGS	+	DSC.Inf.BuildOptions

The	DSC	and	INF	specifications	define	the	"=="	character	string	as	a	replacement	rather	than	append.
This	allows	the	INF	file	to	replace	the	all	options	specified	in	the		tools_def.txt		file,	and	also	allows	the
platform	DSC	to	override	all	options	specified	in	either	the	INF	or		tools_def.txt		file.

Note:	Most	tools	will	process	the	flag	values	from	left	to	right,	with	the	right	most	of	a	duplicated	flag
taking	priority	over	identical	flags	that	are	to	the	left.	This	includes	the	-D	option	of	the	build	command.

7.1	Build	ScopeEDK	II	Build	Specification

92Revision	1.28



7.1	Build	ScopeEDK	II	Build	Specification

93Revision	1.28



7.2	Third	Party	Tools
The		tools_def.txt		file	provides	various	flags	for	third	party	tools.	Refer	to	the	Appendix,	"Third	Party	Tool
Flags"	for	additional	information.

7.2	Third	Party	ToolsEDK	II	Build	Specification

94Revision	1.28



7.3	GUIDed	Tools
The		tools_def.txt		file	also	allows	for	specifying	tools	by	GUID.	For	custom	guided	sections	specified	in	the
FDF	file,	the		tools_def.txt		file	must	specify	a	GUID	that	matches	the	GUID	used	in	the	FDF.	Using
compression,	such	as	LZMA,	CRC32	or	TianoCompress,	as	an	example,	the	entries	in	the		tools_def.txt	
must	define	an	entry	for	the	tool	as	well	as	implementing	a	decompression	library	in	the	code-base.
Since	the	build	system	provides	these,	the	entries	in	the		tools_def.txt		file	are:

*_*_*_LZMA_PATH		=	LzmaCompress

*_*_*_LZMA_GUID		=	EE4E5898-3914-4259-9D6E-DC7BD79403CF

*_*_*_CRC32_PATH	=	GenCrc32

*_*_*_CRC32_GUID	=	FC1BCDB0-7D31-49AA-936A-A4600D9DD083

*_*_*_TIANO_PATH	=	TianoCompress

*_*_*_TIANO_GUID	=	A31280AD-481E-41B6-95E8-127F4C984779

The	GUIDed	compression	tools	must	use	the	-e	option	to	encode	(compress)	a	file	and	the	-d	option	to
decode	(decompress)	a	file.

7.3.1	PCD	VPD	Data
PCDs	defined	in	the	DSC	file	may	be	defined	as	Dynamic	VPD	or	DynamicEx	VPD.	VPD	data	is	typically
located	in	a	separate	data	section	of	the	FDF	file.	VPD	data	also	requires	that	each	PCD	be	located	at	a
known	offset	from	the	start	of	the	data	region.

VPD	data	is	common	to	all	modules,	therefore	one	and	only	one	value	can	be	defined	for	a	given
PCD/SKU	in	the	DSC	file.

The	DSC	file	permits	automatic	assignment	for	these	VPD	PCDs	when	using	an	external	tool,	such	as	the
provided	BPDG	tool,	by	specifying	a	offset	value	of	"*".

Just	calling	the	tool	to	create	the	binary	data	file	is	not	enough,	as	the	offset	value	must	also	be	used	in
a	header	file	for	the	PEI	and	DXE	PCD	drivers.	In	order	to	interrupt	the	build	system	prior	to	auto-
generating	the	header	files,	a	special	entry	in	the	DSC	file,		VPD_TOOL_GUID		identifies	the	GUIDed	tool	in
defined	in	the		tools_def.txt		file.	The	format	for	the	VPD	GUIDed	tool	in	the		tools_def.txt		file	is:

*_*_*_VPDTOOL_PATH	=	BPDG

*_*_*_VPDTOOL_GUID	=	8C3D856A-9BE6-468E-850A-24F7A8D38E08

When	using	the	BDPG	tool	provided,	the	build	tools	will	create	the	8C3D856A-9BE6468E-850A-
24F7A8D38E08.txt	file	with	the	PCD	names,	SKU	names,	offsets,	values	and	size,	in	the	build	output	FV
directory.	The	VPDTOOL	will	be	called	using	the	two	flags	and	the	file	generated	by	the	build	system	as
an	argument.	Any	custom	tool	that	is	used	to	create	the	VPD	data	must	support	these	two	flags	and
take	the	input	text	file	that	was	generated	by	the	build	system.

	<Tool>	-o	Filename.bin	-m	Filename.map	Filename.txt	

Once	the	tool	completes,	if	the	PCD	offsets	have	been	calculated	by	the	tool,	the	map	file	generated	by
the	tool	will	be	read	by	the	build	system	and	will	be	used	to	create	the	header	files	required	by	the	PCD
drivers	and	binary	file	to	be	included	in	the	flash	image.

Note:	The	word	"Filename"	in	the	above	example	will	be	replaced	by	the		VPDTOOL_GUID		value,	as	in:
	8C3D856A-9BE6-468E-850A-24F7A8D38E08.txt	.

7.3	GUIDed	ToolsEDK	II	Build	Specification

95Revision	1.28



The	format	for	the	file	created	by	the	build	system	and	the	format	of	the	map	file	required	by	the	build
system	is	provided	in	the	appendix,	VPD	Tool.

7.3.1.1	Using	VPD	Data	for	PCD	Values
1.	 Modify	the	DSC	file:

Add	"VPD_TOOL_GUID	=8C3D856A-9BE6-468E-850A-24F7A8D38E08"	to	the	[Defines]	section.
Add	at	least	one	[PcdsDynamicVpd]	or	[PcdsDynamicExVpd]	section.
For	numeric	or	boolean	PCDs	allowing	the	tool	to	determine	offsets	automatically,	add	an	entry
for	each	PCD	using	the	following	format:

<PcdTokenSpaceGuidCName>.<PcdCname>	|	*	|	<Value>

For		VOID*		PCDs	allowing	the	tool	to	determine	offsets	and	reserved	size	automatically,	add	an
entry	for	each	PCD	using	the	following	format:

<PcdTokenSpaceGuidCName>.<PcdCname>	|	*	|	<MaxSize>	|	<Value>

If	using	automatic	offset	feature,	the	build	tools	byte-align	numeric	values,	while		VOID*		PCD	types	will
be	aligned	using	the	following	rules:

ASCII	strings,	"string"	or	'string',	will	be	byte	aligned.
Unicode	strings,	L"string"	or	L'string'	will	be	two-byte	aligned.
Byte	arrays,	{0x00,	0x01}	will	be	8-byte	aligned.

If	the	developer	manually	assigns	offset	values	in	the	DSC	file,	the	developer	must	follow	the	same
rules.

Note:	If	a	developer	manually	sets	the	offset	of	a		VOID*		PCD	with	Unicode	string,	L"string"/L'string'
style	to	a	value	that	is	not	2-byte	aligned,	then	an	error	is	generated	and	the	build	halts.

Note:	If	a	developer	manually	sets	the	offset	of	a		VOID*		PCD	with	byte	array	{}	style	to	a	value	that
is	not	8-byte	aligned,	then	a	warning	is	generated,	but	the	build	will	continue.

2.	 Modify	the	FDF	file:

Create	a	Region	for	storing	the	VPD	binary	data	in	the	[FD]	section,	the	offset	and	size	of	the
region	must	be	specified.
The	starting	address	of	the	VPD	data	region	must	be	8-byte	aligned	(the	BaseTools	must	halt
with	an	appropriate	error	message	if	the	address	is	not	correctly	aligned).
The	PcdVpdBaseAddress	PCD	must	be	specified	immediately	after	the	region	declaration.
Add	the	FILE	statement	to	the	region	with	the	name	of	the	VPD	binary	generated	by	the	VPD
tool.

	#	VPD	Data	Region

	0x0026D000|0x00001000

	gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress

	FILE	=	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/8C3D856A-9BE6468E-850A-24F7A8D38E08.bin

7.3	GUIDed	ToolsEDK	II	Build	Specification

96Revision	1.28



7.3	GUIDed	ToolsEDK	II	Build	Specification

97Revision	1.28



8	PRE-BUILD	AUTOGEN	STAGE
For	the	remainder	of	this	document,	unless	otherwise	specified	(using	system	environment	variable,
	WORKSPACE	),	references	to	the		WORKSPACE		and		$(WORKSPACE)		refer	to	the	ordered	list	of	directories	specified
by	the	combination	of		WORKSPACE		and		PACKAGES_PATH	.	The	build	system	will	automatically	join	the	directories
and	search	these	paths	to	locate	content,	with	the	first	match	terminating	the	search.	For	example
given	the	following	set	of	environment	variables,	and	the	MdeModulePkg	is	located	in	both	the	edk2	and
edk2Copy	directories,	the	build	system	would	use	the		C:\work\edk2\MdeModulePkg		when	attempting	to	locate
the		MdeModulePkg.dec		file.

set	WORKSPACE=c:\work

set	PACKAGES_PATH=c:\work\edk2;c:\work\edk2Copy

8	Pre-Build	AutoGen	StageEDK	II	Build	Specification

98Revision	1.28



8.1	Overview
This	chapter	describes	in	detail	the	steps	that	are	accomplished	by	the	AutoGen	stage,	which	is	the
first	step	of	building	a	platform	or	a	module.

Figure	19	EDK	II	AutoGen	Process

The	first	file	the	build	tool	is	looking	for	in	AutoGen	stage	is		target.txt		in	directory		$(WORKSPACE)/Conf	.	All	the
configurations	in		target.txt		can	be	overridden	by	command	line	options	of	build	tool.	If	no	platform
description	file	is	specified	in	either		target.txt		and	command	line,	the	build	tool	will	try	to	find	one	in
current	directory.	And	if	build	tool	finds	a	description	file	of	a	module	(INF	file)	in	current	directory,	it	will
try	to	build	just	that	module	only	rather	than	building	a	whole	platform.

Once	the	build	tool	gets	what	to	build	and	how	to	build,	it	starts	to	parse	the	platform	description	file
(DSC).	From	the	DSC	file,	the	build	tools	will	locate	the	INF	files	for	all	modules	and	libraries,	as	well	as
other	settings	of	the	platform	(including	DEC	specified	default	values	for	PCDs	used	by	modules	and
libraries	that	do	not	have	values	specified	in	the	DSC	file).

From	module	description	files,	the	build	tool	will	find	out	what	package	description	files	the	module
depends	on.	In	this	way,	the	build	tool	will	find	out	and	parse	all	modules	and	packages	that	make	up	a
platform.

The	next	thing	to	do	in	the	AutoGen	stage	is	to	generate	files	required	to	build	a	module.	The	files
include:		AutoGen.h	,		AutoGen.c	,		$(BASENAME).depex		and		Makefile	.

	AutoGen.c		and		$(BASENAME).depex		files	will	not	be	generated	for	library	modules,	and		$(BASENAME).depex		file	is
generated	only	if	there's		[Depex]		section	found	in	the	module's	INF	file.

Each	module	found	in	DSC	file	will	have	a	makefile	generated	for	it.	Once	all	of	the	makefiles	have	been
generated,	the	build	tool	will	call	nmake	(or	make)	for	each	module's		Makefile	.

Note:	When	building	a	module,	only	the	module's	makefile	will	be	called.

8.1	OverviewEDK	II	Build	Specification

99Revision	1.28



8.1	OverviewEDK	II	Build	Specification

100Revision	1.28



8.2	Auto-generation	Process
This	section	covers,	in	sequence,	the	steps	taken	by	the		build.exe		tool.	When	creating	the	auto-
generated	files,	the	build	system	must	include	either	the	"u"	suffix	or	the	"ull"	suffix	(UINT64	only)	to
indicate	that	the	values	are	unsigned	for	all	numeric	values	specified	for	PCDs.

8.2.1	Determine	What	to	Build
The	build	tool	will	use	following	algorithm	to	determine	what	will	be	built.	The	first	step	the	build	system
performs	is	to	open	the		Conf/target.txt		file.

Note:	The	build	system	tools	allow	for	specifying	an	alternate	location	and	filename	for		Conf/target.txt	
on	the	command-line	that	can	be	either	inside	or	outside	of	the		WORKSPACE		directory	tree.

The	following	pseudo-code	demonstrates	how	the	tools	obtain	command-line	overrides	of	the
information	specified	in		Conf/target.txt	.

If	("-t		<DscFile>")	{

		//	Command	line	option	specified

		ActivePlatform	=	<DscFile>;

}	ElseIf	(<ACTIVE_PLATFORM>	specified	in	$	(WORKSPACE)/Conf/target.txt)	{

		ActivePlatform	=	<ACTIVE_PLATFORM>;

}	ElseIf	(one		<DscFile>			found	in	current	working	directory)	{

		ActivePlatform	=	<DscFile>;

}	Else	{

		//	Unable	to	determine	the	Active	Platform

		if	(Number	of	DscFiles	>	1)	{

				PrintError	(

						"There	are	%s	DSC	files	in	the	folder.	"

						"Use	'-p'	to	specify	one.",	NumDscFiles

						);

		}	else	{

				PrintError	(

						"No	active	platform	specified	in	target.txt	"

						"or	command	line!\n	Nothing	to	build."

						);

		}

		BreakTheBuild();

}

//	Determine	whether	this	is	a	module	only	build	or	the	full	platform

If	(("-m	<InfFile>")	||	(one	<InfFile>	found	in	working	directory))	{

		//	Either	a	command	line	option	was	specified,	or	one	and	only

		//	one	INF	file	was	found	in	the	current	working	directory.

		ActiveModule	=	<InfFile>;

		BuildMode	=	"SingleModuleBuild";

}	Else	{

		ActiveModule	=	NONE;

		BuildMode	=	"PlatformBuild";

}

Parse	(	$	(WORKSPACE)	/	Conf	/	target.txt	);

Parse	(	ActivePlatform	);

//	Determine	Architectures	to	build

If	("-a		<ArchListFromCommandLine>")	{

		//	command	line	option	given

		ActiveArchList	=	Intersection	(

																					<ArchListFromCommandLine>,

																					<ArchListFrom	(ActivePlatform)>

8.2	Auto-generation	ProcessEDK	II	Build	Specification

101Revision	1.28



																					);

}	Else	{

		ActiveArchList	=	Intersection	(

																					<ArchListFromTarget.Txt>,

																					<ArchListFrom	(ActivePlatform)>

																					);

}

If	(ActiveArchList	==	NULL)	{

		if	(ArchListFromCommandLine	!=	NULL)	{

				PrintError	(

						"The	architecture(s)	specified	on	the	command	line	"

						"(%s)	are	not	valid	for	the	active	platform	(%s\n",

						ArchListFromCommandLine,

						ArchListFrom	(ActivePlatform)

						);

		}	else	{

				PrintError	(

						"The	active	platform	cannot	be	built,	the	"

						"architectures	(%s)	are	not	supported.\n",

						ArchListFrom	(ActivePlatform)

						);

		}

		BreakTheBuild();

}

//	Determine	the	target	type,	such	as	DEBUG	and/or	RELEASE

If	("-b		<TargetListFromCommandLine>")	{

		//	command	line	option	given

		ActiveTargetList	=	Intersection	(

																							<TargetListFromCommandLine>,

																							<TargetListFrom	(ActivePlatform)>

																							);

}	Else	{

		ActiveTargetList	=	Intersection	(

																							<TargetListFromTarget.Txt>,

																							<TargetListFrom	(ActivePlatform)>

																							);

}

If	(ActiveTargetList	==	NULL)	{

		if	(TargetListFromCommandLine	!=	NULL)	{

				PrintError	(

						"Target	(%s)	specified	on	the	command	line	is	not	"

						"valid	for	this	platform	(%s).\n",

						TargetListFromCommandLine,

						TargetListFrom	(ActivePlatform)

						);

		}	else	{

				PrintError	(

						"Target	(%s)	is	not	specified	in	the	target.txt	file.\n",

						TargetListFrom	(ActivePlatform)

						);

		}

		BreakTheBuild();

}

//	Determine	the	tool	chain	to	use	for	the	build

If	("-t		<ToolChainTag>")	{

		//	command	line	option	given

		ActiveToolChain	=	<ToolChainTag>

}	ElseIf	(<TOOL_CHAIN_TAG>	specified	in	$	(WORKSPACE)/Conf/target.txt)	{

		ActiveToolChain	=	<TOOL_CHAIN_TAG>

}	Else	{

		if	(ToolChainTag	!=	NULL)	{

				PrintError	(

						"Tool	chain	specified	on	the	command	line	(%s)	is	"

						"not	specified	in	the	tools_def.txt	file.\n",

						ToolChainTag

						);

		}	else	{

				PrintError	(

8.2	Auto-generation	ProcessEDK	II	Build	Specification

102Revision	1.28



						"Tool	chain	specified	in	target.txt	(%s)	is	not	"

						"specified	in	the	tools_def.txt	file.\n",	TOOL_CHAIN_TAG

						);

		}

		BreakTheBuild();

}

Build	(ActivePlatform,	ActiveModule,	ActiveArchList,	ActiveTargetList,	ActiveToolChain,	BuildMode);

8.2.2	Parse	File	Pointed	to	by	TOOL_CHAIN_CONF
The	file	specified	by		TOOL_CHAIN_CONF		(in		target.txt	)	is	the	tool	chain	definition	file	(	tools_def.txt	)	that
contains	all	the	definitions	of	external	tools	used	to	build	modules	and	platforms,	in	the	form	of
"name=value".	The	definition	of	a	tool	includes	the	path	of	the	executable,	the	path	of	dynamic	libraries
the	executable	needs,	and	command	line	options.	Each	set	of	tools	can	be	referenced	by	a	tag	name
either	in	the	command	line	or	in		target.txt	.	For	example,	WINDDK3790x1830	is	used	to	refer	a	set	of
tools	from	WINDDK	of	version	3790x1830.

The	parser	of	the	tool	chain	definition	file	needs	to	expand	macros	and	wild	cards	("*")	in	the	tool
definitions.	The	expanded	definitions	are	put	in	a	database	for	easier	access	later.	For	example,	if	one
overrides	a	tool's	options	in	DSC	or	INF	file,	the	tool	will	look	up	the	tool's	definition	in	the	database	and
append	the	options	to	the	end	of	options	in	the	file	specified	by		TOOL_CHAIN_CONF	.

Note:	The	supported	third	party	compiler	tools	will	use	the	right	most	(or	last)	option	it	encounters,
permitting	appended	options	to	override	options	specified	first.	For	example,	specifying	a	compiler
option	(FLAG)	line:	/Od	/c	/Og	will	result	the	compiler	only	processing	/c	/Og,	ignoring	the	/Od	flag.

The	final	result	after	AutoGen	stage	is	that	macros	named	by		<TOOLCODE>		and

	<TOOLCODE>_FLAGS		will	be	generated	in	module's	makefile.	For	example,	"CC"	and	"CC_FLAGS"	macros	will	be
generated	in	the	makefile	for	the	compiler	tool.	The	path	of	dynamic	libraries	will	be	prefixed	to	system's
PATH	environment	by	the	build	tools,	so	that	the	tools	used	in	the		Makefile		can	be	called	correctly.

8.2.3	Parse	build_rule.txt
The	file	specified	by		BUILD_RULE_CONF		(in		target.txt	)	contains	command	steps	used	to	build	the	source	files
into	intermediate	files	and	then	intermediate	files	into	final	image	files	to	be	put	into	FV/FD.	The	type	of
source	files	and	intermediate	files	are	determined	by	the	file	extension.	That	means	the	same	extension
cannot	be	used	to	represent	different	file	types.	But	one	type	of	file	can	have	more	than	one	file
extension.	A	single	file	can	only	have	a	single	extension.

The	parser	of	this	file	will	convert	the	contents	of	the	file	into	a	build	rule	database.	Each	item	in	this
database	will	have	tool	chain	family,	input	file	information,	output	file	information	and	command
information.	Whenever	a	source	file	is	found	in	module's	INF	file,	the	build	tools	will	attempt	to	find	a
build	rule	in	the	database	corresponding	to	the	input	file's	extension,	and	then	use	the	output	file	as
input	file	information	to	find	another	build	rule,	until	no	build	rule	uses	the	output	file	information	as	its
input	file.	If	there's	no	build	rule	for	a	type	of	source	file,	the	build	tools	just	skip	it.	But	if	there's	build
rule	for	it,	one	or	more	makefile	targets	will	be	generated	for	it.

The	sequence	of	build	rules	applied	to	source	files	and	intermediate	files	determines	the	dependency
relationship	between	targets	in	makefile.	One	type	of	file	cannot	be	used	in	more	than	one	build	rule	as
an	input	file	and	the	build	rules	must	not	be	cyclic.

8.2.4	Parse	DSC,	FDF,	INF,	DEC	files

8.2	Auto-generation	ProcessEDK	II	Build	Specification

103Revision	1.28



The	platform	description	(DSC)	file	is	used	to	instruct	the	build	system	what	modules	need	to	be
processed	in	order	to	generate	the	PE32/PE32+	image	files.

The	EDK	II	build	system	tools	must	be	located	in	either	the	path	pointed	to	by	the	EDK_TOOLS_BIN
system	environment	variable	(on	Microsoft*	operating	systems)	or	located	under	a	subdirectory	of	the
Bin	directory	of	the	EDK_TOOLS_PATH	directory.

All	EDK	II	content	used	to	create	PE32/PE32+	images	must	reside	in	the	directory	tree	pointed	to	by
the		WORKSPACE	.

EDK	content	must	reside	in	directories	pointed	to	by	the		EFI_SOURCE	,		EDK_SOURCE		and		ECP_SOURCE		system
environment	variables.

The	build	system's	output	directory	is	not	required	to	be	within	the		WORKSPACE	.

From	the	DSC	file,	the	build	tools	collect	the	mapping	between	library	classes	and	library	instances	(INF
files),	PCD	data	for	the	whole	platform,	the	list	of	modules	(INF	files)	specified	for	the	platform,	and	the
build	output	directory.	Optionally,	the	name	of	the	flash	image	layout	description	(FDF)	file	and	build
options	specific	to	the	platform	are	also	obtained.	Parsing	FDF	file	at	this	time	is	just	for	the	PCD
information	which	might	be	used	by	some	modules,	and	merge	these	PDC	values	into	the	information
set	of	PCDs	in	DSC	file.

A	PCD	entry	must	only	be	listed	once	per	section	in	the	DSC	or	FDF	files.

Multiple	library	class	instances	for	a	single	library	class	must	not	be	specified	in	the	same		[LibraryClasses]	
or		<LibraryClasses>		section	in	the	DSC	file.

8.2.4.1	!include	Files
The	DSC	(and	FDF)	file	can	use		!include		statements	to	include	text	files	that	contain	content	that	would
appear	in	the	DSC	file.	When	gathering	the	content	from	the	DSC	(or	FDF)	file,	the	file	pointed	to	by	the
!include	statement	is	read	before	any	other	information	that	appears	later	in	the	file.

The	build	system	does	not	parse	the	files	as	the	lines	are	read,	but	rather	the	lines	are	all	read	into	a
buffer	prior	to	parsing	the	content.	Therefore,	the	directory	and	file	names	for	!include	statements	may
not	contain	MACROs.

If	only	a	filename	is	provided,	the	file	must	be	located	in	the	same	directory	as	the	DSC	or	FDF	file.	Use
of		$(WORKSPACE)/<Path>/<Filename>		is	allowed	for	include	files	outside	of	the	directory	tree	containing	the	DSC
or	FDF	file,	or		<Path>/<Filename>		if	the	include	file	is	in	the	directory	tree	containing	the	DSC	or	FDF	file.

8.2.4.2	INF	and	DEC	Parsing
The	build	tools	try	to	parse	the	INF	file	one	by	one,	including	the	INF	file	for	library	instances.	From	the
INF	file,	the	build	tools	collect	information	such	as	source	file	list,	library	class	list,	package	list,
GUID/Protocol/PPI	list,	PCD	list,	etc.

After	all	INF	files	are	parsed,	the	build	tools	retrieve	the	list	of	all	of	the	dependent	DEC	files	and	then
parse	them.	From	the	DEC	file,	the	build	tools	will	get	the	information	such	as	common	include	folders,
the	values	of	GUID/Protocol/PPI,	the	default	setting	of	all	PCDs	in	the	package,	etc.

The		[Packages]		section	of	the	INF	file	is	used	by	the	build	tools	during	the	generation	of	the	Makefiles.
The		[Includes]		section	of	the	DEC	file	specified	in	the		[Packages]		section	will	be	added	to	the	command-
lines	for	compiler	tools.	The		MdePkg/MdePkg.dec		file	must	be	included	in	all	INF	files	listed	in	the	DSC	file.

EDK	II	INF	files	must	contain	a	valid	name	in	the		MODULE_TYPE		element	of	their		[Defines]		sections.	If	the
module	type	is	not	recognized,	he	build	tools	should	break	the	build	with	an	appropriate	error	message.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

104Revision	1.28



EDK	INF	files	must	contain	a	valid	name	in	the		COMPONENT_TYPE		element	of	their		[defines]		sections.	If	the
component	type	is	not	recognized,	the	build	tools	should	break	the	build	with	an	appropriate	error
message.

For	entries	in	the	[Sources]	section	of	the	INF	file,	in	addition	to	the	required	file	name	field,	there	are
optional	fields	for	Family,	Tool	chain	tag	name	and	Tool	Code	that	may	contain	modifiers	that	limit	the
scope	of	the	file	to	a	specific	tool	chain	family,	such	as	GCC,	or	tool	code,	such	as	ASM.	If	these	fields
are	blank,	then	there	is	no	restriction	to	what	tools,	tagname	or	tool	chain	family	will	process	the	file.
The	final	field	is	for	a	FeatureFlag	Expression.	This	field	is	an	expression	that	must	evaluate	to	True	or
False.	If	the	field	cannot	be	evaluated	(such	as	an	undeclared	PCD	used	in	the	expression)	the	build
parser	must	provide	an	appropriate	error	message	and	stop	the	build.	If	the	field	evaluates	to	False,
the	line	is	ignored.	If	the	field	evaluates	to	True,	the	build	will	use	this	line.

For	entries	in	the	[Binaries]	section	of	the	INF	file,	in	addition	to	the	file	type	and	name	fields,	there	are
optional	fields	for	the	target	(DEBUG,	RELEASE,	etc.)	and	a	FeatureFlagExpression	field.	This	field	is	an
expression	that	must	evaluate	to	True	or	False.	If	the	field	cannot	be	evaluated	(such	as	an	undeclared
PCD	used	in	the	expression)	the	build	parser	must	provide	an	appropriate	error	message	and	stop	the
build.	If	the	field	evaluates	to	False,	the	line	is	ignored.	If	the	field	evaluates	to	True,	the	build	will	use
this	line.

The		[Binaries]		section	of	an	INF	file	may	list	files	with	a	FileType	of		DISPOSABLE	.	The	build	tools	must	ignore
files	of	this	type.

8.2.4.3	Build.exe	--ignore-sources	option
When	the		--ignore-sources		option	is	present	on	the	build.exe	command-line,	all	modules	specified	in	the
DSC	and	FDF	files	must	be	either	Binary	INFs	or	Mixed	INFs	(that	contain	binary	images).	The	build	tools
will	ignore	any	content	in	a	Mixed	INF	[Sources]	section.	If	a	Source	INF	is	listed	in	the	DSC	file,	the	build
must	break	during	parsing	with	an	appropriate	error	message.	If	an	INF	file	is	listed	in	the	DSC	file	that
does	not	contain	a		[Binaries]		section,	the	build	must	break	during	parsing	with	an	appropriate	error
message.	The	only	code	that	will	be	generated	during	this	build	is	the	binary	external	PCD	database	file
that	will	be	added	to	the	PEIM	and	DXE	PCD	driver	FFS	files.

8.2.4.4	Macros
The	build	and		GenFds		tools	use	the		-D	,		--define		command	line	options	with	an	argument	formatted:
	MACRO_NAME	"="	value	.	If	the		"="	value		is	omitted,	the		MACRO_NAME		is	assigned	a	value	of		0	.

Token	names	(words	defined	in	the	EDK	II	meta-data	file	specifications)	cannot	be	used	as	macro
names.	As	an	example,	using		PLATFORM_NAME		as	a	macro	name	is	not	permitted,	as	it	is	a	token	defined	in
the	DSC	file's		[Defines]		section.

Macros	defined	in	INF	files	are	local	to	the	INF	file.	EDK	II	INF	files	must	not	use	global	macros	except	in
build	option	flags.	In	INF	files,	macros	can	only	be	used	for	filenames,	paths	and,	in	the		[BuildOptions]	
section,	on	the	right	(value)	side	of	the	statements.

Macros	can	be	defined	or	used	in	the	INF	file's		[Defines]	,		[LibraryClasses]	,		[Sources]	,		[Binaries]	,		[Packages]	
and		[BuildOptions]		sections.

Macros	defined	in	DEC	files	are	local	to	the	DEC	file.	DEC	files	must	not	use	global	macros.	In	DEC	files,
macros	can	only	be	used	for	filenames	and	paths.

Macros	can	be	defined	or	used	in	the	DEC	file's		[Defines]	,		[Includes]		or		[LibraryClasses]		sections.

System	environment	variables	may	be	referenced,	however	their	values	must	not	be	altered.

Table	9	System	Environment	Variable	Usage

8.2	Auto-generation	ProcessEDK	II	Build	Specification

105Revision	1.28



Macro	Style	Used	in	Meta-
Data	files

Windows	Environment
Variable

Linux	&	OS/X	Environment
Variable

	$(WORKSPACE)	 	%WORKSPACE%	 	$WORKSPACE	

	$(EFI_SOURCE)	 	%EFI_SOURCE%	 	$EFI_SOURCE	

	$(EDK_SOURCE)	 	%EDK_SOURCE%	 	$EDK_SOURCE	

	$(EDK_TOOLS_PATH)	 	%EDK_TOOLS_PATH%	 	$EDK_TOOLS_PATH	

	$(ECP_SOURCE)	 	%ECP_SOURCE%	 	$ECP_SOURCE	

Note:	The		PACKAGES_PATH		and		EDK_TOOLS_BIN		system	environment	variables	shall	not	be	referenced	in	EDK	II
meta-data	files.

There	are	also	four	global	MACRO	statements	that	may	be	used	in	different	portions	of	the	DSC	and	FDF
files,		$(TARGET)	,		$(TOOL_CHAIN_TAG)	,		$(OUTPUT_DIRECTORY)		and		$(ARCH)	.

Macros	defined	in	the	FDF	file	are	local	to	the	FDF	file.	Macros	are	permitted	in	the	entire	FDF	file.

Note:	In	the		[Rules]		section	of	the	FDF,	the	macros	listed	in	that	section	must	match	macro	names
defined	for	the		build_rule.txt		file.

Macros	defined	in	the	DSC	file's		[Defines]		section	can	be	used	in	either	the	DSC	file	or	in	the	FDF	file.
Macros	defined	in	other	sections	of	the	DSC	file	can	only	be	used	in	the	DSC	file	-	they	cannot	be	used
in	the	FDF	file.	Macros	in	the	DSC	file	can	be	used	for	file	names,	paths,	PCD	values,	in	the		[BuildOptions]	
section,	on	the	right	(value)	side	of	the	statements	and	in	conditional	directives.	Macros	can	also	be
defined	or	used	in	the		[Defines]	,		[LibraryClasses]	,		[Libraries]	,		[Components]		and	all	PCD	sections.

Macros	defined	by	the	user	may	be	used	in	the	!include	statements	in	DSC	and	FDF	files.

	EDK_GLOBAL		type	macros	defined	in	the	DSC	file	can	be	used	in	later	sections	of	the	DSC,	FDF	and	any	of
the	included	EDK	INF	files.

Macro	values	must	be	defined	prior	to	using	them	in	directive	statements	or	for	PCD	values.	The
following	provides	the	precedence	(high	to	low)	for	obtaining	macro	values.

Command-line,		-D		flags	(left	most	has	higher	priority)
FDF	file,		DEFINE		statements	override	previous	definitions	in	the		[Defines]		section
FDF	file,		DEFINE		statements	in	the		[Defines]		section
DSC	file,	Component	INF		DEFINE		statements	embedded	in		<subsections>	
DSC	file,		DEFINE		statements	in	sections	following	the		[Defines]		section
DSC	file,		DEFINE		statements	in	the		[Defines]		section

Note:	Macros	defined	in	the	DSC	file's		[Defines]		section	are	common	to	both	the	DSC	and	FDF	file.
Macros	defined	in	the	FDF	file	are	local	to	the	FDF	file.	Macros	defined	in	other	sections	of	the	DSC	file
are	local	to	the	section	types	that	define	them.

Note:	Macros	defined	in	INF	and	DEC	files	are	local	to	the	file	that	defined	them.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

106Revision	1.28



Note:	Note	that	all	command	line	options	for	the	build	tool	are	passed	to	the	GenFds	tool	after	the
make	portion	of	the	build	completes.

Macros	defined	in	common	sections	may	be	used	in	the	architecturally	modified	sections	of	the	same
section	type.	Macros	defined	in	architectural	sections	cannot	be	used	in	other	architectural	sections,
nor	can	they	be	used	in	the	common	section.	Section	modifiers	in	addition	to	the	architectural	modifier
follow	the	same	rules	as	architectural	modifiers.

When	used	in	a		!if		or		!elseif		conditional	expression	statement	or	in	an	expression	used	in	a	value
filed,	a	macro	that	has	not	been	defined	has	a	value	of	0.

The	remaining	MACRO	definitions	will	be	expanded	by	tools	when	they	encounter	the	entry	in	the	section
except	when	the	macro	is	within	double	quotation	marks	in	build	options	sections.	The	expectation	is
that	macros	in	the	quoted	values	will	be	expanded	by	external	build	scripting	tools,	such	as	nmake	or
make;	they	will	not	be	expanded	by	the	build	tools.	If	a	macro	that	is	not	defined	is	used	in	locations
that	are	not	expressions	or	value	fields	(where	the	tools	would	just	do	macro	expansion	as	in	C	flags	in
a		[BuildOptions]		section),	nothing	will	be	emitted.	If	the	macro,		MACRO1	,	has	not	been	defined,	then:

	MSFT:*_*_*_CC_FLAGS	=	/c	/nologo	$(MACRO1)	/Od	

After	macro	expansion,	the	logical	result	would	be	equal	to:

	MSFT:*_*_*_CC_FLAGS	=	/c	/nologo	/Od	

It	is	recommended	that	tools	remove	any	excess	space	characters	when	processing	these	types	of
lines.

The	following	table	lists	reserved	global	macro	names	that	are	completed	by	the	internal	build	tools.
These	macros	must	not	be	redefined.

Table	10	Reserved	Macros	Expanded	by	Tools

Macro	String Description

	$(ARCH)	 Architecture	of	current	module

	$(BASE_NAME)	 The	file	name	of	the	module	binary.

	$(BUILD_DIR)	 All	files	for	building	a	platform	will	be	put	in	this	directory

	$(BUILD_NUMBER)	
Used	in	FDF	file		[Rules]		sections	to	identify	a	build	number	used	in	a	UEFI
Version	section.	This	is	a	value	that	is	defined	in	the	DSC	file.

	$(ECP_SOURCE)	

The	system	environment	variable	that	points	to	a	version	of	the	Edk
Compatibility	Package.	This	is	only	required	if	there	are	EDK	components	and
libraries	included	in	an	EDK	II	platform	build.

	$(EDK_SOURCE)	

The	system	environment	variable	that	points	to	an	EDK	tree	containing	the
Foundation	elements	of	an	EDK	tree.	This	is	only	required	if	there	are	EDK
components	and	libraries	included	in	an	EDK	II	platform	build.

	$(EDK_TOOLS_PATH)	 The	system	environment	variable	that	points	to	the	path	of	build	tools

	$(EFI_SOURCE)	

The	system	environment	variable	that	points	to	an	EDK	tree	containing	EDK
components	and	libraries.	This	is	only	required	if	there	are	EDK	components
and	libraries	included	in	an	EDK	II	platform	build.

	$(FILE_GUID)	 An	EDK	component's	GUID	value

	$(INF_OUTPUT)	
Used	in	FDF	file		[Rules]		sections	to	identify	the	location	of	UEFI	compliant
binary	leaf	section	content

	$(INF_VERSION)	
Used	in	FDF	file		[Rules]		sections	to	identify	the	version	string	used	in	a	UEFI
Version	section.

	$(MODULE_NAME)	 Current	module	name

8.2	Auto-generation	ProcessEDK	II	Build	Specification

107Revision	1.28



	$(MODULE_TYPE)	 Current	module	type

	$(MODULE_GUID)	 Current	module	GUID

	$(NAMED_GUID)	
Used	in	FDF	file		[Rules]		sections	this	macro	is	used	by	the	build	tools	to	create
an	FFS	file	named	by	the	Module's	GUID	value.

	$(OUTPUT_DIRECTORY)	
This	directory	is	where	the	output	binary	files	will	be	generated,	either	an
absolute	path	or	relative	to	the		WORKSPACE	.

	$(TARGET)	 Target	of	current	module	(	DEBUG	/	RELEASE	/	NOOPT	)

	$(TOOL_CHAIN_TAG)	 Tool	chain	used	to	build	current	module

	$(WORKSPACE)	
The	system	environment	variable	that	points	to	the	current	Workspace
directory.

The	following	table	lists	special	Macros	that	may	only	be	used	in	an	FDF	file's	[Rules]	section.	Like	the
Macros	in	the	previous	table,	they	must	never	be	redefined.

1.	 The	${d_*}	macros	always	mean	OutputPath	+	ModuleGuild	+	.ffs

2.	 When	starting	to	generate	FFS,	the	${s_*}	macros	mean	source	INF	file	full	path,	but	in
EfiSection.py,	it	is	changed	to	the	full	path	of	efi	file.

Table	11	Reserved	FDF	[Rule]	Section	Macro	Strings

Variable
String Description

"${src}" Source	file(s)	to	be	built	(full	path)

"${s_path}" Source	INF	file	directory	(absolute	path)

"${s_dir}" Source	file	relative	directory	within	a	module.	NOTE:	${s_dir}	is	always	equals	to
"."	if	source	file	is	given	in	absolute	path.

"${s_name}" Source	file	name	without	path.

"${s_base}" Source	file	name	without	extension	and	path.

"${s_ext}" Source	file	extension.

"${dst}" Destination	file(s)	built	from	${src}	(full	path)

"${d_path}" Destination	file	directory	(OutputPath	+	ModuleGuid.ffs)

"${d_name}" Destination	file	name	without	path.

"${d_base}" Destination	file	name	without	extension	and	path

"${d_ext}" Destination	file	extension

Macro	evaluation	is	done	at	the	time	the	macro	is	used	in	an	expression,	conditional	directive	or	value
field,	not	when	a	macro	is	defined.	Macros	in	quoted	strings	will	not	be	expanded	by	parsing	tools;	all
other	macro	values	will	be	expanded,	without	evaluation,	as	other	elements	of	the	build	system	will
perform	any	needed	tests.

Example

[LibraryClasses.common]

		DEFINE	MDE	=	MdePkg/Library

		BaseLib|$(MDE)/BaseLib.inf

[LibraryClasses.X64,	LibraryClasses.IA32]

		#	Can	use	$(MDE),	cannot	use	$(MDEMEM)

		DEFINE	PERF	=	PerformancePkg/Library

8.2	Auto-generation	ProcessEDK	II	Build	Specification

108Revision	1.28



		TimerLib|$(PERF)/DxeTscTimerLib/DxeTscTimerLib.inf

[LibraryClasses.X64.PEIM]

		#	Can	use	$(MDE)	and	$(PERF)

		DEFINE	MDEMEM	=	$(MDE)/PeiMemoryAllocationLib

		MemoryAllocationLib|$(MDEMEM)/PeiMemoryAllocationLib.inf

[LibraryClasses.IPF]

		#	Cannot	use	$(PERF)	or	$(MDEMEM)

		#	Can	use	$(MDE)	from	the	common	section

		PalLib|$(MDE)/UefiPalLib/UefiPalLib.inf

		TimerLib|$(MDE)/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf

EDK_GLOBAL
The		EDK_GLOBAL		statements	defined	in	the	DSC	file	can	be	used	during	the	processing	of	the	DSC,	FDF
and	EDK	INF	files.	The	definition	of	the		EDK_GLOBAL		name	must	only	be	done	in	the	DSC		[Defines]		section.
These	special	macros	can	be	used	in	path	statements,		[BuildOptions]		and		[Rule]		sections.	These
statements	are	used	to	replace	the	environment	variables	that	were	defined	for	the	EDK	build	tools.
They	must	never	be	used	in	a	conditional	directive	statement	in	the	DSC	and	FDF	files,	nor	can	they	be
used	by	EDK	II	INF	files.

8.2.4.5	Conditional	Directive	Blocks
Additional	build	scoping	can	be	implemented	using	the	DSC	and	FDF	directive	statements	in
combination	with	command	line	options	for	the	build	tool.	Conditional	directive	blocks	are	not	permitted
in	the	EDK	II	DEC	and	INF	files.

Conditional	directive	statements	are	used	by	the	build	tools	preprocessor	function	to	include	or	exclude
statements	in	the	DSC	and	FDF	files.	A	limited	number	of	statements	are	supported,	and	nesting	of
conditionals	is	also	supported.	Statements	are	prefixed	by	the	exclamation	"!"	character.	Conditional
statements	may	appear	anywhere	within	the	DSC	and	FDF	files.	They	are	not	permitted	in	the	DSC	and
INF	files.

Refer	to	the	Macro	Statement	section	for	information	on	using	Macros	in	conditional	directives.

Conditional	directive	statements	are	only	permitted	in	the	DSC	and	FDF	files.

Macro	and	PCD	Names	can	be	used	in	conditional	directive	statements.

Only	macros	can	be	used	in	the		!ifdef		and		!ifndef		statements,	PCDs	are	code	elements	which	have
been	declared	in	the	DEC	files.

When	testing	if	a	Macro	has	been	defined,	the	only	the	Macro	name	is	required,	while	in	testing	for
values,	the	Macro	name	must	be	enclosed:		$(MacroName)	.	When	the	Macro	is	a	string	value,	the
	$(MacroName)		must	not	be	encapsulated	in	quotation	marks,	only	string	literals	in	directive	statements
need	to	be	enclosed	by	double	quotation	marks.

When	testing	values	for	PCDs,	only	the	PCD	name	is	required:		TokenSpaceGuidCname.PcdCname	;	enclosing	the
PCD	name	in	"$("	and	")"	is	not	permitted.

Supported	statements	are:		!ifdef	,		!ifndef	,		!if	,		!else	,		!elseif		and		!endif	.	These	control	statements
are	used	to	either	include	or	exclude	lines	as	the	parsing	tool	processes	these	files.	The		!ifdef		and
	!ifndef		statements	test	whether	a	Macro	has	been	defined	or	not	defined	(PCDs	are	always	defined	-
the	build	will	break	if	a	PCD	is	used	by	a	module	specified	in	the	DSC	file	that	cannot	be	located	in	any	of
the	dependent	DEC	files,	from	the		[Packages]		section	of	an	INF	specified	in	the	DSC	file).	FeatureFlag	and
FixedAtBuild	access	methods	are	the	only	PCDs	that	can	be	used	in	conditional	directives.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

109Revision	1.28



The	build	system	will	process	the	DSC	and	FDF	files	more	than	once.	The	first	pass	is	to	pick	up	all
macros	and	PCD	values	for	macros	and	PCDs	used	in	conditional	directives,	then	on	the	second	pass,
process	the	conditional	directive	content.	This	second	pass	is	required	as	there	is	no	required	order	for
sections	within	these	files,	and	some	PCD	values	may	be	defined	in	sections	that	follow	the	use	of	the
PCD	in	a	conditional	directive.	Macros	and	PCDs	used	in	conditional	directives	must	not	be
encapsulated	in	a	conditional	comparison	(	!if	)	directive	block.	It	is	permissible	to	use	an	undefined
macro	prior	to	the	definition	of	the	macro,	as	in	the	following	example.

!ifndef	FOO

DEFINE	FOO=TRUE

!endif

When	using	PCDs	in	conditional	directive	statements	or	expressions,	only	the	PCD	name	is	required.	Do
not	encapsulate	the	PCD	name	in	the	"$("	and	")"	required	for	macro	values	as	shown	in	the	example
below.

!if	(	gTokenSpaceGuid.PcdCname	==	1	)	AND	(	$(MY_MACRO)	==	TRUE	)

DEFINE	FOO=TRUE

!endif

In	the	above	example,		FOO		must	not	be	used	in	a	conditional	directive	statement.

When	testing	strings,	the	strings	must	to	be	encapsulated	by	double	quotation	marks,	as	shown	in	the
following	example.

!if	$(SETUP)	==	"SETUP"

DEFINE	FOO=TRUE

!endif

For	backward	compatibility,	the	EDK	II	build	system	will	process	strings	that	are	not	encapsulated	by	the
double	quotation	marks,	however	this	will	not	be	supported	in	future	releases.

Strings	can	only	be	compared	to	strings	of	a	like	type	(testing	an	ASCII	string	against	a	Unicode	format
string	must	fail),	numbers	can	only	be	compared	against	numbers	and	boolean	objects	can	only
evaluate	to		TRUE		or		FALSE	.	See	the	Operator	Precedence	table,	below	for	a	list	of	restrictions	on
comparisons.

Refer	to	the	DSC	and	FDF	file	form	specifications	"Conditional	Directive	Blocks"	section	for	additional
details	of	how	directives	must	be	processed.

8.2.4.6	Expressions
Expressions	can	be	used	in	conditional	directive	comparison	statements	and	in	value	fields	for	PCDs	in
the	DSC	and	FDF	files.

Note:	Expressions	are	not	supported	in	the	INF	and	DEC	files.

Expressions	follow	C	relation,	equality,	logical	and	bitwise	precedence	and	associativity.	Not	all	C
operators	are	supported,	only	operators	in	the	following	list	can	be	used.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

110Revision	1.28



Note:	Due	to	the	flexibility	of	the	build	system,	a	new	operator,		IN		has	been	added	that	can	be	used
to	test	whether	an	element	is	in	a	list.	The	format	for	this	is		<Value>		IN		<MACRO_LIST>	,	where	MACRO_LIST
can	only	be	one	of		$(ARCH)	,		$(TOOL_CHAIN_TAG)		and		$(TARGET)	.

Use	of	parenthesis	is	encouraged	to	remove	ambiguity.

Additional	scripting	style	operators	may	be	used	in	place	of	C	operators	as	shown	in	the	table	below.

Table	12	Operator	Precedence	and	Supported	Operands

Operator
Use
with
Data
Types

Notes Priority

	or	,		OR	,
	||	

Number,
Boolean Lowest

	and	,		AND	,
	&&	

Number,
Boolean

	|	
Number,
Boolean Bitwise	OR

	̂ 	,		xor	,
	XOR	

Number,
Boolean Exclusive	OR

	&	
Number,
Boolean Bitwise	AND

	==	,		!=	,
	EQ	,		NE	,
	IN	

All The	IN	operator	can	only	be	used	to	test	a	quoted	unary
literal	string	for	membership	in	a	list.

Space	characters	must	be	used	before	and	after	the	letter
operators	Strings	compared	to	boolean	or	numeric	values
using	"=="	or	"EQ"	will	always	return	FALSE,	while	using	the
"!="	or	"NE"	operators	will	always	return	TRUE

	<=	,		>=	,
	<	,		>	,
	LE	,		GE	,
	LT	,		GT	

All Space	characters	must	be	used	before	and	after	the	letter
operators.

	+	,		-	 Number,
Boolean

Cannot	be	used	with	strings	-	the	system	does	not
automatically	do	concatenation.	Tools	should	report	a
warning	message	if	these	operators	are	used	with	both	a
boolean	and	number	value

	!	,		not	,
	NOT	

Number,
Boolean Highest

The		IN		operator	can	only	be	used	to	test	a	literal	string	against	elements	in	the	following	global
variables:

$(FAMILY)

	$(FAMILY)		is	considered	a	list	of	families	that	different		TOOL_CHAIN_TAG		values	belong	to.	The		TOOL_CHAIN_TAG		is
defined	in	the		Conf/target.txt		or	on	the	command-line.	The	FAMILY	is	associated	with	the		TOOL_CHAIN_TAG		in
the		Conf/tools_def.txt		file	(or	the		TOOLS_DEF_CONF		file	specified	in	the		Conf/target.txt		file)	file.	While	different
family	names	can	be	defined,		ARMGCC	,		GCC	,		INTEL	,		MSFT	,		RVCT	,		RVCTCYGWIN		and		XCODE		have	been
predefined	in	the		tools_def.txt		file.

$(ARCH)

8.2	Auto-generation	ProcessEDK	II	Build	Specification

111Revision	1.28



	$(ARCH)		is	considered	the	list	of	architectures	that	are	to	be	built,	that	were	specified	on	the	command
line	or	come	from	the		Conf/target.txt		file.

$(TOOL_CHAIN_TAG)

	$(TOOL_CHAIN_TAG)		is	considered	the	list	of	tool	chain	tag	names	specified	on	the	command	line

$(TARGET)

	$(TARGET)		is	considered	the	list	of	target	(such	as		DEBUG	,		RELEASE		and		NOOPT	)	names	specified	on	the
command	line	or	come	from	the		Conf/target.txt		file.

For	logical	expressions,	any	non-zero	value	must	be	considered		TRUE	.

Invalid	expressions	must	cause	a	build	break	with	an	appropriate	error	message.

8.2.4.7	EDK	Overrides
For	EDK	component	INF	files,	an	optional	sub-element	of		<SOURCE_OVERRIDE_PATH>		has	been	defined.	If	this
element	is	specified,	files	listed	in	the	directory	are	used	instead	of	the	"same-named"	files	in	the
component's	directory.	If	an	EDK	component	directory	lists	files,		A.c	,		B.c		and		C.h	,	and	the	directory
specified	in	this	sub-element	contains	the	file		B.c	,	then	the	component	will	be	built	using	files	from	the
component	directory:		A.c		and		C.h	,	and	the	file		B.c		from	the	override	directory.	Any	other	files	listed	in
the	override	directory	will	NOT	be	included	in	the	build	(no	new	or	additional	files	are	permitted).

8.2.4.8	DEPEX	processing
EDK	II	modules	that	have	dependencies	must	use	the		[Depex]		section	to	define	the	dependency
expressions,	however	both	EDK	and	EDK	II	may	specify	a	dependency	expression	file.	If	the	file	specified,
the	complete	dependency	expression	must	be	defined	in	the	file.	For	EDK	II	modules,	the	build	tools	will
create	the	complete	dependency	expression	using	the	information	in	the		[Depex]		section	along	with	all
	[Depex]		sections	from	the	linked	in	library	instances.	Depex	expressions	listed	in	an	INF	file's		[Depex]	
section	are	written	as	in-fix	expressions,	while	the	output	of	the		GenDepex		tool	generating	the	EFI	Depex
section	is	a	post-fix	expression.	If	an	INF	file	specifies	a		DPX_SOURCE		entry	in	the	INF	file's		[Defines]		section,
the	file	must	also	use	an	in-fix	expression.	The	table	below	lists	the	operator	precedence	for
dependency	expressions.

Table	13:	[Depex]	Expression	Operator	Precedence

Operator Use	with	Data
Types Notes Priority

	(	)	

TRUE,	FALSE,
Expression,
GUID,	CName	or
Encapsulation

Encapsulated	items	are	processed	from	inner-most
to	outer-most Highest

	NOT	

TRUE,	FALSE,
Expression,
GUID,	CName	or
Encapsulation

After	identifying	encapsulation	parameters,	the	NOT
operator	must	take	precedence	over	any	other
items.

	AND	,		and	
TRUE,	FALSE,
GUID	or
Encapsulation

These	operators	are	used	to	create	an	expression

	OR	,		or	
TRUE,	FALSE,
GUID	or
Encapsulation

These	operators	are	used	to	create	an	expression Lowest

	SOR	

TRUE,	FALSE,
GUID	or
Encapsulation

Only	valid	for	DXE	and	SMM	dependency
expressions	and	must	be	the	first	statement
followed	by	either	a	GUID,	encapsulation	or	an

8.2	Auto-generation	ProcessEDK	II	Build	Specification

112Revision	1.28



Encapsulation expression

	AFTER	,
	BEFORE	

GUID
Only	valid	for	DXE	and	SMM	dependency
expressions.	These	must	be	the	only	operator	in
the	dependency	expression.	Only	one	of	these	is
permitted	per	dependency	expression

8.2.4.9	PCD	Access	Methods
A	PCD	is	defined	as		TokenSpaceGuidCName.PcdCName	.	Each	PcdCName	must	be	unique	to	the	Token	Space
declaring	the	PCD.	The	token	space	is	a	name	space	that	is	unique	to	the	GUID	known	as	the
TokenSpaceGuidCName.

The	following	list	defines	the	five	PCD	access	methods.

FeatureFlag	PCD	-	used	in	conditional	directive	statements	in	code.

PatchableInModule	PCD	-	a	volatile	variable	that	can	be	updated	either	during	a	build	or	by	a	tool
that	knows	the	offset	and	data	size	of	the	variable.

FixedAtBuild	PCD	-	a	static	variable	that	is	set	during	the	build.

Dynamic	-	a	PCD	that	will	use	the	standard	PcdGet/PcdSet	macros;	the	values	for	these	PCDs	are
common	to	all	modules	in	a	platform	and	must	be	listed	(with	the	storage	method	and	value)	in	the
DSC	file.

DynamicEx	-	a	PCD	that	uses	the	PcdGetEx/PcdSetEx	macros;	the	values	for	these	PCDs	are
common	to	all	modules	in	a	platform	and	must	be	listed	(with	the	storage	method	and	value)	in	the
DSC	file.

How	a	PCD	is	coded	also	makes	a	difference	as	to	how	code	is	generated	by	the	build	system.
FeatureFlag	PCDs	can	only	be	used	as	FeatureFlag	PCDs;	very	straight	forward.	Modules	can	code	the
remaining	types	of	PCDs	to	be	either	FixedAtBuild	(a	const	which	is	accessible	via	a		PcdGet		function),
PatchableInModule	(which	can	be	modified	using	an	external	tool),	Dynamic	which	is	accessible	via	a
	PcdSet	,		PcdGet		or		DynamicEx		which	uses	the	token	space	GUID	and	token	number	of	a	PCD	in	the		PcdGetEx	
and		PcdSetEx		access	methods.	The	build	system	will	record	all	(FixedAtBuild,	PatchableInModule,	Dynamic
and	DynamicEx)	PCD	data	into	one	of	the	two	PCD	databases	implemented	in	EDK	II.	Dynamic	PCD
definitions	are	an	amalgamation	of	FixedAtBuild,	PatchableInModule	and	DynamicEx.

It	is	recommended	that	developers	code	their	modules	to	use	the	Dynamic	form.	The	Dynamic	form
allows	the	platform	integrator	to	select	how	they	want	to	use	the	PCD;	selecting	how	they	want	to
expose	the	data;	FixedAtBuild,	PatchableInModule,	Dynamic	or	(PI	compliant)	DynamicEx.	If	the	platform
integrator	selects	the	Dynamic	or	DynamicEx	form	for	any	PCD,	then	the	platform	must	also	contain	a
PEI	and/or	DXE	PCD	driver	to	maintain	a	volatile	database	of	values	that	can	be	set	or	retrieved.

Dynamic	and	DynamicEx	PCD	values	are	common	to	all	modules	in	a	platform	and	the	storage
mechanism	for	these	PCDs	must	be	defined	by	the	platform	developer,	so	the	PCD	values	must	be
specified	in	the	DSC	file	under	a	section	that	specifies	the	storage	mechanism	(Default,	VPD	or	HII).

The	DynamicEx	PCDs	correspond	to	the	PI	Specification,	while	the	other	PCD	forms	are	associated	with
EDK	II.

Modules	that	will	be	distributed	in	binary	form	must	use	either	PatchableInModule	or	DynamicEx	PCDs.

PatchableInModule	PCDs	also	require	the	build	system	to	generate	a	map	file	for	each	module	that	is
using	PatchableInModule	PCDs.	This	map	file	contains	the	offset	from	the	start	of	the	file	to	the	location
of	the	first	byte	of	the	PCD.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

113Revision	1.28



method.

If	the	PCD	is	listed	in	the	DEC's		PcdsFixedAtBuild	,	then	use	FixedAtBuild,	otherwise,

If	the	PCD	is	listed	in		PcdsPatchableInModule	,	then	use	PatchableInModule.

If	the	PCD	is	not	listed	in	either	of	the	previous	two	sections,	and	it	is	listed	in	a		PcdsDynamicEx		section,
then	use	DynamicEx.

If	not	listed	in	any	of	the	previous	sections,	and	the	PCD	is	listed	in	the		PcdsDynamic		section,	then	use
Dynamic.

Build	tools	are	required	to	process	PCD	values	for		VOID*		PCDs	into	byte	arrays,	C	format	GUIDs	or	as	C
format	strings	(either	ASCII	or	[L]"string")	prior	to	autogenerating	the	code.

PCD	values	stored	in	VPD	regions	are	processed	prior	to	completing	the	final	PCD	parsing.	Refer	to
Section	8.4	for	additional	rules	for	processing	PCDs	to	create	a	platform	scoped	PCD	Database.

8.2.4.10	Precedence	of	PCD	Values
The	values	that	are	assigned	to	individual	PCDs	required	by	a	build	may	come	from	different	locations
and	different	meta-data	files.	The	following	provides	the	precedence	(high	to	low)	to	assign	a	value	to	a
PCD.

Command-line,		--pcd		flags	(left	most	has	higher	priority)
DSC	file,	Component	INF		<Pcd*>		section	statements
FDF	file,	grammar	describing	automatic	assignment	of	PCD	values
FDF	file,	SET	statements	within	a	section
FDF	file,	SET	statement	in	the	[Defines]	section
DSC	file,	global	[Pcd*]	sections
INF	file,	PCD	sections,	Default	Values
DEC	file,	PCD	sections,	Default	Values

In	addition	to	the	above	precedence	rules,	PCDs	set	in	sections	with	architectural	modifiers	take
precedence	over	PCD	sections	that	are	common	to	all	architectures.

When	listed	in	the	same	section.	If	listed	multiple	times,	the	last	one	will	be	used.	If	PCD	field	value	is
listed,	it	will	override	PCD	value	even	if	PCD	value	is	after	PCD	field	value.

A	PCD	value	set	on	the	command-line	has	the	highest	precedence.	It	overrides	all	instances	of	the	PCD
value	specified	in	the	DSC	or	FDF	file.	The	following	is	the	syntax	to	override	the	value	of	a	PCD	on	the
command	line,	please	refer	to	appendix	D.4	Usage	for	detail	EBNF	format.

	--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]=<Value>	

	<Value>		supports	the	following	syntax:

ASCII	string	value	for	a	PCD

	--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]="String"			--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]="'String'"	

Unicode	string	value	for	a	PCD

	--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]=L"String"			--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]=L"'String'"	

Byte	array	value	for	a	PCD

	--pcd	[<TokenSpaceGuidCname>.]<PcdCName>[.Field]=	H"{0x1,	0x2}"	

Note:	The	EDK	II	meta-data	specs	have	changed	to	permit	a	PCD	entry	(or	any	other	entry)	to	be	listed
only	one	time	per	section.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

114Revision	1.28



Note:	The	EDK	II	meta-data	specs	have	changed	to	permit	a	PCD	entry	(or	any	other	entry)	to	be	listed
only	one	time	per	section.

If	the	maximum	size	of	a		VOID*		PCD	is	not	specified	in	the	DSC	file,	then	the	maximum	size	is	calculated
based	on	the	largest	size	of	1)	the	string	or	array	in	the	DSC	file,	2)	the	string	or	array	in	the	INF	file	and
3)	the	string	or	array	in	the	DEC	file.	If	the	value	is	a	quoted	text	string,	the	size	of	the	string	will	be
incremented	by	one	to	handle	string	termination.	If	the	quoted	string	is	preceded	by	L,	as	in		L"This	is	a
string"	,	then	the	size	of	the	string	will	be	incremented	by	two	to	handle	unicode	string	termination.	If	the
value	is	a	byte	array,	then	the	size	of	the	byte	array	is	not	modified.	If	the	value	is	a	single	quoted
string,	as	in	'string'	or	L'string',	the	size	of	the	string	doesn't	need	to	include	string	null	termination
character.

For	example,	if	the	string	in	the	DSC	file	is		L"DSC	Length"	,	the	INF	file	has		L"Module	Length"		and	the	DEC	file
declares	the	default	as		L"Length"	,	then	the	maximum	size	that	will	be	allocated	for	this	PCD	will	be	28
bytes	(	L"Module	Length"		26	bytes,	2	bytes	for	null	termination	character).

	VOID*		PCDs	must	be	byte	aligned	if	the	value	is	an	ASCII	string,	two-byte	aligned	if	the	value	is	a	Unicode
string	or	8-byte	aligned	in	the	value	is	a	byte	array.

8.2.4.11	Section	Handling
The	INF	and	DEC	file	parsing	routines	must	process	the	sections	so	that	common	architecture	sections
are	logically	merged	with	the	architecturally	specific	sections.	The	architectural	sections	need	to	be
processed	so	that	they	are	logically	after	the	common	section.	It	is	recommended	that	EDK	II	developers
use	a	logical	ordering	of	the	sections.

Other	section	modifiers	must	also	be	logically	appended	to	the	merged	sections	(for	INFs	that	have
architectural	and	common	architecture	sections)	after	the	merge.

For		[BuildOptions]		sections	in	the	INF	and	DSC	file,	the	entries	with	a	common	left	side	(of	the	"=")	will	be
either	appended	or	replace	previous	entries	based	on	the	"=="	replace	or	"="	append	assignment
character	sequence.

Common	Section	+	Architectural	Section	+	Common	Section	w/extra	Modifier	+	Architectural	Section	w/extra	Modifier

Example

[BuildOptions.Common]

		MSFT:*_*_*_CC_FLAGS	=	/nologo

[BuildOptions.Common.EDK]

		MSFT:*_*_*_CC_FLAGS	=	/Od

[BuildOptions.IA32]

		MSFT:*_*_IA32_CC_FLAGS	=	/D	EFI32

For	IA32	architecture	builds	of	an	EDK	II	INF	file	would	logically	be:

	MSFT:*_*_IA32_CC_FLAGS	=	/nologo	/D	EFI32	

For	non-IA32	architecture	EDK	INF	files,	tool	parsing	would	logically	be:

	MSFT:*_*_*_CC_FLAGS	=	/nologo	/Od	

For	IA32	architecture	builds	of	an	EDK	INF	file,	tool	parsing	would	logically	be:

	MSFT:*_*_IA32_CC_FLAGS	=	/nologo	/D	EFI32	/Od	

8.2	Auto-generation	ProcessEDK	II	Build	Specification

115Revision	1.28



The	UEFI	Platform	Initialization	specification	defines	a	PEIM	and	Protocol	that	can	retrieve	the	PCD	Token
number	and	the	PCD	Token	Name	(the	PCD	C	Name)	information	from	the	PCD	Database.	In	order	to
support	these	modules,	a		PCD_INFO_GENERATION		entry	in	the	DSC	file's		[Defines]		section	is	used	to	enable
generate	the	PCD	Database	with	the	required	information	(normally,	only	the	PCD	Token	number	is
available).	This	feature	does	increase	the	size	of	the	PCD	drivers	that	contain	the	PCD	database,	so	this
capability	is	added	as	an	optional	feature	rather	than	always	generating	the	content.

If	the		[Defines]		section	has	the		PCD_VAR_CHECK_GENERATION		entry	set	to	TRUE,	then	a	binary	file	will	be	created
in	the	FV	directory	for	Dynamic	and	DynamicEx	PCD	HII	Variable	checking.

8.2.4.13	Pre	Build	Processing
The	DSC	file	is	parsed	after	the	tool	meta-data	files.	If	the		[Defines]		section	of	the	DSC	file	contains	a
	PREBUILD	=	entry		statement,	processing	of	the	DSC	file	is	suspended	and	the	script	specified	in	the
	PREBUILD		statement	is	executed.	The	entry	of		PREBUILD		support	multiple	arguments.	And	Tool	will	convert
arguments	that	are		WORKSPACE		or		PACKAGES_PATH		relative	paths	to	absolute	paths.	If	the	script	file	is	not
found,	the	build	command	exits	with	an	appropriate	error	message.	If	the	script	fails,	it	must	terminate
with	a	non-zero	exit	code	and	the	build	command	terminates	with	the	exit	value	from	the	pre-build
script.	The	script	is	required	to	generate	error	messages	that	provide	the	reason	for	the	termination.

All	of	the	command	line	options	passed	into	the	build	command	are	also	passed	into	the	script	along
with	the	options	for		TARGET	,		ARCH	,		TOOL_CHAIN_TAG	,		ACTIVE_PLATFORM	,		Conf	Directory	,	and		build	target	.

If	the	script	terminates	successfully	(exit	value	of	0),	parsing	of	the	DSC	file	continues,	and	build	tools
may	retrieve	environment	variables	that	have	been	updated	by	the	script.

Note:	This	entry	may	be	wrapped	in	a	conditional	directive	that	uses	the	value	of	the		TOOL_CHAIN_TAG	
determined	earlier.	Using	a	MACRO	value	other	than		$(TOOL_CHAIN_TAG)		is	prohibited,	as	the	DSC	file	has
not	been	processed	at	the	time	the	ENTRY	was	found.

Note:	Quotes	are	needed	when	the	script's	additional	options	are	present.	Quotes	are	also	required	if
the	path	to	the	pre-build	command	contains	space	or	special	characters.	Quotes	may	be	used	for
arguments	that	have	spaces	or	special	characters.

8.2.4.14	NMAKE	Command	line	limitation	handling
	NMAKE		is	limited	to	command-line	length	of	4096	characters.	Due	to	the	large	number	of		/I		directives
specified	on	command	line	(one	per	include	directory),	the	path	length	of		WORKSPACE		is	multiplied	by	the
number	of		/I		directives	and	can	exceed	this	command-line	length	limitation.	When	this	issue	occurs,
the	build	tools	pass	the	command	line	options	via	a	response	file	instead	of	directly	on	the	command
line.	The	contents	of	the	response	file	is	combination	of		FLAGS		options	and		INC		options.	If	a	build	fails,
the	build	tools	print	the	response	file's	file	location	and	the	contents	of	the	response	file.

The	build	command	supports	the	options		-l		and		--cmd-len		to	set	the	maximum	command	line	length.
The	default	value	is	4096.

Note:	The	following		FLAGS		options	are	included	in	the	response	file:		PP_FLAGS	,		CC_FLAGS	,		VFRPP_FLAGS	,
	APP_FLAGS	,		ASLPP_FLAGS	,		ASLCC_FLAGS	,	and		ASM_FLAGS	.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

116Revision	1.28



8.2.4.15	Build	with	Binary	Cache
build	tool	provides	three	new	options	for	binary	cache	feature.	--hash	enables	hash-based	caching
during	build	process.	when	--hash	is	enabled,	build	tool	will	base	on	the	module	hash	value	to	do	the
incremental	build,	without	--hash,	build	tool	will	base	on	the	timestamp	to	do	the	incremental	build.	--
hash	option	use	md5	method	to	get	every	hash	value,	DSC/FDF,	tools_def.txt,	build_rule.txt	and	build
command	are	calculated	as	global	hash	value,	Package	DEC	and	its	include	header	files	are	calculated
as	package	hash	value,	Module	source	files	and	its	INF	file	are	calculated	as	module	hash	value.	Library
hash	value	will	combine	the	global	hash	value	and	its	dependent	package	hash	value.	Driver	hash	value
will	combine	the	global	hash	value,	its	dependent	package	hash	value	and	its	linked	library	hash	value.
When	--hash	and	--binary-destination	are	specified,	build	tool	will	copy	each	module's	"As	Built"	inf	file,
binary	files	that	in	"As	built"	inf	file's	[Binaries]	section	and	hash	value	file	into	the	directory	specified	by
binary-destination	at	the	build	phase.	When	--hash	and	--binary-source	are	specified,	build	tool	will	try	to
get	the	binary	files	from	the	binary	source	directory	at	the	build	phase.	If	the	cached	binary	has	the
same	hash	value,	it	will	be	directly	used.	Otherwise,	build	tool	will	compile	the	source	files	and	generate
the	binary	files.

8.2.5	Post	processing
Once	all	files	are	parsed,	the	build	tools	will	do	following	work	for	each	EDK	II	module:

Resolve	the	library	classes	to	library	instances,	inherit	and	resolve	library	classes	from	them
recursively,	until	no	new	library	instances	are	found.

Re-order	the	library	instances	according	to	the	consuming	relationship	and	their	constructors.	For
each	EDK	II	module,	the	tools	must	select	one	library	instance	per	required	library	class	(with	the
exception	of	the	NULL	library	class	keyword)	using	the	following	precedence	(high	to	low):

The	DSC	file's	component	INF	scoping		<LibraryClasses>		section
The	DSC	file's		[LibraryClasses.arch.module_type]		section	tags	with	both	architecture	and	module	type
modifiers
The	DSC	file's	common	arch	with	a	module	type	modifier,

[LibraryClasses.common.module_type]

DSC	file's	architecture	specific	modifier	only		[LibraryClasses.arch]	
The	DSC	file's	common		[LibraryClasses]		section

Note:	For	modules	of	type	USER_DEFINED_,	if	a		NULL		library	class	is	required,	the	library	instance
should	be	listed	in	the	INF	scoping		<LibraryClasses>		section	of	the	component.

Inherit	GUIDs,	Protocols	and	PPIs	from	all	library	instances	obtained	above,	and	determine	values	or
type	of	them.	The	value	of	a	GUID,	Protocol	or	PPI	is	defined	in	DEC	file.

Note:	If	GUID,	Protocol	or	PPI	is	listed	in	a	DEC	file,	where	the		Private		modifier	is	used	in	the	section
tag	(	[Guids.common.Private]		for	example),	only	modules	within	the	package	are	permitted	to	use	the
GUID,	Protocol	or	PPI.	If	a	module	or	library	instance	outside	of	the	package	attempts	to	use	the
item,	the	build	must	fail	with	an	appropriate	error	message.

8.2	Auto-generation	ProcessEDK	II	Build	Specification

117Revision	1.28



Inherit	PCDs	from	all	library	instances	obtained	above	and	determine	values	and	type.	The	value	and
type	of	a	PCD	are	obtained	from	a	DSC	file,	INF	file	or	DEC	file	if	it	cannot	be	found	in	the	DSC	or	INF
file.	For	each	EDK	II	module,	the	tools	must	obtain	unique	PCD	values	using	the	following
precedence	(high	to	low):

Command-line,		--pcd		flags	(left	most	has	higher	priority)
The	DSC	file's	component	INF	scoping		<Pcds*>		sections
FDF	file,	grammar	describing	automatic	assignment	of	PCD	values
FDF	file,	SET	statements	within	a	section
FDF	file,	SET	statement	in	the	[Defines]	section
The	DSC	file's		[Pcd*.arch.skuid]		sections
The	DSC	file's		[Pcd*.common.skuid]		sections
The	DSC	file's		[Pcd*.arch]		sections
The	DSC	file's		[Pcd*.common]		sections
The	INF	file's	PCD	sections
The	DEC	file's	PCD	sections

Note:	Values	of	PCDs	using	the	FeatureFlag,	PatchableInModule	and	FixedAtBuild	access	methods
set	for	this	INF	file	are	local	to	the	INF	file	and	do	not	pertain	to	any	other	INF	files.	Dynamic	and
DynamicEx	access	method	PCD	values	are	global	to	a	platform	and	should	not	be	overridden	by
specifying	them	here.	If,	however,	the	dynamic	PCDs	are	only	valid	for	this	INF,	it	is	permissible	to	set
them	here.

Inherit	library	instance	dependency	(	[Depex]		sections)	expressions	if	a	module	does	not	list	a
separate	dependency	file.

If	the	DSC	file	contains	PCD	sections	for		DynamicVpd		or		DynamicExVpd		access	methods,	special
processing	is	required.	Refer	to	the	appendix	"VPD	PCD	Intermediate	Files"	for	additional	details.

Determine	if	a	module	has	specified	Unicode	file	names,	designated	by	the		.uni		file	extension,	in
the	INF	file.

Determine	if	a	module	has	specified	Image	definition	file	names,	designated	by	the		.idf		file
extension,	in	the	INF	file.

Any	Visual	Forms	Representation	(.vfr)	files	found	during	the	pre-processing	steps	will	be	processed
during	the	$(MAKE)	stage.	Refer	to	the	"VFR	Programming	Language"	document	for	additional
details.

Generate	the	Build	Output	Directory	structure

Generate	the	code	files

Generate	the		Makefiles	

Generate	the	"AsBuilt"	INF	files

8.2	Auto-generation	ProcessEDK	II	Build	Specification

118Revision	1.28



8.3	Auto-generated	code
The	section	covers,	in	sequence,	the	processes	used	to	generate	code	files	that	will	be	used	during	the
build.

8.3.1	AutoGen	Stage	File	Extensions
The	following	table	provides	the	extension	and	a	description	of	files	processed	during	the	AutoGen
stage	of	the	build.	The		build_rule.txt		file	describes	the	processing	rules	for	generating	the	Makefiles	for
the	$(MAKE)	stage.

Table	14	AutoGen	Stage	Input	File	Extensions

Extension Description File	Format

.c,	.cpp C	code	files ASCII	Text,
DOS	EOL

.h C	header	files ASCII	Text,
DOS	EOL

.asm 32	and	64-bit	Windows	assembly	files ASCII	Text,
DOS	EOL

.s 32	and	64-bit	GCC	assembly	files ASCII	Text,
DOS	EOL

.S IPF	GCC	and	Windows	assembly	files ASCII	Text,
DOS	EOL

.nasm 32	and	64-bit	NASM	assembly	files ASCII	Text,
DOS	EOL

.i IPF	Assembly	include	files ASCII	Text,
DOS	EOL

.vfr Visual	Forms	Representation	files ASCII	Text,
DOS	EOL

.uni HII	Unicode	string	files UCS-2
Characters

.idf HII	Image	Definition	files ASCII	Text,
DOS	EOL

.asl C	formatted	ACPI	code	files	-	these	files	are	processed
independent	from	the	C	code	files

ASCII	Text,
DOS	EOL

.asi ACPI	Header	Files ASCII	Text,
DOS	EOL

.aslc C	formatted	ACPI	table	files	-	these	files	are	processed
independent	from	the	C	code	files

ASCII	Text,
DOS	EOL

.txt Microcode	text	files ASCII	Text,
DOS	EOL

.map VPD	tool	intermediate	file ASCII	Text,
DOS	EOL

.bin Binary	files Binary

.bmp Logo	files	used	in	the	ImageGen	stage Binary

.ui Unicode	User	Interface	files
UCS-2
Characters

UCS-2

8.3	Auto-generated	codeEDK	II	Build	Specification

119Revision	1.28



.ver Unicode	Version	files UCS-2
Characters

8.3.2	Dependency	expression	file
The	dependency	expression	file	(	.depex	)	is	generated	from	the		[Depex]		section	in	module's	INF	file,	if	the
section	presents,	or		.dxs		file	if		DPX_SOURCE		definition	is	found	in	INF	file.	If	both	the	DPX_SOURCE	definition
and	[Depex]	section	content	is	present,	the	content	in	the	file	specified	in	the	DPX_SOURCE	definition	is
used	and	the	[Depex]	section	content	will	be	ignored.	The	GUID	used	in		[Depex]		section	must	be	the
GUID	C	name.

First,	the	GUID	C	name	in	the	dependency	expression	string	will	be	converted	into	its	value	in	C	structure
format.	Then	the	expression	string	will	be	converted	into	postfix	notation.	Before	saving	to	a	file,	the
operator	and	GUID	value	in	the	postfix	notation	will	be	converted	to	their	binary	value.

Dependency	expression	sections	listed	in	an	INF	file	may	be	scoped	via	feature	flag	expressions	(logical
expressions	which	typically	utilize	PCDs	using	FeatureFlag	or	FixedAtBuild	access	methods).	It	is	the
module	writer's	responsibility	to	ensure	the	different	sections	are	mutually	exclusive.	It	is	the	platform
integrator's	responsibility	to	ensure	that	they	do	not	override	this	exclusivity.

For	example,	the	following	dependency	expression

	NOT	(gEfiHiiDatabaseProtocolGuid	AND	gEfiHiiStringProtocolGuid)	OR	gPcdProtocolGuid	

will	be	converted	to

include_statement($(MODULE_BUILD_DIR)/OUTPUT/$(BASE_NAME).dxs,	"

		//	PUSH

		02

		//	gEfiHiiDatabaseProtocolGuid

		72	c1	9f	ef	b2	a1	93	46	b3	27	6d	32	fc	41	60	42

		//	PUSH

		02

		//	gEfiHiiStringProtocolGuid

		74	69	d9	0f	aa	23	dc	4c	b9	cb	98	d1	77	50	32	2a

		//	AND

		03

		//	NOT

		05

		//	PUSH

		02

		//	gPcdProtocolGuid

		06	40	b3	11	5b	d8	0a	4d	a2	90	d5	a5	71	31	0e	f7

		//	OR

		04

		//	END

		08

");

The	binary	dependency	expression	file	will	be	generated	in		$(MODULE_BUILD_DIR)/OUTPUT		with		.depex		file
extension.

8.3.2.1	Guidelines
Use	of	a	separate	file	for	describing	the	dependencies	is	discouraged.	Grammar	of	the	INF,	DSC	and
FDF	files	permit	specifying	the	dependency	expressions.	Libraries	may	also	have	a	dependency,		[Depex]	,
section.	These	dependencies	must	be	appended	to	the	module's		DEPEX		sections	unless	the	module
includes	a	depex	(.dxs)	file	-	even	if	the	module	does	not	contain	a		[Depex]		section.	When	a	developer
chooses	to	write	the	.dxs	file,	the	developer	is	responsible	for	specifying	all	dependencies	in	the	.dxs
file.

Libraries	that	are	linked	to	a	UEFI	DRIVER	may	have		DEPEX		sections.	There	are	three	'rules'	for	the	tools.

8.3	Auto-generated	codeEDK	II	Build	Specification

120Revision	1.28



Tools	are	coded	so	that	for	a	given	module	the		[Depex]		sections	of	all	linked-in	library	instances	are
logically		AND	'd	with	the		DEPEX		section	of	the	module

If	no		DEPEX		section	is	specified	in	the	module,	then	only	the	library	instances	DEPEX	sections	are
logically		AND	'd	to	create	the		DEPEX		section	for	the	module

Tools	are	also	coded	to	ignore	the	depex	sections	of	libraries	that	are	linked	to		UEFI_DRIVER		or	PCI
Option	ROM	code

The	tools	will	break	the	build	if	one	module,	using	one	of	the	noted	module	types,	contains	a	depex
section	in	the	INF	file.

8.3.3	VFR
The	EDK	II	build	system	provides	tools	for	processing	formatted	Unicode	files	and	Visual	Forms
Representation	(VFR)	files	in	order	to	create	the	IFR	files.	Refer	to	the	EDK	II	User's	Manual	for	more
information	regarding	the	use	of	the	Unicode	and	VFR	files.	Refer	to	the	VfrCompiler	description	and	the
VFR	Programming	Language	document	for	more	detailed	information	on	the	provided	implementation.
Additionally,	the	EDK	II	build	AutoGen	tools	are	used	to	process	Unicode	files	listed	in	a	module's	INF	file.
Also	note	that	the	IFR	code	is	not	compatible	-	UFI	compliant	IFR	code	is	different	from	the	IFR	code
defined	by	early	Intel	Framework	documents.

8.3.3.1	Reference	Implementation:	Compatibility
The	EDK	II	Vfr	compiler	tools	can	process	EDK	and	EDK	II	VFR	and	Unicode	files	and	to	generate	UEFI/PI
compliant	IFR	files.	EDK	II	Unicode	files	can	use	the	UEFI	defined	Unicode	extended	grammar.	The	EDK
VFR	and	Unicode	files	are	a	subset	of	the	EDK	II	versions.	EDK	II	VFR	and	Unicode	files	may	not	be	used
with	an	EDK	build	unless	they	do	not	include	the	extended	grammar.	Table	15	shows	the	compatibility
matrix.

Table	15	VFR	Compatibility	Matrix

Code non-UEFI	Compliant	VFR	Tools UEFI	Compliant	VFR	Tools

pre-UEFI	2.1	Unicode Yes Yes

pre-UEFI	2.1	VFR	Source Yes Yes

pre-UEFI	2.1	IFR	-	binaries Yes No

UEFI	2.1	Unicode No Yes

UEFI	2.1	Vfr No Yes

UEFI	2.1	IFR	-	binaries No Yes

8.3.4	HII	String	Pack
The	human-readable	HII	string	pack	data	consists	of	UCS-2	characters	in	.uni	files.	The	build	tools	will	do
following	steps	to	convert	the	strings	information	into	HII	string	pack	data	structure.

The	build	tools	will	get	all	the	string	IDs,	the	associated	string	and	language	code	from	the		.uni	
files.	Note	that	the	DSC	file	or	options	on	the	command-line	may	be	used	to	filter	the	languages
used	for	generating	the	AutoGen	code.	The		RFC_LANGUAGES		is	a	semi-colon	separated,	doubled	quoted
string	of	RFC	4646	language	codes,	while	the		ISO_LANGUAGES		(for	EDK	components	only)	is	a
nonseparated	double	quoted	string	of	three	character	ISO	639-2	language	codes.

For	EDK	II	modules,	their	Unicode	files	must	use	RFC	4646	language	codes.	If	an	EDK	II	module's
Unicode	file	contains	a	three	character	ISO	639-2	language	code,	the	build	will	break	with	an
appropriate	warning	message.

8.3	Auto-generated	codeEDK	II	Build	Specification

121Revision	1.28



For	EDK	components,	their	Unicode	files	must	use	the	ISO	639-2	language	codes.

Note:	Tools	must	not	refactor	the	EDK	component	ISO	639-2	language	codes	to	RFC	4646	language
codes,	as	the	DXE	drivers	are	responsible	for	handling	the	different	language	code	formats.

Search	all	source	files	in	the	include	path	of	the	module	to	find	out	which	string	IDs	are	used.Macros
will	be	generated	in		AutoGen.h		for	the	string	IDs	used.	Those	string	IDs	not	used	will	be	generated
but	commented	out.	They	is	just	for	debug	purposes.	For	example:

include_statement	(AutoGen.h,	"

		//

		//Unicode	String	ID

		//

		//	#define	$LANGUAGE_NAME	0x0000		//	not	referenced

		//	#define	$PRINTABLE_LANGUAGE_NAME	0x0001		//not	referenced

		#define	STR_BOOT_FAILED	0x0002

		#define	STR_BOOT_SUCCEEDED	0x0003

		#define	STR_PERFORM_MEM_TEST	0x0004

		//	#define	STR_INTERNAL_EFI_SHELL	0x009E		//	not	referenced

		//	#define	STR_LEGACY_BOOT_A	0x009F		//	not	referenced

		//	#define	STR_PROCESSED_ALL_BOOT_OPTIONS	0x00A0		//	not	referenced

");

The	font	attribute	specifies	the	default	font	that	will	be	used	for	the	characters	in	string.	If		#font		is
not	specified,	then	the	default	font	identifier	will	be	used.

If	the		#font		attribute	appears	before	the	first		#language		identifier,	then	it	applies	to	all	characters	for
all	languages.	If	the		#font		attribute	appears	after	a	#language	identifier,	it	applies	only	to	the
string	characters	in	that	language.	It	is	permissible	for		#font		to	appear	in	more	than	one	place,	in
which	case	the	language-specific	font	identifier	will	have	priority.

The	HII	string	package	data	will	be	generated	in		AutoGen.c		in	the	form	of	a	data	array,	with	array
name		<ModuleBaseName>	Strings.	For	example:

include_statement	(AutoGen.c,	"

		//

		//Unicode	String	Pack	Definition

		//

		unsigned	char	PlatformBdsDxeStrings[]	=	{

		//	Start	of	string	definitions	for	fra

				0x20,	0x1A,	0x00,	0x00,	0x02,	0x00,	0x8E,	0x02,

				0x00,	0x00,	0x96,	0x02,	0x00,	0x00,	0x9E,	0x00,

				0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

				//	offset	0x16

				0x8E,	0x02,	0x00,	0x00,	//	offset	to	string	$LANGUAGE_NAME	(0x0000)

				0x96,	0x02,	0x00,	0x00,	//	offset	to	string

																												//$PRINTABLE_LANGUAGE_NAME	(0x0001)

				...

				...

				//	string	$LANGUAGE_NAME	offset	0x0000028E

				0x66,	0x00,	0x72,	0x00,	0x61,	0x00,	0x00,	0x00,

				//	string	$PRINTABLE_LANGUAGE_NAME	offset	0x00000296

				0x46,	0x00,	0x72,	0x00,	0x61,	0x00,	0x6E,	0x00,

				0xE7,	0x00,	0x61,	0x00,	0x69,	0x00,	0x73,	0x00,

				0x00,	0x00,

				...

				...

				//	strings	terminator	pack

				0x00,	0x00,	0x00,	0x00,	0x02,	0x00,	0x00,	0x00,

				0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

				0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

8.3	Auto-generated	codeEDK	II	Build	Specification

122Revision	1.28



		};

");

8.3.4.1	More	than	One	Unicode	File
If	more	than	one	Unicode	file	is	required	by	a	module,	the	rules	for	including	these	files	are	as	follows.	If
one	Unicode	file	uses	a		#include		statement	to	include	other	Unicode	files,	these	secondary	Unicode	files
must	also	be	listed	in	the	INF	file's	[Sources]	section.

8.3.5	HII	Image	Pack
The	HII	Image	package	data	is	stored	in		.idf		files.	The	build	tools	perform	the	following	steps	to	convert
the	image	information	into	an	HII	Image	package	data	structure.

The	build	tools	retrieve	all	the	image	IDs,	the	optional		TRANSPARENT		setting	and	the	associated	image
file	name	from	the		.idf		files.	The		TRANSPARENT		setting	is	optional.	If	it	is	specified,	build	tools	apply	the
	TRANS		image	block	type	to	the	input	image	file.	The	UEFI	Specification	does	not	define	the		TRANS	
block	type	for	JPG	or	PNG	images.	The		TRANSPARENT		setting	is	ignored	for	JPG	and	PNG	images.	The
image	file	name	should	be	listed	in	the		[Sources]		section	of	the	INF	file,	and	the	extension	of	the
image	file	must	be	one	of		.bmp	,		.jpg	,	or		.png	.	The	extension	is	case	insensitive.

Search	all	source	files	in	the	include	path	of	the	module	to	find	out	which	image	IDs	are	used.
Macros	are	generated	in		AutoGen.h		for	the	image	IDs	used.	For	example:

include_statement(AutoGen.h,	"

		//

		//Image	ID

		//

		#define	IMG_FULL_LOGO		0x0001

		#define	IMG_OEM_LOGO			0x0002

");

The	HII	Image	package	data	is	generated	in		<ModuleBaseName>Idf.hpk		or	in		AutoGen.c		in	the	form	of	a	data
array,	with	array	name		<ModuleBaseName>Images	.	For	example:

include_statement(AutoGen.c,	"

		//

		//Image	Pack	Definition

		//

		unsigned	char	HelloWorldImages[]	=	{

				//	STRGATHER_OUTPUT_HEADER

				0xD9,	0xCA,	0x01,	0x00,

				//	Image	PACKAGE	HEADER

				0xD5,	0xCA,	0x01,	0x06,	0x0C,	0x00,	0x00,	0x00,	0x97,	0xC7,	0x01,	0x00,

				//	Image	DATA

				//	0x0001:	IMG_FULL_LOGO:	0x0001

				0x12,	0x01,	0x90,	0x01,	0xDC,	0x00,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,

				...

				...

				//	0x0002:	IMG_OEM_LOGO:	0x0002

				0x14,	0x02,	0x25,	0x01,	0xDC,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

				...

				...

				//	End	of	the	Image	Info

				0x00,

				//	Palette	Header

				0x03,	0x00,

				//	Palette	Data

				//	0x0001:	IMG_FULL_LOGO:	0x0001

				0x00,	0x00,	0x00,	0x00,	0x00,	0x80,	0x00,	0x80,	0x00,	0x00,	0x80,	0x80,	0x80,	0x00,	0x00,	0x80,

				0x00,	0x80,	0x80,	0x80,	0x00,	0x80,	0x80,	0x80,	0xC0,	0xC0,	0xC0,	0x00,	0x00,	0xFF,	0x00,	0xFF,

				...

				...

8.3	Auto-generated	codeEDK	II	Build	Specification

123Revision	1.28



				//	0x0002:	IMG_OEM_LOGO:	0x0002

					0x00,	0x00,	0x00,	0x00,	0x00,	0x80,	0x00,	0x80,	0x00,	0x00,	0x80,	0x80,

				...

				...

		};

");

If	more	than	one	image	definition	file	is	required	by	a	module,	the	build	tools	combine	the	images
from	the	multiple		.idf		files	into	a	single	HII	Image	Pack.

8.3.6	AutoGen.h	file
The	code	generated	in	AutoGen.h	includes:

Prototypes	of	constructor	and	destructor	from	the	library	instances	the	module	will	link	against
Prototypes	of	entry	and	unload	image	entry	points
Global	variable	definitions	for	GUID/Protocol/PPI	values	used	as	well	as	extern	definitions
Global	variable	definitions	and	the	database	of	PCDs	used
Unicode	string	database	definitions.
Image	package	database	definitions.

The	file	will	contain:

8.3.6.1	Header	prologue
The	macro	name	is	composed	with	GUID	value	of	INF	file.

include_statement	(AutoGen.h,	"

		#ifndef	_AUTOGENH_6987936E_ED34_44db_AE97_1FA5E4ED2116

		#define	_AUTOGENH_6987936E_ED34_44db_AE97_1FA5E4ED2116

		#ifdef	__cplusplus

		extern	"C"	{

		#endif

");

8.3.6.2	Global	macro	definitions
If	they	are	defined	in	INF	file,	un-defining	them	first	is	for	backward	compatibility	with	EDK	module	build,
because	these	macros	are	not	defined	in	INF	file	of	EDK	modules	but	passed	via	compiler	option.

include_statement	(AutoGen.h,	"

		#undef	EFI_SPECIFICATION_VERSION

		#define	EFI_SPECIFICATION_VERSION	0x00020000

		#undef	EDK_RELEASE_VERSION

		#define	EDK_RELEASE_VERSION	0x00020000

");

8.3.6.3	Header	file	inclusion.
Only	one	header	file	is	included.

include_statement	(AutoGen.h,	"

		#include	<Base.h>

");

8.3.6.4	Caller	ID	GUID	definition.

8.3	Auto-generated	codeEDK	II	Build	Specification

124Revision	1.28



The	GUID	value	is	the	same	as	INF	file	GUID.	The	macro,		EFI_CALLER_ID_GUID	,	is	generated	only	for	non	-
library	module.

include_statement	(AutoGen.h,	"

		extern	GUID	gEfiCallerIdGuid;

		//	following	definition	is	not	needed	for	library	module

		#define	EFI_CALLER_ID_GUID	\

				{	0x6987936E,	0xED34,	0x44db,	{	0xAE,	0x97,	0x1F,	0xA5,	0xE4,	0xED,

						0x21,	0x16	}	}

");

8.3.6.5	PCD	definitions
There	are	differences	in	the	generated	code	for	library	and	non-library	modules,	which	are	illustrated	in
pseudo-code	below.

8.3.6.5.1	Non-library	Module

include_statement(AutoGen.h,	"

		#define	_PCD_TOKEN_<TokenCName>	<TokenNumber>

");

If	((PCD_type	==	FIXED_AT_BUILD)	||	(PCD_type	==	FEATURE_FLAG))	{

		If	((DatumType	==	'VOID*')	&&

						(

								(PcdValue	==	array)	||

								(PcdValue	==	C_FormatGuid)	||

								(PcdValue	==	C_String)

						)

					)	{

				include_statement	(AutoGen.h,	"

						"#define	_PCD_PATCHABLE_<TokenCName>_SIZE	<MaxDatumSize>"

				);

		}

		include_statement	(AutoGen.h,	"

		#define	_PCD_VALUE_<TokenCName>	<PcdValue>

		extern	const	<DatumType>	_gPcd_FixedAtBuild_<TokenCName>;

		#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	_gPcd_FixedAtBuild_<TokenCName>

		");

}

If	(PCD_type	==	PATCHABLE_IN_MODULE)	{

		If	((DatumType	==	'VOID*')	&&

						(

								(PcdValue	==	array)	||

								(PcdValue	==	C_FormatGuid)	||

								(PcdValue	==	C_String)

						)

					)	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_PATCHABLE_<TokenCName>_SIZE	<MaxDatumSize>

				");

		}

		include_statement	(AutoGen.h,	"

				#define	_PCD_VALUE_<TokenCName>	<PcdValue>

				extern	<DatumType>	_gPcd_BinaryPatch_<TokenCName>;

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	_gPcd_BinaryPatch_<TokenCName>

		");

		If	((DatumType	==	'VOID*')	&&

						(

								(PcdValue	==	array)	||

								(PcdValue	==	C_FormatGuid)	||

								(PcdValue	==	C_String)

						)

					)	{

				include_statement	(AutoGen.h,	"

8.3	Auto-generated	codeEDK	II	Build	Specification

125Revision	1.28



						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(SizeOfBuffer,Buffer)	\

								LibPatchPcdSetPtr	(_gPcd_BinaryPatch_<TokenCName>,	\

									(UINTN)_PCD_PATCHABLE_<TokenCName>_SIZE,	\

									(SizeOfBuffer),	\

									(Buffer)	\

								)

				");

		}	Else	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

								(_gPcd_BinaryPatch_<TokenCName>	=	(Value))

				");

		}

}

If	(PCD_type	==	DYNAMIC)	{

		include_statement	(AutoGen.h,	"

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						LibPcdGet<DatumSize>(_PCD_TOKEN_<PcdTokenCName>)

		");

		If	(DatumType	==	'VOID*')	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(SizeOfBuffer,	Buffer)	\

								LibPcdSet<DatumSize>	(	\

										_gPcd_BinaryPatch_<TokenCName>,	\

										(SizeOfBuffer),	\

										(Buffer)	\

								)

				");

		}	Else	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

								LibPcdSet<DatumSize>(_gPcd_BinaryPatch_<TokenCName>,	(Value))

				");

		}

}

If	(PCD_type	==	DYNAMIC_EX)	{

		include_statement	(AutoGen.h,	"

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						LibPcdGetEx<DatumSize>(&<TokenSpaceGuidCName>,	\

									_PCD_TOKEN_<PcdTokenCName>	\

							)

		");

		If	(DatumType	==	'VOID*')	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(	\

								SizeOfBuffer,	Buffer)	\

								LibPcdSetEx<DatumSize>(&<TokenSpaceGuidCName>,	\

										_gPcd_BinaryPatch_<TokenCName>,	\

										(SizeOfBuffer),	\

										(Buffer)	\

										)

				");

		}	Else	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

								LibPcdSetEx<DatumSize>(&<TokenSpaceGuidCName>,	\

										_gPcd_BinaryPatch_<TokenCName>,	\

										(Value)	\

										)

				");

		}

}

8.3.6.5.2	Library	Module

nclude_statement(AutoGen.h,	"

		#define	_PCD_TOKEN_<TokenCName>	<TokenNumber>

");

If	((PCD_TYPE	==	FIXED_AT_BUILD)	&&

8.3	Auto-generated	codeEDK	II	Build	Specification

126Revision	1.28



				(ALL_MODULES_LINKED_W_THIS_LIB_USE_PCD_TYPE	==	FIXED_AT_BUILD)	&&

				(ALL_MODULES_LINKED_W_THIS_LIB_USE_PCD_VALUES	==	<ThisPcdValue>))	{

		#define	_PCD_VALUE_<TokenCName>	<PcdValue>

}

If	((PCD_type	==	FIXED_AT_BUILD)	||	(PCD_type	==	FEATURE_FLAG))	{

		include_statement	(AutoGen.h,	"

				extern	const	<DatumType>	_gPcd_FixedAtBuild_<TokenCName>;

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						_gPcd_FixedAtBuild_<TokenCName>

		");

}

If	(PCD_type	==	PATCHABLE_IN_MODULE)	{

		include_statement	(AutoGen.h,	"

				extern	<DatumType>	_gPcd_BinaryPatch_<TokenCName>;

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						_gPcd_BinaryPatch_<TokenCName>

				#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

						(_gPcd_BinaryPatch_<TokenCName>	=	(Value))

		");

}

If	(PCD_type	==	DYNAMIC)	{

		include_statement	(AutoGen.h,	"

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						LibPcdGet<DatumSize>(_PCD_TOKEN_<PcdTokenCName>)

		");

		If	(DatumType	==	'VOID*')	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(	\

								SizeOfBuffer,	Buffer)	\

								LibPcdSet<DatumSize>(_gPcd_BinaryPatch_<TokenCName>,	\

										(SizeOfBuffer),	\

										(Buffer)	\

										)

				");

		}	Else	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

								LibPcdSet<DatumSize>(_gPcd_BinaryPatch_<TokenCName>,	(Value))

				");

		}

}

If	(PCD_type	==	DYNAMIC_EX)	{

		include_statement	(AutoGen.h,	"

				#define	_PCD_GET_MODE_<DatumSize>_<TokenCName>	\

						LibPcdGetEx<DatumSize>(	&<TokenSpaceGuidCName>,	\

								_PCD_TOKEN_<PcdTokenCName>	)

		");

		If	(DatumType	==	'VOID*')	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(	\

								SizeOfBuffer,	Buffer	)	\

								LibPcdSetEx<DatumSize>(&<TokenSpaceGuidCName>,	\

										_gPcd_BinaryPatch_<TokenCName>,	\

										(SizeOfBuffer),	\

										(Buffer)	\

										)

				");

		}	Else	{

				include_statement	(AutoGen.h,	"

						#define	_PCD_SET_MODE_<DatumSize>_<TokenCName>(Value)	\

								LibPcdSetEx<DatumSize>(&<TokenSpaceGuidCName>,	\

										_gPcd_BinaryPatch_<TokenCName>,	\

										(Value)	\

										)

8.3	Auto-generated	codeEDK	II	Build	Specification

127Revision	1.28



				");

		}

}

8.3.6.5.3	HII	string	pack	definitions,

These	are	generated	only	if		.uni		files	are	found.	For	details,	please	refer	to	section	7.3.2.

include_statement	(AutoGen.h,	"

		//

		//Unicode	String	ID

		//

		//	#define	$LANGUAGE_NAME	0x0000		//	not	referenced

		//	#define	$PRINTABLE_LANGUAGE_NAME	0x0001		//	not	referenced

		#define	STR_MISC_BASE_BOARD_MANUFACTURER	0x0002

		#define	STR_MISC_BASE_BOARD_PRODUCT_NAME	0x0003

		#define	STR_MISC_BASE_BOARD_VERSION	0x0004

		//	...

		//	...

		//	...

		extern	unsigned	char	MiscSubclassStrings[];

		#define	STRING_ARRAY_NAME	MiscSubclassStrings

");

8.3.6.5.4	HII	image	pack	definitions

These	are	generated	only	if		.idf		files	are	found.

include_statement(AutoGen.h,	"

		//

		//Image	ID

		//

		#define	IMG_FULL_LOGO		0x0001

		#define	IMG_OEM_LOGO			0x0002

		extern	unsigned	char		HelloWorldImages[];

		#define	IMAGE_ARRAY_NAME		HelloWorldImages

");

8.3.6.6	AutoGen	Epilogue

#ifdef	__cplusplus

}

#endif

#endif

8.3.7	AutoGen.c	file
The	code	generated	in	AutoGen.c	includes:

Calling	of	constructor	and	destructor	of	library	instances	against	which	the	module	will	link
The	module	load	and	unload	entry	points
Global	variables	for	GUID/Protocol/PPIs	value	used,	global	variables	and	database	for	PCDs	used
Unicode	string	pack	definition.
Image	pack	definition.

8.3	Auto-generated	codeEDK	II	Build	Specification

128Revision	1.28



	AutoGen.c		file	is	only	generated	for	EDK	II	non-library	modules.	The	following	sections	identify	what	lines	of
information	are	included	in	the	file	as	well	as	pseudo-code	to	references	on	to	how	a	variable	()	might
be	generated.

The	file	will	contain:

8.3.7.1	Header	files	inclusion.
Which	files	are	included	is	determined	by	module	type.

Switch	MODULE_TYPE	{

		case	"BASE":

		case	"USER_DEFINED":

				include_statement	(AutoGen.c,	"

						#include	<Base.h>

				);

				break;

		case	"SEC":

		case	"PEI_CORE":

		case	"PEIM":

				include_statement	(AutoGen.c,	"

						#include	<PiPei.h>

						#include	<Library/DebugLib.h>

				");

				break;

		case	"DXE_CORE":

				include_statement	(AutoGen.c,	"

						#include	<PiDxe.h>

						#include	<Library/DebugLib.h>

				");

				break;

		case	"DXE_DRIVER":

		case	"DXE_SMM_DRIVER":

		case	"DXE_RUNTIME_DRIVER":

		case	"DXE_SAL_DRIVER":

		case	"UEFI_DRIVER":

		case	"UEFI_APPLICATION"

				include_statement	(AutoGen.c,	"

						#include	<PiDxe.h>

						#include	<Library/BaseLib.h>

						#include	<Library/DebugLib.h>

						#include	<Library/UefiBootServicesTableLib.h>

				");

				break;

		default:

				PrintError	(	"%s\n",	message);

				BreakTheBuild();

}

The	following	will	be	inserted	in	AutoGen.c	after	the	header	files	have	been	included.

	GLOBAL_REMOVE_IF_UNREFERENCED	CHAR8	*gEfiCallerBaseName	=	"<ModuleName>";	

Where	the		<ModuleName>		is	the	value	of	the		BASE_NAME		from	the	module	INF	file's		[Defines]		section.

8.3.7.2	Caller	ID	GUID	variable	definition.
Because	not	all	GUID	variables	are	required,	a	link-time	optimization	removes	items	that	are	not
referenced	by	other	parts	of	the	code	to	save	on	space	in	the	image.

include_statement	(AutoGen.c,	"

		GLOBAL_REMOVE_IF_UNREFERENCED	GUID	gEfiCallerIdGuid	=	{0x4A9B9DB8,

8.3	Auto-generated	codeEDK	II	Build	Specification

129Revision	1.28



				0xEC62,	0x4A92,	{0x81,	0x8F,	0x8A,	0xA0,	0x24,	0x6D,	0x24,	0x6E}};

");

8.3.7.3	Library	Constructor	Statements
If	there	are		CONSTRUCTOR	s	defined	in		[Defines]		section	in	INF	file	of	the	library	instances	that	are	being
linked	to.

If	(CONSTRUCTOR	defined	in	INF)	{

		If	(MODULE_TYPE	==	"BASE")	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<CONSTRUCTOR>	(

								VOID	);

						");

		}

		If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<CONSTRUCTOR>	(

								IN	EFI_PEI_FILE_HANDLE		FileHandle,

								IN	EFI_PEI_SERVICES					**PeiServices

						);

				");

		If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

				(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

				(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

				(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

				(MOODULE_TYPE	==	'UEFI_DRIVER')	||

				(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<CONSTRUCTOR>	(

								IN	EFI_HANDLE								ImageHandle,

								IN	EFI_SYSTEM_TABLE		*SystemTable

						);

				");

		}

}	//	End	CONSTRUCTOR	defined	in	INF

If	(MODULE_TYPE	==	"BASE")	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryConstructorList	(

						VOID

				)

		");

}

If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryConstructorList	(

						IN	EFI_PEI_FILE_HANDLE		FileHandle,

						IN	EFI_PEI_SERVICES					**PeiServices

8.3	Auto-generated	codeEDK	II	Build	Specification

130Revision	1.28



				)

		");

}

If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

				(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

				(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

				(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

				(MOODULE_TYPE	==	'UEFI_DRIVER')	||

				(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryConstructorList	(

						IN	EFI_PEI_FILE_HANDLE		ImageHandle,

						IN	EFI_PEI_SERVICES					**SystemTable

				)

		");

}

include_statement	(AutoGen.c,	"

		{

");

If	(CONSTRUCTOR	defined	in	INF)	{

		If	(MODULE_TYPE	==	"BASE")	{

				include_statement	(AutoGen.c,	"

							EFI_STATUS	Status;

							Status	=	<CONSTRUCTOR>();

							ASSERT_EFI_ERROR	(Status);

				");

		}

		If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS	Status;

						Status	=	<CONSTRUCTOR>	(FileHandle,	PeiServices);

						ASSERT_EFI_ERROR	(Status);

				");

		}

		If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

						(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

						(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

						(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

						(MOODULE_TYPE	==	'UEFI_DRIVER')	||

						(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS	Status;

						Status	=	<CONSTRUCTOR>	(ImageHandle,	SystemTable);

						ASSERT_EFI_ERROR	(Status);

				");

		}

}

include_statement	(AutoGen.c,	"

		}

");

8.3.7.4	Library	Destructor	Statements
Contained	if	there	are		DESTRUCTOR	s	defined	in		[Defines]		section	in	INF	file	of	the	library	instances	that	are
being	linked	to.

8.3	Auto-generated	codeEDK	II	Build	Specification

131Revision	1.28



If	(DESTRUCTOR	defined	in	INF)	{

		If	(MODULE_TYPE	==	"BASE")	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<DESTRUCTOR>	(

								VOID

						);

				");

		}

		If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<DESTRUCTOR>	(

								IN	EFI_PEI_FILE_HANDLE		FileHandle,

								IN	EFI_PEI_SERVICES					**PeiServices

					);

				");

		}

		If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

						(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

						(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

						(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

						(MOODULE_TYPE	==	'UEFI_DRIVER')	||

						(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						EFIAPI

						<DESTRUCTOR>	(

								IN	EFI_HANDLE								ImageHandle,

								IN	EFI_SYSTEM_TABLE		*SystemTable

						);

				");

		}

}	//	End	DESTRUCTOR	defined	in	INF

If	(MODULE_TYPE	==	"BASE")	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryDestructorList	(

						VOID

				)

		");

}

If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryDestructorList	(

						IN	EFI_PEI_FILE_HANDLE		FileHandle,

						IN	EFI_PEI_SERVICES					**PeiServices

				)

		");

}

If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

				(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

				(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

				(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

				(MOODULE_TYPE	==	'UEFI_DRIVER')	||

				(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

		include_statement	(AutoGen.c,	"

				VOID

				EFIAPI

				ProcessLibraryDestructorList	(

					IN	EFI_PEI_FILE_HANDLE		ImageHandle,

8.3	Auto-generated	codeEDK	II	Build	Specification

132Revision	1.28



					IN	EFI_PEI_SERVICES					*SystemTable

				)

		");

}

include_statement	(AutoGen.c,	"

		{

");

If	(DESTRUCTOR	defined	in	INF)	{

		If	(MODULE_TYPE	==	"BASE")	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS	Status;

						Status	=	<DESTRUCTOR>();

						ASSERT_EFI_ERROR	(Status);

				");

		}

		If	((MODULE_TYPE	==	"PEI_CORE")	||	(MODULE_TYPE	==	"PEIM"))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS	Status;

						Status	=	<DESTRUCTOR>	(FileHandle,	PeiServices);

						ASSERT_EFI_ERROR	(Status);

				");

		}

		If	((MODULE_TYPE	==	'DXE_CORE')	||	(MODULE_TYPE	==	'DXE_DRIVER')	||

						(MODULE_TYPE	==	'DXE_SMM_DRIVER')	||

						(MODULE_TYPE	==	'DXE_RUNTIME_DRIVER'	||

						(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

						(MOODULE_TYPE	==	'UEFI_DRIVER')	||

						(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS	Status;

						Status	=	<DESTRUCTOR>	(ImageHandle,	SystemTable);

						ASSERT_EFI_ERROR	(Status);

				");

		}

}

include_statement	(AutoGen.c,	"

		}

");

8.3.7.5	Module	Entry	Point	Statements
Contained	if	there	are		ENTRY_POINT	s	defined		[Defines]		section	in	INF	file.

If	(ENTRY_POINT	defined	in	INF)	{

		If	(MODULE_TYPE	==	'PEI_CORE')	{

				include_statement	(AutoGen.c,	"

						EFI_STATUS

						<ENTRY_POINT>	(

								IN	CONST	EFI_SEC_PEI_HAND_OFF				*SecCoreData,

								IN	CONST	EFI_PEI_PPI_DESCRIPTOR		*PpiList,

								IN	VOID																										*OldCoreData

						);

						EFI_STATUS

						EFIAPI

						ProcessModuleEntryPointList	(

								IN	CONST	EFI_SEC_PEI_HAND_OFF				*SecCoreData,

								IN	CONST	EFI_PEI_PPI_DESCRIPTOR		*PpiList,

								IN	VOID																										*OldCoreData

8.3	Auto-generated	codeEDK	II	Build	Specification

133Revision	1.28



						)

						{

								return	<ENTRY_POINT>	(SecCoreData,	PpiList,	OldCoreData);

						}

				");

		}

		If	(MODULE_TYPE	==	'DXE_CORE')	{

				include_statement	(AutoGen.c,	"

						const	UINT32	_gUefiDriverRevision	=	0;

						VOID

						<ENTRY_POINT>	(

								IN	VOID		*HobStart

								);

						VOID

						EFIAPI

						ProcessModuleEntryPointList	(

								IN	VOID		*HobStart

								)

						{

								<ENTRY_POINT>	(HobStart);

						}

				");

		}

		If	(MODULE_TYPE	==	'PEIM')	{

				include_statement	(AutoGen.c,	"

						GLOBAL_REMOVE_IF_UNREFERENCED	const	UINT32	_gPeimRevision	=	0;

				");

				If	(Number	of	ENTRY_POINT	==	0)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_PEI_FILE_HANDLE		FileHandle,

										IN	EFI_PEI_SERVICES					**PeiServices

										)

								{

										return	EFI_SUCCESS;

								}

						");

				}

				If	(Number	of	ENTRY_POINT	==	1)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								<ENTRY_POINT>	(

										IN	EFI_PEI_FILE_HANDLE		FileHandle,

										IN	EFI_PEI_SERVICES					**PeiServices

										);

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_PEI_FILE_HANDLE		FileHandle,

										IN	EFI_PEI_SERVICES					**PeiServices

										)

								{

										return	<ENTRY_POINT>	(FileHandle,	PeiServices);

								}

						");

				}

				If	(Number		of			ENTRY_POINT	>	1)	{

8.3	Auto-generated	codeEDK	II	Build	Specification

134Revision	1.28



						include_statement	(AutoGen.c,	"

								<ENTRY_POINT1>	(

										IN	EFI_PEI_FILE_HANDLE		FileHandle,

										IN	EFI_PEI_SERVICES					**PeiServices

										);

								<ENTRY_POINT2>	(

										IN	EFI_PEI_FILE_HANDLE		FileHandle,

										IN	EFI_PEI_SERVICES					**PeiServices

										);

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_PEI_FILE_HANDLE	FileHandle,

										IN	EFI_PEI_SERVICES	**PeiServices

										)

								{

										EFI_STATUS	Status;

										EFI_STATUS	CombinedStatus;

										CombinedStatus	=	EFI_LOAD_ERROR;

										Status	=	<ENTRY_POINT1>	(FileHandle,	PeiServices);

										if	(!EFI_ERROR	(Status)	||	EFI_ERROR	(CombinedStatus))	{

												CombinedStatus	=	Status;

										}

										Status	=	<ENTRY_POINT2>	(FileHandle,	PeiServices);

										if	(!EFI_ERROR	(Status)	||	EFI_ERROR	(CombinedStatus))	{

												CombinedStatus	=	Status;

										}

										return	CombinedStatus;

								}

						");

				}

		}

		If	(MODULE_TYPE	==	'DXE_SMM_DRIVER')	{

				If	(Number	of	ENTRY_POINT	==	0)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										)

								{

										return	EFI_SUCCESS;

								}

						");

				}

				If	(Number	of	ENTRY_POINT	==	1)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								<ENTRY_POINT>	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										);

								static	BASE_LIBRARY_JUMP_BUFFER		mJumpContext;

								static	EFI_STATUS		mDriverEntryPointStatus	=	EFI_LOAD_ERROR;

								VOID

								EFIAPI

								ExitDriver	(

8.3	Auto-generated	codeEDK	II	Build	Specification

135Revision	1.28



										IN	EFI_STATUS		Status

										)

								{

										if	(!EFI_ERROR	(Status)	||	EFI_ERROR	(mDriverEntryPointStatus))	{

												mDriverEntryPointStatus	=	Status;

										}

										LongJump	(&mJumpContext,	(UINTN)	-	1);

										ASSERT	(FALSE);

								}

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										)

								{

										if	(SetJump	(&mJumpContext)	==	0)	{

												ExitDriver	(<ENTRY_POINT>	(ImageHandle,	SystemTable));

												ASSERT	(FALSE);

										}

										return	mDriverEntryPointStatus;

								}

						");

				}

		}

		If	((MODULE_TYPE	==	'DXE_RUNTIME_DRIVER')	||

						(MODULE_TYPE	==	'DXE_DRIVER')	||

						(MODULE_TYPE	==	'DXE_SAL_DRIVER')	||

						(MODULE_TYPE	==	'UEFI_DRIVER')	||

						(MODULE_TYPE	==	'UEFI_APPLICATION'))	{

				include_statement	(AutoGen.c,	"

						const	UINT32	_gUefiDriverRevision	=	0;

				");

				If	(Number	of	ENTRY_POINT	==	0)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										)

								{

										return	EFI_SUCCESS;

								}

						");

				}

				If	(Number	of	ENTRY_POINT	==	1)	{

						include_statement	(AutoGen.c,	"

								EFI_STATUS

								${Function}	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										);

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										)

								{

										return	<ENTRY_POINT>	(ImageHandle,	SystemTable);

8.3	Auto-generated	codeEDK	II	Build	Specification

136Revision	1.28



								}

								VOID

								EFIAPI

								ExitDriver	(

										IN	EFI_STATUS		Status

										)

								{

										if	(EFI_ERROR	(Status))	{

												ProcessLibraryDestructorList	(gImageHandle,	gST);

										}

										gBS->Exit	(gImageHandle,	Status,	0,	NULL);

								}

						");

				}

				If	(Number	of	ENTRY_POINT	>	1)	{

						include_statement	(AutoGen.c,	"

								<ENTRY_POINT1>	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										);

								<ENTRY_POINT2>	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										);

								EFI_STATUS

								EFIAPI

								ProcessModuleEntryPointList	(

										IN	EFI_HANDLE								ImageHandle,

										IN	EFI_SYSTEM_TABLE		*SystemTable

										)

								{

										if	(SetJump	(&mJumpContext)	==	0)	{

												ExitDriver	(<ENTRY_POINT1>	(ImageHandle,	SystemTable));

												ASSERT	(FALSE);

										}

										if	(SetJump	(&mJumpContext)	==	0)	{

												ExitDriver	(<ENTRY_POINT2>	(ImageHandle,	SystemTable));

												ASSERT	(FALSE);

										}

										return	mDriverEntryPointStatus;

								}

								static	BASE_LIBRARY_JUMP_BUFFER	mJumpContext;

								static	EFI_STATUS	mDriverEntryPointStatus	=	EFI_LOAD_ERROR;

								VOID

								EFIAPI

								ExitDriver	(

										IN	EFI_STATUS	Status

										)

								{

										if	(!EFI_ERROR	(Status)	||	EFI_ERROR	(mDriverEntryPointStatus))	{

												mDriverEntryPointStatus	=	Status;

										}

										LongJump	(&mJumpContext,	(UINTN)	-	1);

										ASSERT	(FALSE);

								}

						");

				}

		}

}

8.3	Auto-generated	codeEDK	II	Build	Specification

137Revision	1.28



8.3.7.6	Module	Unload	Image	Statements
The	following	algorithm	is	used	to	process	potential		UNLOAD_IMAGE		statements	that	might	be	defined	in	the
	[Defines]		section	in	the	INF	file.

If	(Number	of	UNLOAD_IMAGE	in	INF	==	0)	{

		include_statement	(AutoGen.c,	"

				GLOBAL_REMOVE_IF_UNREFERENCED	const	UINT8	_gDriverUnloadImageCount	=	0;

				EFI_STATUS

				EFIAPI

				ProcessModuleUnloadList	(

						IN	EFI_HANDLE		ImageHandle

						)

				{

						return	EFI_SUCCESS;

				}

		");

}

If	(Number	of	UNLOAD_IMAGE	in	INF	==	1)	{

		include_statement	(AutoGen.c,	"

				GLOBAL_REMOVE_IF_UNREFERENCED	const	UINT8	_gDriverUnloadImageCount	=	1;

				EFI_STATUS

				<UNLOAD_IMAGE>	(

						IN	EFI_HANDLE		ImageHandle

				);

				EFI_STATUS

				EFIAPI

				ProcessModuleUnloadList	(

						IN	EFI_HANDLE	ImageHandle

						)

				{

						return	<UNLOAD_IMAGE>	(ImageHandle);

				}

		");

}

If	(Number	of	UNLOAD_IMAGE	in	INF	>	1)	{

		include_statement	(AutoGen.c,	"

				GLOBAL_REMOVE_IF_UNREFERENCED	const	UINT8	_gDriverUnloadImageCount	=	<NumberOfUnloadImage>;

				EFI_STATUS

				<UNLOAD_IMAGE1>	(

						IN	EFI_HANDLE		ImageHandle

						);

				EFI_STATUS

				<UNLOAD_IMAGE2>	(

						IN	EFI_HANDLE		ImageHandle

						);

				EFI_STATUS

				EFIAPI

				ProcessModuleUnloadList	(

						IN	EFI_HANDLE		ImageHandle

						)

				{

						EFI_STATUS	Status;

						Status	=	EFI_SUCCESS;

						if	(EFI_ERROR	(Status))	{

								<UNLOAD_IMAGE1>	(ImageHandle);

						}	else	{

								Status	=	<UNLOAD_IMAGE1>	(ImageHandle);

						}

8.3	Auto-generated	codeEDK	II	Build	Specification

138Revision	1.28



						if	(EFI_ERROR	(Status))	{

								<UNLOAD_IMAGE2>	(ImageHandle);

						}	else	{

								Status	=	<UNLOAD_IMAGE2>	(ImageHandle);

						}

						return	Status;

				}

		");

}

8.3.7.7	Global	variables
These	are	generated	from	"Guids",	"Protocols",	"Ppis",	"xxxPcd"	sections	of	the		.inf		file	and		.uni		and
	.idf		files.

InfList	=	[];

add	(ModuleInf,	InfList);

foreach	LibraryInstance	{

		add	(LibraryInf,	InfList);

		foreach	DependentLibraryInstance	{

				add	(LibraryInf,	InfList);

		}

}

foreach	INF	in	InfList	{

		If	("[Guids]"	defined	in	INF)	{

				foreach	GuidCName	{

						include_statement	(AutoGen.c,	"

								GLOBAL_REMOVE_IF_UNREFERENCED	EFI_GUID	<GuidCName>	=	<GuidValue>;

						");

				}

		}

		If	("[Protocols]"	defined	in	INF)	{

				foreach	ProtocolGuidCName	{

						include_statement	(AutoGen.c,	"

								GLOBAL_REMOVE_IF_UNREFERENCED	EFI_GUID	<ProtocolGuidCName>	=	<GuidValue>;

						");

				}

		}

		If	(("[Ppis]"	defined	in	INF)	{

				foreach	PpiGuidCName	{

						include_statement	(AutoGen.c,	"

									LOBAL_REMOVE_IF_UNREFERENCED	EFI_GUID	<PpiGuidCName>	=	<GuidValue>;

						");

				}

		}

		If	("[Pcd]"	defined	in	INF)	{

				foreach	PcdCName	{

						If	((PcdDatumType	==	'VOID*')	&&

										(

											(PcdValue	==	array)	||

											(PcdValue	==	C_FormatGuid)	||

											(PcdValue	==	C_String)

										)

									)	{

								include_statement	(AutoGen.c,	"

										GLOBAL_REMOVE_IF_UNREFERENCED	UINT8	<PcdCName>	=	<PcdValueMacro>;

								");

						}	Else	{

								include_statement	(AutoGen.c,	"

										GLOBAL_REMOVE_IF_UNREFERENCED	<PcdDatumType>	<PcdCName>	=	<PcdValueMacro>;

8.3	Auto-generated	codeEDK	II	Build	Specification

139Revision	1.28



								");

						}

				}

		}

		If	(.UNI	file	found	in	INF	SourcesSection)	{

				include_statement	(AutoGen.c,	"

						unsigned	char	MiscSubclassStrings[]	=	{

								......

						}

				");

		}

		If	(.IDF	file	found	in	INF	SourcesSection)	{

				include_statement	(AutoGen.c,	"

						unsigned	char		HelloWorldImages[]	=	{

								......

						}

				");

		}

}

8.3	Auto-generated	codeEDK	II	Build	Specification

140Revision	1.28



8.4	Auto-generated	PCD	Database	File
The	EDK	II	code-base	provides	platform	configuration	data	that	can	be	modified	at	runtime.	The	two	PCD
data	types	are		Dynamic		PCDs	scoped	to	only	the	platform	drivers	and		DynamicEx		PCDs,	which	may	be
accessed	by	other	modules.	There	are	two	drivers,	a	PEIM	and	DXE	driver	that	are	used	to	provide
access	to	these	configurable	items.

Since	binary	modules	may	need	to	add	additional		DynamicEx		PCDs,	the	EDK	II	drivers	and	the	EDK	II	build
system	create	external	binary	(	PeiPcdDataBase.raw		and		DxePcdDataBase.raw	)	database	files.	These	files	are
generated	by	the	build	system	based	on	PCDs	listed	in	the	FDF	and	DSC	files,	as	well	as	from	INF	files
listed	in	the	DSC	and	FDF	files.	The	files	are	a	union	of	all	of	the		Dynamic		and		DynamicEx		PCDs	found	from
these	EDK	II	meta-data	files.	During	the	ImageGen	stage,	the	files	will	be	put	into	the	FFS	file
(	EFI_SECTION_RAW	)	for	both	the		PEIM		and	DXE	driver.	Each	driver	has	been	coded	to	locate	the	file.	The	rule
for	the		PEI_PCD_DRIVER		module	and		DXE_PCD_DRIVER		module	is	integrated	into	the	build	system.	The	EDK	II
build	system	limits	the	offset	of		Dynamic		and		DynamicEx		PCDs	that	are	defined	in	the	DSC	file	using	the
subtype	of	HII	to	a		UINT16		value.

No	special	rules	are	required	to	add	the	FFS	raw	section	in	the	FDF	file	to	process	these	drivers.
Standard		PEIM		and		DXE_DRIVER		rules	can	be	specified,	as	the	build	system	will	always	insert	the	database
raw	sections	in	to	these	drivers	if	the	database	file	exists.

If	Dynamic	or	DynamicEx	PCDs	are	used	by	the	platform	and	no	database	file	is	created	by	the	build,	the
build	tools	must	break	with	an	appropriate	error	message.

Table	16	Access	Method	Section	Tags

Access	Method INF	File DEC	File DSC	File

FeatureFlag 	[FeaturePcd]	 	[PcdsFeatureFlag]	 	[PcdsFeatureFlag]	

FixedAtBuild 	[FixedPcd]	 	[PcdsFixedAtBuild]	 	[PcdsFixedAtBuild]	

PatchableInModule 	[PatchPcd]	 	[PcdsPatchableInModule]	 	[PcdsPatchableInModule]	

Dynamic 	[Pcd]	 	[PcdsDynamic]	
	[PcdsDynamicDefault]			[PcdsDynamicVpd]	

	[PcdsDynamicHii]	

DynamicEx 	[PcdEx]	 	[PcdsDynamicEx]	
	[PcdsDynamicExDefault]			[PcdsDynamicExVpd]	

	[PcdsDynamicExHii]	

The	FDF	file	does	not	have	specific	sections	for	setting	PCD	values.	PCD	values	are	either	automatically
set	in	the	[FD]	sections	(region	offset	and	region	size)	or	using	SET	statements.

8.4.1	PCD	Rules:
The	subsections	that	follow	cover	the	rules	for	processing	PCDs	defined	in	FDF,	DSC,	INF	or	DEC	files.

8.4.1.1	General	Rules:
1.	 A	FeatureFlag	PCD	cannot	use	be	listed	under	any	other	access	method	in	the	DEC	file.	If	a	PCD
name	is	listed	in	an	FeatureFlag	section,	and	also	in	another	section	type,	the	build	must	break.

2.	 For	PCDs	using	Dynamic	or	DynamicEx	access	methods,	the	PCD	must	be	listed	in	the	DSC	file.	The
build	parser	must	break	with	an	appropriate	error	message	if	a	Dynamic	or	DynamicEx	PCD	is	not
specified	in	the	DSC.

3.	 For	a	given	platform	build,	a	PCD	can	only	use	one	access	method.	Any	INF	files	in	a	platform	that
specifically	limit	the	PCD	access	method	for	a	given	PCD	must	all	list	the	same	access	method	OR	for
source	INF	files	only,	the	list	the	PCD	in	a		[Pcd]		section.

8.4	Auto-generated	PCD	Database	FileEDK	II	Build	Specification

141Revision	1.28



4.	 BINARY	INF	files	(that	do	not	list	files	under	a		[Sources]		section)	can	only	contain		[PcdEx]		and
	[PatchPcd]		Sections	-	if	they	contain	any	other	type	of	PCD,	break	the	build.

5.	 If	a	PCD	has	a	Token	Space	GUID	specified	in	DEC	file	and	the		[Guids]		section	tag	contains	the
	Private		modifier	(	[Guids.common.Private]		for	example),	the	PCD	may	only	be	used	by	modules	in	the
package	containing	the	DEC	file.	If	a	module	outside	of	that	package	attempts	to	use	the	PCD,	the
build	must	break	with	an	appropriate	error	message.

8.4.1.2	Precedence	Rules	for	PCDs	not	listed	in	the	DSC	or	FDF	Files:
This	subsection	covers	PCDs	that	are	used	by	modules	listed	in	the	DSC	file,	but	the	PCD	itself	is	not
listed	in	any	PCD	section	(module	scoped	or	global)	within	the	DSC	file.	The	following	general	rules	are
processed	in	order	until	one	of	them	is	satisfied.	If	none	of	these	rules	can	be	satisfied,	then	other
rules	(below	this	list)	will	be	tested.

1.	 If	all	modules	that	use	a	PCD	list	it	in	a	[Pcd]	section	and	the	DEC	file	declares	PcdsFixedAtBuild	as	a
PCD	access	method,	then	the	build	will	use	PcdsFixedAtBuild	for	the	PCD.

2.	 If	all	modules	that	use	a	PCD	list	it	in	a	[Pcd]	section	and	the	DEC	file	declares
PcdsPatchableInModule	as	a	PCD	access	method,	then	the	build	will	use	PcdsPatchableInModule	for
the	PCD.

3.	 If	all	modules	that	use	a	PCD	list	it	in	a	[Pcd]	section	and	the	DEC	file	declares	PcdsDynamic	as	a
PCD	access	method,	then	the	build	will	use	PcdsDynamicDefault	for	the	PCD.

4.	 If	all	modules	that	use	a	PCD	list	it	in	a	[Pcd]	section	and	the	DEC	file	declares	PcdsDynamicEx	as	a
PCD	access	method,	then	the	build	will	use	PcdsDynamicExDefault	for	the	PCD.

Certain	rules	in	this	section	assume	that	the	EDK	II	package	creator	omitted	some	entries	in	the	DEC	file
on	purpose.	These	rules	cover	the	case	where	a	module	does	not	follow	the	DEC	file's	access	method
declarations.

1.	 PCD	access	method	assignment	from	Binary	INF	files	take	precedence	over	any	access	method
assignment	from	Source	INF	files;

If	a	Binary	INF	listed	only	in	the	FDF	file	and	the	PCD	access	method	is	listed	under	a		[PatchPcd]	
section	and	the	Source	INF	files	list	the	PCD	in	either		[PatchPcd]		or		[Pcd]		sections,	then	the	build
system	must	assign	the	PCD	to	use	the		PcdsPatchableInModule		access	method	for	all	INF	files	that
use	the	PCD.

If	a	Binary	INF	listed	only	in	the	FDF	file	and	the	PCD	access	method	is	listed	under	a		[PcdEx]	
section	and	the	Source	INF	files	list	the	PCD	in	either		[PcdEx]		or		[Pcd]		sections,	then	the	build
system	must	assign	the	PCD	to	use	the		PcdsDynamicExDefault		access	method	for	all	INF	files	that
use	the	PCD.	The	PCD	must	be	added	to	the	Platform's	PCD	Database.

2.	 When	building	modules	from	source	INFs,	a	PCD	can	only	use	one	access	method	for	all	modules	in
a	platform;	a	PCD	cannot	use	the	patch	access	method	in	one	source	module	and	fixed	access
method	in	another	source	module	in	the	same	platform.	The	build	parser	must	break	with	an	error
message	if	this	occurs.

3.	 Binary	modules	included	in	a	platform	build	are	permitted	to	use	the	PatchableInModule	or
DynamicEx	access	methods	(the	Binary	module	must	specify	which	of	these	two	methods	were	used
to	create	the	binary	module)	regardless	of	the	method	used	for	a	given	PCD	in	modules	built	from
source.	The	build	supports	binary	modules	that	use	the	same	or	different	PCD	access	method	than
the	source	modules	or	other	binary	modules.	The	build	parser	must	break	with	an	error	if	a	PCD	is
listed	as	FixedAtBuild	or	Dynamic	(not	DynamicEx)	in	the	Binary	INF.

4.	 If	the	PCD	is	listed	under	different	access	methods	in	all	source	INF	files	in	the	platform	that	use	the
PCD,	the	build	parser	must	break	with	an	appropriate	error	message.

8.4	Auto-generated	PCD	Database	FileEDK	II	Build	Specification

142Revision	1.28



5.	 If	the	PCD	is	listed	in	a		[Pcd]		section	in	all	of	the	source	modules	using	that	PCD	that	are	listed	in
the	DSC	file,	AND	the	PCD	is	listed	in	the	DEC	file	under		[PcdsDynamicEx]		and/or		[PcdsDynamic]		and/or
	[PcdsPatchableInModule]		and		[PcdsFixedAtBuild]		sections,	the	build	must	use	the	PcdsFixedAtBuild	access
method	for	this	PCD	in	all	source	modules	in	the	platform	that	use	this	PCD.

6.	 If	the	PCD	is	listed	in	a		[Pcd]		section	in	all	of	the	source	modules	using	that	PCD	that	are	listed	in
the	DSC	file,	AND	the	PCD	is	listed	in	the	DEC	file	under		[PcdsDynamicEx]		and/or		[PcdsDynamic]		and
	[PcdsPatchableInModule]		sections,	the	build	must	use	the		PcdsPatchableInModule		access	method	for	this	PCD
in	all	source	modules	in	the	platform	that	use	this	PCD.

7.	 If	the	PCD	is	listed	in	a		[Pcd]		section	in	all	of	the	source	modules	using	that	PCD	that	are	listed	in
the	DSC	file,	AND	the	PCD	is	listed	in	the	DEC	file	under		[PcdsDynamicEx]		and		[PcdsDynamic]		sections,	the
build	must	use	the		PcdsDynamicDefault		access	method	for	this	PCD	in	all	source	modules	in	the	platform
that	use	this	PCD.

8.	 If	the	PCD	is	listed	in	a		[Pcd]		section	in	all	of	the	source	modules	using	that	PCD	that	are	listed	in
the	DSC	file,	AND	the	PCD	is	listed	in	the	DEC	file	under		[PcdsDynamicEx]		sections,	the	build	must	use
the		PcdsDynamicExDefault		access	method	for	this	PCD	in	all	source	modules	in	the	platform	that	use	this
PCD.

9.	 If	multiple	source	modules	set	the		Dynamic		or		DynamicEx		PCD	to	the	different	value	in	the	same
platform,	and	the	PCD	is	not	listed	in	the	DSC	file,	the	build	should	break	with	an	appropriate	error
message.

10.	 If	a	PCD	is	used	in	a	module	listed	in	the	DSC	or	FDF	file	and	the	PCD	is	not	declared	in	any	of	the
DEC	files	that	the	module	depends	on	(listed	in	the		[Packages]		section)	the	build	must	break	with	an
appropriate	error	message.

11.	 If	a	PCD	is	listed	in	the	DSC	or	FDF	file	and	the	PCD	is	not	declared	in	any	of	the	DEC	files	AND	the
PCD	is	not	used	by	any	of	the	modules	listed	in	the	DSC	or	FDF	file,	the	build	must	break	with	an
appropriate	error	message.

8.4.1.3	Precedence	Rules
The	rules	are	listed	in	order,	such	that	the	first	match	stops	any	additional	processing.	The	following
rules	apply	to	Binary	modules	listed	in	a	platform	DSC	file.

1.	 PCD	value	assignment	from	command-line	using		--pcd		flag	takes	precedence	over	all	other
assignments.

2.	 PCD	assignments	are	not	permitted	in	the	FDF	file	except	through	SET	statements	or	the	automatic
assignments	from	the	[FD]	section	regions.

3.	 PCD	value	assignment	in	a	module	scoping	section	take	precedence	over	values	specified	in	the
global	section	for	PatchableInModule	PCDs.

4.	 PCD	value	assignment	in	a	global	PCD	section	with	an	architectural	modifier	take	precedence	over
assignments	in	a	global	section.

5.	 PCD	value	assignment	in	a	global	PCD	section	without	an	architectural	modifier.

6.	 The	value	specified	in	the	Binary	INF	has	the	lowest	precedence;	the	DEC	file	is	never	used	to
determine	a	PCD	value	for	a	Binary	INF.

The	following	rules	apply	to	modules	listed	in	a	platform	DSC	file.

1.	 PCD	value	assignment	from	command-line	using		--pcd		flag	takes	precedence	over	all	other
assignments.

2.	 PCD	assignments	in	an	FDF	file	are	positional,	with	the	last	value	taking	precedence	over	previous
assignments	in	the	FDF	file.

8.4	Auto-generated	PCD	Database	FileEDK	II	Build	Specification

143Revision	1.28



3.	 A	PCD	assignment	in	an	FDF	file	takes	precedence	over	PCD	values	assigned	in	the	DSC	file's
module	scoping	section.

4.	 A	PCD	value	of	an	entry	listed	in	a	module	scoping	section	take	precedence	over	the	PCD	value
listed	in	a	global	section	that	has	an	architectural	modifier	in	the	DSC	file.

5.	 A	PCD	value	of	an	entry	listed	in	a	global	section	that	has	an	architectural	modifier	takes
precedence	over	the	PCD	value	listed	in	a	global	section	without	an	architectural	modifier	in	the	DSC
file.

6.	 A	PCD	value	of	an	entry	listed	in	a	global	section	without	architectural	modifiers	in	the	DSC	file	takes
precedence	over	the	PCD	value	listed	in	an	INF	file	in	a	section	with	an	architectural	modifier.

7.	 A	PCD	value	of	an	entry	listed	in	an	INF	file	section	with	an	architectural	modifier	takes	precedence
over	an	entry	listed	in	an	INF	file	section	without	an	architectural	modifier.

8.	 A	PCD	value	of	an	entry	listed	in	an	INF	file	section	without	an	architectural	modifier	takes
precedence	over	a	PCD	value	listed	in	a	DEC	file	in	a	section	with	an	architectural	modifier.

9.	 A	PCD	value	of	an	entry	listed	in	a	DEC	file	section	with	an	architectural	modifier	takes	precedence
over	a	PCD	value	listed	in	a	DEC	file	in	a	section	without	an	architectural	modifier.

Because	the	INF	describes	how	a	module	is	coded,	a	PCD	can	only	be	listed	under	one	access	method:
a	PCD	section	tag	with	architectural	modifiers	cannot	specify	a	different	access	method	for	a	PCD.	The
EDK	II	C	Coding	Standard	prohibits	using	preprocessor	directives	for	architectures	within	the	C	code.

For	instance,	it	is	not	possible	to	list	a	PCD	as	being	FixedAtBuild	for	all	architectures	and
PatchableInModule	for	X64	if	the	module	uses	only	common	files.

For	a	given	platform,	a	PCD	can	only	use	one	access	method	for	source	modules.	Having	different
access	methods	for	same	architecture	is	not	permitted.

For	instance,	it	is	prohibited	to	have	one	module	for	IA32	and	another	copy	of	the	module	for	X64
that	use	different	PCD	access	methods.

8.4.1.4	Dynamic	and	DynamicEx	Database	Rules
This	subsection	covers	the	rules	for	adding	Dynamic	or	DynamicEx	PCDs	to	the	PCD	database.

1.	 If	a	PCD	is	listed	in	a		PcdsDynamicVpd		or		PcdsDynamicExVpd		section,	and	the	PCD	is	not	used	by	any	module
that	is	listed	in	the	DSC	file,	the	build	MUST	ADD	the	entry	in	the	Platform's	PCD	Database,	and	the
parser	must	not	throw	an	error	or	warning	message.

2.	 If	PCD	is	listed	in	a		PcdsDynamicDefault		or		PcdsDynamicExDefault		section,	and	the	PCD	is	not	used	by	any
module	that	is	listed	in	the	FDF	file	(even	if	a	module	that	uses	the	PCD	is	listed	in	the	DSC	file),	the
build	must	NOT	add	the	entry	in	the	Platform's	PCD	Database.

The	build	may	provide	a	warning	message.
3.	 If	PCD	is	listed	in	a		PcdsDynamicHii		or		PcdsDynamicExHii		section,	and	the	PCD	is	not	used	by	any	module
that	is	listed	in	the	FDF	file	(even	if	a	module	that	uses	the	PCD	is	listed	in	the	DSC	file),	the	build
must	NOT	add	the	entry	in	the	Platform's	PCD	Database.

The	build	may	provide	a	warning	message.
4.	 If	a	PCD	is	not	listed	in	the	DSC	file	but	is	listed	under	a		[PcdsEx]		section	in	a	Binary	INF	file	listed	in
the	FDF	file,	then	the	build	must	add	the	entry	to	the	Platform's	PCD	Database	as		PcdsDynamicExDefault	.

5.	 If	a	PCD	is	not	listed	in	the	DSC	file,	but	binary	INF	files	used	by	this	platform	use	this	PCD	and	list
the	PCD	in	a		[PcdsEx]		section,	AND	any	source	INF	files	that	use	the	PCD	list	the	PCD	in	either	a
	[Pcds]		or		[PcdsEx]		section,	then	the	tools	MUST	ADD	the	PCD	to	the	Platform's	PCD	Database.

The	build	must	assign	the	access	method	for	this	PCD	as		PcdsDynamicExDefault	.

8.4	Auto-generated	PCD	Database	FileEDK	II	Build	Specification

144Revision	1.28



6.	 If	a	PCD	is	not	listed	in	the	DSC	file,	but	binary	INF	files	used	by	this	platform	all	(that	use	this	PCD)
list	the	PCD	in	a		[PatchPcds]		section,	AND	all	source	INF	files	used	by	this	platform	the	build	that	use
the	PCD	list	the	PCD	in	either	a		[Pcds]		or		[PatchPcds]		section,	then	the	tools	must	NOT	add	the	PCD
to	the	Platform's	PCD	Database.

The	build	must	assign	the	access	method	for	this	PCD	as		PcdsPatchableInModule	.
7.	 If	one	of	the	Source	built	modules	listed	in	the	DSC	is	not	listed	in	FDF	modules,	and	the	INF	lists	a
PCD	can	only	use	the		PcdsDynamic		access	method	(it	is	only	listed	in	the	DEC	file	that	declares	the
PCD	as		PcdsDynamic	),	then	build	tool	will	report	warning	message	that	notifies	the	PI	of	an	attempt	to
build	a	module	that	must	be	included	in	a	flash	image	in	order	to	be	functional.

These		Dynamic		PCD	will	not	be	added	into	the	Database	unless	it	is	used	by	other	modules	that
are	included	in	the	FDF	file.

8.	 If	one	of	the	Source	built	modules	listed	in	the	DSC	is	not	listed	in	FDF	modules,	and	the	INF	lists	a
PCD	can	only	use	the		PcdsDynamicEx		access	method	(it	is	only	listed	in	the	DEC	file	that	declares	the
PCD	as		PcdsDynamicEx	),	then	DO	NOT	break	the	build.

DO	NOT	add	the	PCD	to	the	Platform's	PCD	Database.
9.	 If	a	module	is	listed	in	FDF	file	and	use	a		Dynamic		or		DynamicEx		PCD,	the	PCD	MUST	be	added	into	the
PCD	Database.

The	build	system	must	emit	a	line	containing	the	total	number	of	warnings	from	the	above	rules	at	the
end	of	a	build.

Note:	Because	parsing	warnings	may	appear	for	only	a	short	period	prior	to	calling	other	tools	that
emit	a	copious	number	of	informational	messages,	this	line	will	ensure	that	the	PI	knows	that	warnings
were	emitted.

8.4.1.5	FeatureFlag	PCDs	used	in	conditional	directive	statements	in
code
FeatureFlag	PCDs	used	in	conditional	directive	statements	in	code	have	the	following	rules.

1.	 A	FeatureFlag	PCD	cannot	use	any	other	access	method.	If	a	PCD	name	is	listed	in	an	FF	section,
and	also	in	another	section	type,	the	build	must	break.

2.	 A	PCD	can	only	be	use	one	access	method	for	all	modules	in	a	platform;	a	PCD	cannot	use	the
patch	access	method	in	one	module	and	fixed	access	method	in	another	module	in	the	same
platform.	The	build	parser	must	break	with	an	error	message	if	this	occurs.

3.	 Duplicate	PCD	names	listed	within	a	section	are	positional,	such	that	only	the	value	of	the	last	entry
will	be	used.

Note:	A	PCD	name	&	value	listed	in	an	architectural	section	takes	precedence	over	the	PCD	name	&
value	specified	in	a	common	section	when	build	for	a	specific	architecture.	If	a	PCD	name	is	not	listed	in
a	section	that	contains	an	architectural	modifier,	and	is	listed	in	a	section	that	is	common,	the	value	in
from	the	entry	in	a	common	section	will	be	used.

8.4	Auto-generated	PCD	Database	FileEDK	II	Build	Specification

145Revision	1.28



8.5	Auto-generated	Makefiles
The	actual	build	actions	are	done	via	"MAKE"	system.	This	system	is	"nmake"	in	Windows	environment
and	"make"	in	GCC	(Linux	and	Mac	OS/X)	environment.	The		Makefiles		are	created	at	the	module	level.
For	one	platform,	one	makefile	is	generated	for	each	tool	chain,	build	target	(	DEBUG	/	RELEASE	/	NOOPT	)	and
architecture.

In	Platform	mode,	the		build		tool	calls	the	build	script	tool	(nmake	or	make)	for	each	Module's		Makefile	.

In	Module	mode,	the	build	tool	calls	the	build	script	tool,	giving	the	Module		Makefile		as	an	argument.
However,	in	Module	Mode,	if	the	build	tool	target	is	"fds",	after	the	module	builds	successfully,	the	build
tool	calls	the	GenFds	tool	to	regenerate	an	FD	file.

8.5.1	Module	Makefile
This	section	describe	the	formats	of	the	individual	component/module	Makefiles.	Users	may	generate	a
custom	makefile	for	their	EDK	component	or	EDK	II	module	based	on	the	information	provided	by	this
section.

The	module		Makefile		is	composed	by	two	parts:	macro	definitions	and	target	definitions.

In	the	pseudo-code	provided,	the	MACRO,		$(MODULE_BUILD_DIR)		is	constructed	using	the	following	rules:

If	the	.dsc	file's		OUTPUT_DIRECTORY		value	(path)	starts	with	an	alpha	character,	the	value	of	the
	OUTPUT_DIRECTORY		statement	is	relative	to	the	directory	specified	in	the	system	environment	variable,
	WORKSPACE	.	Otherwise,	it	is	considered	an	absolute	directory	path.

If	(isalpha	(getValue	("OUTPUT_DIRECTORY",	DscFile)[0])	{

		MOD_BUILD_DIR	=	"$WORKSPACE)\"	+	getValue("OUTPUT_DIRECTORY",	DscFile)

}	else	{

		MOD_BUILD_DIR1	=	getValue	("OUTPUT_DIRECTORY",	DscFile)

}

Foreach	Target	in	ActiveTargetList	{

		Foreach	ToolChainTag	in	ActiveToolChain	{

				MOD_BUILD_DIR2	=	$	(MOD_BUILD_DIR1)	+	"\"	+	Target	+	"_"	+	ToolChainTag	+	"\";

				foreach	Arch	in	ActiveArchList	{

						MODULE_BUILD_DIR	=	$	(MOD_BUILD_DIR2)	+	Arch	+	"\";

						MODULE_BUILD_DIR	+=	getDirPart	(InfFile)	+	"\";

						MODULE_BUILD_DIR	+=	getValue	("BASE_NAME",	InfFIle)	+	"\";

						MAKEFILE	=	$	(MODULE_BUILD_DIR)	+	"Makefile";

						genModuleMakefile	($	(MAKEFILE));

						addModuleToList	($MAKEFILE,	MakefileList);

				}

				genTopMakefile	($	(MOD_BUILD_DIR2)	+	"Makefile")

		}

}

8.5.1.1	Macro	definitions
8.5.1.1.1	Platform	information

These	come	from		[Defines]		section	in	the	DSC	file.

MakefileList	=	$	(PLATFORM_MAKEFILE)

Foreach	InfFile	{

		MakefileList	+=	$	(MODULE_MAKEFILE)

}

foreach	Makefile	in	MakefileList	{

		include_statement	($	(MODULE_BUILD_DIR)\Makefile,	"

				PLATFORM_NAME	=	getValue("PLATFORM_NAME",	DscFile);

				PLATFORM_GUID	=	getValue	("PLATFORM_GUID",	DscFile);

8.5	Auto-generated	MakefilesEDK	II	Build	Specification

146Revision	1.28



				PLATFORM_VERSION	=	getValue	("PLATFORM_VERSION",	DscFile);

				PLATFORM_RELATIVE_DIR	=	getDirPart	(ActivePlatform);

				PLATFORM_DIR	=	"$(WORKSPACE)\"	+	getDirPart(ActivePlatform);

				pLATFORM_OUTPUT_DIR	=	getValue	("OUTPUT_DIRECTORY",	DscFile);

		");

}

Example

PLATFORM_NAME	=	NT32

PLATFORM_GUID	=	EB216561-961F-47EE-9EF9-CA426EF547C2

PLATFORM_VERSION	=	0.3

PLATFORM_RELATIVE_DIR	=	Nt32Pkg

PLATFORM_DIR	=	$(WORKSPACE)\Nt32Pkg

PLATFORM_OUTPUT_DIR	=	Build\NT32

8.5.1.1.2	Module	information

These	come	from		[Defines]		section	in	the	INF	file	and		[Components]		section	in	DSC	file.

Foreach	InfFile	{

		include_statement	($	(MODULE_BUILD_DIR)\Makefile,	"

				MODULE_NAME	=	getValue	("BASE_NAME",	InfFile)

				MODULE_GUID	=	getValue	("FILE_GUID",	InfFIle)

				MODULE_VERSION	=	getValue	("VERSION_STRING",	InfFile)

				MODULE_TYPE	=	getValue	("MODULE_TYPE",	InfFile);

				MODULE_FILE_BASE_NAME	=	getValue	("BASE_NAME",	InfFile)

				BASE_NAME	=	$	(MODULE_NAME)

				MODULE_RELATIVE_DIR	=	getDirPart	(InfFile)

				MODULE_DIR	=	"$(WORKSPACE)\"	+	getDirPart(InfFile)

		");

}

Example

MODULE_NAME	=	HelloWorld

MODULE_GUID	=	6987936E-ED34-44db-AE97-1FA5E4ED2116

MODULE_VERSION	=	1.0

MODULE_TYPE	=	UEFI_APPLICATION

MODULE_FILE_BASE_NAME	=	HelloWorld

BASE_NAME	=	$(MODULE_NAME)

MODULE_RELATIVE_DIR	=	MdeModulePkg\Application\HelloWorld

MODULE_DIR	=	$(WORKSPACE)\MdeModulePkg\Application\HelloWorld

8.5.1.1.3	Build	configuration

These	come	from		$(WORKSPACE)/Conf/target.txt	,	command	line	options,	or		[Defines]		section	in	DSC	file.

ARCH	=	IA32

TOOLCHAIN_TAG	=	MYTOOLS

TARGET	=	DEBUG

8.5.1.1.4	Build	directories

These	are	determined	by	build	tools.	Macro		DEST_DIR_OUTPUT		and		DEST_DIR_DEBUG		are	generated	for	backward
compatibility.

PLATFORM_BUILD_DIR	=	$(WORKSPACE)\Build\NT32

BUILD_DIR	=	$(WORKSPACE)\Build\NT32\DEBUG_MYTOOLS

BIN_DIR	=	$(BUILD_DIR)\IA32

LIB_DIR	=	$(BIN_DIR)

8.5	Auto-generated	MakefilesEDK	II	Build	Specification

147Revision	1.28



MODULE_BUILD_DIR	=	$(BUILD_DIR)\IA32\MdeModulePkg\Application\HelloWorld\HelloWorld

OUTPUT_DIR	=	$(MODULE_BUILD_DIR)\OUTPUT

DEBUG_DIR	=	$(MODULE_BUILD_DIR)\DEBUG

DEST_DIR_OUTPUT	=	$(OUTPUT_DIR)

DEST_DIR_DEBUG	=	$(DEBUG_DIR)

8.5.1.1.5	Tools	flags,

These	are	used	to	concatenate	the	flags	from	different	places	in	the	predefined	order.	The	order	makes
sure	that	the	flags	defined	DSC	file	can	override	flags	in	INF	file	and	default	ones.	In	the	code	example
below,	the	tools	will	expand	the	values	into	a	single	line	-		$(TOOLS_DEF_LZMA_FLAGS)		does	not	appear	in	the
Makefile,	only	the	flag	values	appear.

LZMA_FLAGS				=	$(TOOLS_DEF_LZMA_FLAGS)	$(INF_LZMA_FLAGS)	$(DSC_LZMA_FLAGS)	$(DSC_INF_LZMA_FLAGS)

PP_FLAGS						=	$(TOOLS_DEF_PP_FLAGS)	$(INF_PP_FLAGS)	$(DSC_PP_FLAGS)	$(DSC_INF_PP_FLAGS)

SLINK_FLAGS			=	$(TOOLS_DEF_SLINK_FLAGS)	$(INF_SLINK_FLAGS)	$(DSC_SLINK_FLAGS)	$(DSC_INF_SLINK_FLAGS)

CC_FLAGS						=	$(TOOLS_DEF_CC_FLAGS)	$(INF_CC_FLAGS)	$(DSC_CC_FLAGS)	$(DSC_INF_CC_FLAGS)

APP_FLAGS					=	$(TOOLS_DEF_APP_FLAGS)	$(INF_APP_FLAGS)	$(DSC_APP_FLAGS)	$(DSC_INF_APP_FLAGS)

VFRPP_FLAGS			=	$(TOOLS_DEF_VFRPP_FLAGS)	$(INF_VFRPP_FLAGS)	$(DSC_VFRPP_FLAGS)	$(DSC_INF_VFRPP_FLAGS)

DLINK_FLAGS			=	$(TOOLS_DEF_DLINK_FLAGS)	$(INF_DLINK_FLAGS)	$(DSC_DLINK_FLAGS)	$(DSC_INF_DLINK_FLAGS)

ASM_FLAGS					=	$(TOOLS_DEF_ASM_FLAGS)	$(INF_ASM_FLAGS)	$(DSC_ASM_FLAGS)	$(DSC_INF_ASM_FLAGS)

TIANO_FLAGS			=	$(TOOLS_DEF_TIANO_FLAGS)	$(INF_TIANO_FLAGS)	$(DSC_TIANO_FLAGS)	$(DSC_INF_TIANO_FLAGS)

MAKE_FLAGS				=	$(TOOLS_DEF_MAKE_FLAGS)	$(INF_MAKE_FLAGS)	$(DSC_MAKE_FLAGS)	$(DSC_INF_MAKE_FLAGS)

ASMLINK_FLAGS	=	$(TOOLS_DEF_ASMLINK_FLAGS)	$(INF_ASMLINK_FLAGS)	$(DSC_ASMLINK_FLAGS)	$(DSC_INF_ASMLINK_FLAGS)

ASL_FLAGS					=	$(TOOLS_DEF_ASL_FLAGS)	$(INF_ASL_FLAGS)	$(DSC_ASL_FLAGS)	$(DSC_INF_ASL_FLAGS)

8.5.1.1.6	Tools	path

These	come	from	the	file	specified	by		TOOL_CHAIN_CONF		definition	in		$(WORKSPACE)/Conf/target.txt	.

LZMA				=	H:\dev\AllPackagesDev\IntelRestrictedTools\Bin\Win32\LzmaCompress.exe

PP						=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\cl.exe

SLINK			=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\lib.exe

CC						=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\cl.exe

APP					=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\cl.exe

VFRPP			=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\cl.exe

DLINK			=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\link.exe

ASM					=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\ml.exe

TIANO			=	TianoCompress.exe

MAKE				=	C:\Program	Files\Microsoft	Visual	Studio	8\Vc\bin\nmake.exe

ASMLINK	=	C:\WINDDK\3790.1830\bin\bin16\link.exe	ASL	=	C:\ASL\iasl.exe

8.5.1.1.7	Shell	commands

These	are	used	to	make	sure	that	the	file	operations	for	both	nmake	and	GNU	make	system	become	as
the	same	as	possible.

#	shell	commands	for	nmake

RD	=	rmdir	/s	/q

RM	=	del	/f	/q

MD	=	mkdir

CP	=	copy	/y

MV	=	move	/y

#	shell	commands	for	gnu	make

RD	=	rm	-r	-f

RM	=	rm	-f

MD	=	mkdir	-p

CP	=	cp	-u	-f

MV	=	mv	-f

8.5.1.1.8	Source	files	and	target	files	list	macro

8.5	Auto-generated	MakefilesEDK	II	Build	Specification

148Revision	1.28



In	these,		<FILE_TYPES>		macros	are	generated	from		$(WORKSPACE)/Conf/build_rule.txt		and	files	listed	in		[Sources]	
section	in	INF	file,	"	INC	"	macro	is	generated	from		[Includes]		section	in	DEC	file	and		[Packages]		section	in
INF	file,	"	LIBS	"	macro	is	generated	from		[LibraryClasses]		section	in	INF	file	and	DSC	file,	and	"	COMMON_DEPS	"
macro	is	generated	by	parsing	recursively	the	"	#include	"	preprocessor	directives	in	source	code	files.

C_CODE_FILES	=	$(WORKSPACE)\MdeModulePkg\App\Hello\HelloWorld.c

DYNAMIC_LIBRARY_FILE_LIST	=	$(DEBUG_DIR)\$(MODULE_NAME).dll

UNKNOWN_TYPE_FILE_LIST	=	$(DEBUG_DIR)\$(MODULE_NAME).efi

OBJECT_FILE_LIST	=	$(OUTPUT_DIR)\HelloWorld.obj

STATIC_LIBRARY_FILE_LIST	=	$(OUTPUT_DIR)\$(MODULE_NAME).lib

INC	=	<include	search	path	list>

LIBS	=	<dependent	library	file	list>

COMMON_DEPS	=	<header	file	list>

8.5.1.1.9	Target	macros

In	these		CODA_TARGET		is	generated	according	to	the	last	rule(s)	in	rule	chains	defined	in
	$(WORKSPACE)/Conf/build_rule.txt	.

INIT_TARGET	=	init

CODA_TARGET	=	$(DEBUG_DIR)\$(MODULE_NAME).efi

8.5.1.2	Target	definitions
8.5.1.2.1	"all"	target

Default	target	which	actually	executes	against	the	"	mbuild	"	target.

8.5.1.2.2	"pbuild"	target

Target	which	is	used	to	build	the	source	files	of	current	module	only.	It's	always	used	in	top-level
makefile	because	the	libraries	will	be	built	above	all	non-library	modules.

	pbuild:	$(INIT_TARGET)	$(CODA_TARGET)	

8.5.1.2.3	"mbuild"	target

Actual	default	target	which	is	used	for	single	module	build	mode.	Because	in	single	module	build	mode
the	top-level		Makefile		will	not	be	called,	the	build	system	has	to	build	libraries	that	the	current	module
needs	in	module's		Makefile	.	"	mbuild	"	target	is	used	for	this	purpose.

mbuild:	$(INIT_TARGET)	gen_libs	$(CODA_TARGET)

gen_libs:

				cd	$(BUILD_DIR)\IPF\MdePkg\Library\DxePcdLib\DxePcdLib	&&	"$(MAKE)"

$(MAKE_FLAGS)

				cd	$(BUILD_DIR)\IPF\MdePkg\Library\BaseLib\BaseLib	&&	"$(MAKE)"

$(MAKE_FLAGS)

				cd	$(BUILD_DIR)\IPF\CsiCpuUncorePkg\Library\ItcTimerLib\ItcTimerLib

&&	"$(MAKE)"	$(MAKE_FLAGS)

				cd	$(MODULE_BUILD_DIR)

8.5.1.2.4	"init"	target

Target	used	to	print	verbose	information	and	create	necessary	directories	used	for	build.

init:

				-@echo	Building	...	$(MODULE_NAME)	$(MODULE_VERSION)	[$(ARCH)]	in	platform	$(PLATFORM_NAME)	$(PLATFORM_VERSION)

				-@if	not	exist	$(DEBUG_DIR)	mkdir	$(DEBUG_DIR)

				-@if	not	exist	$(OUTPUT_DIR)	mkdir	$(OUTPUT_DIR)

8.5	Auto-generated	MakefilesEDK	II	Build	Specification

149Revision	1.28



8.5.1.2.5	Miscellaneous	build	targets

Targets	which	are	used	to	build	source	files	to	object	files	and	then	in	turn	into	final		.lib		file,		.efi		file
or	other	files.	These	targets	are	generated	according	to	the	rule	chains	in		$(WORKSPACE)/Conf/build_rule.txt	.
For	example:

$(OUTPUT_DIR)\ModuleFile.obj	:	$(COMMON_DEPS)

				"$(CC)"	/Fo$(OUTPUT_DIR)\ModuleFile.obj	$(CC_FLAGS)	$(INC)	$(WORKSPACE)\MyPlatformPkg\MySubDir\ModuleFile.c

$(OUTPUT_DIR)\$(MODULE_NAME).lib	:	$(OBJECT_FILE_LIST)

				"$(SLINK)"	$(SLINK_FLAGS)	/OUT:$(OUTPUT_DIR)\$(MODULE_NAME).lib	$(OBJECT_FILE_LIST)

$(DEBUG_DIR)\$(MODULE_NAME).dll	:	\

				$(OUTPUT_DIR)\$(MODULE_NAME).lib	$(LIBS)	$(MAKE_FILE)

				"$(DLINK)"	/OUT:$(DEBUG_DIR)\$(MODULE_NAME).dll	$(DLINK_FLAGS)	$(DLINK_SPATH)	$(LIBS)	$(OUTPUT_DIR)\$(MODULE_NAME).lib

$(DEBUG_DIR)\$(MODULE_NAME).efi	:	$(DEBUG_DIR)\$(MODULE_NAME).dll

				GenFw	-e	$(MODULE_TYPE)	-o	$(DEBUG_DIR)\$(MODULE_NAME).efi	$(DEBUG_DIR)\$(MODULE_NAME).dll

				$(CP)	$(DEBUG_DIR)\$(MODULE_NAME).efi	$(OUTPUT_DIR)

				$(CP)	$(DEBUG_DIR)\$(MODULE_NAME).efi	$(BIN_DIR)

				-$(CP)	$(DEBUG_DIR)\*.map	$(OUTPUT_DIR)

$(OUTPUT_DIR)\AutoGen.obj	:	\

$(WORKSPACE)\Build\MyPlatform\DEBUG_ICC\IPF\MyPlatformPkg\MyModDir\MyModDir\DEBUG\AutoGen.c

				"$(CC)"	/Fo$(OUTPUT_DIR)\AutoGen.obj	$(CC_FLAGS)	$(INC)	$(WORKSPACE)\Build\MyPlatform\DEBUG_ICC\IPF\MyPlatformPkg\MyModDir

\MyMod	Dir\DEBUG\AutoGen.c

8.5.1.2.6	clean,	cleanall,	cleanlib

Targets	used	to	delete	part	or	all	files	generated	during	build.

clean:

				if	exist	$(OUTPUT_DIR)	rmdir	/s	/q	$(OUTPUT_DIR)

cleanall:

				if	exist	$(DEBUG_DIR)	rmdir	/s	/q	$(DEBUG_DIR)

				if	exist	$(OUTPUT_DIR)	rmdir	/s	/q	$(OUTPUT_DIR)

				del	/f	/q	*.pdb	*.idb	>	NUL	2>&1

cleanlib:

				cd	$(BUILD_DIR)\IPF\MdePkg\Library\DxePcdLib\DxePcdLib	&&	\

						"$(MAKE)"	$(MAKE_FLAGS)	cleanall

				cd	$(BUILD_DIR)\IPF\MdePkg\Library\BaseLib\BaseLib	&&	\

						"$(MAKE)"	$(MAKE_FLAGS)	cleanall

				cd	$(BUILD_DIR)\IPF\CsiCpuUncorePkg\Library\ItcTimerLib\ItcTimerLib	&&	\

						"$(MAKE)"	$(MAKE_FLAGS)	cleanall

				cd	$(MODULE_BUILD_DIR)

8.5	Auto-generated	MakefilesEDK	II	Build	Specification

150Revision	1.28



8.6	Binary	Modules
EDK	II	accommodates	distribution	of	binary	module	code	for	inclusion	into	a	firmware	volume.	This
feature	is	used	by	vendors	who	have	a	proprietary	code	base,	but	need	to	provide	their	customers	with
the	ability	to	use	that	code	in	a	platform.	Vendors	may	protect	their	IP	by	distributing	only	module	code
in	either	lib,	bin,	or	efi	format,	without	distributing	debug	files	or	sources.

No	Makefile	is	generated	for	binary	only	modules.

A	binary	module	must	have	a		[Binaries]		section.	It	is	recommended	that	binary	INF	files	not	be	listed	in
DSC	file	so	that	the	build	tools	will	not	try	to	do	a	module	build	for	a	binary	module.	The	INF	file	of	a
binary	module	is	always	put	in	FDF	file	for	flash	image	generation.	The	binary	files	can	also	be
referenced	directly	in	FDF.	Please	refer	to	Section	10	(Post-Build	ImageGen	Stage	-	FLASH	Images)	for
details.

Binary	modules	are	used	only	with	FDF	files	unless	a	PCD	using	PatchableInModule	access	method	is
used	by	the	binary	module	and	the	platform	developer	wants	to	change	the	value	for	this	PCD	in	the
binary	module.

The	build	command	has	an	option	flag,		--ignore-sources	,	that	will	treat	all	INF	files	listed	in	the	DSC	file	as
though	they	were	binary	INF	files.	The	build	will	not	generate	any	Makefiles,	totally	ignoring	any	files
listed	in	a		[Sources]		section.	If	a	module	is	specified	in	the	DSC	file	that	does	not	contain	a	[Binaries]
section,	the	build	will	provide	an	appropriate	error	message	and	terminate.	This	mode	allows
distribution	of	binary	modules	with	source	files	that	can	be	used	during	debugging.

8.6	Binary	ModulesEDK	II	Build	Specification

151Revision	1.28



8.7	Generated	AsBuilt	INF	Files
The	EDK	II	build	system	will	generate	an	INF	file	for	every	module	that	is	built	from	source	files.
Comments	that	would	be	required	in	the	INF	file	for	the	UEFI	Packaging	Tool	to	create	a	distribution
package	must	be	preserved.	The	AsBuilt	INF	file	must	be	an	ASCII	formatted	file	with	DOS	end-of-line
(CRLF)	characters.	Portions	of	the	AsBuilt	INF	are	generated	during	pre-build,	while	other	portions	are
determined	after	the	images	have	been	created	during	the	$Make	stage.	Refer	to	the	EDK	II	Module
Information	(INF)	File	Specification	for	the	exact	format	for	content	in	these	sections.	AsBuilt	INFs	are
only	created	from	building	source	modules.

8.7.1	Header	Section
The	header	of	the	AsBuilt	INF	file	will	use	the	same	content	and	format	as	the	INF	file	except	when	a
comment	section	that	follows	the	source	header	contains	the	following	line:

	##	@BinaryHeader	

1.	 If	the	above	tag	is	located,	then	the	tool	must	ignore	the	source	header	and	used	the	Binary
header	block	instead.

2.	 If	using	the	Binary	header	block,	the	tools	must	replace		@BinaryHeader		with		@file		in	the	AsBuilt	INF.

3.	 The	tool	must	insert	the	following	four	lines	between	the	description	and	copyright	line	regardless	of
the	header	used	to	create	the	AsBuilt	INF:

#

#	DO	NOT	EDIT

#	FILE	auto-generated	Binary	INF

#

Note:	The	copyright	date	in	the	source	INF	should	be	updated	every	time	a	change	is	made	to	the	INF
file.	Since	every	bug	fix	or	new	feature	added	to	the	source	code	requires	that	at	least	one	of	the
	VERSION_STRING		values	to	be	updated,	the	binary	header	should	carry	the	same	copyright	date	as	the
source	header	copyright	date	it	was	generated	from.

Note:	When	generating	the	AsBuilt	INF,	if	the	source	INF	file	contains	the	Doxygen	tag,		@BinaryHeader	,	the
content	from	this	section	(which	matches	the	format	of	the	standard	header)	will	replace	the	content
from	the	standard	header.	The		@BinaryHeader		tag	will	be	replaced	with	the		@file		tag	as	the	first	line	of	the
AsBuilt	INF	file.

8.7.2	[Defines]	Section
The	following	elements	of	the	source	INF	will	be	copied	into	the		[Defines]		section	of	the	AsBuilt	INF	file	if
and	only	if	they	exist	in	the	source	INF.	The		INF_VERSION		in	the	AsBuilt	INF	File	will	be	updated	to	match	the
version	number	in	the	EDK	II	INF	Specification	that	was	used	at	the	time	the	tool	code	to	create	the
AsBuilt	file	was	updated,	even	if	the		INF_VERSION		in	the	source	INF	was	a	lower	version,	such	as		0x00010005	
If	the	EDK	II	INF	Specification	version	in	the	source	INF	is	greater	than	the	version	embedded	in	the	tool,
the	tools	should	replace	the	version	value	with	the	version	that	is	embedded	in	the	tool,	lowering	the
value.

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

152Revision	1.28



Macros	definitions	("DEFINE"	statements)	are	not	listed	in	the	AsBuilt	INF	file.	Instead,	the	macro	value
(where	it	was	used)	will	be	expanded	in	the	path	and	value	statements.

<TS>	"[Defines]"	<EOL>

<TS>	"INF_VERSION"	<Eq>	<CurrentInfSpecificationVersion>	<EOL>

<TS>	"BASE_NAME"	<Eq>	<BaseName>	<EOL>

<TS>	"FILE_GUID"	<Eq>	<RegistryFormatGUID>	<EOL>

<TS>	"MODULE_TYPE"	<Eq>	<Edk2ModuleType>	<EOL>

[<TS>	"UEFI_SPECIFICATION_VERSION"	<Eq>	<VersionVal>	<EOL>]

[<TS>	"PI_SPECIFICATION_VERSION"	<Eq>	<VersionVal>	<EOL>]

[<TS>	"VERSION_STRING"	<Eq>	<DecimalVersion>	<EOL>]

[<TS>	"PCD_IS_DRIVER"	<Eq>	<PcdDriverType>	<EOL>]

[<TS>	"ENTRY_POINT"	<Eq>	<CName>	<EOL>]*

[<TS>	"UNLOAD_IMAGE"	<Eq>	<CName>	<EOL>]*

[<TS>	"CONSTRUCTOR"	<Eq>	<CName>	<EOL>]*

[<TS>	"DESTRUCTOR"	<Eq>	<CName>	<EOL>]*

[<TS>	"SHADOW"	<Eq>	<BoolType>	<EOL>]

[<TS>	"PCI_VENDOR_ID"	<Eq>	<UINT16>	<EOL>]

[<TS>	"PCI_DEVICE_ID"	<Eq>	<UNIT16>	<EOL>]

[<TS>	"PCI_CLASS_CODE"	<Eq>	<UINT8>	<EOL>]

[<TS>	"PCI_REVISION"	<Eq>	<UINT8>	<EOL>]

[<TS>	"BUILD_NUMBER"	<Eq>	<UINT16>	<EOL>]

[<TS>	"MODULE_UNI_FILE"	<Eq>	<Filename>	<EOL>]

[<TS>	"SPEC"	<MTS>	<Identifier>	<Eq>	<DecimalVersion>	<EOL>]*

[<TS>	"UEFI_HII_RESOURCE_SECTION"	<Eq>	<TrueFalse>	<EOL>]

Parameters
MODULE_UNI_FILE

If	the	source	module	contains	this	entry,	the	tools	must	create	a	USC-2LE	encoded	file	in	the	module's
	OUTPUT		directory,	ensuring	that	any	of	the	tags	that	refer	to	BINARY	content	(	@BinaryHeader	)	are	used	in
place	of	tags	that	do	not	contain	the	word		BINARY	.

CurrentInfSpecificationVersion

This	is	the	version	of	the	EDK	II	INF	Specification	at	the	time	the	code	(in	the	build	tools)	to	generate	the
AsBuilt	INF	is	updated.

Example

[Defines]

		INF_VERSION					=	0x00010017

		BASE_NAME							=	DxeCore

		MODULE_UNI_FILE	=	DxeCore.uni

		FILE_GUID							=	D6A2CB7F-6A18-4e2f-B43B-9920A733700A

		MODULE_TYPE					=	DXE_CORE

		VERSION_STRING		=	1.0

		ENTRY_POINT					=	DxeMain

8.7.3	[LibraryClasses]	Section
This	section	must	list	(in	comments)	every	library	instances	that	gets	linked	with	the	module.	A	Doxygen
tag,		@LIB_INSTANCES		in	a	comment	must	precede	the	list	of	library	instances.

Example

[LibraryClasses]

		##	@	LIB_INSTANCES

		#	MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

153Revision	1.28



8.7.4	[Packages]	Section
This	section	is	required	if	there	are	PCDs	listed	in	the		[PatchPcd]		and		[PcdEx]	,	the	packages	that	declare
the	PCDs	that	are	list	must	be	listed	here.	The	format	for	the	PCD	entries	is	defined	in	the	Module
Information	(INF)	File	Specification.

Example

[Packages.IA32]

		MdePkg/MdePkg.dec

		MdeModulePkg/MdeModulePkg.dec

8.7.5	[Guids]	Section
All	GUIDs	that	are	listed	in	the	source	INF	and	their	usage	(if	available)	must	be	include	in	this	section.
Usage	information	may	be	modified	based	on	feature	flag	expressions	that	are	evaluated	during	the
build.	For	example,	the	source	INF	may	have	a		SOMETIMES_PRODUCES		usage	that	may	be	changed	to		PRODUCES	
in	the	AsBuilt	INF	file	if	the	build	uses	a	feature	flag	to	include	the	item.

Example

[Guids.IA32]

		##	PRODUCES	##	Event

		gEfiEventMemoryMapChangeGuid

		##	CONSUMES	##	UNDEFINED

		gEfiEventVirtualAddressChangeGuid

		##	CONSUMES	##	UNDEFINED

		##	PRODUCES	##	Event

		gEfiEventExitBootServicesGuid

		##	CONSUMES	##	HOB

		gEfiHobMemoryAllocModuleGuid

8.7.6	[Protocols]	Section
All	Protocols	that	are	listed	in	the	source	INF	and	their	usage	(if	available)	must	be	include	in	this
section.	The	format	for	the	Protocol	entries	is	defined	in	the	Module	Information	(INF)	File	Specification.
Usage	information	may	be	modified	based	on	feature	flag	expressions	that	are	evaluated	during	the
build.	For	example,	the	source	INF	may	have	a		SOMETIMES_PRODUCES		usage	that	may	be	changed	to		PRODUCES	
in	the	AsBuilt	INF	file	if	the	build	uses	a	feature	flag	to	include	the	item.

[Protocols.IA32]

		##	PRODUCES

		##	SOMETIMES_CONSUMES

		gEfiDecompressProtocolGuid

		##	SOMETIMES_PRODUCES	##	Produces	when	PcdFrameworkCompatibilitySupport	is	set

		gEfiLoadPeImageProtocolGuid

		##	SOMETIMES_CONSUMES

		##	SOMETIMES_CONSUMES

		gEfiSimpleFileSystemProtocolGuid

8.7.7	[PPIs]	Section

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

154Revision	1.28



All	Ppis	that	are	listed	in	the	source	INF	and	their	usage	(if	available)	must	be	include	in	this	section.
The	format	for	the	PPI	entries	is	defined	in	the	Module	Information	(INF)	File	Specification.	Usage
information	may	be	modified	based	on	feature	flag	expressions	that	are	evaluated	during	the	build.	For
example,	the	source	INF	may	have	a	SOMETIMES_PRODUCES	usage	that	may	be	changed	to	PRODUCES
in	the	AsBuilt	INF	file	if	the	build	uses	a	feature	flag	to	include	the	item.

[Ppis.IA32]

		#	SOMETIMES_CONSUMES	#	PeiReportStatusService	is	not	ready	if	this	PPI	doesn't	exist

		gEfiPeiStatusCodePpiGuid

		#	SOMETIMES_CONSUMES	#	PeiResetService	is	not	ready	if	this	PPI	doesn't	exist

		gEfiPeiResetPpiGuid

		##	CONSUMES

		gEfiDxeIplPpiGuid

		##	PRODUCES

		gEfiPeiMemoryDiscoveredPpiGuid

		##	SOMETIMES_CONSUMES

		gEfiPeiDecompressPpiGuid

		##	SOMETIMES_PRODUCES

		##	NOTIFY

		#	SOMETIMES_PRODUCES	#	Produce	FvInfoPpi	if	the	encapsulated	FvImage	is	found

		gEfiPeiFirmwareVolumeInfoPpiGuid

8.7.8	[PatchPcd]	Section
All	PCDs	that	are	listed	in	the	source	INF,	that	are	defined	as		PatchableInModule		in	the	DSC	file	must	be
inserted	into	this	section.	The	current	value	and	the	offset	into	the		PE32		(.efi)	file	must	be	included	in
the	entry	for	each	PCD	listed	in	this	section	of	the	AsBuilt	INF	file.	If	the	usage	is	available,	that
information	must	also	be	included.	The	format	for	the	PCD	entries	is	defined	in	the	Module	Information
(INF)	File	Specification.

To	support	override	of	the	Formset	class	GUID	in	a	binary	HII	driver,	the	build	system	was	enhanced	as
follows:

Build	tool	will	collect	all	VFR	file	names	in	one	module	and	output	them	into	a	temp	file,	for	example,
	VfrFileName.txt	.

After	creating	the	EFI	image,	the	GenPatchPcdTable	tool	will	be	used	to	create	PatchPcd
information	with	input	from	the	MAP,	EFI	and		VfrFileName.txt	.

GenPatchPcdTable	will	get	HII	data	in	the	binary	EFI	image,	and	locate	the	reserved	empty	Formset
class	GUID	slot	(all	zero	GUID).	If	the	empty	slot	is	found,	a	Patchable	PCD
	PcdHiiFormSetClassGuid##VfrFileName		(type		VOID	*	for	GUID)	will	be	auto	generated.	VfrFileName	is	obtained
from	the		VfrFileName.txt	.

Usage	information	may	be	modified	based	on	feature	flag	expressions	that	are	evaluated	during	the
build.	For	example,	the	source	INF	may	have	a		SOMETIMES_PRODUCES		usage	that	may	be	changed	to
	PRODUCES		in	the	AsBuilt	INF	file	if	the	build	uses	a	feature	flag	to	include	the	item.

[PatchPcd.IA32]

		##	SOMETIMES_CONSUMES

		gEfiMdeModulePkgTokenSpaceGuid.PcdLoadFixAddressBootTimeCodePageNumber|0x00000000|0xC584

		##	SOMETIMES_CONSUMES

		gEfiMdeModulePkgTokenSpaceGuid.PcdLoadFixAddressRuntimeCodePageNumber|0x00000000|0xC588

8.7.9	[PcdEx]	Section

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

155Revision	1.28



All	PCDs	that	are	listed	in	the	source	INF,	that	are	defined	as		DynamicEx		in	the	DSC	file	must	be	inserted
into	this	section.	In	general,	values	for	the		DynamicEx		PCDs	are	global	to	a	platform,	and	must	not	be
inserted	into	the	AsBuilt	INF	file.	If	the	usage	is	available,	that	information	must	also	be	included.	The
format	for	the	PCD	entries	is	defined	in	the	Module	Information	(INF)	File	Specification.

If	the		DynamicEx		PCD	was	assigned	as	subtype	HII,	then	for	modules	that	produce	IFR	for	setup	screens,
the	following	is	required.	If	any	of	the	fields	of	an	EFI	VarStore	in	the	IFR	are	associated	with	a	PCD,	then
the	AsBuilt	INF	must	declare	that	relationship.	Since	a	module	that	produces	IFR	may	not	have	C	code
that	uses	the	PCDs	we	need	here,	the	source	INF	file	may	not	list	those	PCDs.	Instead,	the	build	tools
when	building	a	module	that	contains	IFR	must	determine	if	there	is	a	mapping	between	PCDs	and	an
EFI	VarStore	and	add	those	relationships	to	the	AsBuilt	INF.	The	syntax	of	the		[PcdEx]		for	AsBuilt	INF	files
is	augmented	by	additional	comment	information	for	PCDs	that	are	expected	to	be	used	with	HII.	The
current		<Usage>		comment	will	be	followed	by	Variable	Name,	Variable	GUID	C	Name,	and	byte	offset	value
which	is	the	same	order	used	in	a	DSC	file	for	a		[PcdsDynamixExHii]		section,	separated	by	the	"|"	field
separation	character.

Usage	information	may	be	modified	based	on	feature	flag	expressions	that	are	evaluated	during	the
build.	For	example,	the	source	INF	may	have	a		SOMETIMES_PRODUCES		usage	that	may	be	changed	to		PRODUCES	
in	the	AsBuilt	INF	file	if	the	build	uses	a	feature	flag	to	include	the	item.

[PcdEx.IA32]

		##	SOMETIMES_PRODUCES

		##	SOMETIMES_CONSUMES

		gEfiMdeModulePkgTokenSpaceGuid.PcdConOutRow

		##	SOMETIMES_PRODUCES

		##	SOMETIMES_CONSUMES

		gEfiMdeModulePkgTokenSpaceGuid.PcdConOutColumn

8.7.10	[Depex]	Section
The	complete	dependency	expression	including	all	dependencies	from	the	libraries	linked	with	the
module	must	be	included	in	comments	in	this	section.	The	format	for	this	dependency	expression	is
defined	in	the	Module	Information	(INF)	File	Specification.

Example

[Depex]

#	NOT	(gEfiHiiDatabaseProtocolGuid	AND	gEfiHiiStringProtocolGuid)

#	OR	gPcdProtocolGuid

8.7.11	[BuildOptions]	Section
The	format	for	the	build	option	entries	is	defined	in	the	Module	Information	(INF)	File	Specification.	All
entries	in	this	section	appear	in	comments,	beginning	with	the	following	line.

	##	@AsBuilt	

Example

[BuildOptions.IA32]

##	@AsBuilt

##			MSFT:DEBUG_VS2008x86_IA32_SYMRENAME_FLAGS	=	Symbol	renaming	not	needed	for

##			MSFT:DEBUG_VS2008x86_IA32_ASLDLINK_FLAGS	=	/NODEFAULTLIB	/ENTRY:ReferenceAcpiTable	/SUBSYSTEM:CONSOLE

##			MSFT:DEBUG_VS2008x86_IA32_VFR_FLAGS	=	-l	-n

##			MSFT:DEBUG_VS2008x86_IA32_PP_FLAGS	=	/nologo	/E	/TC	/FIAutoGen.h

##			MSFT:DEBUG_VS2008x86_IA32_GENFW_FLAGS	=

##			MSFT:DEBUG_VS2008x86_IA32_OPTROM_FLAGS	=	-e

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

156Revision	1.28



##			MSFT:DEBUG_VS2008x86_IA32_SLINK_FLAGS	=	/NOLOGO	/LTCG

##			MSFT:DEBUG_VS2008x86_IA32_ASM_FLAGS	=	/nologo	/c	/WX	/W3	/Cx	/coff	/Zd	/Zi

##			MSFT:DEBUG_VS2008x86_IA32_ASL_FLAGS	=

##			MSFT:DEBUG_VS2008x86_IA32_CC_FLAGS	=	/nologo	/c	/WX	/GS-	/W4	/Gs32768	/D	UNICODE	/O1ib2	/GL	/FIAutoGen.h	/EHs-c-	/GR-	/GF

	/Gy	/Zi	/Gm

##			MSFT:DEBUG_VS2008x86_IA32_VFRPP_FLAGS	=	/nologo	/E	/TC	/DVFRCOMPILE	/FI$(MODULE_NAME)StrDefs.h

##			MSFT:DEBUG_VS2008x86_IA32_ASLCC_FLAGS	=	/nologo	/c	/FIAutoGen.h	/TC	/Dmain	=	ReferenceAcpiTable

##			MSFT:DEBUG_VS2008x86_IA32_APP_FLAGS	=	/nologo	/E	/TC

##			MSFT:DEBUG_VS2008x86_IA32_DLINK_FLAGS	=	/NOLOGO	/NODEFAULTLIB	/IGNORE:4001	/OPT:REF	/OPT:ICF=10	/MAP	/ALIGN:32	/SECTION:.

xdata,D	/SECTION:.pdata,D	/MACHINE:X86	/LTCG	/DLL	/ENTRY:$(IMAGE_ENTRY_POINT)	/SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER	/SAFESEH:NO	/

BASE:0	/DRIVER	/DEBUG	/PDB:$(OUTPUT_PATH)\$(PACKAGE_NAME)_$(PACKAGE_GUID)_$(PACKAGE_VERSION)\$(PACKAGE_RELATIVE_DIR)\$(MODULE_

FILE_BASE_NAME)\DEBUG\IA32\$(BASE_NAME).pdb	/PDBSTRIPPED:$(OUTPUT_PATH)\$(PACKAGE_NAME)_$(PACKAGE_GUID)_$(PACKAGE_VERSION)\$(P

ACKAGE_RELATIVE_DIR)\$(MODULE_FILE_BASE_NAME)\DEBUG\IA32\$(BASE_NAME)_Stripped.pdb

##			MSFT:DEBUG_VS2008x86_IA32_ASLPP_FLAGS	=	/nologo	/E	/C	/FIAutoGen.h

##			MSFT:DEBUG_VS2008x86_IA32_OBJCOPY_FLAGS	=	objcopy	not	needed	for

##			MSFT:DEBUG_VS2008x86_IA32_MAKE_FLAGS	=	/nologo

##			MSFT:DEBUG_VS2008x86_IA32_ASMLINK_FLAGS	=	/nologo	/tiny

8.7.12	[Binaries]	Section
The	format	for	the	binaries	section	entries	is	listed	in	the	Module	Information	(INF)	File	Specification.	The
a	binary		PE32		file,	with	the	.efi	extension,	was	created	by	the	build,	it	must	be	listed	in	this	section.	All
files	listed	in	this	section	must	be	placed	in	a	section	with	the	corresponding	architectural	modifier,
such	as		[Binaries.IA32]	,	where	IA32	is	the	architectural	modifier.	The	examples	below	do	not	cover	all	of
the	potential	file	types	that	may	appear	in	a	binary	INF	file;	it	does	show	the	file	types	that	must	be
placed	into	the	auto-generated	INF	file	created	during	a	build.

The	generic	format	for	these	entries	are:

	<TS>	BinaryType|[RelativePath]Filename.Extension	

The	following	is	an	example	of	an	EFI	file	format:

	<TS>	PE32|Filename.efi	

The	following	is	an	example	of	a	DEPEX	file	format:

	<TS>	DXE_DEPEX|Filename.depex	

If	the	build	produces	a	PDB	or	SYM	file,	an	entry	must	be	placed	in	the		[Binaries.$(ARCH)]		section.	The
following	example	shows	an	entry	for	a	PDB	file.

	<TS>	DISPOSABLE|Filename.pdb	<EOL>	

If	a	filename	is	a	fully	qualified	path	and	filename,	such	as	a	ROM	filename,	the	build	tool	must	copy	that
file	into	the	module's	OUTPUT	directory,	then	insert	the	line	as	though	it	were	in	the	directory	as	part	of
the	build.	For	a	ROM	file,	the	entry	must	use	the	following	format:

	<TS>	BIN|Filename.rom	<EOL>	

For	AML	files	from	a	platform,	the	entry	must	use	the	following	format:

	<TS>	ASL|Filename.aml	<EOL>	

For	ACPI	files	from	a	platform,	the	entry	must	use	the	following	format:

	<TS>	ACPI|Filename.acpi	<EOL>	

For	a	Binary	or	raw	binary	file,	the	entry	may	use	either	of	the	following	two	formats:

<TS>	RAW|Filename.raw	<EOL>

<TS>	BIN|Filename.bin	<EOL>

If	the	tools	cannot	determine	the	content,	the	binary	type,	the	tools	must	use	the	BIN	binary	type.

In	the	above	examples,	the	Filename	may	be	preceded	by	a	module	relative	path	subdirectory	as	in	the
following	example:

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

157Revision	1.28



<TS>	PE32|Ia32/Filename.efi

<TS>	RAW|Vtf0/Bin/ResetVec.ia32.raw

Example

[Binaries.IA32]

		PE32|Ia32/DxeCore.efi

		DISPOSABLE|Ia32/DxeCore.pdb

8.7.13	[Sources]	Section
The	build	tools	must	never	add	the		[Sources]		section	or	the	name	of	the	files	from	a	sources	section.

8.7.14	[UserExtensions]	Section
Any		[UserExtensions]		sections	that	are	present	in	the	source	INF	with	a	UserId	of	"TianoCore"	will	be
copied	into	the	generated	INF.		[UserExtensions]		sections	with	other	UserId	values	will	not	be	copied	to	the
generated	INF.	The	EDK	II	build	tools	will	ignore	these	sections,	however	other	vendors	may	provide	tools
that	have	a	priori	knowledge	of	how	to	process	these	sections.

8.7	Generated	AsBuilt	INF	FilesEDK	II	Build	Specification

158Revision	1.28



9	BUILD	OR	$(MAKE)	STAGE
This	chapter	describes	the	processing	of	the	source	files	into	EFI	files.

The	make	stage	starts	out	by	building	required	libraries,	followed	by	the	EDK	components	and	finally,
EDK	II	modules.	The	outputs	of	this	stage	are	linked	PE32+/COFF	images	that	have	been	processed	to
replace	the	standard	header	with	an	appropriate	EFI	header.

How	a	file	will	be	processed	is	defined	in	the	file	specified	by	the		BUILD_RULE_CONF		statement	in	target.txt	or
the	default	file		$(WORKSPACE)/Conf/build_rule.txt	.	The	build	system	will	use	the	sections	in	this	file	to	convert
to	actions	and	targets	in	the	Makefile.	In	the	previous	stage,	Pre-Build	AutoGen	Stage,	those	rules	were
used	to	generate	Makefiles.

9	Build	or	$(MAKE)	StageEDK	II	Build	Specification

159Revision	1.28



9.1	Overview
From	a	platform	point	of	view	(remember,	all	builds	are	in	the	context	of	a	platform,	even	when	the
desired	output	may	only	be	a	driver),	what	will	be	done	in	$(MAKE)	stage	includes	building	library
modules,	building	non-library	modules	and	finally	(if	the	desired	output	is	a	file	to	be	burned	into	a	flash
part	on	a	physical	platform)	generating	flash	image(s).

Figure	20	EDK	II	Build	Process	-	Platform	Point	of	View	(PoV)

From	a	module	point	of	view,	things	done	in	$(MAKE)	stage	includes	preprocessing,	compiling	or
assembling,	static/dynamic	linking	and	module	image	generation.

9.1	OverviewEDK	II	Build	Specification

160Revision	1.28



Figure	21	EDK	II	Build	Process	-	Module	PoV

9.1.1	File	Extensions	for	UEFI	image	files.
This	section	details	the	intermediate	file	extensions	that	generated	by	the	$(MAKE)	stage	of	the	build
process.	This	stage	involves	processing	source	files	and	generating	dynamic	objects	which	are	further
processed	by	the	GenFw	tool	to	create	.efi	files.

Table	17	$(MAKE)	Stage	Intermediate	Output	File	Extensions

9.1	OverviewEDK	II	Build	Specification

161Revision	1.28



Extension Description

.obj Object	files	generated	by	$(MAKE)	stage

.lib Static	Linked	files	generated	by	$(MAKE)	stage

.dll Dynamically	Linked	files	generated	by	$(MAKE)	stage

.aml ACPI	code	files	generated	by	$(MAKE)	stage

.i,	.iii Trim	and	C	Pre-Processor	output	files

.bin Microcode	files

Table	18	$(MAKE)	Stage	Output	File	Extensions

Extension Description

.efi
Non	UEFI	Applications,	DXE	Drivers,	DXE	Runtime	Drivers,	DXE	SAL	Drivers	have	the
Subsystem	type	field	of	the	DOS/TE	header	set	to		EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION	,
	EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER	,		EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER		and
	EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER		respectively.

For	a	Security	Module,	the	Subsystem	type	is	set	to
	EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER	.

For		PEI_CORE	,		DXE_CORE	,		PEIM	,		DXE_SMM_DRIVER	,		UEFI_APPLICATION	,		UEFI_DRIVER	,	the	Subsystem
type	is	set	to		EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER	.

.acpi ASL	or	IASL	compiled	ACPI	tables

.depex Compiled	dependency	sections

.mcb Microcode	Binary	files

Additional	modifications	to	the	files	are	permitted.	Modifications	that	recommended	are	as	follows:

TimeStructure	can	be	modified	to	a	given	date	using	a	data	structure	of

tm_mon,//	months	since	January,	[0,11]

tm_mday,//	day	of	the	month	[1,31]

tm_year,//	years	since	1900

tm_hour,//	hours	since	midnight	[0,23]

tm_min,//	minutes	after	the	hour	[0,59]

tm_sec,//	seconds	after	the	minute	[0,59]

Subsystemfield	is	changed	to	one	of	the	following:

EFI_IMAGE_SUBSYSTEM_UNKNOWN																		0

EFI_IMAGE_SUBSYSTEM_NATIVE																			1

EFI_IMAGE_SUBSYSTEM_WINDOWS_GUI														2

EFI_IMAGE_SUBSYSTEM_WINDOWS_CUI														3

EFI_IMAGE_SUBSYSTEM_OS2_CUI																		5

EFI_IMAGE_SUBSYSTEM_POSIX_CUI																7

EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION										10

EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER		11

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER							12

EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER							13

The	Machine	value	in	the	PE	image	file	header	is	used	to	indicate	the	machine	code	type	of	the	image.
The	following	values	are	set	for	UEFI	images:

EFI_IMAGE_MACHINE_IA32		0x014C

EFI_IMAGE_MACHINE_IA64		0x0200

EFI_IMAGE_MACHINE_x64			0x8664

EFI_IMAGE_MACHINE_EBC			0x0EBC

9.1	OverviewEDK	II	Build	Specification

162Revision	1.28



9.1	OverviewEDK	II	Build	Specification

163Revision	1.28



9.2	Preprocess/Trim
Preprocessing	is	an	intrinsic	behavior	of	C	compiler	and	will	be	always	done	automatically	without
explicitly	calling.	A	separate	preprocessing	step	is	needed	by	those	non-C	files	which	have	no
preprocessing	supported	in	their	compiler	or	assembler.

For	example,	in	order	to	use	macros	defined	in	C	header	files,		#include		directives	can	be	used	in	an
assembly	file.	A	separated	preprocessing	step	will	be	used	to	complete	macro	replacement	before
calling	assembler.	The	.VFR	files,	.asl	files	and	.dxs	files	also	need	preprocessing	step	to	allow	using
macros	in	them.

In	addition,	the	preprocessed	assembly	files,	VFR	files	and	.dxs	files	need	an	additional	Trim	step	to
remove	unnecessary	contents	left	by	preprocessor.

9.2	Preprocess/TrimEDK	II	Build	Specification

164Revision	1.28



9.3	Compile/Assembly
For	C	and	assembly	files,	the	usual	C	compiler	or	assembler	is	used	to	generate	object	files	for	them.

For	VFR	files,	there's	a	special	VfrCompiler	tool	used	to	generate	C	and	header	files	from	them,	then	the
standard	compiler	is	used	to	generate	object	files.

There's	a	special	C	file	with	.aslc	extension.	The	standard	C	compiler	is	used	to	generate	object	files.

For	ASL	files,	the	ASL	compiler	is	used	to	generate	ACPI	machine	language	files.

9.3	Compile/AssemblyEDK	II	Build	Specification

165Revision	1.28



9.4	Static	Link
Static	link	step	is	used	for	all	modules	with	C	files.	For	library	modules,	linking	all	object	files	into	static
library	file	is	the	last	step.	A	static	link	step	for	non-library	modules	is	not	necessary	to	generate	the
final	image	file;	however,	for	better	optimization	purpose	for	MSFT	tool	chains	this	step	is	included.

For	those	modules	with	no	C	files,	the	static	link	step	is	skipped.

9.4	Static	LinkEDK	II	Build	Specification

166Revision	1.28



9.5	Dynamic	Link
Dynamic	link	step	is	used	for	non-library	modules	which	have	.c	files,	.aslc	files	and/or	.asm16	(real
mode	assembly)	files	declared	in	their	INF	files.

The	static	library	file	generated	in	static	link	step	will	be	linked	(DLINK)	together	with	other	static	library
files	generated	from	dependent	library	modules	into	.dll	file.

Object	files	generated	from	ASLC	files	will	be	linked	(DLINK)	to	.dll	file	directly	without	static	link	step.

Object	files	generated	from	real	mode	assembly	files	are	linked	to	.com	files	by	real	mode	linker
(ASMLINK).

9.5	Dynamic	LinkEDK	II	Build	Specification

167Revision	1.28



9.6	Generate	Module	Images
The	final	images	generated	by	building	a	module	are	files	which	can	be	recognized	by	EFI/Framework
protocols.	The	types	of	those	files	supported	by	default	are	EFI	executable	image	file	(.efi),	ACPI
machine	language	file	(.aml),	ACPI	table	file	(.acpi),	real	mode	executable	file	(.com)	and	microcode
binary	file	(.bin).

The	.efi	file	will	be	generated	for	non-library	modules	which	have	C	files	declared.	It's	converted	from	.dll
file	created	during	the	dynamic	link	step	by	the	GenFw	tool.	Also:

The	.aml	file	is	generated	from	.asl	file	in	Compile/Assembly	step.
The	.acpi	file	is	converted	from	.dll	file	by	the	GenFw	tool.
The	.com	file	is	generated	in	the	Dynamic	Link	step	by	real	mode	linker	(ASMLINK).
The	.bin	file	is	converted	from	.txt	file	by	the	GenFw	tool.

9.6.1	GenFw
This	tool	is	used	to	generate	UEFI	Firmware	Image	files	based	on	Component	or	Module	types	listed	in
the	INF	files	from	the	PE/PE32+/COFF	images	generated	by	the	third	party	tool	chains.	This	takes		.dll	
files	created	during	the	compile	portion	of	the	$(MAKE)	stage,	converting	the	header	and	creating	the
.efi	files.	Additional	functions	of	the	GenFw	tool	are	discussed	in	Post-Build	ImageGen	Stage	-	FLASH
Images,	Section	10.

9.6	Generate	Module	ImagesEDK	II	Build	Specification

168Revision	1.28



9.7	Generate	Platform	Images
The	final	images	generated	by	building	a	platform	are	always	FVs	or	FDs	if	an	FDF	file	is	declared	in
platform's	DSC	file.	The	GenFds	tool	is	used	for	this	purpose.	This	is	the	final	step	of	building	a
platform.	For	details	regarding	GenFds	please	refer	to	Post-Build	ImageGen	Stage	-	FLASH	Images,
Section	10.

9.7	Generate	Platform	ImagesEDK	II	Build	Specification

169Revision	1.28



10	POST-BUILD	IMAGEGEN	STAGE	-	FLASH
This	chapter	describes	the	processing	of	the	EFI	files	generated	by	the	$(MAKE)	Stage	into	FLASH	binary
images.	Some	of	the	PCDs	defined	or	used	in	conditional	directives	in	the	FDF	are	set	in	the	platform's
DSC	file.	The	tools	must	make	at	least	one	pass	over	the	DSC	file	to	get	PCD	values	for	conditional
directives	and	other	PCD	entries	used	in	the	FDF	file.	If	a	FeatureFlag	or	FixedAtBuild	PCD	value,	used	in
a	conditional	directive,	cannot	be	determined	the	build	must	break.

For	the	remainder	of	this	chapter,	the		WORKSPACE		and		$(WORKSPACE)		refer	to	the	ordered	list	of	directories
specified	by	the	combination	of		WORKSPACE	+	PACKAGES_PATH	.

10.0.1	ImageGen	File	Extensions
Table	19	and	Table	20	describe	intermediate	file	extensions	and	final	file	extensions	in	the	ImageGen
stage	of	the	build	for	a	platform.	The	ImageGen	stage	takes	the	output	of	the	$(MAKE)	stage	(typically
the		.efi		files)	and	converts	the	files	into	EFI	section	files	using	the	GenSec	tool.	The	next	step
combines	the	section	files	into	FFS	files	using	the	GenFfs	tool.	Once	the	Ffs	files	have	been	generated,
they	are	combined	into	an	FV	image	file	using	the	GenFv	tool.	FV	image	files	are	combined	into	FD
image	files	by	the	GenFds	tool	(which	also	controls	all	of	the	other	steps	in	this	stage).

Binary	files	listed	in	the	FDF	file's	[FD]	region	section	are	included	without	processing.	This	allows	for	the
addition	of	VPD	data	files	(generated	during	the	AutoGen	Stage)	to	be	included	in	the	FD	output	file.

Table	19	GenFds	Image	Generation:	Intermediate	File	Extensions

Input	Extension Output
Extension Description

.efi .pe32 EFI_SECTION_PE32

.pe32,	.ui,	.ver .com EFI_SECTION_COMPRESSION

.ui .ui EFI_SECTION_USER_INTERFACE

.depex .dpx EFI_SECTION_PEI_DEPEX	or	EFI_SECTION_DXE_DEPEX

.tmp,	.sec .guided EFI_SECTION_GUID_DEFINED

.ver .ver EFI_SECTION_VERSION

.acpi,	.aml,	.bin,

.bmp .raw EFI_SECTION_RAW

ANY SAME	as
Input EFI_SECTION_FREEFORM_SUBTYPE_GUID

.com,	.dpx,	.guided,

.pe32,	.ui,	.ver .ffs FFS	file	images

.ffs .fv Firmware	Volume	Image	files

.fv .sec

.txt .mcb Microcode	Binary	File	generated	from	the	Microcode	text
files

.map .bin VPD	binary	image	file	(created	by	VPD_TOOL)	where	the	file
name	is	the	GUID	of	the	VPD	tool.

Table	20	ImageGen	Final	Output	File	Extensions

Input	Extensions Output	Extension Description

10	Post-Build	ImageGen	Stage	-	FLASHEDK	II	Build	Specification

170Revision	1.28



.fv,	.mcb .fd Firmware	Device	Images

.efi,	.pe32 .rom UEFI	PCI	Option	ROM	Images

For	UEFI	compliant	PCI	Option	ROMs,	the	EfiRom	tool	is	used	to	process		.efi		or		.pe32		files	into	the		.rom	
file.

For	UEFI	applications,	the		.efi		file	generated	at	the	end	of	the	$(MAKE)	stage	can	be	used	directly,	or,
if	the	application	will	be	included	as	part	of	a	flash	device	image	(all	of	the	shell	applications)	the		.efi	
file	is	processed	using	the	standard	steps	for	including	a	driver	in	an	image.

10	Post-Build	ImageGen	Stage	-	FLASHEDK	II	Build	Specification

171Revision	1.28



10.1	Overview	of	Flash	Device	Layout
The	GenFds	tool	is	typically	called	after	a	platform	build's	$(MAKE)	Stage	completes.	The	build.exe
command	will	call	GenFds.	The	GenFds	program	can	also	be	executed	by	the	developer	from	the
command	line.

In	order	to	execute	from	the	command-line,	the	tool	needs	to	have	its	environment	setup.	The	following
is	an	example	of	executing	GenFds	as	a	stand-alone	command.

GenFds	-f	$(WORKSPACE)\Nt32Pkg\Nt32Pkg.fdf	\

		-o	$(WORKSPACE)\Build\NT32\DEBUG_MYTOOLS	-t	MYTOOLS	-b	DEBUG	-v	\

		-p	$(WORKSPACE)\Nt32Pkg\Nt32Pkg.dsc	-a	IA32

GenFds

calls	several	other	tools	during	the	generation	of	an	FD	image:

GenSec

This	application	is	used	to	generate	valid		EFI_SECTION		type	files	from	PE32/PE32+/	COFF	image	files	or
other	binary	files.	The	utility	will	attach	a	valid	section	or	PEIM	header	to	the	input	file	as	defined	in	the
PI	specification.

GenFfs

This	application	is	used	to	generate	FFS	files	for	inclusion	in	a	firmware	volume.	Rules	specified	in	the
FDF	file	stipulate	how	the	FFS	file	will	be	organized	(what	kind	of	sections	should	reside	in	it	and	in	what
format).

GenFv

This	application	is	used	to	generate	FV	image	by	taking	what	and	how	to	place	FFS	into	it	from	the
corresponding	FV.inf	file.

GenFw

This	application	is	used	to	generate	UEFI	Firmware	Image	files	based	on	Component	or	Module	types
listed	in	the	INF	files	from	the	PE/PE32+/COFF	images	generated	by	the	third	party	tool	chains.

GenVtf

This	application	generates	the	Boot	Strap	File	(AKA	Volume	Top	File,	or	VTF)	for	IA32	X64,	and	IPF	images.

Figure	22	shows	how	the	above	tools	involved	in	the	GenFds	process.

10.1	Overview	of	Flash	Device	LayoutEDK	II	Build	Specification

172Revision	1.28



Figure	22	FD	Image	Generation	Process

10.1	Overview	of	Flash	Device	LayoutEDK	II	Build	Specification

173Revision	1.28



10.2	Parsing	FDF	Meta-Data	File
GenFds	get	the	flash	image	organization	information	from	the	FDF	file	which	is	specified	in	command	line
with	the	-f	option.	Most	files	that	comprise	the	flash	image	are	described	by		INF		and		FILE		statements
in	FV	sections	of	an	FDF	file.	These	files	contain	file	name,	file	type	and	other	useful	information	that	let
GenFds	know	which	rule	specified	in	FDF	file	must	be	used	to	generate	the	FFS	file.	The	location	of	the
output	directory	containing	the	image	files	created	by	GenFw	or	provided	as	binary	images	from
$(MAKE)	stage	is	described	in	the		.DSC		file	which	is	specified	in	command	line	using	the	-p	option.	As
more	than	one	architecture	might	be	supported	by	the	platform,	the	-a	option	clarifies	outputs	for	the
different	architectures.Some	binary	files,	such	as	a	VPD	binary	file	(not	generated	by	the	build)	and	INF
files	that	specify	binary	files,	such	as	a	binary	module	containing	microcode	binaries,	may	be	listed	in	an
[FD]	region	section.

INF	files	are	listed	in	a	FV	in	the	FDF	file	following	the	format	in	the	example:

INF	MyPlatform/SecCore/SecCore.inf

INF	MdeModulePkg/Core/Pei/PeiMain.inf

INF	MdeModulePkg/Universal/PCD/Pei/Pcd.inf

INF	IntelFrameworkModulePkg/Universal/StatusCode/Pei/PeiStatusCode.inf

INF	IntelFrameworkModulePkg/Universal/VariablePei/VariablePei.inf

All	the	paths	in	the	above	example	are	relative	to	the		WORKSPACE		directory.	The	information	in	the	INF	files
determine	how	an	FFS	will	be	generated.	If	you	want	to	customize	the	FFS,	you	can	specify	an	override
by	adding	an	override	in	the	INF:

INF	RuleOverride	=	PICOMPRESSED	Ich7Pkg/UhciPei/Ich7Uhci.inf

INF	RuleOverride	=	PICOMPRESSED	My/Bus/Pci/UhciPei/UhciPei.inf

INF	RuleOverride	=	PICOMPRESSED	My/Bus/Usb/UsbBusPei/UsbBusPei.inf

INF	RuleOverride	=	PICOMPRESSED	My/Bus/Usb/UsbBotPei/UsbBotPei.inf

INF	RuleOverride	=	PICOMPRESSED	My/Bus/Isa/IsaFloppyPei/IsaFloppyPei.inf

INF	RuleOverride	=	PICOMPRESSED	My/Universal/Disk/FileSystem/FatPei/FatPei.inf

In	the	above	example,	GenFds	will	use	the		PICOMPRESSED		rule	to	generate	the	FFS	regardless	of	the	rules
that	would	normally	process	the	INF	file.

While	INF	files	may	only	be	listed	once	per	FV,	most	entries,	if	listed	more	than	once	in	a	section,	only
the	most	recent	value	will	be	used.	For	example,	if	a	single		[Capsule]		section	has	two		OEM_CAPSULE_FLAGS	
entries,	the	last	one	takes	precedence.

10.2.1	FILE	Format	Example
If	the	file	you	want	to	place	into	flash	is	not	built	using	information	from	an	INF	file	(for	example,	a	micro-
code	that	must	be	placed	into	FV),	the	file	can	be	directly	specify	using	FILE	statement.	The	following	is
an	example	of	the	FILE	format:

FILE	DRIVER	=	961578FE-B6B7-44c3-AF35-6BC705CD2B1F	{

		SECTION	PE32	=	FatBinPkg/EnhancedFatDxe/X64/Fat.efi

}

In	this	example,	the		Fat.efi		file	is	placed	into	a	PE32	section	first	and	then	placed	into	the	generated
'DRIVER'	FFS	"named"	with	the	specified	GUID.

10.2	Parsing	FDF	Meta-Data	FileEDK	II	Build	Specification

174Revision	1.28



10.3	Build	Intermediate	Images

10.3.1	Binary	modules
Binary	modules	can	be	inserted	into	flash	image	in	one	of	three	ways.	The	first	way	is	to	use	the	FILE
statement	mentioned	in	Section	10.2.1.	The	second	way	uses	an	INF	file	listed	in	an	FV	section	that
describes	binary	files,	like	the	one	below:

[Defines]

		INF_VERSION															=	0x00010017

		BASE_NAME																	=	Logo

		FILE_GUID																	=	7BB28B99-61BB-11D5-9A5D-0090273FC14D

		MODULE_TYPE															=	USER_DEFINED

		VERSION_STRING												=	1.0

		EDK_RELEASE_VERSION							=	0x00020000

		EFI_SPECIFICATION_VERSION	=	0x00020000

[Binaries.common]

		BIN|Logo.bmp|*

This	INF	file	shows	that	binary	file		Logo.bmp		will	be	wrapped	into	the	Logo	FFS	file.	This	kind	of	INF	file	is
specified	using	standard		INF		statement	in	an	FV	section	of	the	FDF	file.

The	third	method	is	to	list	a	binary	INF	file	containing	the	binary	data	in	an	FD	section.	If	the	binary
specified	in	the	INF	file	in	this	section	is	a	BIN	type	(BIN|Filename.bin)	the	tools	will	not	process	the	file
and	will	be	inserted	at	the	offset	specified	for	the	region.	This	is	equivalent	of	specifying	a	filename
using	the	FILE	statement,	but	with	the	binary	file	included	from	a	binary	module.	If	the	file	is	another
binary	file	type,	such	as	an	FSP	binary	containing	PatchableInModule	PCDs,	the	tools	will	be	able	to
patch	the	binary	file	prior	to	adding	it	to	the	region.

10.3.2	Creating	EFI	Sections
Sections	are	produced	by		GenSec		tool	using	information	in	FDF	file	of	what	type	and	content	the	section
must	contain.	Section	information	in	FDF	file	belongs	to	two	categories:	either	it	is	a	leaf	section,	or	it	is
an	encapsulate	section.	Encapsulation	sections	may	contain	one	or	more	leaf	sections	or	other
encapsulate	section.	The	leaf	section	information	appears	in	the	FILE	statement	in	Section	10.2.1,	the
PE32	section	type	for	the	Fat.efi	file.	Normally	this	information	is	enough	for		GenSec		tool,	however,	more
information	can	be	specified	by	specifying	a		[Rule]		section	in	the	FDF	file.	Rules	in	an	FDF	file,	look	like:

[Rule.Common.SEC]

		FILE	SEC	=	$(NAMED_GUID)	{

				TE		TE			Align	=	8			|.efi

				RAW	BIN		Align	=	16		|.com

		}

The	above	rule	stipulates	that	for	file	type		SEC		(Security)	in	all	build	architectures,	the	generated	FFS
must	contain	one	TE	section	with	8-byte	alignment	and	one		RAW		section	with	16-byte	alignment.

Different	information	can	be	specified	for	different	section	types:

[Rule.Common.PEIM]

		FILE	PEIM	=	$(NAMED_GUID)	{

				PEI_DEPEX	PEI_DEPEX	Optional		|.depex

				TE								TE																		|.efi

				UI								STRING	=	"$(MODULE_NAME)"	Optional

				VERSION			STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM	=	$(BUILD_NUMBER)

		}

10.3	Build	Intermediate	ImagesEDK	II	Build	Specification

175Revision	1.28



The	above	rule	stipulates	that	for	file	type		PEIM		in	all	build	architectures,	the	generated	FFS	may
contain	at	most	one	optional		PEI_DEPEX		section,	must	contain	one	TE	section,	and	may	contain	at	most
one	UI	section	with	the	UI	string	set	to	the	INF	file's	module	name,	and	at	most	one		VERSION		section.

10.3.3	Create	an	Apriori	File
Some	firmware	volumes	may	require,	an		APRIORI		file	to	be	created.	An		APRIORI		file	is	a	text	file	containing
a	GUID-named	list	of	two	or	more	modules	in	the	firmware	volume.	The	modules	will	be	invoked	or
dispatched	in	the	order	they	appear	in	the		APRIORI		file.	Only	one	of	each	PEI	and	DXE	Apriori	file	is
permitted	within	a	single	Firmware	Volume.	Nested	Firmware	Volumes	are	permitted,	so		Apriori		files	are
limited	to	specifying	the	files	(and	not	FVs)	that	are	within	the	scope	of	the	FV	image	in	which	it	is
located.	It	is	permissible	for	nested	FV	images	to	have	one	PEI	and	one	DXE	Apriori	file	per	FV.	Scoping	is
accomplished	using	the	curly	"{}"	braces.

The	following	example	demonstrates	an	example	of	multiple		APRIORI		files.

[Fv.Root]

		DEFINE	NT32					=	$(WORKSPACE)/EdkNt32Pkg

		DEFINE	BuildDir	=	$(OUTPUT_DIRECTORY)/$(PLATFORM_NAME)/	$(TARGET)_$(TOOL_CHAIN_TAG)

		APRIORI	DXE	{

				FILE	DXE_CORE	=	B5596C75-37A2-4b69-B40B-72ABD6DD8708	{

						SECTION	COMPRESS	{

								SECTION	PE32	=	$(BuildDir)/X/Y/Z/B5596C75-37A2-4b69-B40B-72ABD6DD8708-DxeCore.efi

								SECTION	VERSION	"1.2.3"

						}

				}

				INF	VERSION	=	"1"	${NT32)/Dxe/WinNtThunk/Cpu/Cpu.inf

		}

		FILE	FV_IMAGE	=	EF41A0E1-40B1-481f-958E-6FB4D9B12E76	{

				SECTION	GUIDED	3EA022A4-1439-4ff2-B4E4-A6F65A13A9AB	{

						SECTION	FV_IMAGE	=	Dxe	{

								APRIORI	DXE	{

										INF	a/a/a.inf

										INF	a/c/c.inf

										INF	a/b/b.inf

								}

								INF	a/d/d.inf

								...

						}

				}

		}

In	the	example	above,	there	are	three	FFS	files	in	the		Fv.Root		and	one	Encapsulated	FV	image.	The	build
tools	will	create	an		APRIORI		file	that	will	dispatch	the		DXE_CORE		first,	then	the	CPU	module	second.	In	the
FV	image,	named	by	the	GUID		EF41A0E	...,	there	will	be	at	least	five	FFS	files,	the		APRIORI		file,	named	Dxe,
listing	the	GUID	names	of	modules		a.inf	,		c.inf		and		b.inf	,	which	will	be	dispatched	in	this	order.	Once
complete,	the		d.inf		module	may	be	dispatched.

10.3.4	Create	FFS	Files	from	Leaf	Sections
Section	9.2	shows	the	INF	and	FILE	statements	in	an	FDF	to	describe	FFS	files	that	will	be	placed	into	FV.
The		FILE		statement	is	straight	forward,	letting	you	know	how	an	FFS	file	is	organized,	as	it	contains
section	information	within	its	scope.	The		INF		statement,	on	the	other	hand,	will	use	a	particular		RULE	
that	is	determined	by	the	module	type	in	the	INF	and	specified	build	architecture.

The		[Rule]		section	of	the	FDF	file	is	used	to	define	custom	rules.	Custom	rules	may	also	be	applied	to	a
given	INF	file	listed	in	an		[FV]		section.	The		[Rule]		section	is	also	used	to	define	rules	for	module	types
that	permit	the	user	to	define	the	content	of	the	FFS	file	-	when	an	FFS	type	is	not	specified	by	either	PI
or	UEFI	specifications.

10.3	Build	Intermediate	ImagesEDK	II	Build	Specification

176Revision	1.28



The	Rules	can	have	multiple	modifiers	as	shown	below.

	[Rule.$(ARCH).$(MODULE_TYPE).$(TEMPLATE_NAME)]	

If	no		$(TEMPLATE_NAME)		is	given	then	the	match	is	based	on		$(ARCH)		and		$(MODULE_TYPE)		modifiers.	BINARY	is	a
reserved	TEMPLATE_NAME	as	the	default	rule	name	for	binary	modules.	The		$(TEMPLATE_NAME)		must	be
unique	to	the		$(ARCH)		and		$(MODULE_TYPE)	.	It	is	permissible	to	use	the	same		$(TEMPLATE_NAME)		for	two	or	more
	[Rule]		sections	only	if	the		$(ARCH)		and	the		$(MODULE_TYPE)		listed	are	different	for	each	of	the	sections.

A		[Rule]		section	is	terminated	by	another	section	header	or	the	end	of	file.

The	content	of	the		[Rule]		section	is	based	on	the		FILE		and	section	grammar	of	the	FV	section.	The
difference	is	the		FILE		referenced	in	the		[RULE]		is	a		MACRO	.	The	section	grammar	is	extended	to	include
an	optional	argument,		Optional	.	The		Optional		argument	is	used	to	say	a	section	is	optional,	that	is	to
say	if	it	does	not	exist	it's	O.K.

The	generic	form	of	the	entries	for	leaf	sections	is:

	<SectionType>	<FileType>	[Options]	[{<Filename>}	{<Extension>}]	

When	processing	the	FDF	file,	the	rules	apply	in	the	following	order:

1.	 If		<SectionType>		not	defined	or	not	a	legal	name,	then	error
2.	 If		<FileType>		not	defined	or	not	a	legal	name,	then	error
3.	 If		[FilePath/FileName],		then:

Add	one	section	to	FFS	with	a	section	type	of		<SectionType>	
4.	 Else:

Find	all	files	defined	by	the	INF	file	whose	file	type	is		<FileType>		and	add	each	one	to	the	FFS	with
a	section	type	of		<SectionType>	

Add	files	defined	in		[Sources]		followed	by	files	defined	in		[Binaries]	

5.	 If	more	than	1		UI		section	in	the	final	FFS	file,	then	error
6.	 If	more	than	1		VER		section	in	the	final	FFS	file,	then	error
7.	 If	more	than	1		DXE_DEPEX		section	in	final	the	FFS	file,	then	error
8.	 If	more	than	1		PEI_DEPEX		section	in	the	final	FFS	file,	then	error
9.	 If	more	than	1		SMM_DEPEX		section	in	the	final	FFS	file,	then	error.

10.3.5	Create	Encapsulation	Sections
There	are	two	types	of	encapsulation	sections,	a		COMPRESSION		section	and	the	GUIDED	section.	A
	COMPRESSION		section	uses	standard	UEFI	compression/decompression	mechanisms.	Other	compression
schemes	must	use	the		GUIDED		form	of	encapsulation	section.

The		COMPRESS		encapsulation	section	uses	the	following	format.

SECTION	COMPRESS	[type]	{

		SECTION	EFI_SECTION_TYPE	=	FILENAME

		SECTION	EFI_SECTION_TYPE	=	"string"

}

The		[type]		argument	is	optional,	only		EFI_STANDARD_COMPRESSION		is	supported	by	the	PI	specification.	The
current	EDK	enumerations	for	compression	are	a	violation	of	the	PI	specification,	and		SECTION	GUIDED		must
be	used	instead.

The		EFI_SECTION_TYPE		and		FILENAME		are	required	sub-elements	within	the	compression	encapsulation
section.	for	most	sections,	however	both	the		VERSION		(	EFI_SECTION_VERSION	)	and	UI	(	EFI_SECTION_USER_INTEFACE	)
may	specify	a	string	that	will	be	used	to	create	an	EFI	section.

The		GUIDED		encapsulation	section	uses	one	of	the	following	formats.

10.3	Build	Intermediate	ImagesEDK	II	Build	Specification

177Revision	1.28



SECTION	GUIDED	$	(GUID_CNAME)	[auth]	{

		SECTION	EFI_SECTION_TYPE	=	FILENAME

		SECTION	EFI_SECTION_TYPE	=	"string"

}

SECTION	GUIDED	$	(GUID_CNAME)	[auth]	FILENAME

The	required	argument	is	the		GUIDED		name	followed	by	an	optional		auth		flag.	If	the	argument		auth		flag
is	specified,	then	the	attribute		EFI_GUIDED_SECTION_AUTH_STATUS_VALID		must	be	set.

For	statements	that	do	not	use	a	scoping	notation,	(the	second		SECTION		statement	of	the	two	listed
above),	if		FILENAME		exists,	the	attribute		EFI_GUIDED_SECTION_PROCESSING_REQUIRED		must	be	set	to		TRUE	.	The	file
pointed	to	by		FILENAME		is	the	data.	If		FILENAME		does	not	exist		EFI_GUIDED_SECTION_PROCESSING_REQUIRED		is	cleared
and	normal	leaf	sections	must	be	used.

GenSec	tool	uses	information	from	these	encapsulated	section	definition	as	input	parameters	to
generate	the	corresponding	section	format.

10.3	Build	Intermediate	ImagesEDK	II	Build	Specification

178Revision	1.28



10.4	Create	the	FV	Image	File(s)
Once	all	of	the	EFI	FFS	files	have	been	created,	these	images	are	bundled	into	an	FV	image.

GenFv	needs	two	kinds	of	information	about	the	target	FV:

The	FV	attributes
The	list	of	one	or	more	files	that	will	be	placed	into	this	FV.

This	information	is	defined	in	the	FV	section	of	the	FDF	file.

If	the		[FV]		section	contains	an		FvNameString		entry	and	it	is	set	to		TRUE	,	the	tools	will	use	the		FvUiName	
from	the	section	tag	to	create	an		FvNameString		entry	in	the	FV	image's	extension	header.

The	following	example	is	for	a	FV	section	named	"BiosUpdate."

[FV.BiosUpdate]

		BlockSize										=	0x10000

		FvAlignment								=	16

		ERASE_POLARITY					=	1

		MEMORY_MAPPED						=	TRUE

		STICKY_WRITE							=	TRUE

		LOCK_CAP											=	TRUE

		LOCK_STATUS								=	TRUE

		WRITE_DISABLED_CAP	=	TRUE

		WRITE_ENABLED_CAP		=	TRUE

		WRITE_STATUS							=	TRUE

		WRITE_LOCK_CAP					=	TRUE

		WRITE_LOCK_STATUS		=	TRUE

		READ_DISABLED_CAP		=	TRUE

		READ_ENABLED_CAP			=	TRUE

		READ_STATUS								=	TRUE

		READ_LOCK_CAP						=	TRUE

		READ_LOCK_STATUS			=	TRUE

		FILE	FV_IMAGE	=	EDBEDF47-6EA3-4512-83C1-70F4769D4BDE	{

				SECTION	GUIDED	{

						SECTION	FV_IMAGE	=	BiosUpdateCargo

				}

		}

This	FV	is	very	simple;	it	contains	only	one		FILE	.	But	this	file	contains	an	entire	FV	image	named
	BiosUpdateCargo		which	must	be	available	when	GenFds	creates	the		BiosUpdate		FV.

The	GenFds	tool	will	process	the	FDF	file	and	place	the	FV	attributes	and	contents	in	to	an	INF	file	(in
this	example,	the		BiosUpdate.inf		file)	and	then	processing	is	transferred	to	GenFv	tool	when	creating	FV
images.	The	following	example	is	what	this	generated,	FV-style,	INF	file	looks	like:

[options]

EFI_BLOCK_SIZE	=	0x10000

[attributes]

EFI_ERASE_POLARITY					=	1

EFI_WRITE_ENABLED_CAP		=	TRUE

EFI_READ_ENABLED_CAP			=	TRUE

EFI_READ_LOCK_STATUS			=	TRUE

EFI_WRITE_STATUS							=	TRUE

EFI_READ_DISABLED_CAP		=	TRUE

EFI_WRITE_LOCK_STATUS		=	TRUE

EFI_LOCK_CAP											=	TRUE

EFI_LOCK_STATUS								=	TRUE

EFI_ERASE_POLARITY					=	1

EFI_MEMORY_MAPPED						=	TRUE

EFI_READ_LOCK_CAP						=	TRUE

EFI_WRITE_DISABLED_CAP	=	TRUE

10.4	Create	the	FV	Image	File(s)EDK	II	Build	Specification

179Revision	1.28



EFI_READ_STATUS								=	TRUE

EFI_WRITE_LOCK_CAP					=	TRUE

EFI_STICKY_WRITE							=	TRUE

EFI_FVB2_ALIGNMENT_16		=	TRUE

[files]

EFI_FILE_NAME	=	C:edk2BuildMyPlatformDEBUG_MYTOOLSFVFfsEDBEDF47-6EA34512-83C1-70F4769D4BDEEDBEDF47-6EA3-4512-83C1-70F4769D4BDE

.ffs

10.4	Create	the	FV	Image	File(s)EDK	II	Build	Specification

180Revision	1.28



10.5	Create	the	FD	image	file(s)
The	whole	FD	image	is	described	by	a	list	of		Regions		which	correspond	to	the	locations	of	different	areas
within	the	hardware	flash	device.	Currently	most	flash	devices	have	a	variable	number	of	blocks,	all	of
identical	size.	When	"burning"	an	image	into	one	of	these	devices,	only	whole	blocks	can	be	burned	into
the	device	at	any	one	time.	This	puts	a	constraint	that	all	layout	regions	of	the	FD	image	must	start	on
a	block	boundary.	To	accommodate	future	flash	parts	that	have	variable	block	sizes,	the	layout	is
described	by	the	offset	from	the		BaseAddress		and	the	size	of	the	section	that	is	being	described.	Since
completely	filling	a	block	is	not	probable,	part	of	the	last	block	of	a	region	can	be	left	empty.	To	ensure
that	no	extraneous	information	is	left	in	a	partial	block,	the	block	must	be	erased	prior	to	burning	it	into
the	device.	Multiple	devices	with	non-volatile	memory	are	treated	as	a	single	device	with	contiguous
memory	space.

Regions	must	be	defined	in	ascending	order	and	may	not	overlap.

Each	layout	region	starts	with	a	eight	digit	hex	offset	(leading	"0x"	required)	followed	by	the	pipe	"|"
character,	followed	by	the	size	of	the	region,	also	in	hex	with	the	leading	"0x"	characters.

The	format	for	an	FD	Layout	Region	is:

Offset|Size

[TokenSpaceGuidCName.PcdOffsetCName|TokenSpaceGuidCName.PcdSizeCName]

[RegionType]

Setting	the	optional	PCD	names	in	this	fashion	is	shortcut.	The	two	regions	listed	below	are	identical,
with	the	first	example	using	the	shortcut,	and	the	second	using	the	long	method:

0x000000|0x0C0000

gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress|gEfiMyTokenSpaceGuid.PcdFlashFvMa	inSize

FV	=	FvMain

0x000000|0x0C0000

SET	gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress	=	0x000000

SET	gEfiMyTokenSpaceGuid.PcdFlashFvMainSize	=	0x0C0000

FV	=	FvMain

The	shortcut	method	is	preferred,	as	the	user	does	not	need	to	maintain	the	values	in	two	different
locations.

The	EDK	II	BaseTools	support	the	use	of	expressions	in	the	offset	field	and	size	fields.	When	a	PCD	is
used	in	either	of	these	fields,	the	PCD	must	have	been	set	in	a	statement	above	where	it	is	used	in	an
expression	(tools	process	the	file	top	to	bottom).	During	the	processing	of	the	FDF	file,	the	value	of	an
'offset'	PCD	is	the	offset	from	0x00000000	After	the	processing	has	been	completed,	the	tools	will
adjust	these	'offset'	PCDs	to	be	the	absolute	address.	For	example:

[FD.Main]

BaseAddress	=	0xFFE00000

Size								=	0x00800000

#DEFINE	REGION1_SIZE	=	0x1000

#DEFINE	REGION2_SIZE	=	0x2000

0x00000000|$(REGION1_SIZE)

gMyPlatformTSGuid.PcdRegion1Base|gMyPlatformTSGuid.PcdRegion1Size

FILE	=	MyPlatform/Region1Bin/Region1.bin

gMyPlatformTSGuid.PcdRegion1Base	+	$(REGION1_SIZE)|$(REGION2_SIZE)

gMyPlatformTSGuid.PcdRegion2Base|gMyPlatformTSGuid.PcdRegion2Size

10.5	Create	the	FD	image	file(s)EDK	II	Build	Specification

181Revision	1.28



In	the	above	example,	during	FDF	processing,	the		PcdRegion1Base		is		0x00000000	,	while	after	the	FDF	file
processing	has	been	completed,	the	value	of	the	PCD,		PcdRegion1Base	,	will	be		0xFFE00000	.

The	optional		RegionType	,	if	specified,	must	be	one	of	the	following		FV	,		DATA	,		FILE	,		CAPSULE		or	no
	RegionType		at	all.	Not	specifying	the		RegionType		implies	that	the	region	starting	at	the		Offset	,	of	length
	Size		must	not	be	touched.	This	unspecified	region	type	is	typically	used	for	event	logs	that	are
persistent	between	system	resets,	and	modified	via	some	other	mechanism	(and	SMM	Event	Log
module,	for	example).

EDK	II	FDF	does	not	use	the	concept	of	sub-regions,	which	existed	in	EDK	FDF	files.

10.5.1	FV	Region	Type
The		FV		RegionType	is	used	as	a	pointer	to	either	one	of	the	unique	FV	names	that	are	defined	in	the
	[FV]		section.	These	are	files	that	contains	a	binary	FV	as	defined	by	the	PI	specification.	The	format	for
the		FV		RegionType	is	one	of	the	following:

	FV	=	$(UiFvName)	

The	following	is	an	example	of		FV		region	type.

0x000000|0x0C0000

gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress|gEfiMyTokenSpaceGuid.PcdFlashFvMa	inSize

FV	=	FvMain

10.5.2	DATA	Region	Type
The		DATA		RegionType	is	a	region	that	contains	is	a	hex	value	or	an	array	of	hex	values.	This	data	that	will
be	loaded	into	the	flash	device,	starting	at	the	first	location	pointed	to	by	the		Offset		value.	The	format
of	the		DATA		RegionType	is:

	DATA	=	{	<Hex	Byte	Data	Structure>	}	

The	following	is	an	example	of	a		DATA		region	type.

0x0CA000|0x002000

gEfiMyTokenSpaceGuid.PcdFlashNvStorageBase|gEfiMyTokenSpaceGuid.PcdFlashNvStorageSize

DATA	=	{

		0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

		0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C

}

This	data	may	need	to	be	modified	based	on	content	of	the	region.	In	order	for	EFI	modules	to	access
these	regions,	a	customized	region	header	may	be	required.	Tools	for	creating	custom	header
information	is	beyond	the	scope	of	the	standard	build.

10.5.3	FILE	Region	Type
The		FILE		RegionType	is	a	pointer	to	a	binary	file	that	will	be	loaded	into	the	flash	device,	starting	at	the
first	location	pointed	to	by	the		Offset		value.	The	format	of	the		FILE		RegionType	is:

	FILE	=	$(FILE_DIR)/Filename.bin	

The	following	is	an	example	of	the		FILE		RegionType.

0x0CC000|0x002000

gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchAddress|gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchSize

FILE	=	FV/Microcode.bin

10.5.4	INF	Region	Type

10.5	Create	the	FD	image	file(s)EDK	II	Build	Specification

182Revision	1.28



The		INF		RegionType	is	a	pointer	to	a	binary	INF	file	that	will	be	loaded	into	the	flash	device,	starting	at
the	first	location	pointed	to	by	the	Offset	value.	The	format	of	the		INF		RegionType	is:

	INF	[Options]	Package/BinModule.inf	

The	following	is	an	example	of	the		INF		RegionType.

0x0CC000|0x002000

gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchAddress|gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchSize

INF	MyPackage/MyMicrocode.inf

10.5	Create	the	FD	image	file(s)EDK	II	Build	Specification

183Revision	1.28



10.6	Post	Build	Processing
If	the		[Defines]		section	of	the	DSC	file	contains	a		POSTBUILD	=	entry		statement,	prior	to	exiting,	the	script
specified	in	the		POSTBUILD		statement	is	executed.	The	entry	of		POSTBUILD		support	multiple	arguments.	And
Tool	will	convert	arguments	that	are		WORKSPACE		or		PACKAGES_PATH		relative	paths	to	absolute	paths.	If	the
script	file	is	not	found,	the	build	command	exits	with	an	appropriate	error	message.	If	the	script	fails,	it
must	terminate	with	a	non-zero	exit	code	and	the	build	command	terminates	with	the	exit	value	from
the	post-build	script.	The	script	is	required	to	generate	error	messages	that	provide	the	reason	for	the
termination.

All	of	the	command	line	options	passed	into	the	build	command	are	also	passed	into	the	script	along
with	the	options	for		TARGET	,		ARCH	,		TOOL_CHAIN_TAG	,		ACTIVE_PLATFORM	,		Conf	Directory	,	and		build	target	.

If	the	script	terminates	successfully	(exit	value	of	0),	then	the	build	command	terminates	normally.

Note:	This	entry	may	be	wrapped	in	a	conditional	directive.	Unlike	the		PREBUILD		entry,	there	are	no
restrictions	on	the	MACRO	values	used	in	a	conditional	directive.

Note:	Quotes	are	needed	when	the	script's	additional	options	are	present.	Quotes	are	also	required	if
the	path	to	the	post-build	command	contains	space	or	special	characters.	Quotes	may	be	used	for
arguments	that	have	spaces	or	special	characters.

10.6	Post	Build	ProcessingEDK	II	Build	Specification

184Revision	1.28



11	POST-BUILD	IMAGEGEN	STAGE	-	OTHER
This	chapter	describes	the	processing	of	the	EFI	files	generated	by	the	$(MAKE)	Stage	into	images	such
as	Applications	or	images	used	by	PCI	Option	ROMs	and/or	Update	Capsules.	Creating	images	that	do
not	go	into	a	flash	part	directly	such	as	stand-alone	Applications	and	PCI	Option	ROM	images,	do	not
need	an	FDF	file.	This	also	applies	to	binary	driver	images	that	are	to	be	used	for	a	binary	distribution	-
the	files	for	these	images	are	created	during	the	$(MAKE)	stage.

11	Post-Build	ImageGen	Stage	-	OtherEDK	II	Build	Specification

185Revision	1.28



11.1	EFI	PCI	Option	ROM	Images
To	generate	the	EFI	PCI	Option	ROM,	the	EFI	PE32	files	and	optionally	the	legacy	OptROM	(from	a
separate	tool)	are	needed.

The	EfiRom	tool	is	used	on	the	PE32	and	optionally	the	legacy	Option	ROM	binary	images.	The	tool	will
check	the	header	of	each	file	to	determine	the	type.

If	the	input	file(s)	are	EFI	PE32	image,

fill	in	EFI	PCI	OptROM	header	and	PCI	data	structure	in	the	output	EFI	PCI	Option	ROM	image

then	copy	the	input	EFI	PE32	file	content	to	the	output	EFI	PCI	Option	ROM	image	to	create	the
EFI	PCI	Option	ROM	image.

If	the	input	file(s)	are	legacy	OptROM	binary	image,

fill	in	EFI	PCI	OptROM	header	in	the	output	EFI	PCI	Option	ROM	image

then	copy	the	input	file	content	to	the	output	EFI	PCI	Option	ROM	image	to	create	the	EFI	PCI
Option	ROM	image.

The	final	image	is	placed	in	the	FV	folder	of	the	build	directory.

11.1	EFI	PCI	Option	ROM	ImagesEDK	II	Build	Specification

186Revision	1.28



11.2	UEFI	Applications
If	a	developer	wants	to	generate	only	UEFI	applications,	verify	that	no	FDF	file	is	specified	in	the	DSC	file.
This	prevents	the	GenFds	tool	from	being	called	after	all	of	the	modules	have	been	built	by	the	$(MAKE)
stage.	The	UEFI	application	files	(.efi	files)	built	from	application	modules	are	put	in	the	following
directory:

	$(OUTPUT_DIRECTORY)/$(PLATFORM_NAME)/<BuildTarget>_<ToolChainTag>/$(ARCH)	

11.2	UEFI	ApplicationsEDK	II	Build	Specification

187Revision	1.28



11.3	Capsules
This	section	describes	the	processing	of	the	EFI	files	generated	by	the	$(MAKE)	Stage	into	Update
Capsules.	Capsule	images	contain	a	Fv	Image	or	a	FFS	file	to	be	updated.

The		[Capsule]		section	in	FDF	file	is	parsed	to	get:

Capsule	Header	information,	including:	Capsule	GUID,	flags	and	header	size.
Capsule	content	may	be	either	a	Fv	Image	or	a	FFS	file.

A	Fv	Image	may	be	specified	using	any	FV	section	described	in	this	FDF	file.	It	will	be	generated	same
using	the	process	described	in	Section	10.4.	Additionally,	an	existing	FV	file	created	as	part	of	an	FD
image	may	be	used.	These	FV	files	can	be	directly	integrated	into	a	Capsule.	Raw	data	(non-FFS	files)
can	be	included	in	a	FV	file,	using		EFI_FV_FILETYPE_RAW	.

The	FFS	file	contains	EFI	section	files	(see	Table	2	for	a	list	of		EFI_SECTION		types.	All	files	generated	by	the
$(MAKE)	stage,	will	have	the	output	located	in	a	build	directory,	either	at	the	top	of:
	$(OUTPUT_DIRECTORY)/$(PLATFORM_NAME)/<BuildTarget>_<ToolChainTag>/$(ARCH)		or	a	sub-directory	created	that	replicates
the	INF	file	path.	All	EFI	section	files	and	encapsulated	section	files	are	created	based	on	their
description	in	FDF	file.	For	a	binary	or	raw	file	type,	the	raw	data	can	be	any	binary	file.	One	FV	image	or
one	FD	image	described	in	FV	section	or	FD	sections	of	the	FDF	file	may	also	be	treated	as	RAW	data.
The	process	of	creating	a	FV	image	is	described	in	Section	10.4,	the	process	of	creating	a	FD	image	is
described	in	Section	10.5.

The	$(MAKE)	stage	creates	EFI	files.	During	the	ImageGen	stage,	GenFds	will	create	the	required	FFS
files	and	FV	images	based	on		[Capsule]		description	in	the	FDF	file.	Finally,	the	capsule	header	will	be
prefixed	to	the	capsule	data	to	construct	the	complete	capsule.	The	overview	of	the	Capsule	creation
process	is	shown	in	Figure	23:

11.3	CapsulesEDK	II	Build	Specification

188Revision	1.28



Figure	23	Capsule	Creation	Process.

11.3	CapsulesEDK	II	Build	Specification

189Revision	1.28



12	BUILD	CHANGES	AND	CUSTOMIZATIONS
This	chapter	deals	with	customizing	a	build,	including	options	and	settings	for	debugging,	using	custom
tools	as	well	as	how	to	customize	EDK	component	builds

12	Build	Changes	and	CustomizationsEDK	II	Build	Specification

190Revision	1.28



12.1	Building	for	Debug
The	build	tool	defaults	support	three	building	targets:	NOOPT,	DEBUG	and	RELEASE.	This	section
describes	how	to	enable	DEBUG	target	when	building	and	how	to	setup	compiler	flags	used	for	DEBUG.
The	NOOPT	target	disables	all	optimizations	in	addition	to	setting	the	flags	for	DEBUG.

There	are	three	ways	provided	in	build	tool	to	define	the	target	that	will	be	used	in	the	building	process.

Situation	A:	Setup	by	overriding	file	"target.txt"

After	executing	"edksetup"	,	there	will	be	a	file	named	"target.txt"	under		$(WORKSPACE)/Conf	.

Users	can	edit	this	file	and	change	the	value	of	item		TARGET	.

A	specific	example	of	this	is		TARGET	=	DEBUG	,	which	sets	the	current	building	method.

In	this	example,	the	default	value	of	the		TARGET		is	set	to		DEBUG	.

Situation	B:	Use	a	parameter		-b	BUILDTARGET		when	executing	building	command

Users	can	type	a	command	with	the	format		build	-b	BUILDTARGET		to	specify	the	target	used	in
current	building.

A	specific	example	of	this	command	is		build	-b	DEBUG	.

In	this	example,	the	value	set	in	the	file		target.txt		will	be	ignored.

Situation	C:	Setup	in	the	DSC	file	of	a	platform

When	the		BUILDTARGET		is	not	specified	in	the	command	line	or	in	the	file		target.txt	,	the	build	tool
will	attempt	to	build	all	valid	targets	specified	in	the	DSC	file.

This	contrasts	with	situations	A	and	B,	where	only	the	targets	specified	as	valid	in	the	DSC	file
can	be	used.

12.1.1	Debugging	Files
For	a	debugging	build,	the	files	created	will	be	saved	to
	$(WORKSPACE)/$(OUTPUT_DIRECTORY)/$(BUILDTARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)/	.	For	each	single	module,	the	temporary
files	created	in		DEBUG		building	process	will	be	saved	to
	$(WORKSPACE)/$(OUTPUT_DIRECTORY)/$(BUILDTARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)/$(PACKAGE_NAME)/$(MODULE_NAME)/DEBUG/		and
	$(WORKSPACE)/$(OUTPUT_DIRECTORY)/$(BUILDTARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)/$(PACKAGE_NAME)/$(MODULE_NAME)/OUTPUT/	,	so	such	as
.map,	.pdb	and	other		DEBUG		files	can	be	found	in	these	two	directories.

User	can	also	define	a	specific	directory	to	save		DEBUG		files.	A	detailed	example	is	given	in	the	next
subsection.

12.1.2	Debugging	Options
Build	tool	supports	customized		DEBUG		flags	in	the		<BuildOptions>		section	of	the	DSC	file,	the	INF	file	and
	tools_def.txt	.	The	highest	priority	for	a	same	complier	flag	is	the	one	defined	in	INF	file,	the	medium	is
that	in	DSC	file	and	the	lowest	is	the	one	in		tools_def.txt	.

For	example,	to	generate	the	.cod	files	for	the	.obj	files	of	a	platform,	user	can	add	one	line	such	as
	*_MYTOOLS_*_CC_FLAGS	=	/FAcs	/FA	$(OUTPUT_DIR)\		in	section		[BUILD_OPTIONS]		of	DSC	file.	This	option	tells	build	tool	to
generate	a	.cod	file	for	each	.obj	file	and	put	them	to	$(OUTPUT_DIR).

12.1	Building	for	DebugEDK	II	Build	Specification

191Revision	1.28



For	only	generating	the	.cod	files	for	one	single	module,	one	way	is	to	add	the	option	in	section
	[BUILD_OPTIONS]		of	the	module's	INF	file;	another	way	is	to	add	the	option	to	DSC	file's		<BuildOptions>		for	the
INF	file	like	below:

MdeModulePkg/Universal/PCD/Pei/Pcd.inf	{

		<BuildOptions>

				*_MYTOOLS_*_CC_FLAGS	=	/FAcs	/FA	$(OUTPUT_DIR)\

}

12.1.3	Advanced	Debugging
For	generating	disassembly	(.cod)	files	for	debugging,	the	following	is	one	way	to	setup	dumpbin	-
disasm	for	individual	modules	as	well	as	using	it	for	every	.efi	file	generated.

To	generate	the	disasm	for	the	efi	files,	the	user	can	add	two	definitions	in		tools_def.txt	:

DEBUG_MYTOOLS_IA32_DISASM_PATH	=	DEF(VS2005TEAMSUITE_BIN)\dumpbin.exe

DEBUG_MYTOOLS_IA32_DISASM_FLAGS	=	-dump	-disasm	-out:$(DEST_DIR)

Then	user	can	use	build	option		-D	,		--define		with	a	reserved	MACRO	name:	DISASM	to	start	building.	The
build	tool	automatically	detects	if	a	DISASM	tool	defined	in	the	TagName	of	Tool	Chain,	then	after	ever
link	command	that	generates	an	EFI	file,	the	tool	will	run	the	DISASM	tool	(with	the	flags)	against	the
EFI	file.	In	the	example,	the	output	file	will	be	next	to	the	EFI	file	based	on	the	FLAGS	entry,	-
out:$(DEST_DIR)	which	is	the	same	location	as	the		.efi		file.

12.1	Building	for	DebugEDK	II	Build	Specification

192Revision	1.28



12.2	Adding	Custom	Compression	Tools
This	section	covers	how	to	add	a	customized	compress	tool,	such	as	TianoCompress	tool.

First,	one	specific	GUID	is	assigned	to	the	added	tool,	which	can	be	used	to	specify	this	tool	and	its
compressed	data.	Then	the	tool	path	and	GUID	needs	to	be	added	into		tools_def.txt		file,	for	example
	TianoCompress		tool	used	for	all	tool	chains,	Target	and	Archs	can	be	added	like:

*_*_*_TIANOCOMPRESS_PATH	=	DEF(TOOL_PATH)\TianoCompress.exe

*_*_*_TIANOCOMPRESS_GUID	=	A31280AD-481E-41B6-95E8-127F4C984779

Next,	"	$(TOOLNAME)	"	can	be	specified	in		build_rule.txt		file	to	call	this	tool.	And,	its	GUID	value	is	supported
in	FDF	file	to	call	this	tool,	which	is	used	to	create	the	EFI	guided	section	data.	For	TianoCompress
tool,	"	$(TIANOCOMPRESS)	"	is	used	in		build_rule.txt		file,		A31280AD-481E-41B6-95E8-127F4C984779		is	used	in	FDF	file.

	NT32.fdf		file	uses	TianoCompress	tool	to	create	the	guided	data	like:

[Rule.Common.PEIM.TIANOCOMPRESSED]

		FILE	PEIM	=	$(NAMED_GUID)	DEBUG_MYTOOLS_IA32	{

				PEI_DEPEX	PEI_DEPEX	Optional	|.depex

				GUIDED	A31280AD-481E-41B6-95E8-127F4C984779	{

						PE32					PE32																							|.efi

						UI							STRING="$(MODULE_NAME)"				Optional

						VERSION		STRING	=	"$(INF_VERSION)"		OptionalBUILD_NUM	=	$(BUILD_NUMBER)

				}

		}

12.2	Adding	Custom	Compression	ToolsEDK	II	Build	Specification

193Revision	1.28



12.3	Using	Custom	Build	Tools
This	section	introduces	how	to	use	the	custom	tools	in	EDKII	build	system.

The	custom	tools	can	be	classified	to	two	types.	One	is	used	to	create	the	EFI	guided	section	data,
which	must	have	its	matched	GUID	value,	such	as	the	custom	compression	tool	introduced	in	the	last
section.	Another	is	only	used	to	process	files,	which	may	not	require	its	GUID,	such	as	ASL	compiler.	This
section	focuses	on	the	later	one.

First,	the	custom	tool	path	and	name	needs	to	be	added	into		tools_def.txt		file.	For	ASL	compiler,	it	can
be	added	like:

	*_*_*_ASL_PATH	=	DEF(ASL_PATH)\iasl.exe	

Then,	"	$(TOOLNAME)	"	is	specified	in		build_rule.txt		file	to	call	this	tool.	For	ASL	compiler,	it	can	be	used	to
process	ASL	source	file.	The	rule	to	process	ASL	file	is	added	in		build_rule.txt		like:

[Build.Acpi-Source-Language-File]

		<InputFile>

				?.asl,	?.Asl,	?.ASL

		<OutputFile>

				$(OUTPUT_DIR)(+)${s_base}.aml

		<Command.MSFT,	Command.INTEL>

				"$(PP)"	$(APP_FLAGS)	$(INC)	${src}	>	${d_path}(+)${s_base}.i

				"$(ASL)"	-p	${dst}	${d_path}(+)${s_base}.i

12.3	Using	Custom	Build	ToolsEDK	II	Build	Specification

194Revision	1.28



12.4	Customizing	Compilation	for	a	Component
There	are	several	mechanisms	for	customizing	the	build	for	a	firmware	component.	These	include:

Creating	a	new	Platform	(DSC)	file	from	an	existing	platform.
Creating	a	custom	INF	file	for	individual	components	or	modules.
Using	MACRO	definitions	with	control	statements	(!ifxxx)	in	the	DSC	and	FDF	files.
Customizing	the	INF	build	options	in	the	DSC	file.

12.4	Customizing	Compilation	for	a	ComponentEDK	II	Build	Specification

195Revision	1.28



12.5	Platform	Specific	ASL	Tools
The	platform	ACPI	compilers	are	not	all	backward	compatible.	Typically,	an	ASL	compiler	is	selected
based	on	the	ACPI	version	and	features	that	are	required	by	the	platform.	Different	flags	may	also	be
required	for	different	releases	of	the	ASL	compilers.	One	method	for	using	different	versions	of	the	ASL
compilers	on	Windows*	systems	is	presented	here.

The	EDK	II	build	tools	expect	the	Microsoft	ASL	compilers	(asl.exe)	and	the	Intel/ACPI	compiler	(iasl.exe)
to	be	located	in	the	C:\ASL	directory	of	the	developer's	workstation.	This	path	and	the	compiler	names
are	also	coded	in	the		tools_def.txt		file.	Name	the	compiler	binaries	using	the	ACPI	Spec	compliance
value,	for	example,		C:\ASL\iasl3a.exe		and		C:\ASL\iasl5.exe	.

Use	the		[BuildOptions]		section	of	the	platform's	DSC	file	to	override	the	default	values	in	the		tools_def.txt	
file	as	shown	below.

Platform1	DSC	requiring	ACPI	3a	compliance

[BuildOptions]

*_*_*_ASL_PATH	==	C:\ASL\iasl3a.exe

Platform2	DSC	requiring	ACPI	5	compliance

[BuildOptions]

*_*_*_ASL_PATH	==	C:\ASL\iasl5.exe

*_*_*_ASL_FLAGS	=	-cr

The	"=="	means	replace	the	ASL	compiler	specified	by	the		PATH		attribute	in	the		tools_def.txt		file	with	this
ASL	compiler.

The	"="	means	to	append	the	flags	to	the	flags	specified	in	the		FLAGS		attribute	in	the		tools_def.txt		file.

No	changes	are	required	to	any	other	files	or	tools	in	order	for	this	method	to	work.	Other	tools	may
also	benefit	from	this	build	system	flexibility.

12.5	Platform	Specific	ASL	ToolsEDK	II	Build	Specification

196Revision	1.28



12.6	Build	Reproducibility
The	EDK	II	build	system	is	designed	to	provide	functional	reproducibility,	not	necessarily	binary
reproducibility.	For	example,	when	building	the		DEBUG		targets,	the	absolute	path	and	file	name	for	a	PDB
file	is	inserted	into	PE32	file.	Building	from	different	directory	trees	will	result	in	different	directory	paths,
and	the	PE32	files	will	not	be	identical	bit	for	bit,	but	they	will	be	identical	in	functionality.

Using	the		RELEASE		build	target	will	only	result	in	identical	files	if	there	are	no	changes	whatsoever	to	the
source	files.	The	EDK	II	debug	libraries	insert		DebugAssert		statements	into	binaries.	These	statements
record	line	numbers	from	the	source	files.	This	means	that	inserting	a	blank	line	or	a	comment
anywhere	in	a	module	can	yield	multiple	different	line	numbers	from	the		DebugAssert		statements.

Fortunately,	a	special	compiler	macro,		MDEPKG_NDEBUG	,	has	been	in	the	EDK	II	code	base	debug	libraries.
When	this	macro	is	defined,	the	DebugAssert	statements	are	stripped	completely	removed	from	the
resultant	binary.	So	using	a		RELEASE		and	adding

the		MDEPKG_NDEBUG		macro	will	allow	generating	binaries	that	are	identical,	regardless	of	the	directories	or
changes	to	comments	in	the	source	files.

The	best	method	for	adding	this	macro	is	again,	using	the		[BuildOptions]		section	of	the	DSC	file.	The
following	is	an	example	that	is	valid	for	all	tool	chains	with	a	family	set	to	MSFT	in	the		tools_def.txt		file.

Example

[BuildOptions]

MSFT:RELEASE_*_*_CC_FLAGS	=	-D	MDEPKG_NDEBUG

Using	this	flag	is	also	the	only	way	to	turn	off	DebugAssert	statements	when	disabling	all	optimizations
using	the	/0d	flag	for	Microsoft*	compilers.

12.6	Build	ReproducibilityEDK	II	Build	Specification

197Revision	1.28



13	BUILD	REPORTS
This	section	introduces	the	build	report	generation	tool	functionality	and	its	output	report	format.	It
describes	the	external	behaviors	of	the	tool,	i.e.	the	accepted	command	line	options	and	the	detailed
output	report	format.

Unless	the	quiet	or	silent	options	are	given	to	the	build	command,	the	build	system	automatically
reports	the	following:

Each	region,	offset	and	size	defined	in	the	FD.
The	location	of	the	GUID	cross	reference	file.
The	size	of	the	data	in	each	FV	region.
The	date	and	time	the	build	completed.

13	Build	ReportsEDK	II	Build	Specification

198Revision	1.28



13.1	Build	Report	Generation	Options
The	Build	Report	Generation	(BRG)	tool	is	part	of	build	process	to	report	the	following	platform
information	after	platform	build	ends	successfully.

PCD	Information

Complete	platform	configuration	database	information

LIBRARY	Information

Library	class	and	instance	mapping,	constructor/destructor	information

DEPEX	Information

Module	dependency	information

BUILD	Information

Module	build	tool	chain	tag,	specific	compiler	or	linker	options

FLASH	Information

Module	firmware	device	and	firmware	volume	information

PREDICTION	Information

The	predicted	dispatch	order	of	modules	(PEIMs	/	drivers)	and	their	notification	invoking	sequence;	Also
the	predicted	addresses	of	module	image	loading,	entry	point	and	notification	functions.	Generating
this	report	does	take	a	significant	amount	of	time,	more	than	2x	the	standard	build	time.

Module	Information

Details	of	the	module,	may	include	the	HASH	of	the		.efi		file.

Note:	The	execution	order	prediction	report	output	is	an	html	file,	separate	from	the	rest	of	the
reports.	All	remaining	reports	are	generated	in	a	single	text	file.	The	reports	are	generated	in	the
current	working	directory.

The	information	in	the	reports	listed	above	is	useful	for	platform	integrators	to	diagnose	the	platform
issues	in	an	efficient	way.	Integrators	must	specify	which	reports	to	include	in	the	report	file.

13.1	Build	Report	Generation	OptionsEDK	II	Build	Specification

199Revision	1.28



13.2	Sample	Launch	Steps:	NT32	platform
BRG	functionality	is	switched	on	by	-y	or	-Y 	option	from	build	command.	The	following	steps	output	the
build	report	for	NT32	platform:

1.	 Check	out	edk2	packages	from	https://svn.code.sf.net/p/edk2/code/trunk/edk2	to
	c:\Users\YourLogin\Documents\edk2		directory .

2.	 Run	cmd.exe,	cd	to	your	Documents	directory	and	enter		subst	s:	.
3.	 Cd	to		s:\edk2	
4.	 Run	edksetup.bat	--nt32
5.	 Run	build.exe	-a	IA32	-p	Nt32Pkg\Nt32Pkg.dsc	-y	ReportFile.txt

-y:	This	option	specifies	the	output	file	name	for	build	report.
-Y :	This	option	specifies	flags	that	control	the	type	of	build	report.	It	must	be	from	the	set	of
PCD,	LIBRARY,	DEPEX,	HASH,	BUILD_FLAGS,	FLASH,	FIXED_ADDRESS	and
EXECUTION_ORDER.	To	specify	more	than	one	flag,	repeat	the	option	on	the	command	line.
Example	of	usage:

On	the	command	line,	append	the	following	arguments:

-y	report_filename.txt	-Y	PCD	-Y	FLASH	-Y	DEPEX

The	default	set	of	flags	(if	-Y 	is	not	specified)	is:	PCD,	LIBRARY,	FLASH,	DEPEX,	HASH,
BUILD_FLAGS	and	FIXED_ADDRESS.

	On	Microsoft	Windows	7,	you	must	be	an	administrator	to	create	a	directory	in	the	root	of	the	C:	drive.
It	recommended	that	you	checkout	edk2	into	your	User	directory,	then	use	the	subst	command	to	map
that	directory	to	a	virtual	drive.

1

1

13.2	Sample	Launch	Steps:	NT32	platformEDK	II	Build	Specification

200Revision	1.28

https://svn.code.sf.net/p/edk2/code/trunk/edk2


13.3	Output
The	output	is	in	raw	text	file	encoded	in	ASCII	character	set	so	that	it	can	be	portable	to	all	OS
environments.	The	text	file	is	supposed	to	be	organized	in	a	logical	way	for	human	readability	and	QA
team's	validation.

Note:	If	the	EXECUTION_ORDER	flag	is	provided	as	the	only	report	type	and	the	-y	option	is	not	provided,
the	tool	will	generate	an	HTML	document,	Report.html	in	the	current	working	directory.

If	any	other	report	type	is	also	requested,	the	report	will	be	a	flat	text	file.	If	the	-y	option	is	provided,
the	report	type	will	also	be	a	flat	text	file	(even	if	you	name	the	file,	using	-y,	as	"Report.html").

13.3.1	Layout
The	layout	of	the	text	report	file:

|----	Platform	summary

				|-----	Conditional	directives	section

				|-----	Unused	PCDs	section

				|-----	Mixed	PCD	section

				|-----	Global	PCD	section

				|-----	FD	section*

								|----	FD	Region	sub-section*

								|----	VPD	PCD	Data	sub-section*

				|----	Module	section*

								|----	Basic	Information	summary

								|----	PCD	sub-section

								|----	Library	sub-section

								|----	DEPEX	sub-section

								|----	Build_flags	sub-section

								|----	Notification	sub-section

Note:	Items	marked	with	*	can	occur	more	than	once	in	one	parent	instance.

13.3.2	Section	and	Sub-section	Format
The	output	report	of	BRG	is	divided	into	platform	and	module	part.	Each	part	may	further	consist	of
sections	and	sub-sections	with	the	following	rules:

1.	 Each	section	starts	with	marker		>==============================<	
2.	 Each	section	ends	with	marker		<==============================>	
3.	 There	must	be	a	section	header	after	each	section	start	marker.
4.	 There	must	a	separator		==========================		to	separate	the	section	header	and	contents	if	the
section	has	non-empty	contents.

5.	 The	section	contents	can	further	be	divided	into	one-level	sub-sections.
6.	 Each	sub-section	starts	with	marker		>-------------------------------------------<	
7.	 Each	sub-section	ends	with	marker		<-------------------------------------------->	
8.	 There	must	be	a	sub-section	header	after	each	section	start	marker.
9.	 There	must	a	separator		--------------------------------------------		to	separate	the	section	header	and
contents	if	the	section	has	non-empty	contents.

10.	 In	general,	each	line	in	section	will	not	exceed	120	characters.

13.3	OutputEDK	II	Build	Specification

201Revision	1.28



Example

Platform	Name:						NT32

Platform	DSC	Path:		s:\edk2\Nt32Pkg\Nt32Pkg.dsc

Architectures:						IA32

Tool	Chain:									VS2008x86

Target:													DEBUG

Output	Path:								s:\edk2\Build\NT32IA32

Build	Environment:		Windows-7-6.1.7601-SP1

Build	Duration:					00:01:53

Report	Contents:				PCD,	LIBRARY,	BUILD_FLAGS,	DEPEX,	HASH,	FLASH,	FIXED_ADDRESS

>==========================================================================<

Firmware	Device	(FD)

FD	Name:												NT32

Base	Address:							0x0

Size:															0x2A0000(2688KB)

============================================================================

>--------------------------------------------------------------------------<

FD	Region

Type:															FV

Base	Address:							0x0

Size:															0x280000	(2560K)

FV	Name:												FvRecovery	(65.9%	Full)

Occupied	Size:						0x1A6028	(1688K)

Free	Size:										0xD9FD8	(872K)

Offset									Module

---------------------------------------------------------------------------

..(List	of	Module	in	FvRecovery)

<-------------------------------------------------------------------------->

>--------------------------------------------------------------------------<

..(List	of	other	FD	region	sub-section)

>==========================================================================<

The	following	sections	describe	these	reports	and	sub-sections	in	detail.

13.3	OutputEDK	II	Build	Specification

202Revision	1.28



13.4	Platform	Summary
Platform	summary	displays	at	the	beginning	of	the	output	report,	including	the	following	items:

Platform	Name	:	%Platform	UI	name:	'	PLATFORM_NAME	'	in	DSC		[Defines]		section%
Platform	DSC	Path:	%Path	of	platform	DSC	file%
Architectures	:	%List	string	of	all	architectures	used	in	build%
Tool	Chain	:	%Tool	chain	string%
Target	:	%Target	String%
SKUID:	%Platform	SKUID	String%
DefaultStore:	%Platform	DefaultStore	String%
Output	Path	:	%Path	to	platform	build	directory%
Build	Environment	:	%Environment	string	reported	by	Python%
Build	Duration	:	%Build	duration	time	string%
AutoGen	Duration	:	%AutoGen	duration	time	string	if	it	exists%
Make	Duration	:	%Make	duration	time	string	if	it	exists%
GenFds	Duration	:	%GenFds	duration	time	string	if	it	exists%
Report	Content	:	%List	of	flags	the	control	the	report	content%

Example

Platform	Name:						NT32

Platform	DSC	Path:		s:\edk2\Nt32Pkg\Nt32Pkg.dsc

Architectures:						IA32

Tool	Chain:									VS2008x86

Target:													DEBUG

SKUID:														DEFAULT

DefaultStore:							STANDARD

Output	Path:								s:\edk2\Build\NT32IA32

Build	Environment:		Windows-7-6.1.7601-SP1

Build	Duration:					00:01:29

AutoGen	Duration:			00:00:10

Make	Duration:						00:01:02

GenFds	Duration:				00:00:15

Report	Contents:				PCD,	LIBRARY,	BUILD_FLAGS,	DEPEX,	FLASH,	FIXED_ADDRESS

Note:	Platform	Summary	is	always	present	and	appears	at	the	beginning	of	report.

13.4.1	PCDs	in	Conditional	Directives
If	a	PCD	is	used	in	a	conditional	directive	statement	in	DSC	or	FDF	file,	this	PCD	section	is	generated.
This	is	optional	section.

PCD	values	derived	from	expressions	or	other	PCDs	are	not	differentiated	in	the	report.	Only	the	final
value	is	displayed.

The	first	line	is	required:

	[*P|*F|*B]	<PcdCName>:	<PcdType>	(<DatumType>)	=	<PcdValue>	

	*P		means	the	Pcd's	value	was	obtained	from	the	DSC	file
	*F		means	the	PCD's	value	was	obtained	from	the	FDF	file.
	*B		means	the	PCD's	value	set	by	a	build	option.
If	no		*P	,		*F		or		*B		is	shown,	the	PCD's	value	comes	from	DEC	file.	If	the	value	obtained	from	either

13.4	Platform	SummaryEDK	II	Build	Specification

203Revision	1.28



a	build	option,	the	DSC	or	FDF	is	the	same	as	the	value	in	the	DEC,	then		*B	,		*P		or		*F		will	not	be
shown	in	the	report.

Note:	If	the	Pcd	is	a	Structure	PCD,		<DatumType>		is	the	Struct	Name.

Additional	lines	may	be	displayed	showing	default	values	when	the	value	is	not	a	default	value.

Example

>==========================================================================<

Conditional	Directives	used	by	the	build	system

============================================================================

PCD	statements

>--------------------------------------------------------------------------<

gMyTokenSpaceGuid

*P	SmmEnable																			:	FEATURE	(BOOLEAN)	=	0x0

																																									DEC	DEFAULT	=	0x1

*B	LogEnable																			:	FIXED			(UNIT32)	=	0x1

																																									DEC	DEFAULT	=	0x0

<-------------------------------------------------------------------------->

>==========================================================================<

13.4.2	PCDs	not	used
If	a	PCD	defined	in	DSC	or	FDF	file,	but	the	PCD	is	not	used	in	a	conditional	directive	statement	and	not
used	by	any	module,	the	not	used	PCD	section	is	generated.	This	is	optional	section.

PCD	values	derived	from	expressions	or	other	PCDs	are	not	differentiated	in	the	report.	Only	the	final
value	is	displayed.

The	first	line	is	required:

	[*P|*F|*B]	<PcdCName>:	<PcdType>	(<DatumType>)	[(<SKUID>)][(<DefaultStore>)]	=	<PcdValue>	

	*P		means	the	Pcd's	value	was	obtained	from	the	DSC	file
	*F		means	the	PCD's	value	was	obtained	from	the	FDF	file.
	*B		means	the	PCD's	value	set	by	a	build	option.
If	no		*P	,		*F		or		*B		is	shown,	the	PCD's	value	comes	from	DEC	file.	If	the	value	obtained	from	either
a	build	option,	the	DSC	or	FDF	is	the	same	as	the	value	in	the	DEC,	then		*B	,		*P		or		*F		will	not	be
shown	in	the	report.

Note:	If	the	Pcd	is	a	Structure	PCD,		<DatumType>		is	the	Struct	Name.

Additional	lines	may	be	displayed	showing	default	values	when	the	value	is	not	a	default	value.

Since	the	PCDs	in	this	section	are	not	used	by	any	module,	the	PCD	value	is	not	evaluated	to	determine
if	it	is	a	valid	value	or	in	a	value	in	a	valid	range.	Instead,	the	PCD	value	from	the	DSC	file,	FDF	file,	or
build	option	are	displayed	exactly	as	they	were	entered.

Example

>==========================================================================<

PCDs	not	used	by	modules	or	in	conditional	directives

============================================================================

PCD	statements

>--------------------------------------------------------------------------<

gMyTokenSpaceGuid

*P	SmmEnable																			:	FEATURE	(BOOLEAN)	=	0x0

																																									DEC	DEFAULT	=	0x1

*B	UsbEnable																			:	FIXED			(UNIT32)	=	0x1

																																									DEC	DEFAULT	=	0x0

<-------------------------------------------------------------------------->

>==========================================================================<

13.4	Platform	SummaryEDK	II	Build	Specification

204Revision	1.28



13.4	Platform	SummaryEDK	II	Build	Specification

205Revision	1.28



13.5	Mixed	PCD	Section
There	is	an	optional	sub-section	that,	when	present,	lists	the	PCDs	in	the	platform	that	use	multiple
access	methods.	This	sub-section	is	only	present	if	there	are	Binary	modules	included	in	the	platform
build	and	the	binary	module	uses	a	different	PCD	access	method	than	other	modules	in	the	same
platform	build.

The	sub-section	header	is:

>===============================================================================<

The	following	PCDs	use	different	access	methods:

=================================================================================

..	(List	of	PCDs)

<===============================================================================>

Format	for	the	entries	in	this	section:

<PcdTokenSpaceGuid>.<PcdCName>

13.5	Mixed	PCD	SectionEDK	II	Build	Specification

206Revision	1.28



13.6	Global	PCD	Section
This	section	contains	the	information	for	all	PCDs	whose	values	are	the	same	for	all	modules	in	a
platform.	The	content	of	global	PCD	sub-section	is	grouped	by	token	space:

gEfiNt32PkgTokenSpaceGuid

...

...

gEfiMdeModulePkgTokenSpaceGuid

...

...

...

PCD	values	derived	from	expressions	or	other	PCDs	are	not	differentiated	in	the	report.	Only	the	final
value	is	displayed.

Each	global	PCD	item	contains	one	or	more	lines:

13.6.1	Required	line
The	first	line	is	required:

	[*P|*F|*B]	<PcdCName>:	<PcdType>	(<DatumType>)	[(<SKUID>)][(<DefaultStore>)]	=	<PcdValue>	

	*P		means	the	PCD's	value	was	obtained	from	the	DSC	file
	*F		means	the	PCD's	value	was	obtained	from	the	FDF	file.
	*B		means	the	PCD's	value	was	obtained	from	a	build	option.
If	no		*P	,		*F		or		*B		is	shown,	the	PCD's	value	comes	from	DEC	file.	If	the	value	obtained	from	either
a	build	option,	the	DSC	or	FDF	is	the	same	as	the	value	in	the	DEC,	then		*B	,		*P		or		*F		will	not	be
shown	in	the	report.

Note:	If	the	Pcd	is	a	Structure	PCD,		<DatumType>		is	the	Struct	Name.

Examples

*P	PcdWinNtFirmwareVolume															:	FIXED			(VOID*)	=	L"..\\Fv\\Nt32.fd"

*F	PcdWinNtFlashNvStorageFtwWorkingBase	:	FIXED			(UINT32)	=	0x0028E000

																																																		DEC	DEFAULT	=	0x0

gTokenSpaceGuid

*B	LogEnable																												:	FIXED			(UNIT32)	=	0x1

																																																		DEC	DEFAULT	=	0x0

*P	TestDynamic																										:		DYN				(VOID*)	(DEFAULT)	=	L"COM1!COM2"

																																								:		DYN				(VOID*)	(SKU1)				=	L"COM3!COM4"

																																								:		DYN				(VOID*)	(SKU2)				=	L"COM5!COM6"

																																																		DEC	DEFAULT	=	L"COM1!COM0"

13.6.2	Optional	lines

13.6.2.1	Dynamic/DynamicEx
if		<PcdType>		is	DYN-HII

	<VariableGuid>:<VariableName>:<Offset>	

Example

*P	PcdGMchDvmtTotalSize	:	DYN-HII	(UINT8)	=	0

13.6	Global	PCD	SectionEDK	II	Build	Specification

207Revision	1.28



																										gSysConfigGuid:	L"Setup":	0xAA

if		<PcdType>		is	DYN-VPD

	<Offset	relative	to	VPD	base	address>	

Example

*F	PcdVpdSample	:	DYN-VPD	(UINT32)	=	1

																		0x0001FFF

13.6.2.2	Default	(optional)	line
The	second	optional	line	is	present	if	the	value	from	the	DSC	was	overridden	by	build	option.	It	is
formatted	as	follows:

	DSC	DEFAULT	=	<Value	in	PCD	Section	in	DSC>	

The	third	optional	line	is	present	if	the	value	from	the	DEC	was	overridden.	It	is	formatted	as	follows:

	DEC	DEFAULT	=	<Value	in	DEC>	

Example

*P	PcdWinNtFirmwareFdSize			:	FIXED	(UINT32)	=	0x2a0000

																														DEC	DEFAULT	=	0x0

13.6.2.3	Additional	optional	lines
Additional	lines	are	optional	and	show	if	the	PCD's	value	was	obtained	from	the	INF	file.	This	will	be	listed
if	the	module's	final	PCD	value	is	not	the	same	as	the	first	line.	The	value	can	be	obtained	from	the	INF
file	only	if	a	single	module	uses	the	PCD.

*M	means	the	PCD's	value	was	obtained	from	the	INF	file.

These	lines	are	formatted	as:

	*M	Inf	Filename	=	<Value>	

Example

*P	PcdDebugPrintErrorLevel	:	PATCH	(UINT32)	=	0x80000042

																																DEC	DEFAULT	=	0x80000000

																																												=	0x80000000

*M	Tcp4Dxe.inf																														=	0x0

Note:	Global	PCD	section	is	present	when	PCD	is	specified	in	-Y 	option.

13.6.2.4	Field	value	for	Structure	PCD
If	the	Pcd	is	a	Structure	Pcd,	every	field	value	that	user	specified	in	DSC/DEC	file	and	build	command	will
print	out.	The	field	value	is	from	DSC/DEC	file	or	build	command,	not	from	the	final	structure	byte	array,
and	the	field	order	is	same	as	it	in	DSC/DEC	file.	when	the	field	value	is	from	build	command,	tool	will
additional	print	a	*B	Flag.

13.6	Global	PCD	SectionEDK	II	Build	Specification

208Revision	1.28



Example

gEfiMdePkgTokenSpaceGuid

*P	TestFix																								:		FIXED			(TEST)	=	{

				0xff,0x02,0x00,0x2e,0xf6,0x08,0x6f,0x19,0x5c,0x8e,0x49,0x91,0x57,0x00,0x00,0x00,

				0x00,0x64,0x00,0x00,0x00}

											.A													=	0x2

											.C													=	0x0

											.Array									=	{0x2e,0xf6,0x08,0x6f,0x19,0x5c,0x8e,0x49,0x91,0x57}

											.D													=	0x64

																																								DEC	DEFAULT	=	{0xFF,0xFF}

											.A													=	0xF

											.C													=	0xF

*B	TestDynamicExHii															:	DEXHII				(TEST)	(SKU1)	(STANDARD)	=	{

				0xff,0x01,0x00,0x2e,0xf6,0x08,0x6f,0x19,0x5c,0x8e,0x49,0x91,0x57,0x00,0x00,0x00,

				0x00,0x64,0x00,0x00,0x00}

											.A													=	0x1

							*B		.C													=	0x0

											.Array									=	{0x2e,0xf6,0x08,0x6f,0x19,0x5c,0x8e,0x49,0x91,0x57}

											.D													=	0x64

																																		:	DEXHII				(TEST)	(SKU1)	(Manufacturing)	=	{

				0xff,0x02,0x00,0x2e,0xf6,0x08,0x6f,0x20,0x5c,0x8e,0x49,0x91,0x57,0x00,0x00,0x00,

				0x00,0x68,0x00,0x00,0x00}

											.A													=	0x2

							*B		.C													=	0x0

											.Array									=	{0x2e,0xf6,0x08,0x6f,0x20,0x5c,0x8e,0x49,0x91,0x57}

											.D													=	0x68

																																								DEC	DEFAULT	=	{0xFF,0xFF}

											.A													=	0xF

											.C													=	0xF

13.6	Global	PCD	SectionEDK	II	Build	Specification

209Revision	1.28



13.7	FD	Section
This	section	contains	platform	flash	device	information	and	its	layout.

13.7.1	FD	Section	Header
Given	that	a	platform	may	have	multi-Firmware	device,	this	section	may	appear	more	than	once	in	the
output	report.	The	section	header	lists	the	name	of	FD	and	its	base	address	and	size.	The	contents	of
the	section	consist	of	one	or	more	FD	region	subsection.

The	line	format	is:	"	%-20(key)s:	%(value)s	"	to	ensure	vertical	alignment.

FD	Name	:	%FD	UI	name:	FD	file	base	name%
Base	Address:	%Base	address	for	the	FD	image%
Size	:	%Size	of	the	FD	image%

Example

>==========================================================================<

Firmware	Device	(FD)

FD	Name:										NT32

Base	Address:					0x0

Size:													0x2a0000(2688KB)

============================================================================

...	(one	or	more	FD	Region	Sub-section)

<==========================================================================>

13.7.2	FD	Region	Sub-section
This	sub-section	contains	FD	region	information	of	platform	flash	device.	If	the	region	is	a	firmware
volume,	it	lists	the	set	of	modules	and	its	space	information;	otherwise,	it	only	lists	its	region	name,
base	address	and	size	in	its	sub-section	header.

The	line	format	is:	"	%-20(key)s:	%(values)s	"	to	ensure	vertical	alignment.

Region	Type	:	%The	type	of	the	FD	region	(FV,	Data,	File	or	None)%
Base	Address:	%Base	address	for	the	FD	region%
Size	:	%Size	of	the	FD	region%
FV	Name*:	%FV	name	and	occupation	percentage%
Occupied	Size*:	%The	occupied	size	of	the	FV%
Free	Size*:	%The	free	size	of	the	FV%

The	contents	of	FD	region	sub-section	contain	the	list:

	(Offset,	Module)*:	%The	list	offset	and	module	INF	file	path	in	the	FV%	

The	items	marked	with	*	are	only	available	when	the	region	type	is	FV.

Example1:

>--------------------------------------------------------------------------<

FD	Region

Type:													FV

Base	Address:					0x0

Size:													0x280000	(2560K)

FV	Name:										FvRecovery	(65.9%	Full)

Occupied	Size:				0x1A6028	(1688K)

Free	Size:								0xD9FD8	(872K)

13.7	FD	SectionEDK	II	Build	Specification

210Revision	1.28



Offset					Module

----------------------------------------------------------------------------

0x00000078	PEI	Apriori

0x000000D8	DXE	Apriori

0x00000FE8	PeiCore	(s:\edk2\MdeModulePkg\Core\Pei\PeiMain.inf)

0x0000EFE8	PcdPeim	(s:\edk2\MdeModulePkg\Universal\PCD\Pei\Pcd.inf)

...(More	list	of	offset	and	modules)

<-------------------------------------------------------------------------->

>--------------------------------------------------------------------------<

Example2:

>--------------------------------------------------------------------------<

FD	Region

Type:													DATA

Base	Address:					0x280000

Size:													0xc000	(48K)

<-------------------------------------------------------------------------->

>--------------------------------------------------------------------------<

FD	Region

Type:													None

Base	Address:					0x28C000

Size:													0x2000	(8K)

<-------------------------------------------------------------------------->

>--------------------------------------------------------------------------<

...(More	list	of	FD	regions)

13.7.3	VPD	PCD	Sub-section
This	section	lists,	in	Offset	order,	every	VPD	PCD	specified	in	the	DSC	file.	The	line	format	for	this	section
is	PcdName	SkuId	Offset	PcdSize	PcdValue.

Base	Address:%Base	address	from	the	start	of	the	FD	file%
Size	:%Size	of	the	FD	region%

For	each	PCD	in	this	region:

PcdName	:	PcdTokenSpaceGuidCname.PcdCname
SkuId	:	The	string	name	of	the	SkuId	for	this	build	(or	DEFAULT	if	no	SkuId	name	is	defined)
Offset	:	The	number	of	bytes	from	the	start	of	the	FD	file
PcdSize	:	Number	of	bytes	reserved	for	this	PCD
PcdValue	:	The	current	value	of	the	PCD,	in	hex	or	(for		VOID*	)	the	byte	array

Note:	There	may	be	gaps	in	the	address	map	as	some	PCDs	may	not	be	required	for	this	specific	build,
but	may	be	required	for	other	builds	based	on	the	same	DSC	file.

Example

>----------------------------------------------------------------------<

FD	VPD	Region

Base	Address:					0x3BC000

Size:													0x04000	(16K)

-----------------------------------------------------------------------

gNoSuchTokenSpaceGuid.NoSuchPciSubsystemVendorId	|	DEFAULT	|	0x003BC000	|	2	|	0x8086

gNoSuchTokenSpaceGuid.NoSuchPciSubsystemDeviceId	|	DEFAULT	|	0x003BC002	|	2	|	0x1000

gNoSuchTokenSpaceGuid.NoSuchGigabitEthernetMac	|	DEFAULT	|	0x003BC004	|	8	|	{0x80,	0x40,	0x20,	0x10,	0x08,	0x04}

gEfiMdeModulePkgTokenSpaceGuid.PcdRsa2048Sha256PublicKeyBuffer	|	DEFAULT	|	0x003BC01C	|	32	|	{0x91,	0x29,	0xc4,	0xbd,	0xea,	0x

6d,	0xda,	0xb3,	0xaa,	0x6f,	0x50,	0x16,	0xfc,	0xdb,	0x4b,	0x7e,	0x3c,	0xd6,	0xdc,	0xa4,	0x7a,	0x0e,	0xdd,	0xe6,	0x15,	0x8c,	0x

73,	0x96,	0xa2,	0xd4,	0xa6,	0x4d}

13.7	FD	SectionEDK	II	Build	Specification

211Revision	1.28



<	----------------------------------------------------------------------	>

Note:	The	whole	FD	section	is	present	when	FLASH	is	specified	in	-Y 	option.

13.7	FD	SectionEDK	II	Build	Specification

212Revision	1.28



13.8	Module	Section
Module	section	lists	all	modules	involved	in	the	platform	build.	If	the	EXECUTION_ORDER	option	is
specified	in	-Y 	option,	the	module	sections	are	sorted	according	to	their	PEI	or	DXE	dispatch	order;
otherwise	the	module	sections	are	listed	according	to	their	DSC	position.

13.8.1	Module	Section	Summary
This	sub-section	lists	the	module	basic	information:	Module	name:	INF	file,	file	GUID,	module	size,	module
build	time	stamp	and	driver	type.

	Module	Name		:	%Module	UI	name:	'	BASE_NAME	'	in	INF		[Defines]		section%
Module	INF	Path:	%Path	of	Module	INF	file%
File	GUID:	%Module	GUID:	'	FILE_GUID	'	in	INF		[Defines]		section%
Size:	%Module	EFI	image	size%
Build	time	stamp:	%The	time	stamp	in	module	PE32	image%	(If	the	time	stamp	is	cleared	to	be	zero,
the	build	time	stamp	is	1970-01-01	00:00:00	UTC	time.)
Module	Build	Time:	%The	time	string	for	this	module's	build%
Driver	Type:	%The	driver's	file	type	code 	and	name	in	firmware	volume%

The	following	entries	are	options:

If	using	defaults	or	the		HASH		flag	is	specified:
SHA1	HASH:	%SHA1	HASH%	and	*%Module	.efi	file	name%

UEFI	Specification	Version:	%The	UEFI	specification	version:'	UEFI_SPECIFICATION_VERSION	'	in	INF		[Defines]	
section%
PI	Specification	Version:	%The	PI	specification	version:'	PI_SPECIFICATION_VERSION	'	in	the	INF		[Defines]	
section%
	PCI	Device	ID	:	%The	PCI	device	ID	for	the	device:	'	PCI_DEVICE_ID	'	in	INF		[Defines]		section%
	PCI	Vendor	ID	:	%The	PCI	vendor	ID	for	the	device:	'	PCI_VENDOR_ID	'	in	INF		[Defines]		section%
	PCI	Class	Code	:	%The	PCI	class	code	for	the	device:	'	PCI_CLASS_CODE	'	in	INF		[Defines]		section%

	The	hex	value	in	this	field	is	the	Firmware	File	Type	value	defined	in	Volume	3	of	the	PI	Specification
(Table	3	Defined	File	Types).

Example1:

>==========================================================================<

Module	Summary

Module	Name:								SmbiosDxe

Module	INF	Path:				MdeModule\Universal\SmbiosDxe\SmbiosDxe.inf

File	GUID:										F9D88642-0737-49BC-81B5-6889CD57D9EA

Size:															0x7000	(28.00K)

SHA1	HASH:										d94c3f180f25d6b562f477bc4a16b286cb66a8b6	*SmbiosDxe.efi

Build	Time	Stamp:			1969-12-31	16:00:00

Module	Build	Time:		1060ms

Driver	Type:								0x7	(DRIVER)

============================================================================

...	(Module	Section	Details	for	SmbiosDxe)

<==========================================================================>

Example2:

>==========================================================================<

Module	Summary

Module	Name:								EbcDxe

Module	INF	Path:				MdeModule\Universal\EbcDxe\EbcDxe.inf

2

2

13.8	Module	SectionEDK	II	Build	Specification

213Revision	1.28



File	GUID:										13AC6DD0-73D0-11D4-B06B-00AA00BD6DE7

Size:															0x9000	(36.00K)

SHA1	HASH:										ff4c019345614afe5c88e7fc37219c30a07f4af4	*EbcDxe.efi

Time	Stamp:									1969-12-31	16:00:00

Module	Build	Time:		1731ms

Driver	Type:								0x7	(DRIVER)

============================================================================

...	(Module	Section	Details	for	EbcDxe)

<==========================================================================>

13.8.2	Library	Sub-section
This	sub-section,	which	follows	each	Module	Summary	section,	holds	the	information	for	all	libraries
used	in	this	module.	If	it	is	an	EDKII	style	module,	it	further	lists	its	correspondent	library	class,	library
constructor	and	destructor	name	if	they	exist.	The	library	instances	are	sorted	by	the	order	of	their
constructor	calling	sequence	and	the	reverse	order	of	their	destructor	calling	sequence.

Library	INF	Path:	Path	of	library	instance	INF	file
Class*:	The	library	class	name	of	the	library	instance
C*:	The	library	constructor	if	it	exists
D*:	The	library	destructor	if	it	exists
Time:	The	build	time	of	this	library	if	it	exists

The	items	marked	with	*	are	only	available	when	the	module	is	an	EDKII	style	module	and	they	must	be
listed	in	the	next	line	immediately	after	library	instance's	INF	path.

An	example	of	the	module's	library	instance	section	is	shown	below.

Following	the	subsection	header,	for	each	library	instance	that	was	linked,	the	format	is:

1.	 The	first	line	is	the	INF	file	name;	this	is	the	fully	qualified	path	and	file	name	of	the	library	instance

2.	 {ClassName}	-	the	name	of	the	library	class	that	the	above	INF	file	provides

If	constructors	are	provided,	for	each	constructor,	the	following	content	is	inserted	in	the	curly
braces	after	the	ClassName:

C	=	ConstructorCname

If	destructors	are	provided,	for	each	destructor,	the	following	is	inserted	in	the	curly	braces
before	the	closing	curly	brace.

D	=	DestructorCname

Display	the	build	time.

Time	=	TimeString

Example1:

>--------------------------------------------------------------------------<

Library

---------------------------------------------------------------------------

s:\edk2\MdePkg\Library\UefiDevicePathLib\UefiDevicePathLib.inf

{DevicePathLib:	Time	=	643ms}

s:\edk2\MdePkg\Library\BaseLib\BaseLib.inf

{BaseLib:	Time	=	14702ms}

s:\edk2\MdePkg\Library\BaseMemoryLib\BaseMemoryLib.inf

{BaseMemoryLib:	Time	=	284ms}

13.8	Module	SectionEDK	II	Build	Specification

214Revision	1.28



s:\edk2\MdePkg\Library\UefiMemoryAllocationLib\UefiMemoryAllocationLib.inf

{MemoryAllocationLib:	Time	=	249ms}

s:\edk2\MdePkg\Library\UefiBootServicesTableLib\UefiBootServicesTableLib.inf

{UefiBootServicesTableLib:	C	=	UefiBootServicesTableLibConstructor	Time	=	219ms}

s:\edk2\MdePkg\Library\DxePcdLib\DxePcdLib.inf

{PcdLib:	C	=	PcdLibConstructor	Time	=	265ms}

s:\edk2\MdePkg\Library\UefiRuntimeServicesTableLib\UefiRuntimeServicesTableLib.inf

{UefiRuntimeServicesTableLib:	C	=	UefiRuntimeServicesLibConstructor	Time	=	203ms}

s:\edk2\MdePkg\Library\BaseIoLibIntrinsic\BaseIoLibIntrinsic.inf

{IoLib:	Time	=	702ms}

s:\edk2\MdePkg\Library\BasePciCf8Lib\BasePciCf8Lib.inf

{PciCf8Lib:	Time	=	345ms}

s:\edk2\MdePkg\Library\BasePciLibCf8\BasePciLibCf8.inf

{PciLib:	Time	=	341ms}

s:\edk2\MdePkg\Library\BasePrintLib\BasePrintLib.inf

{PrintLib:	Time	=	312ms}

s:\edk2\Ich9Pkg\Library\IntelIchAcpiTimerLib\IntelIchAcpiTimerLib.inf

{TimerLib:	C	=	IntelAcpiTimerLibConstructor	Time	=	282ms}

s:\edk2\MdePkg\Library\UefiLib\UefiLib.inf

{UefiLib:	Time	=	733ms}

s:\edk2\MdePkg\Library\BaseSynchronizationLib\BaseSynchronizationLib.inf

{SynchronizationLib:	Time	=	920ms}

s:\edk2\MdePkg\Library\DxeHobLib\DxeHobLib.inf

{HobLib:	C	=	DxeHobLibConstructor	Time	=	218ms}

s:\edk2\MdePkg\Library\UefiDriverEntryPoint\UefiDriverEntryPoint.inf

{UefiDriverEntryPoint	Time	=	234ms}

s:\edk2\MdePkg\Library\UefiRuntimeLib\UefiRuntimeLib.inf

{UefiRuntimeLib:	C	=	UefiRuntimeLibConstructor	D	=	UefiRuntimeLibDestructor	Time	=	265ms}

<-------------------------------------------------------------------------->

Example2:

>--------------------------------------------------------------------------<

Library

---------------------------------------------------------------------------

s:\edk2\R8MyPlatformPkg\Guid\GuidLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Guid\EdkGuidLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Protocol\EdkProtocolLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Library\RuntimeDxe\EfiRuntimeLib\EfiRuntimeLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Core\Dxe\ArchProtocol\ArchProtocolLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Library\CompilerStub\CompilerStubLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Guid\EdkGuidLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Framework\Protocol\EdkFrameworkProtocolLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Efi\Guid\EfiGuidLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Efi\Protocol\EfiProtocolLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Library\EfiCommonLib\EfiCommonLib.inf

s:\edk2\EdkCompatibilityPkg\Foundation\Framework\Guid\EdkFrameworkGuidLib.inf

<-------------------------------------------------------------------------->

Note:	This	sub-section	is	present	when	LIBRARY	is	specified	in	-Y 	option.

13.8.3	PCD	Sub-section
This	sub-section	(following	the	Module	Summary	information)	holds	the	information	for	all	PCDs	used	in
this	module.	The	content	of	module	PCD	sub-section	is	divided	by	token	space	such	as:

gEfiNt32PkgTokenSpaceGuid

...

...

gEfiMdeModulePkgTokenSpaceGuid

...

...

...

13.8	Module	SectionEDK	II	Build	Specification

215Revision	1.28



Each	PCD	may	contain	up	to	four	lines:

1.	 The	first	line	is	a	mandatory	line	with	the	following	format:		[*P|*F|*B|*M]	<PcdCName>:	<PcdType>	(<DatumType>)
[(<SKUID>)][(<DefaultStore>)]	=	<PcdValue>	

Note:	If	the	Pcd	is	a	Structure	PCD,		<DatumType>		is	the	Struct	Name.

*P	means	the	Pcd's	value	is	the	platform	default	(listed	in	DSC	PCD	common	section	or	inherited
from	Module	INF	file).
*M	means	the	PCD's	value	in	module	INF	was	obtained	from	the		[Components]		section	of	the	DSC
file.
*F	means	the	PCD's	value	is	override	in	FDF	file.
*B	means	the	PCD's	value	is	override	in	build	option.
If	no	*P	or	*F	or	*B	or	*M,	mean	the	PCD's	value	comes	from	DEC	file.
For	example:

*P	PcdWinNtFirmwareVolume	:	FIXED	(VOID*)	=	L"..\\Fv\\Nt32.fd"

2.	 The	second	line	is	the	optional	line

if		<PcdType>		is	DYN-HII

<VariableGuid>:<VariableName>:<Offset>

For	example:

*P	PcdGMchDvmtTotalSize	:	DYN-HII	(UINT8)	=	0

																										gSysConfigGuid:	L"Setup":	0xAA

if		<PcdType>		is	DYN-VPD

<Offset	relative	to	VPD	base	address>

For	example:

*F	PcdVpdSample	:	DYN-VPD	(UINT32)	=	1

																		0x0001FFF

3.	 The	third	and	fourth	lines	are	both	option	if	the	module's	final		<PcdValue>		is	not	equal	to	the	PCD
value	in	the	PCD	common	section	in	the	DSC	file	and	the	PCD	value	in	the	DEC	file	respectively.

DSC	DEFAULT	=	<Value	in	PCD	Common	Section	in	DSC>

DEC	DEFAULT	=	<Value	in	DEC>

For	example:

*P	PcdPlatformBootTimeOut	:	DYNHII	(UINT16)	=	10

																		gEfiGlobalVariableGuid:	L"Timeout":	0x0

																																																DEC	DEFAULT	=	0xffff

*M	PcdDebugPrintErrorLevel	:	FIXED			(UINT32)	=	0x80000042

																													DSC	DEFAULT	=	0x80000040

																													DEC	DEFAULT	=	0x80000000

4.	 Additional	lines	may	exist	if	the	PCD	is	Structure	PCD.	Every	field	value	that	user	specified	in	DSC/DEC
file	and	build	command	will	print	out.	The	field	value	is	from	DSC/DEC	file	or	build	command,	not	from
the	final	structure	byte	array,	and	the	field	order	is	same	as	it	in	DSC/DEC	file.	when	the	field	value	is
from	build	command,	tool	will	additional	print	a	*B	Flag.

13.8	Module	SectionEDK	II	Build	Specification

216Revision	1.28



Note:	This	sub-section	is	present	when	PCD	is	specified	in	-Y 	option.

13.8.4	DEPEX	Sub-section
This	sub-section	(following	the	Module	Summary	information)	holds	module	dependency	expression
(DEPEX)	information.	The	sub-section	header	holds	the	module	dependency	expression	instructions	and
final	dependency	expression.	If	the	module	is	an	EDK	II	style	module	and	it	inherits	dependency	from
one	of	its	library	instance,	it	lists	the	inherited	library	dependency	expression	in	the	sub-section
contents.

Note:	For		UEFI_DRIVER		module	types,	the	tools	may	optimize	the	depex	to	none,	and	therefore,	a	DEPEX
report	may	not	be	output.	However,	some		UEFI_DRIVER		modules	may	produce	a	DEPEX	section	if	libraries
that	they	have	been	linked	with	have	DEPEX	sections.

Example1:

>--------------------------------------------------------------------------<

Final	Dependency	Expression	(DEPEX)	Instructions

		PUSH	gEfiFirmwareVolumeBlock2ProtocolGuid

		PUSH	gEfiRuntimeArchProtocolGuid

		PUSH	gEfiPcdProtocolGuid

		PUSH	gEfiDevicePathUtilitiesProtocolGuid

		AND

		AND

		AND

		END

----------------------------------------------------------------------------

Dependency	Expression	(DEPEX)	from	INF

(gEfiFirmwareVolumeBlockProtocolGuid	AND	gEfiRuntimeArchProtocolGuid)	AND

(gEfiPcdProtocolGuid)	AND

(gEfiDevicePathUtilitiesProtocolGuid)

---------------------------------------------------------------------------

From	Module	INF:		gEfiFirmwareVolumeBlockProtocolGuid	AND

gEfiRuntimeArchProtocolGuid

From	Library	INF:	(gEfiPcdProtocolGuid)	AND

(gEfiDevicePathUtilitiesProtocolGuid)

<-------------------------------------------------------------------------->

Example2:

>--------------------------------------------------------------------------<

Dependency	Expression	(DEPEX)	Instructions

		PUSH	gEfiPciRootBridgeIoProtocolGuid

		PUSH	gEfiVariableArchProtocolGuid

		PUSH	gEfiVariableWriteArchProtocolGuid

		PUSH	gEfiMetronomeArchProtocolGuid

		PUSH	gEfiRuntimeArchProtocolGuid

		PUSH	gEfiHiiDatabaseProtocolGuid

		AND

		AND

		AND

		AND

		AND

		END

-----------------------------------------------------------------------

Dependency	Expression	(DEPEX)	from	DXS

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID	AND	EFI_VARIABLE_ARCH_PROTOCOL_GUID	AND

EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID	AND	EFI_METRONOME_ARCH_PROTOCOL_GUID	AND

EFI_RUNTIME_ARCH_PROTOCOL_GUID	AND	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID	AND

13.8	Module	SectionEDK	II	Build	Specification

217Revision	1.28



EFI_HII_DATABASE_PROTOCOL_GUID

<-------------------------------------------------------------------------->

Note:	This	sub-section	is	present	when	DEPEX	is	specified	in	-Y 	option.

13.8.5	Build	Flags	Sub-section
This	sub-section	(following	the	Module	Summary	information)	holds	module	build	flags	information.	The
sub-section	header	holds	the	module	tool	chain	tag	and	the	subsection	contents	list	all	related	build
flags,	arranged	using	the	tool	code	and	flag	attributes	defined	in	the		Conf/tools_def.txt		file.

Example

>--------------------------------------------------------------------------<

Build	Flags

Tool	Chain	Tag:	VS2008x86

----------------------------------------------------------------------------

SLINK_FLAGS	=		/NOLOGO	/LTCG

----------------------------------------------------------------------------

DLINK_FLAGS	=		/NOLOGO	/NODEFAULTLIB	/IGNORE:4001	/OPT:REF	/OPT:ICF=10	/MAP	/

ALIGN:32	/SECTION:.xdata,D

/SECTION:.pdata,D	/MACHINE:X86	/LTCG	/DLL	/ENTRY:$(IMAGE_ENTRY_POINT)	/

SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER	/SAFESEH:NO

/BASE:0	/DRIVER	/DEBUG	/EXPORT:InitializeDriver=$(IMAGE_ENTRY_POINT)	/

BASE:0x10000	/ALIGN:4096	/FILEALIGN:4096

/SUBSYSTEM:CONSOLE

----------------------------------------------------------------------------

CC_FLAGS	=	/nologo	/c	/WX	/GS-	/W4	/Gs32768	/D	UNICODE	/O1ib2	/GL	/FIAutoGen.h	/

EHs-c-	/GR-	/GF	/Gy	/Zi	/Gm

<--------------------------------------------------------------------------->

Note:	This	sub-section	is	present	when		BUILDFLAGS		is	specified	in		-Y		option.

13.8.6	Fixed	Address	Prediction	Sub-section
This	sub-section	(following	the	Module	Summary	information)	contains	module	notification	function
information.	All	the	notification	functions	are	listed	with	the	following	triplet	line	by	line:

	(Type,	Address,	Name)	

%The	address	type,	predicted	address,	and	function	name%

The	second	character	of	the	Type	indicates	whether	the	address	is	in	Flash	or	Memory.

Example1:

>----------------------------------------------------------------------<

Fixed	Address	Prediction

*I			Image	Loading	Address

*E			Entry	Point	Address

*N			Notification	Function	Address

*F			Flash	Address

*M			Memory	Address

*S			SMM	RAM	Offset

TOM		Top	of	Memory

Type	Address								Name

13.8	Module	SectionEDK	II	Build	Specification

218Revision	1.28



-----------------------------------------------------------------------

*IF		0x00fffe6dac			(Image	Base)

*EF		0x00fffe6e74			_ModuleEntryPoint

*NF		0x00fffe70b5			EndOfPeiCallback

*NF		0x00fffe83f0			MemoryDiscoveredPpiNotifyCallback

*IM		0x003ef48000			(Image	Base)

*EM		0x003ef480c8			_ModuleEntryPoint

*NM		0x003ef48309			EndOfPeiSignalPpiNotifyCallback

*NM		0x003ef49644			EndOfPeiCallback

<---------------------------------------------------------------------->

Example2:

>----------------------------------------------------------------------<

Fixed	Address	Prediction

*I			Image	Loading	Address

*E			Entry	Point	Address

*N			Notification	Function	Address

*F			Flash	Address

*M			Memory	Address

*S			SMM	RAM	address

TOM		Top	of	Memory

Type	Address											Name

-----------------------------------------------------------------------

*IM		TOM-0x00014000			(Image	Base)

*EM		TOM-0x00013d60			_ModuleEntryPoint

*IS		TOM-0x00034000			(Image	Base)

*ES		TOM-0x00033d60			_ModuleEntryPoint

<---------------------------------------------------------------------->

Note:	This	sub-section	is	present	when		FIXEDADDRESS		is	specified	in		-Y		option.

13.8	Module	SectionEDK	II	Build	Specification

219Revision	1.28



13.9	Execution	Order	Prediction	Section
This	section	contains	platform	level	prediction	for	the	execution	flow.	Each	phase	list	the	following	triple
in	their	predicted	order:

	(Type,	Name,	Module	INF	Path)	

%The	entry	point	or	notification	function	name%

Example

>======================================================================<

Execution	Order	Prediction

*P	PEI	phase

*D	DXE	phase

*E	Module	INF	entry	point	name

*N	Module	notification	function	name

Type	Symbol										Module	INF	Path

========================================================================

*PE			PeiCore								s:\edk2\MdeModulePkg\Core\Pei\PeiMain.inf

*PE			PcdPeimInit				s:\edk2\MdeModulePkg\Universal\Pcd\Pei\Pcd.inf

...

*PN	EndOfPeiCallback	s:\edk2\MyPlatform\PlatformPei\PlatformPei.inf

*DE	DxeMain										s:\edk2\MdeModulePkg\Core\Dxe\DxeMain.inf

*DE	PcdDxeInit							s:\edk2\MdeModulePkg\Universal\Pcd\Dxe\Pcd.inf

...

<======================================================================>

Note:	This	section	is	present	when	EXECUTIONORDER	is	specified	in	-Y 	option.

The	following	figure	shows	the	HTML	format	with	an	entry	expanded.

13.9	Execution	Order	Prediction	SectionEDK	II	Build	Specification

220Revision	1.28



Figure	24	Report.html

13.9	Execution	Order	Prediction	SectionEDK	II	Build	Specification

221Revision	1.28



APPENDIX	A	VARIABLES
One	of	the	core	concepts	of	this	utility	is	the	notion	of	symbols.	Use	of	symbols	follows	the	makefile
convention	of	enclosing	within	$(),	for	example	$(EFI_SOURCE).	As	the	utility	processes	files	during
execution,	it	will	often	perform	parsing	of	variable	assignments.	These	variables	can	then	be	referenced
in	other	sections	of	the	DSC	file.	Variable	assignments	will	be	saved	internally	in	either	a	local	or	global
symbol	table.	The	local	symbol	table	is	purged	following	processing	of	individual	Platform	(DSC)	files.
Global	symbol	values	persist	throughout	execution	of	the	utility.	Local	symbol	values	take	precedent
over	global	symbols.	The	following	table	describes	the	symbols	generated	internally	by	the	utility.	They
can	be	overridden	either	on	the	command	line,	in	the	DSC	file,	or	in	individual	INF	files.	The	G/L	column
indicates	whether	the	symbol	is	typically	a	global	(appears	in	all	Makefiles)	or	a	local	(to	the	module's
Makefile)	symbol.

Variable	descriptions	follow	in	Table	21.

Note:	This	table	does	not	list	required	system	environment	variables	or	optional	system	environment
variable.

Table	21	Variable	Descriptions

Variable
Name G/L Description

	BIN_DIR	 L Specifies	the	directory	where	final	component	binaries	are	deposited
during	build.	Typically		$(BUILD_DIR)\$(PROCESSOR)	

	BUILD_DIR	 G Defines	the	build	tip	directory	for	the	current	platform.	For	example,	this
may	be		$(EFI_SOURCE)\Platform\Anacortes_870	.

	BUILD_TYPE	 L
If	defined,	then	the	utility	will	copy	the		[build.$(PROCESSOR).$(BUILD_TYPE)]		section
from	the	DSC	file	to	the	component's	makefile.	If	not	specified,	then	the
	[build.$(PROCESSOR).$(COMPONENT_TYPE)]		section	will	be	used	to	emit	command	to
build	the	component.

	DEST_DIR	 L For	a	component,	defines	the	directory	(typically	under		BUILD_DIR	)	where	the
component	object	files	are	to	be	built.

	DSC_FILENAME	 G Name	of	the	DSC	file	as	specified	on	the	command	line.	Can	be	used	for
dependencies	in	the	Makefiles.

	EDK_SOURCE	 G
Defines	the	root	directory	of	the	local	EFI	source	tree,	for	example		C:\EFI2.0	
If	not	defined	as	an	environmental	variable	when	the	tool	is	invoked,	the
utility	will	attempt	to	determine	a	reasonable	value	based	on	the	current
working	directory.

	FILE	 L As	the	utility	processes	each	source	file	in	the	Platform	(DSC)	file,	this
symbol	gets	assigned	the	name	of	the	file,	less	the	file	extension.

	FV_EXT	 L

Common	component	type	(BS	driver,	application,	etc.)	have	predefined	file
name	extensions	assigned	(.dxe,	.app,	etc.).	If	there	is	a	deviation	from	the
convention,	or	a	new	(unknown	to	the	utility)	component	type	is	being	built,
then		FV_EXT		may	need	to	be	defined	for	the	component	so	the	utility	knows
the	result	file	name	extension.	This	information	is	necessary	to	generate
dependencies	in		makefile.out	.

	INF_FILENAME	 L Name	of	the	INF	file	for	a	given	component.	Can	be	used	for	dependencies
in	the	Makefiles.

	LIB_DIR	 L
Specifies	the	directory	where	EFI	libraries	are	deposited	after	building.
Typically		$(BUILD_DIR)\$(PROCESSOR)	

Appendix	A	VariablesEDK	II	Build	Specification

222Revision	1.28



	MAKEFILE_NAME	 L
Name	of	the	output	makefile	for	the	component.	Default	is	"makefile".	This
value	can	be	overridden	to	support	building	different	variations	of	a
component	in	the	same	DEST_DIR	directory.

	OUT_DIR	 L Unused,	but	typically		$(BUILD_DIR)\$(PROCESSOR)	

	PACKAGE	 L/G
If	defined,	then	the	utility	will	create	a	package	file	named
	$(DEST_DIR)\$(BASE_NAME).pkg	,	and	copy,	with	macro	expansion,	the
	[package.$(COMPONENT_TYPE).$(PACKAGE)]		section	from	the	DSC	file	to	the	output	file.

	PACKAGE_FILE	 L
If	defined,	then	the	utility	will	not	generate	a	package	file.	The	build	can
then	use	the	value		$(PACKAGE_FILE)		to	have	GenFfsFile	use	an	existing
package	file	for	creating	the	firmware	file.

	PLATFORM	 L
This	symbol	can	be	used	to	provide	more	selectivity	of	files	in	the	Platform
(DSC)	files.	If	assigned,	then	the	utility	will	also	process	any	files	in	the	INF
file	under	sections		[sources.$(PROCESSOR).$(PLATFORM)]	,
	[includes.$(PROCESSOR).$(PLATFORM)]	,	and		[libraries.$(PROCESSOR).$(PLATFORM)]	.

	PROCESSOR	 G/L
Defines	the	target	processor	for	which	the	code	is	to	be	built.	This	symbol
will	typically	be	used	to	include	or	exclude	source	files	in	Platform	(DSC)
files,	and	to	define	the	tool	chain	for	building.

	SOURCE_DIR	 L For	a	component,	defines	the	directory	of	the	component	source	files.

Appendix	A	VariablesEDK	II	Build	Specification

223Revision	1.28



APPENDIX	B	TOOLS_DEF.TXT
The	following	is	the	default	version	of	the		tools_def.txt		file.	No	line	wrapping	is	permitted	in	the
	tools_def.txt		file.

Line	extension	characters	are	not	permitted	in	this	file.	Each	entry	must	reside	on	a	single	line.

The		edksetup.bat		(or		edksetup.sh	)	script	will	copy	the	template	file	from	the		BaseTools/Conf		directory	into	the
(system	environment	variable		WORKSPACE	)		WORKSPACE/Conf		directory	and	rename	it	if	it	does	not	already	exist.

Appendix	B	tools_def.txtEDK	II	Build	Specification

224Revision	1.28



APPENDIX	C	TARGET.TXT
No	line	wrapping	is	permitted	in	the		target.txt		file.

The		edksetup.bat		(or		edksetup.sh	)	script	will	copy	the	template	file	from	the		BaseTools/Conf		directory	into	the
(system	environment	variable		WORKSPACE	)		WORKSPACE/Conf		directory	and	rename	it	if	it	does	not	already	exist.

Appendix	C	target.txtEDK	II	Build	Specification

225Revision	1.28



APPENDIX	D	BUILD.EXE	COMMAND
This	section	describes	the	build.exe	command	line	tool's	options.	Build.exe	is	generated	from	Python
code.	Options	on	the	command	line	may	be	specified	in	any	order.

Appendix	D	build.exe	commandEDK	II	Build	Specification

226Revision	1.28



D.1	Overview
Under	normal	circumstances,	the	build	tool	will:

1.	 Process	the	command-line	options
2.	 Parse	the	meta-data	files
3.	 Generate	the	C	files
4.	 Generate	the	Makefiles
5.	 Call	the	make	command.

D.1	OverviewEDK	II	Build	Specification

227Revision	1.28



D.2	Makefile	actions
The	module's		Makefile		is	responsible	for	compilation	of	the	source	code	and	executing	the	GenFw
command	on	the	intermediate	object	files	in	order	to	create	the		.efi		files.

The	actions	taken	by	the		Makefile		are:

1.	 Create	the	build	output	directories
2.	 Build	the	libraries
3.	 Build	the	modules
4.	 Call	the	GenFds	tool
5.	 The	last	step	of	the		Makefile		processing	is	to	call	the	GenFds	tool	that	will:

Process	the	command-line	options
Parse	the	meta-data	files
Create	FFS,	Capsules,	FV	images	and	the	final	FD	image(s).

D.2	Makefile	actionsEDK	II	Build	Specification

228Revision	1.28



D.3	Build	Targets	and	options
In	order	to	provide	flexibility,	the	build	command	supports	stopping	the	build	process	after	specific
actions	have	taken	place.	These	targets	will	ensure	that	all	previously	required	actions	have	been
completed.	New	for	this	release	is	the	implementation	of	targets	that	permit	processing	files	for	only
one	given	step,	such	that	previous	steps	are	NOT	processed.	Table	22	provides	the	descriptions	of
targets	supported	by	the	build,	as	well	as	the	GenFds	tools.

Note:	The	flag,	--skip-autogen,	is	required	to	prevent	the	build	tool	from	re-creating	the	auto
generated	C	and	Makefiles.

Table	22	Build	Targets	and	Command-line	Options

Target Description

genc Generates	the	C	code	files	(AutoGen.c,	AutogGen.h	and	ModuleName.depex)	then
stops

genmake Generates	the	C	code	files	(AutoGen.c,	AutoGen.h	and	ModuleName.depex)	then	the
Makefiles,	then	stops

libraries Generates	the	C	code	files,	the	Makefiles,	then	generates	the	object	files	for	libraries

modules
Generates	the	C	code	files,	the	Makefiles,	generates	the	object	files	for	libraries,
generates	the	object	files	for	the	modules,	then	links	them,	then	calls	GenFw	for	each
of	the	intermediate	final	objects	to	create	.efi	files

fds
Generates	the	C	code	files,	the	Makefiles,	generates	the	object	files	for	libraries,
generates	the	object	files	for	the	modules,	links	them,	calls	GenFw	for	each	of	the
intermediate	final	objects	to	create	.efi	files,	generates	SECTION	files,	generates	FFS
files,	generates	FV	files	and	finally	generates	FD	files

D.3	Build	Targets	and	optionsEDK	II	Build	Specification

229Revision	1.28



D.4	Usage

Usage:	build.exe	[options]

[all|fds|genc|genmake|clean|cleanall|cleanlib|modules|libraries|run]

Copyright	(c)	2007	-	2017,	Intel	Corporation	All	rights	reserved.

Options:

		--version													show	program's	version	number	and	exit

		-h,	--help												show	this	help	message	and	exit

		-a	TARGETARCH,	--arch=TARGETARCH

																								ARCHS	is	one	of	list:	IA32,	X64,	IPF,	ARM,	AARCH64	or

																								EBC,	which	overrides	target.txt's	TARGET_ARCH

																								definition.	To	specify	more	archs,	please	repeat	this

																								option.

		-p	PLATFORMFILE,	--platform=PLATFORMFILE

																								Build	the	platform	specified	by	the	DSC	file	name

																								argument,	overriding	target.txt's	ACTIVE_PLATFORM

																								definition.

		-m	MODULEFILE,	--module=MODULEFILE

																								Build	the	module	specified	by	the	INF	file	name

																								argument.

		-b	BUILDTARGET,	--buildtarget=BUILDTARGET

																								Using	the	TARGET	to	build	the	platform,	overriding

																								target.txt's	TARGET	definition.

		-t	TOOLCHAIN,	--tagname=TOOLCHAIN

																								Using	the	Tool	Chain	Tagname	to	build	the	platform,

																								overriding	target.txt's	TOOL_CHAIN_TAG	definition.

		-x	SKUID,	--sku-id=SKUID

																								Using	this	name	of	SKU	ID	to	build	the	platform,

																								overriding	SKUID_IDENTIFIER	in	DSC	file.

		-n	THREADNUMBER							Build	the	platform	using	multi-threaded	compiler.	The

																								value	overrides	target.txt's

																								MAX_CONCURRENT_THREAD_NUMBER.	When	value	is	set	to	0,

																								tool	automatically	detect	number	of	processor	threads,

																								set	value	to	1	means	disable	multi-thread	build,	and

																								set	value	to	more	than	1	means	user	specify	the	threads

																								number	to	build.

		-f	FDFFILE,	--fdf=FDFFILE

																								The	name	of	the	FDF	file	to	use,	which	overrides	the

																								setting	in	the	DSC	file.

		-r	ROMIMAGE,	--rom-image=ROMIMAGE

																								The	name	of	FD	to	be	generated.	The	name	must	be	from

																								[FD]	section	in	FDF	file.

		-i	FVIMAGE,	--fv-image=FVIMAGE

																								The	name	of	FV	to	be	generated.	The	name	must	be	from

																								[FV]	section	in	FDF	file.

		-C	CAPNAME,	--capsule-image=CAPNAME

																								The	name	of	Capsule	to	be	generated.	The	name	must	be

																								from	[Capsule]	section	in	FDF	file.

		-u,	--skip-autogen				Skip	AutoGen	step.

		-e,	--re-parse								Re-parse	all	meta-data	files.

		-c,	--case-insensitive

																								Don't	check	case	of	file	name.

		-w,	--warning-as-error

																								Treat	warning	in	tools	as	error.

		-j	LOGFILE,	--log=LOGFILE

																								Put	log	in	specified	file	as	well	as	on	console.

		-s,	--silent										Make	use	of	silent	mode	of	(n)make.

		-q,	--quiet											Disable	all	messages	except	FATAL	ERRORS.

		-v,	--verbose									Turn	on	verbose	output	with	informational	messages

																								printed,	including	library	instances	selected,	final

																								dependency	expression,	and	warning	messages,	etc.

		-d	DEBUG,	--debug=DEBUG

																								Enable	debug	messages	at	specified	level.

		-D	MACROS,	--define=MACROS

																								Macro:	"Name	[=	Value]".

		-y	REPORTFILE,	--report-file=REPORTFILE

																								Create/overwrite	the	report	to	the	specified	filename.

D.4	UsageEDK	II	Build	Specification

230Revision	1.28



		-Y	REPORTTYPE,	--report-type=REPORTTYPE

																								Flags	that	control	the	type	of	build	report	to

																								generate.	Must	be	one	of:	[PCD,	LIBRARY,	FLASH,	DEPEX,

																								HASH,	BUILD_FLAGS,	FIXED_ADDRESS,	EXECUTION_ORDER].

																								To	specify	more	than	one	flag,	repeat	this	option	on

																								the	command	line	and	the	default	flag	set	is	[PCD,

																								LIBRARY,	FLASH,	DEPEX,	HASH,	BUILD_FLAGS,

																								FIXED_ADDRESS]

		-F	FLAG,	--flag=FLAG		Specify	the	specific	option	to	parse	EDK	UNI	file.

																								Must	be	one	of:	[-c,	-s].	-c	is	for	EDK	framework	UNI

																								file,	and	-s	is	for	EDK	UEFI	UNI	file.	This	option	can

																								also	be	specified	by	setting	*_*_*_BUILD_FLAGS	in

																								[BuildOptions]	section	of	platform	DSC.	If	they	are

																								both	specified,	this	value	will	override	the	setting

																								in	[BuildOptions]	section	of	platform	DSC.

		-N,	--no-cache								Disable	build	cache	mechanism

		--conf=CONFDIRECTORY		Specify	the	customized	Conf	directory.

		--check-usage									Check	usage	content	of	entries	listed	in	INF	file.

		--ignore-sources						Focus	to	a	binary	build	and	ignore	all	source	files

		--pcd=OPTIONPCD							Set	PCD	value	by	command	line.	Format:	"PcdName=Value"

		-l	COMMANDLENGTH,	--cmd-len=COMMANDLENGTH

																								Specify	the	maximum	line	length	of	build	command.

																								Default	is	4096.

		--hash																Enable	hash-based	caching	during	build	process.

		--binary-destination=BINCACHEDEST

																								Generate	a	cache	of	binary	files	in	the	specified

																								directory.

		--binary-source=BINCACHESOURCE

																								Consume	a	cache	of	binary	files	from	the	specified

																								directory.

D.4.1	Debug	Levels
The	numeric	debug	levels	are	defined	as	integer	values	0-9.

Level	0	will	provide	a	few	extra	messages	that	might,	under	certain	environments,	cause	a	build	to
break,	during	later	stages	of	the	build.

Level	1	provides	messages	from	level	0,	along	with	information	related	to	PCDs.

Level	2	provides	messages	from	levels	1	and	0,	along	with	information	related	to	Macros.

Level	3	provides	all	messages	from	levels	0	-	2,	along	with	information	related	to	Library	Classes	as	well
as	generating	code	for	PCDs	during	AutoGen.

Level	4	provides	all	previous	level	messages	-	no	new	information	is	added

Level	5	provides	all	previous	level	information	as	well	as	information	regarding	the	database	that	is	used
by	the	build	system	tools	to	decrease	incremental	build	times	as	well	as	HII	information.

Levels	6	and	7	provides	all	previous	messages	-	no	new	information	is	added

Level	8	provides	all	previous	messages	as	well	as	adding	build	process	information,	such	as	queues	and
threads	running.

Level	9	provides	the	most	details,	displaying	all	previous	messages	and	adding	information	about	what
is	happening	at	each	step	during	the	build.

D.4.2	MACRO	Option	Definition
This	section	provides	the	EBNF	for	the		-D		option,	which	allows	users	to	specify	macro	values	on	the
command-line.	Macro	values	on	the	command-line	take	precedence	over	Macros	defined	in	the	DSC	and
FDF	files.

Prototype

D.4	UsageEDK	II	Build	Specification

231Revision	1.28



<MacroOption>				::=	{<ShortOpt>}	{<LongOpt>}

<SP>													::=	0x20

<MTS>												::=	<SP>+

<ShortOpt>							::=	"-D"	<SP>	<MACRO>	["="	<Value>]	<MTS>

<LongOpt>								::=	"--define"	"="	<MACRO>	["="	<Value>]	<MTS>

<MACRO>										::=	(A-Z)(a-zA-Z0-9_)*

<Value>										::=	{<Number>}	{<CString>}	{<TrueFalse>}	{<RegFmtGUID>}

<Number>									::=	{"0x"	(a-fA-F0-9)+}	{(0-9)+

<CString>								::=	["L"]	<QuotedString>

<QuotedString>			::=	<DblQuote>	<CChars>*	<DblQuote>

<DblQuote>							::=	0x22

<CChars>									::=	{0x21}	{(0x23	-	0x5B)}	{(0x5D	-	0x7E)}	{<EscapeSequence>}

<EscapeSequence>	::=	"\"	{"n"}	{"t"}	{"f"}	{"r"}	{"b"}	{"0"}	{"\"}	{0x22}

<TrueFalse>						::=	{"TRUE"}	{"True"}	{"true"}	{"FALSE"}	{"False"}	{"false"}

<H4>													::=	(a-fA-F0-9)	(a-fA-F0-9)	(a-fA-F0-9)	(a-fA-F0-9)

<H8>													::=	<H4>	<H4>

<H12>												::=	<H4>	<H4>	<H4>

<RegFmtGUID>					::=	<H8>	"-"	<H4>	"-"	<H4>	"-"	<H4>	"-"	<H12>

D.4.3	PCD	Option	Definition
This	section	provides	the	EBNF	for	the		--pcd		option,	which	allows	users	to	specify	PCD	values	on	the
command-line.	PCD	values	on	the	command-line	take	precedence	over	PCD	provided	in	DSC,	FDF,	INF,
and	DEC	files.

Prototype

<PcdOption>							::=	"--pcd"	<PcdName>	["="	<PcdValue>]	<MTS>

<SP>														::=	0x20

<MTS>													::=	<SP>+

<TS>														::=	<SP>*

<CommaSpace>						::=	","	<SP>*

<HexDigit>								::=	(a-fA-F0-9)

<CName>											::=	A	valid	C	variable	name.

<PcdName>									::=	[<TokenSpaceCName>	"."]	<PcdCName>	["."	<Field>]

<TokenSpaceCName>	::=	C	Variable	Name	of	the	Token	Space	GUID

<PcdCName>								::=	C	Variable	Name	of	the	PCD

<Field>											::=	C	Variable	Name	of	the	Structure	PCD	field

<PcdValue>								::=	{<Boolean>}	{<Number>}	{<String>}	{<Array>}

<Number>										::=	{<Integer>}	{<HexNumber>}

<Integer>									::=	{(0-9)}	{(1-9)(0-9)+}

<HexNumber>							::=	{"0x"}	{"0X"}	(a-fA-F0-9){1,16}

<Boolean>									::=	{<True>}	{<False>}

<True>												::=	{"TRUE"}	{"True"}	{"true"}	{"1"}	{"0x1"}	{"0x01"}

<False>											::=	{"FALSE"}	{"False"}	{"false"}	{"0"}	{"0x0"}	{"0x00"}

<String>										::=	{<QuotedStr>}	{<SglQuotedStr>}

<QuotedStr>							::=	["L"]	<DblQuote>	<PrintChars>*	<DblQuote>

<SglQuotedStr>				::=	["L"]	<DblQuote>	"\"	<SglQuote>	<PrintChars>*

																						"\"	<SglQuote>	<DblQuote>

<PrintChars>						::=	{<TS>}	{<CChars>}

<DblQuote>								::=	0x22

<SglQuote>								::=	0x27

<CChars>										::=	{0x21}	{(0x23	-	0x26)}	{(0x28	-	0x5B)}	{(0x5D	-	0x7E)}

																						{<EscapeSequence>}

<EscapeSequence>		::=	"\"	{"n"}	{"t"}	{"f"}	{"r"}	{"b"}	{"0"}	{"\"}

																						{<DblQuote>}	{<SglQuote>}

<Array>											::=	"H"	<DblQuote>	"{"[<Lable>]	<ArrayVal>

																						[<CommaSpace>	[<Lable>]	<ArrayVal>]*"}"	<DblQuote>

<ArrayVal>								::=	{<Num8Array>}	{<GuidStr>}	{<DevicePath>}

<ShortNum>								::=	(0-255)

<IntNum>										::=	(0-65535)

<LongNum>									::=	(0-4294967295)

<LongLongNum>					::=	(0-18446744073709551615)

<UINT8>											::=	{"0x"}	{"0X"}	(a-fA-F0-9){1,2}

<UINT16>										::=	{"0x"}	{"0X"}	(a-fA-F0-9){1,4}

<UINT32>										::=	{"0x"}	{"0X"}	(a-fA-F0-9){1,8}

<UINT64>										::=	<HexNumber>

D.4	UsageEDK	II	Build	Specification

232Revision	1.28



<ArrayString>					::=	{<ArrayQuotedStr>}	{<ArraySglQuotedStr>}

<ArrayQuotedStr>		::=	["L"]	"\"	<DblQuote>	<PrintChars>*	"\"	<DblQuote>

<ArraySglQuotedStr>::=	["L"]	"\"	<SglQuote>	<PrintChars>*	"\"	<SglQuote>

<NonNumType>						::=	{<Boolean>}	{<ArrayString>}	{<Offset>}	{<UintMac>}

<Num8Array>							::=	{<NonNumType>}	{<ShortNum>}	{<UINT8>}

<Num16Array>						::=	{<NonNumType>}	{<IntNum>}	{<UINT16>}

<Num32Array>						::=	{<NonNumType>}	{<LongNum>}	{<UINT32>}

<Num64Array>						::=	{<NonNumType>}	{<LongLongNum>}	{<UINT64>}

<GuidStr>									::=	"GUID("	<GuidVal>	")"

<GuidVal>									::=	{"\"<DblQuote>	<RegistryFormatGUID>	"\"<DblQuote>}

																						{<CFormatGUID>}	{<CName>}

<RegistryFormatGUID>::=	<RHex8>	"-"	<RHex4>	"-"	<RHex4>	"-"	<RHex4>	"-"

																						<RHex12>

<RHex4>											::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<RHex8>											::=	<RHex4>	<RHex4>

<RHex12>										::=	<RHex4>	<RHex4>	<RHex4>

<RawH2>											::=	<HexDigit>?	<HexDigit>

<RawH4>											::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>

<OptRawH4>								::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>?

<Hex2>												::=	{"0x"}	{"0X"}	<RawH2>

<Hex4>												::=	{"0x"}	{"0X"}	<RawH4>

<Hex8>												::=	{"0x"}	{"0X"}	<OptRawH4>	<RawH4>

<Hex12>											::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<RawH4>

<Hex16>											::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<OptRawH4>

																						<RawH4>

<CFormatGUID>					::=	"{"	<Hex8>	<CommaSpace>	<Hex4>	<CommaSpace>

																						<Hex4>	<CommaSpace>	"{"

																						<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																						<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																						<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																						<Hex2>	<CommaSpace>	<Hex2>	"}"	"}"

<DevicePath>						::=	"DEVICE_PATH("	<DevicePathStr>	")"

<DevicePathStr>			::=	A	double	quoted	string	that	follow	the	device	path

																						as	string	format	defined	in	UEFI	Specification	2.6

																						Section	9.6

<UintMac>									::=	{<Uint8Mac>}	{<Uint16Mac>}	{<Uint32Mac>}	{<Uint64Mac>}

<Uint8Mac>								::=	"UINT8("	<Num8Array>	")"

<Uint16Mac>							::=	"UINT16("	<Num16Array>	")"

<Uint32Mac>							::=	"UINT32("	<Num32Array>	")"

<Uint64Mac>							::=	"UINT64("	<Num64Array>	")"

<Lable>											::=	"LABEL("	<CName>	")"

<Offset>										::=	"OFFSET_OF("	<CName>	")"

**********

**Note:**	The	"	and	'	inside	the	string,	must	use	escape	character	format	(\",	\').

**********

D.4	UsageEDK	II	Build	Specification

233Revision	1.28



APPENDIX	E	NT32	PLATFORM	EMULATION
The	NT32Pkg	provides	a	platform	emulation	environment	that	executes	on	windows	platform.	The	EDK	II
build	program	is	used	to	start	the	emulation	environment	after	it	has	been	built.	The		Nt32Pkg\Nt32Pkg.dsc	
file	has	been	modified	to	also	build	a	version	that	will	run	on	64-bit	versions	of	Windows.	The
architectural	modifier,	-a,	of	the	build.exe	command	is	used	to	enable	this	option.

Prior	to	building	the	platform:		Nt32Pkg\Nt32Pkg.dsc	,	the	user	may	want	to	modify	PCD	settings	in	the	file.	The
following	PCDs	control	the	mappings	of	your	system	environment	to	the	emulation	environment.

	PcdWinNtSerialPort|L"COM1!COM2"|VOID*|18	

This	maps	the	serial	port	to	COM1	or	COM2	(if	COM1	is	not	available).

	PcdWinNtFileSystem|L".!..\.\.\.\\EdkShellBinPkg\\bin\\ia32\\Apps"|VOID*|106	

This	shows	the	location	of	the	shell	applications.

	PcdWinNtGop|L"UGA	Window	1!UGA	Window	2"|VOID*|50	

This	defines	label	for	the	two	windows	that	are	started.

	PcdWinNtConsole|L"Bus	Driver	Console	Window"|VOID*|50	

This	defines	label	for	the	windows	that	are	started.

	PcdWinNtVirtualDisk|L"FW;40960;512"|VOID*|24	

This	defines	the	max	and	block	sizes	for	the	virtual	disk	drive	that	is	created.

	PcdWinNtMemorySize|L"64!64"|VOID*|10	

This	defines	the	memory	available	for	the	emulator	in	megabytes.

	PcdWinNtPhysicalDisk|L"a:RW;2880;512!d:RO;307200;2048!j:RW;262144;512"|VOID*|100	

This	defines	the	available	storage	devices	that	must	be	present	at	startup,	A:,	D:	and	J:	-	you	may	want
to	change	the	drive	letters	to	match	the	development	environment	-	note	that	you	must	not	use	the	C:
drive,	as	you	could	inadvertently	wipe	it	out.

	PcdWinNtUga|L"UGA	Window	1!UGA	Window	2"|VOID*|50	

This	defines	label	for	the	two	windows	that	are	started

Appendix	E	NT32	Platform	EmulationEDK	II	Build	Specification

234Revision	1.28



APPENDIX	F	FIRMWARE	VOLUME	INF
The	Firmware	Volume	INF	file	is	generated	by	the	EDK	II	build	tools	as	an	intermediate	file	between	the
code	generation	stage	and	the	final	image	creation	stage.

Appendix	F	Firmware	Volume	INFEDK	II	Build	Specification

235Revision	1.28



F.1	Firmware	Volume	INF	Description
The	Firmware	Volume	INF	files	are	generated	by	tool	based	on	content	from	Platform	description	files
(DSC)	and	Flash	definition	files	(FDF)	and	may	contain	these	three	sections:		[options]	,		[attributes]		and
	[files]	.

This	file	is	an	input	to	the	GenFvImage	utility.

<FIRMWARE_VOLUME_INF>	::=	[<options>]

																										[<attributes>]

																										[<files>]

F.1	Firmware	Volume	INF	DescriptionEDK	II	Build	Specification

236Revision	1.28



F.2	[Attributes]	Section

Summary
Defines	the		[Attributes]		tag	is	found	only	in	Firmware	Volume	INF	files.	This	file	is	created	by	the	tools
and	is	an	input	to	the	GenFv	utility.	Refer	to	the	document,	"Intel(R)	Platform	Innovation	Framework	for
EFI,	Firmware	Volume	Block	Specification"	for	more	information	on	these	values.	This	is	an	optional
section.

Prototype

<attributes>	::=	"[attributes]"	<EOL>

																	<expression>

<expression>	::=	["EFI_READ_DISABLED_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_READ_ENABLED_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_READ_STATUS"	"="	<TrueFalse>	<EOL>]

																	["EFI_WRITE_DISABLED_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_WRITE_ENABLED_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_WRITE_STATUS"	"="	<TrueFalse>	<EOL>]

																	["EFI_LOCK_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_LOCK_STATUS"	"="	<TrueFalse>	<EOL>]

																	["EFI_ERASE_POLARITY"	"="	<ZeroOne>	<EOL>]

																	["EFI_STICK_WRITE"	"="	<TrueFalse>	<EOL>]

																	["EFI_MEMORY_MAPPED"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_CAP"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_2"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_4"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_8"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_16"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_32"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_64"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_128"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_256"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_512"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_1K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_2K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_4K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_8K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_16K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_32K"	"="	<TrueFalse>	<EOL>]

																	["EFI_ALIGNMENT_64K"	"="	<TrueFalse>	<EOL>]

<TrueFalse>		::=	{<ZeroOne>}	{<TF>}

<TF>									::=	{<True>}	{<False>}

<True>							::=	{"TRUE"}	{"True"}	{"true"}

<False>						::=	{"FALSE"}	{"False"}	{"false"}

<ZeroOne>				::=	{"0"}	{"1"}

<EOL>								::=	end	of	line

Example

[attributes]

		EFI_READ_DISABLED_CAP		=	TRUE

		EFI_READ_ENABLED_CAP			=	TRUE

		EFI_READ_STATUS								=	TRUE

		EFI_WRITE_DISABLED_CAP	=	TRUE

		EFI_WRITE_ENABLED_CAP		=	TRUE

		EFI_WRITE_STATUS							=	TRUE

		EFI_LOCK_CAP											=	TRUE

		EFI_LOCK_STATUS								=	FALSE

		EFI_STICKY_WRITE							=	TRUE

		EFI_MEMORY_MAPPED						=	TRUE

		EFI_ERASE_POLARITY					=	1

F.2	[Attributes]	SectionEDK	II	Build	Specification

237Revision	1.28



		EFI_ALIGNMENT_CAP						=	TRUE

		EFI_ALIGNMENT_2								=	TRUE

		EFI_ALIGNMENT_4								=	TRUE

		EFI_ALIGNMENT_8								=	TRUE

		EFI_ALIGNMENT_16							=	TRUE

		EFI_ALIGNMENT_32							=	TRUE

		EFI_ALIGNMENT_64							=	TRUE

		EFI_ALIGNMENT_128						=	TRUE

		EFI_ALIGNMENT_256						=	TRUE

		EFI_ALIGNMENT_512						=	TRUE

		EFI_ALIGNMENT_1K							=	TRUE

		EFI_ALIGNMENT_2K							=	TRUE

		EFI_ALIGNMENT_4K							=	TRUE

		EFI_ALIGNMENT_8K							=	TRUE

		EFI_ALIGNMENT_16K						=	TRUE

		EFI_ALIGNMENT_32K						=	TRUE

		EFI_ALIGNMENT_64K						=	TRUE

F.2	[Attributes]	SectionEDK	II	Build	Specification

238Revision	1.28



F.3	[Files]	Section

Summary
Defines	the		[files]		tag	is	found	only	in	Firmware	Volume	INF	files.	This	file	is	created	by	the	build	utility
and	is	an	input	to	the	GenFv	utility.

Prototype

<files>										::=	"[files]"	<EOL>

																					<expression>+

<expression>					::=	<Filename>	[<COMPONENT_TYPE>]	[<FVS>]

																					[<FFSEXT>]	["PROCESSOR="	<arch>]	[<APRORI>]

																					[<EFN>]	<EOL>

<Filename>							::=	<PATH>	<Word>	<Extension>

<COMPONENT_TYPE>	::=	Refer	to	Table	"Component	(module)	Types"

<PATH>											::=	[[".."]{0,1}	"\"]*	{<Word>	{"\"}{0,1}}*

<arch>											::=	{IA32}	{X64}	{IPF}	{EBC}

<FVS>												::=	"FVs="	<FvImageName>[",	<FvImageName>]*

<FvImageName>				::=	<Word>

<FFSEXT>									::=	"FFSExt="	<Extension>

<APRIORI>								::=	"APRIORI="	<FvImageNameIdx>

																					[","	<FvImageNameIdx>]*

<FvImageNameIdx>	::=	<FvImageName>	":"	<PositiveInt>

<PositiveInt>				::=	Integer	value	greater	than	0

<EFN>												::=	"EFI_FILE_NAME"	"="	<Path>	<Arch>

																					<FileSep>	<Word>	<Extension>

<Extension>						::=	"."	(a-zA-Z0-9_-)+

Example

[files]

		EFI_FILE_NAME	=	C:EdkSamplePlatformNt32BuildIA322D2E62CF-9ECF-43b7-821994E7FC713DFE-UsbKb.dxe

		EFI_FILE_NAME	=	C:EdkSamplePlatformNt32BuildIA32A5C6D68B-E78A-4426-9278A8F0D9EB4D8F-UsbMassStorage.dxe

		EFI_FILE_NAME	=	C:EdkSamplePlatformNt32BuildIA322D2E62AA-9ECF-43b7-8219-94E7FC713DFE-UsbMouse.dxe

		EFI_FILE_NAME	=	C:EdkSamplePlatformNt32BuildIA32961578FE-B6B7-44c3-AF356BC705CD2B1F-Fat.dxe

F.3	[Files]	SectionEDK	II	Build	Specification

239Revision	1.28



F.4	[Options]	Section

Summary
Defines	the		[options]		tag	is	found	only	in	Firmware	Volume	INF	files.	This	is	an	optional	section.

Prototype

<options>				::=	"[options]"	<EOL>

																	<expression>+

<expression>	::=	<Variable>	"="	<Value>	<EOL>

<Variable>			::=	{"EFI_BASE_ADDRESS"}	{"EFI_BLOCK_SIZE"}

																	{"EFI_FILE_NAME"}	{"EFI_NUM_BLOCKS"}

																	{"EFI_SYM_FILE_NAME"}	("IA32_RST_BIN"}

<CName>						::=	A	valid	C	variable	name

<VAL>								::=	"0x"	<HexDigit>{1,8}

<Value>						::=	{<String>}	{<VAL>}	{<Filename>}

Example

[options]

		EFI_BASE_ADDRESS	=	0xFFD80000

		EFI_FILE_NAME				=	FvRecovery.fv

		EFI_NUM_BLOCKS			=	0x28

		EFI_BLOCK_SIZE			=	0x10000

F.4	[Options]	SectionEDK	II	Build	Specification

240Revision	1.28



APPENDIX	G	VS2005	TEAM	SUITE
PERFORMANCE	PROFILE
This	appendix	provides	the	best	known	method	for	using	Microsoft	Visual	Studio	2005*	Team	Suite	to
get	performance	data.	It	involves	"porting"	the	EFI	code	to	a	Win32	console	application	and	then	using
the	VS	Performance	Wizard	to	figure	out	how	to	tune	it.

Appendix	G	VS2005	Team	Suite	PerformanceEDK	II	Build	Specification

241Revision	1.28



G.1	Step	1	-	Create	a	new	project
On	the	Menu	bar,	select:	File->New->Project..

In	the	Project	types:	frame	select	Visual	C++	->	Win32

In	the	Templates:	frame	then	select	Win32	Console	Application

Give	the	project	name	and	a	solution
Accept	the	default	settings	from	the	wizard.

A		<project	name>.cpp		file	will	be	generated

<project	name>.cpp

//	Test.cpp	:	Defines	the	entry	point	for	the	console	application.

//

#include	"stdafx.h"

int	_tmain	(int	argc,	_TCHAR	*argv[])

{

				return	0;

}

G.1	Step	1	-	Create	a	new	projectEDK	II	Build	Specification

242Revision	1.28



G.2	Step	2	-	Update	the	project
You	will	need	to	update	the	new	project	to	support	reading	in	input	files	and	writing	data	to	an	output
file:

#include	"stdafx.h"

#include	<windows.h>

include	<stdio.h>

void

*Malloc	(

		int		Size

		)

{

		return	HeapAlloc	(GetProcessHeap	(),	0,	Size);

}

int

_tmain	(

		int					argc,

		_TCHAR		*argv[]

		)

{

		HANDLE																						hFile;

		HANDLE																						hOutFile;

		DWORD																							Error;

		DWORD																							BytesRead;

		BY_HANDLE_FILE_INFORMATION		FileInfo;

		void																								*Buffer;

		int																									Status;

		UINT32																						DestinationSize;

		VOID																								*Destination;

		Status	=	0;

		printf	("test	%d\n",	argc);

		if	(argc	<=	1)	{

				return	0;

		}

		hFile	=	CreateFile	(

												argv[1],

												GENERIC_READ,

												FILE_SHARE_READ,

												NULL,

												OPEN_EXISTING,

												0,

												0

												);

		if	(hFile	==	INVALID_HANDLE_VALUE)	{

				Error	=	GetLastError	();

				return	Error;

		}

		if	(!GetFileInformationByHandle	(hFile,	&FileInfo))	{

				Error	=	GetLastError	();

				return	Error;

		}

		if	(FileInfo.nFileSizeHigh	!=	0)	{

				//	Assume	input	file	is	less	than	4GB	in	size

				return	0;

		}

		Buffer	=	Malloc	(FileInfo.nFileSizeLow);

		if	(!ReadFile	(hFile,	Buffer,	FileInfo.nFileSizeLow,	&BytesRead,	NULL))	{

				Error	=	GetLastError	();

				return	Error;

G.2	Step	2	-	Update	the	projectEDK	II	Build	Specification

243Revision	1.28



		}

		//	Process	File	...

		//	DestinationSize	=	...

		//	Destination	=	...

		//	If	a	2nd	argument	exists	it	is	a	file	name	to	write	data	to

		if	((argc	>=	3)	&&	(Status	==	0))	{

				hOutFile	=	CreateFile	(

																	argv[2],

																	GENERIC_WRITE	|	GENERIC_READ,

																	0,

																	NULL,

																	CREATE_ALWAYS,

																	FILE_ATTRIBUTE_NORMAL,

																	NULL

																	);

				if	(hOutFile	!=	INVALID_HANDLE_VALUE)	{

						if	(!WriteFile	(hOutFile,	Destination,	DestinationSize,	&BytesRead,	NULL))	{

								Error	=	GetLastError	();

						}

						CloseHandle	(hOutFile);

				}

		}

		CloseHandle	(hFile);

		return	0;

}

G.2.1	To	pass	an	argument	in	to	the	console	application
Do	the	following:

1.	 Update	the		<project	name>		Property	Pages:
2.	 Right	click	on	the		<project	name>		in	the	Solution	Explorer	pain
3.	 Select	preferences
4.	 In	the	configurations:	window	select	All	Configurations
5.	 In	the	left	hand	pain	select	Configuration	Properties->Debugging
6.	 Under	Command	Arguments	type	in	the	command	line.	In	my	example	the	input	file	is	compress	and
the	output	file	is	decompress.out

In	this	example	compress	is	the	EDK	II	NT32	FV	(2.5MB)	compressed	to	707K.

So		decompress.out		must	be	2.5MB	NT32	FV.

G.2	Step	2	-	Update	the	projectEDK	II	Build	Specification

244Revision	1.28



Figure	25	VS2005	Property	Page

This	example	required	the	EDK	II	Decompress	Lib	be	ported	into	this	environment	as	follows:

1.	 Add	EDK	II	EFI	type	definitions	to	get	the	EFI	code	to	compile.

//

//	Map	EFI	types

//

typedef	unsigned	__int64		UINT64;

typedef	__int64											INT64;

typedef	unsigned	__int32		UINT32;

typedef	__int32											INT32;

typedef	unsigned	short				UINT16;

typedef	unsigned	short				CHAR16;

typedef	short													INT16;

typedef	unsigned	char					BOOLEAN;

typedef	unsigned	char					UINT8;

typedef	char														CHAR8;

#define	UINT8_MAX		0xff

2.	 Convert	EFI_STATUS/RETURN_STATUS	to	int	and	removed	#defines	for	return	values	to	make	it	easier
for	the	code	to	compile.

3.	 Glue	in	the	EFI	code	into	_tmain()

		//	Process	File

		Status	=	UefiDecompressGetInfo	(

													Buffer,

													FileInfo.nFileSizeLow,

													&DestinationSize,	&ScratchSize

													);

		if	(Status	==	0)	{

				Destination	=	Malloc	(DestinationSize);

				Scratch	=	Malloc	(ScratchSize);

G.2	Step	2	-	Update	the	projectEDK	II	Build	Specification

245Revision	1.28



				if	((Scratch	!=	NULL)	&&	(Destination	!=	NULL))	{

						Status	=	UefiTianoDecompress	(Buffer,	Destination,	Scratch,	2);

						if	(Status	!=	0)	{

								printf	("Decompress	Failed");

						}

				}

		}

G.2.2	Step	3	Run	the	Performance	Wizard
1.	 Tools->Performance	Tools->Performance	Wizard...
2.	 Make	sure	your	project	is	selected	and	hit	Next
3.	 When	you	are	asked	what	method	of	profiling	would	like	to	use	select	Instrumentation.

The	default	is	Sampling	so	you	must	change	this
4.	 Then	type	Finish
5.	 A	Performance	Explorer	pain	will	show	up.
6.	 Right	click	on	you	project	name	and	select	Launch

This	will	rebuild	your	application	with	performance	infrastructure.
Under	Reports	you	will	see	a		<Project	Name>[date].vsp		file	that	contains	the	info

Make	sure	you	profile	in	the	Release	build	and	not	the	Debug	build	for	best	results.

The	following	is	an	example	of	the	output	you	will	see.

Figure	26	VS2005	Performance	Summary

From	the	summary,	it	appears	that	Decode()	must	have	a	very	hot	loop	in	it.	DecodeC	and	FillBuf	are
very	simple,	but	they	are	called	so	many	times	a	very	small	improvement	will	be	multiplied	by	100,000.

Expanding	the	call	tree	view	can	be	very	useful.

G.2	Step	2	-	Update	the	projectEDK	II	Build	Specification

246Revision	1.28



Figure	27	VS2005	Call	Tree	View

Definition	of	terms	http://msdn2.microsoft.com/en-us/library/ms242753(VS.80).aspx

G.2	Step	2	-	Update	the	projectEDK	II	Build	Specification

247Revision	1.28

http://msdn2.microsoft.com/en-us/library/ms242753(VS.80).aspx


APPENDIX	H	MODULE	TYPES
Table	23	EDK	II	Module	Types

MODULE_TYPE
Supported
Architecture

Types
Description

	BASE	 Any
Modules	or	Libraries	can	be	ported	to	any	execution
environment.	This	module	type	is	intended	to	be	used	by
silicon	module	developers	to	produce	source	code	that	is	not
tied	to	any	specific	execution	environment.

	SEC	 Any
Modules	of	this	type	are	designed	to	start	execution	at	the
reset	vector	of	a	CPU.	They	are	responsible	for	preparing	the
platform	for	the	PEI	phase.

	PEI_CORE	 Any This	module	type	is	used	by	PEI	Core	implementations	that
are	compliant	with	the	PI	Specification.

	PEIM	 Any This	module	type	is	used	by	PEIMs	that	are	compliant	with
the	PI	specification.

	DXE_CORE	 Any This	module	type	is	used	by	DXE	Core	implementations	that
are	compliant	with	the	PI	Specification.

	DXE_DRIVER	 Any This	module	type	is	used	by	DXE	Drivers	that	are	compliant
with	the	PI	Specification.

	DXE_RUNTIME_DRIVER	 Any
This	module	type	is	used	by	DXE	Drivers	that	are	compliant	to
the	PI	Specification.	These	modules	execute	in	both	boot
services	and	runtime	services	environments.

	DXE_SAL_DRIVER	 IPF

This	module	type	is	used	by	DXE	Drivers	that	can	be	called	in
physical	mode	before	SetVirtualAddressMap()	is	called	and
either	physical	mode	or	virtual	mode	after
SetVirtualAddressMap()	has	been	called.	This	module	type	is
only	available	for	IPF	processor	types.

	DXE_SMM_DRIVER	 IA32,	X64 This	module	type	is	used	by	DXE	Drivers	that	are	loaded	into
SMRAM.

	SMM_CORE	 Any This	is	the	SMM	core.

	UEFI_DRIVER	 Any

This	module	type	is	used	by	UEFI	Drivers	that	are	compliant
with	the	EFI	1.10	and	UEFI	specifications.	These	modules
provide	services	in	the	boot	services	execution	environment.
UEFI	Drivers	that	return	EFI_SUCCESS	are	not	unloaded	from
memory.	UEFI	Drivers	that	return	an	error	are	unloaded	from
memory.

	UEFI_APPLICATION	 Any
This	module	type	is	used	by	UEFI	Applications	that	are
compliant	with	the	EFI	1.10	and	EFI	2.0	specifications.	UEFI
Applications	are	always	unloaded	when	they	exit.

Appendix	H	Module	TypesEDK	II	Build	Specification

248Revision	1.28



APPENDIX	I	VPD	TOOL
This	appendix	describes	the	format	of	the	build	system	created	file	containing	the	PCD	information	from
the	DSC	file,	and	the	output	map	file	from	an	external	tool	that	will	be	used	by	the	EDK	II	build	system	to
create	header	files	for	the	PCD	drivers.

Appendix	I	VPD	ToolEDK	II	Build	Specification

249Revision	1.28



I.1	Build	System	Output	File	Format

Summary
The	build	system	will	generate	a	text	file	containing	a	list	of	PCDs	that	have	been	declared	as	type	VPD.
An	external	tool	that	processes	this	file	must	be	capable	of	reading	the	following	format.

Prototype

<File>												::=	<AutoGenHeading>

																						[<CommentBlock>]	[<PcdEntry>]*

<AutoGenHeading>		::=	"##	@file"	<EOL>	"#"	<EOL>

																						"#	THIS	IS	AUTO-GENERATED	FILE	BY	BUILD	TOOLS"

																						"	AND	PLEASE	DO	NOT	MAKE	MODIFICATION."	<EOL>

																						"#"	<EOL>

																						"#	This	file	lists	all	VPD	information	for	a"

																						"	platform	collected	by	build.exe."	<EOL>

																						"#"	<EOL>

																						"#	Copyright	(c)	2010,	Intel	Corporation.	All"

																						"	rights	reserved.<BR>"	<EOL>

																						"#	This	program	and	the	accompanying	materials"	<EOL>

																						"#	are	licensed	and	made	available	under	the"

																						"	terms	and	conditions	of	the	BSD	License"	<EOL>

																						"#	which	accompanies	this	distribution.	The"

																						"	full	text	of	the	license	may	be	found	at"	<EOL>

																						"#	"

																						"http://opensource.org/licenses/bsd-license.php"

																						<EOL>	"#"	<EOL>

																						"#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD"

																						"	LICENSE	ON	AN	\"AS	IS\"	BASIS,"	<EOL>

																						"#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY"

																						"	KIND,	EITHER	EXPRESS	OR	IMPLIED."	<EOL>

<CommentBlock>				::=	["#"	<String>	<EOL>]*

<PcdEntry>								::=	<PcdName>	"|"	<Offset>	"|"	<Size>	"|"	<PcdValue>	<EOL>

<PcdName>									::=	<TokenSpaceCName>	"."	<PcdCName>

<TokenSpaceCName>	::=	C	Variable	Name	of	the	Token	Space	GUID

<PcdCName>								::=	C	Variable	Name	of	the	PCD

<Offset>										::=	{"*"}	{<Number>}

<HexNumber>							::=	"0x"	(a-fA-F0-9)8

<Size>												::=	<Number>

<PcdValue>								::=	if	(pcddatumtype	==	"BOOLEAN"):

																								<Boolean>

																						elif	(pcddatumtype	==	"UINT8"):

																								<HexByte>

																						elif	(pcddatumtype	==	"UINT16"):

																								<HexWord>

																						elif	(pcddatumtype	==	"UINT32"):

																								<HexLong>

																						elif	(pcddatumtype	==	"UINT64"):

																								<HexLongLong>

																						else:

																								<StringData>	[<MaxSize>]

<Number>										::=	{<HexNumber>}	{<NonNegativeInt>}

<PcdNumber>							::=	if	NumType	==	UINT8

																								<HexByte>

																						if	NumType	==	UINT16

																								<HexWord>

																						if	NumType	==	UINT32

																								<HexLong>

																						if	NumType	==	UINT64

																								<HexLongLong>

<HexByte>									::=	"0x"(a-fA-F0-9){1,2}

<HexWord>									::=	"0x"	(a-fA-F0-9){1,4}

<HexLong>									::=	"0x"	(a-fA-F0-9){1,8}

<HexLongLong>					::=	"0x"	(a-fA-F0-9){1,16}

I.1	Build	System	Output	File	FormatEDK	II	Build	Specification

250Revision	1.28



<Boolean>									::=	{<True>}	{<False>}

<True>												::=	{"TRUE"}	{"True"}	{"true"}	{"1"}	{"0x1"}	{"0x01"}

<False>											::=	{"FALSE"}	{"False"}	{"false"}	{"0"}	{"0x0"}	{"0x00"}

<NonNegativeInt>		::=	(0-9)+

<StringData>						::=	{<QString>}	{<CArray>}

<QString>									::=	["L"]	<DblQuote>	<String>	<DblQuote>

<DblQuote>								::=	0x22

<CArray>										::=	"{"	<NList>	"}"

<NList>											::=	<HexByte>	[","	<HexByte>]*

Example

##	@file

#

#	THIS	IS	AUTO-GENERATED	FILE	BY	BUILD	TOOLS	AND	PLEASE	DO	NOT	MAKE	MODIFICATION.

#

#	This	file	lists	all	VPD	information	for	a	platform	collected	by	build.exe.

#

#	Copyright	(c)	2010,	Intel	Corporation.	All	rights	reserved.<BR>

#	This	program	and	the	accompanying	materials

#	are	licensed	and	made	available	under	the	terms	and	conditions	of	the	BSD	License

#	which	accompanies	this	distribution.	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

#

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoHorizontalResolution|*|4|800

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoVerticalResolution|*|4|600

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutRow|*|4|25

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutColumn|*|4|80

I.1	Build	System	Output	File	FormatEDK	II	Build	Specification

251Revision	1.28



I.2	VPD	Tool	Map	File	Format

Summary
The	build	system	will	expect	the	following	format	in	the	file	generated	by	an	external	tool	that	processes
the	VPD	PCDs.	This	format	will	be	used	by	the	build	system	to	generate	header	files	for	the	PCD	drivers.

Prototype

<File>												::=	<AutoGenHeader>

																						[<CommentBlock>]

																						[<PcdEntry>]*

<AutoGenHeading>		::=	"##	@file"	<EOL>	"#"	<EOL>

																						"#	THIS	IS	AUTO-GENERATED	FILE	BY	BUILD	TOOLS"

																						"	AND	PLEASE	DO	NOT	MAKE	MODIFICATION."	<EOL>

																						"#"	<EOL>

																						"#	This	file	lists	all	VPD	information	for	a"

																						"	platform	collected	by	build.exe."	<EOL>

																						"#"	<EOL>

																						"#	Copyright	(c)	2010,	Intel	Corporation.	All"

																						"	rights	reserved.<BR>"

																						"#	This	program	and	the	accompanying	materials"

																						"#	are	licensed	and	made	available	under	the"

																						"	terms	and	conditions	of	the	BSD	License"

																						"#	which	accompanies	this	distribution.	The"

																						"	full	text	of	the	license	may	be	found	at"

																						"#	"

																						"http://opensource.org/licenses/bsd-license.php"

																						<EOL>	"#"	<EOL>

																						"#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD"

																						"	LICENSE	ON	AN	\"AS	IS\"	BASIS,"

																						"#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY"

																						"	KIND,	EITHER	EXPRESS	OR	IMPLIED."

<CommentBlock>				::=	["#"	<String>	<EOL>]*

<FS>														::=	<Space>*	"|"	<Space>*

<Space>											::=	0x20

<PcdEntry>								::=	<PcdName>	<FS>	<Offset>	<FS>	<PcdValue>	<EOL>

<PcdName>									::=	<TokenSpaceCName>	"."	<PcdCName>

<TokenSpaceCName>	::=	C	Variable	Name	of	the	Token	Space	GUID

<PcdCName>								::=	C	Variable	Name	of	the	PCD

<Offset>										::=	"0x"	(a-fA-F0-9){1,8}

<Size>												::=	<Number>

<PcdValue>								::=	if	(pcddatumtype	==	"BOOLEAN"):

																								"BOOLEAN"	<FS>	<Boolean>

																						elif	(pcddatumtype	==	"UINT8"):

																								"UINT8"	<FS>	<HexByteZ>

																						elif	(pcddatumtype	==	"UINT16"):

																								"UINT16"	<FS>	<HexWordZ>

																						elif	(pcddatumtype	==	"UINT32"):

																								"UINT32"	<FS>	<HexLongZ>

																						elif	(pcddatumtype	==	"UINT64"):

																								"UINT64"	<FS>	<HexLongLongZ>

																						else:

																								<Size>	<FS>	<StringData>

<HexByteZ>								::=	"0x"(a-fA-F0-9)(a-fA-F0-9)

<HexWord>									::=	"0x"	(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

<HexLong>									::=	"0x"	(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

																											(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

<HexLongLong>					::=	"0x"	(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

																											(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

																											(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

																											(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)(a-fA-F0-9)

<Number>										::=	{<HexNumber>}	{<NonNegativeInt>}

<Boolean>									::=	{<True>}	{<False>}

<True>												::=	{"TRUE"}	{"True"}	{"true"}	{"1"}	{"0x1"}	{"0x01"}

<False>											::=	{"FALSE"}	{"False"}	{"false"}	{"0"}	{"0x0"}	{"0x00"}

I.2	VPD	Tool	Map	File	FormatEDK	II	Build	Specification

252Revision	1.28



<HexNumber>							::=	"0x"	(a-fA-F0-9){2,16}

<NonNegativeInt>		::=	(0-9)+

<StringData>						::=	{<QString>}	{<CArray>}

<QString>									::=	["L"]	<DblQuote>	<String>	<DblQuote>

<DblQuote>								::=	0x22

<CArray>										::=	"{"	<HexByte>	[","	<HexByte>]*	"}"

<NList>											::=	<HexByte>	[","	<HexByte>]*

Example

##	@file

#

#	THIS	IS	AUTO-GENERATED	FILE	BY	BPDG	TOOLS	AND	PLEASE	DO	NOT	MAKE	MODIFICATION.

#

#	This	file	lists	all	VPD	informations	for	a	platform	fixed/adjusted	by	BPDG	tool.

#

#	Copyright	(c)	2010,	Intel	Corporation.	All	rights	reserved.<BR>

#	This	program	and	the	accompanying	materials

#	are	licensed	and	made	available	under	the	terms	and	conditions	of	the	BSD	License

#	which	accompanies	this	distribution.	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

#

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoHorizontalResolution	|	0x0	|	4	|	800

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoVerticalResolution	|	0x4	|	4	|	600

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutRow	|	0x8	|	4	|	25

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutColumn	|	0xc	|	4	|	80

I.2	VPD	Tool	Map	File	FormatEDK	II	Build	Specification

253Revision	1.28



APPENDIX	J	MAKEFILES
This	appendix	describes	the	format	of	the	Makefiles	created	by	the	EDK	II	build	system.

J.1	NMAKE	Module	Makefile	Format
The	build	system	will	generate	a	top	level	Makefile	for	each	module	in	the	platform,	using	the	target	and
tool	chain	as	an	identifier	for	the	combination.	If	multiple	architectures	are	part	of	the	platform	build,
there	will	be	a	separate	tree	under	the	directory	for	each	module	that	requires	multi-architecture
builds.

Template

		#	DO	NOT	EDIT

		#	This	file	is	auto-generated	by	build	utility

		#

		#	Module	Name:

		#

		#			%s

		#

		#	Abstract:

		#

		#			Auto-generated	makefile	for	building	modules,	libraries	or	platform

		#

		#

		#	Platform	Macro	Definition

		#

		PLATFORM_NAME									=	${platform_name}

		PLATFORM_GUID									=	${platform_guid}

		PLATFORM_VERSION						=	${platform_version}

		PLATFORM_RELATIVE_DIR	=	${platform_relative_directory}

		PLATFORM_DIR										=	$(WORKSPACE)${sep}${platform_relative_directory}

		PLATFORM_OUTPUT_DIR			=	${platform_output_directory}

		#

		#	Module	Macro	Definition

		#

		MODULE_NAME											=	${module_name}

		MODULE_GUID											=	${module_guid}

		MODULE_VERSION								=	${module_version}

		MODULE_TYPE											=	${module_type}

		MODULE_FILE											=	${module_file}

		MODULE_FILE_BASE_NAME	=	${module_file_base_name}

		BASE_NAME													=	$(MODULE_NAME)

		MODULE_RELATIVE_DIR			=	${module_relative_directory}

		MODULE_DIR												=	$(WORKSPACE)${sep}${module_relative_directory}

		MODULE_ENTRY_POINT				=	${module_entry_point}

		ARCH_ENTRY_POINT						=	${arch_entry_point}

		IMAGE_ENTRY_POINT					=	${image_entry_point}

		${module_extra_defines}

		#

		#	Build	Configuration	Macro	Definition

		#

		ARCH										=	${arch}

		TOOLCHAIN					=	${toolchain_tag}

		TOOLCHAIN_TAG	=	${toolchain_tag}

		TARGET								=	${build_target}

		#

		#	Build	Directory	Macro	Definition

Appendix	J	MakefilesEDK	II	Build	Specification

254Revision	1.28



		#

		#	PLATFORM_BUILD_DIR	=	${platform_build_directory}

		BUILD_DIR								=	${platform_build_directory}

		BIN_DIR										=	$(BUILD_DIR)${sep}${architecture}

		LIB_DIR										=	$(BIN_DIR)

		MODULE_BUILD_DIR	=	${module_build_directory}

		OUTPUT_DIR							=	${module_output_directory}

		DEBUG_DIR								=	${module_debug_directory}

		DEST_DIR_OUTPUT		=	$(OUTPUT_DIR)

		DEST_DIR_DEBUG			=	$(DEBUG_DIR)

		#

		#	Shell	Command	Macro

		#

		RD	=	rmdir	/s	/q

		RM	=	del	/f	/q

		MD	=	mkdir

		CP	=	copy	/y

		MV	=	move	/y

		#

		#	Tools	definitions	specific	to	this	module

		#

		${module_tool_definitions}

Note:		${module_tool_definitions}		individual	lines	that	contain	an	environment	name	followed	by	the	equal
sign,	followed	by	a	string.	The	following	two	lines	are	an	example.

TIANO	=	TianoCompress

TIANO_GUID	=	A31280AD-481E-41B6-95E8-127F4C984779

MAKE_FILE	=	${makefile_path}

#

#	Build	Macro

#

Note:	The	value	of	${macroname}	is	derived	from	the	file	types	identified	in	the		build_rule.txt		file,	these
are	typically:		OBJECT_FILES		and		STATIC_LIBRARY_FILES		a	special	macro	name,		INC		is	also	emitted	listing	the
EDK	II	Include	directories	required	from	a	module's	dependent	packages.	The		INC		list	entry	prepends
the	compiler's	option	character	sequence	to	include	the	directory	in	the	search	list.

${macro_name}	=	\

\t$(OUTPUT_DIR)${sep}${filename}	\\

Note:	The	above	line	is	duplicated	for	additional	files,	the	"\"	is	removed	from	the	last	line	if	this	list.	A
text	file	for	each	of	these	macro	sets	(except		INC	)	is	generated	in	the	module's		OUTPUT		directory.

${macro_name}_LIST	=	$(OUTPUT_DIR)${sep}${macro_name}.lst

COMMON_DEPS	=	\

\t${common_dependency_file}	\\

Appendix	J	MakefilesEDK	II	Build	Specification

255Revision	1.28



Note:	The	above	line	is	duplicated	for	all	header	files	required	by	the	module	(defined	by	the	#include
statements)	and	files	included	by	header	files	required	by	the	module

#

#	Overridable	Target	Macro	Definitions

#

FORCE_REBUILD	=	force_build

INIT_TARGET	=	init

PCH_TARGET	=

BC_TARGET	=	$	{backward_compatible_target}

CODA_TARGET	=	$	{remaining_build_target}	\\

Note:	The	above	line	contains	the	name	of	the	output	.efi	file	generated	by	the	drivers	or	the	.lib	file
generated	by	libraries.	The	backslash	character	is	added	to	allow	extra	lines	after		$(CODE_TARGET)		is
specified.

#

#	Default	target,	which	will	build	dependent	libraries	in	addition	to

#	source	files

#

all:	mbuild

#

#	Target	used	when	called	from	platform	makefile,	which	will	bypass

#	the	build	of	dependent	libraries	since	the	platform	makefile	builds

#	all	libraries	first.

#

pbuild:	$(INIT_TARGET)	$(BC_TARGET)	$(PCH_TARGET)	$(CODA_TARGET)

#

#	ModuleTarget

#

mbuild:	$(INIT_TARGET)	$(BC_TARGET)	gen_libs	$(PCH_TARGET)$(CODA_TARGET)

#

#	Build	Target	used	in	multi-thread	build	mode,	which	will	bypass	the

#	init	and	gen_libs	targets

#

tbuild:	$(BC_TARGET)	$(PCH_TARGET)	$(CODA_TARGET)

#

#	Phony	target	which	is	used	to	force	executing	commands	for	a	target

#

force_build:

\t-@

#

#	Target	to	update	the	FD

#

fds:	mbuild	gen_fds

#

#	Initialization	target:	print	build	information	and	create	necessary	directories

Appendix	J	MakefilesEDK	II	Build	Specification

256Revision	1.28



#

init:	info	dirs

info:

\t-@echo	Building	...	$(MODULE_DIR)${sep}$(MODULE_FILE)	[$(ARCH)]

dirs:

\t-@-@if	not	exist	$(DEBUG_DIR)	$(MD)	$(DEBUG_DIR)

\t-@if	not	exist	$(OUTPUT_DIR)	$(MD)	$(OUTPUT_DIR)

strdefs:

\t-@$(CP)	$(DEBUG_DIR)${ds}AutoGen.h	\

					$(DEBUG_DIR)${ds}$(MODULE_NAME)StrDefs.h

Note:	The	above	two	lines	are	not	exact,	as	they	will	appear	on	the	same	line	in	the	generated	Makefile
without	the	"\"	line	extension	character.

#

#	GenLibsTarget

#

gen_libs:

\t$@"$(MAKE)"	$(MAKE_FLAGS)	\

					-f	${dependent_library_build_directory}${sep}${makefile_name}

Note:	The	above	two	lines	are	not	exact,	as	they	will	appear	on	the	same	line	in	the	generated	Makefile
without	the	"\"	line	extension	character.	The	line	is	repeated	for	every	library	instance	that	the	module
requires	to	be	linked	against.

\t$@cd	$(MODULE_BUILD_DIR)

#

#	Build	Flash	Device	Image

#

gen_fds:

\t@"$(MAKE)"	$(MAKE_FLAGS)	-f	$(BUILD_DIR)${sep}${makefile_name}	fds

\t@cd	$(MODULE_BUILD_DIR)

#

#	Individual	Object	Build	Targets

#

${file_build_target}

Note:	The	above	line	is	repeated	for	each		CODA_TARGET		using	the	format	from	the		build_rule.txt		file	to
build	intermediate	files.

#

#	clean	all	intermediate	files

#

clean:

\tif	exist	$(OUTPUT_DIR)	$(RD)	$(OUTPUT_DIR)

\t$

#

Appendix	J	MakefilesEDK	II	Build	Specification

257Revision	1.28



#	clean	all	generated	files

#

cleanall:

\tif	exist	$(DEBUG_DIR)	$(RD)	$(DEBUG_DIR)

\tif	exist	$(OUTPUT_DIR)	$(RD)	$(OUTPUT_DIR)

\t$(RM)	*.pdb	*.idb	>	NUL	2>&1

\t$(RM)	$(BIN_DIR)${sep}$(MODULE_NAME).efi

#

#	clean	all	dependent	libraries	built

#

cleanlib:

\t${library_build_command}	cleanall

Note:	The	above		${library_build_command}		is	repeated	for	every	library	instance	used	to	link	against	the
driver	or	application	module.	It	first	tests	for	the	existence	of	the	makefile	and	if	it	exists,	runs	the	make
command.	If	the	module	is	a	library,	the	above	lines	are	not	emitted.

\t@cd	$(MODULE_BUILD_DIR)\n\n

Appendix	J	MakefilesEDK	II	Build	Specification

258Revision	1.28



APPENDIX	K	THIRD	PARTY	TOOL	FLAGS
The	following	tables	provide	a	summary	of	these	"Best	Known"	options.

Note:	A	reserved	keyword,		MDEPKG_NDEBUG	,	can	be	used	for	code	size	reduction	purposes.

Table	24	Standard	C	File	Compiler	Options

Microsoft Intel GCC Description

	/nologo	 	/nologo	 Do	not	display	compiler	version	information

	/c	 	/c	 	-c	 Compile	C	files	to	object	(.obj)	files	only,	do	not	link

	/WX	 	/WX	 	-Werror	 Force	warnings	to	be	reported	as	errors.

	/GS-	 	/GS-	 Disable	security	checks

	-Wno-

missing-

braces	

Warn	if	an	aggregate	or	union	initializer	is	not	fully
bracketed.	In	the	following	example,	the	initializer	for	'a'
is	not	fully	bracketed,	but	that	for	'b'	is	fully	bracketed.

	-Wno-

array-

bounds	

Disables	warnings	if	subscripts	to	arrays	are	out	of
bounds.

	/W4	 	/W4	 	-Wall	
Warning	level	4	-	print	errors,	warnings	and	remarks	(or
enable	most	warning	messages)

	/Gs32768	 Control	stack	(32768	bytes)	checking	calls

	/Gy	 	/Gy	 Separate	functions	for	linker.

	/O1ib2	 	/O1	
Optimize	for	minimum	space,	enable	intrinsic	functions,
enable	in-line	expansion.

	/Oi	 Enable	Intrinsic	functions

	/Ob2	
	-default-

inline	

In-line	any	function,	at	the	compiler's	discretion	(same
as		/Qip	)

	-O	 Optimize	output	file

	/GL	 Enable	link-time	code	generation

	/EHs-c-	 Combine		/EHs-		and		/EHc-	

	/EHs-	 Disable	C++	EH	(no	SHE	exceptions)

	/EHc-	 Disable	extern	C	defaults	to	no	throw

	/GF	 	GF	 Enable	read-only	string	pooling

	/GR-	 Disable	C++	RTTI

EDK	II
Specific
Flags

	/D	UNICODE	 	/D	UNICODE	
	-

DUNICODE	
define	macro	UNICODE

	/FIAutoGen.h	 	/FIAutoGen.h	
	--include

AutoGen.h	
Always	include	AutoGen.h	file

Debug

Appendix	K	Third	Party	Tool	FlagsEDK	II	Build	Specification

259Revision	1.28



Specific
Flags

	/Zi	 	/Zi	 	-g	 Enable	debugging	information

	/Gm	 	/Gm	 Enable	minimum	rebuild

	-fshort-

wchar	

Force	the	underlying	type	for	"wchar_t"	to	be	"unsigned
short"

	-fno-

stack-

protector	

	-fno-

strict-

aliasing	

	-

ffunction-

sections	

	-fdata-

sections	

IPF
Specific
Flags

	/Ox	 Maximum	Optimization	(	/Ogityb2	/Gs	)

	/X	 ignore	standard	places

	/QIPF_fr32	 Do	not	use	upper	96	Floating	Point	Registers

	/Zx	
Generates	debug-able	optimized	code.	Only	available	in
the	IPF	cross	compiler	or	IPF	native	compiler.

Table	25	Assembly	Flags

Microsoft GCC Description

	/nologo	 Do	not	display	assembler	version	information

	/c	 	-c	 Generate	object	(.obj)	files,	do	not	link

	/WX	 Treat	warnings	as	errors

	/W3	 Warning	level	3

	/Cx	 Preserve	case	in	publics	and	externs

	/coff	 Generate	COFF	format	object	files

	/Zd	 Add	line	number	debug	info

	/Zi	 Add	symbolic	debug	info	(DEBUG	target)

	-x	assembler	 Input	files	are	in	assembly	language

	-imacros	AutoGen.h	 Accept	definition	of	macros	in	AutoGen.h

Table	26	C	Compiler's	Preprocessor	Options

Microsoft Intel GCC Description

	/nologo	 	/nologo	 Do	not	display	compiler	version	information

	/E	 	/E	 	-E	
Preprocess	only;	do	not	compile,	assemble	or
link

	/TC	 	/TC	
	-x	assembler-with-

cpp	
Compile	as	.c	files

	/FIAutoGen.h	 	/FIAutoGen.h	 	--include	AutoGen.h	 Always	include	AutoGen.h	file

Appendix	K	Third	Party	Tool	FlagsEDK	II	Build	Specification

260Revision	1.28



	/FIAutoGen.h	 	/FIAutoGen.h	 	--include	AutoGen.h	 Always	include	AutoGen.h	file

Table	27	C	Compiler's	Preprocessor	Options	for	VFR	files	ONLY

Microsoft Intel GCC Description

	/nologo	 	/nologo	 Do	not	display	compiler	version	information

	/E	 	/E	 	-E	
Preprocess	only;	do	not	compile,	assemble	or
link

	/TC	 	/TC	 	-x	c	 Compile	as	.c	files

	/D	VFRCOMPILE	
	/D

VFRCOMPILE	

	-

DVFRCOMPILE	
Used	only	for	Preprocessing	VFR	files

	-P	
Used	only	for	Preprocessing	VFR	files	-	do	not
generate	#line	directives

	/FI$(MOD_NAME)StrDefs.h	 Force	include	of	the	module's	StrDefs.h	file.

Table	28	Pre-compiled	Header	(PCH)	Creation	Flags

Microsoft Intel GCC Description

	/nologo	 	/nologo	 Do	not	display	compiler	version	information

	/c	 	/c	 	-c	 Compile	C	files	to	object	(.obj)	files	only,	do	not	link

	/W4	 	/W4	 	-Wall	
Warning	level	4	-	print	errors,	warnings	and	remarks	(or
enable	most	warning	messages)

	/WX	 	/WX	 	-Werror	 Force	warnings	to	be	reported	as	errors.

	/Gy	 	/Gy	 Separate	functions	for	linker.

	/GS-	 	/GS-	 Disable	security	checks

	/O1	 	/O1	 Optimize	for	Maximum	Speed

	/Oi	 	/Oi	 Enable	Intrinsic	functions

	/Ob2	 	/Ob2	

	-

default-

inline	

In-line	any	function,	at	the	compiler's	discretion	(same	as
	/Qip	)

	/GL	 Enable	link-time	code	generation

	/EHs-	 	/EHs-	 Disable	C++	EH	(no	SHE	exceptions)

	/EHc-	 	/EHc-	 Disable	extern	C	defaults	to	no	throw

	/GF	 	/GF	 Enable	read-only	string	pooling

	/Gs8192	 	/Gs8192	 Control	stack	(8192	bytes)	checking	calls

	/TC	 	/TC	 Compile	as	.c	files

	/Yc	 Create	the	.pch	file

	/Gm	 Enable	minimal	rebuilds

	/FpAutoGen.h.gch	

	/X	 	/X	 Ignore	standard	places

	/Zi	 	/Zi	 Produce	debugging	information

Table	29	Static	Linker	Flags

Microsoft GCC Description

Appendix	K	Third	Party	Tool	FlagsEDK	II	Build	Specification

261Revision	1.28



	/nologo	 Do	not	display	compiler	version	information

	/LTCG	 Use	link-time	code	generation

Table	30	Dynamic	Linker	Flags

Microsoft GCC Description

	/NOLOGO	 Do	not	display	compiler	version	information

	/NODEFAULTLIB	 	-nostdlib	 Disable	using	default	libraries

	/IGNORE:4086	 N/A Use		/Gz		option	instead

	/OPT:ICF=10	
Perform	identical	COMDAT	folding	(10	iterations)	to	remove
duplicates.

	/MAP	
	-Map

filename.map	
Create	a	map	file.

	/ALIGN:32	
	--section-

alignment	0x20	
Use	32-byte	alignment	instead	of	the	default	4K

	--file-

alignment	0x20	

	/MACHINE:$$	 N/A Where	$$	is	one	of:		I386	,		AMD64		or		IA64	

	/DLL	 	--dll	 The	output	is	a	DLL

	/LTCG	 Use	link-time	code	generation

	/ENTRY:$(ENTRYPOINT)	
	--entry

_$(ENTRYPOINT)	
The	function	that	specifies	a	starting	address.

	/SUBSYSTEM:CONSOLE	
	--subsystem

console	

Do	not	use	the	EFI_*	subsystem	interface,	as	this	is	EFI	1.0
compliant,	not	UEFI	compliant.

	/SAFESEH:NO	
Do	not	produce	an	image	with	a	table	of	safe	exception
handles

	/BASE:0	
	--image-base

0x0	

Base	address	is	always	0,	and	will	be	adjusted	later	by	the
build	tools	when	creating	images.

	/DRIVER	 Specify	Kernel	mode

	/DEBUG	 Create	debugging	information

	-O2	 Optimize

	--gc-sections	 Enable	garbage	collection	of	unused	input	sections

	--export-all-

symbols	

All	global	symbols	in	the	objects	used	to	build	a	DLL	will	be
exported	by	the	DLL.

Appendix	K	Third	Party	Tool	FlagsEDK	II	Build	Specification

262Revision	1.28


	EDK II Build Specification
	Tables
	Figures
	1 Introduction
	1.3 Terms
	1.4 Related Information
	1.5 Conventions Used in this Document

	2 Design Discussion
	2.1 Development Environments
	2.2 UEFI/PI Firmware Images
	2.3 Boot Sequence
	2.4 Typical Flash Part Layout
	2.5 Generic Build Process
	2.6 Creating EFI Images
	2.7 SKU Support

	3 UEFI and PI Image Specification
	4 EDK II Build Process Overview
	4.1 EDK II Build System
	4.2 Build Process Overview
	4.3 Pre-Build Stage Overview
	4.4 Creating Binary EFI Images - $(MAKE) stage
	4.5 Post-Build Stage
	4.6 File Specifications
	4.7 File Extensions

	5 Meta-Data File Specifications
	5.1 Build Meta-Data File Formats
	5.2 tools_def.txt
	5.3 target.txt File

	6 Quick Start
	6.1 Environment Variables
	6.2 Build Scope

	7 Build Environment
	7.1 Build Scope
	7.2 Third Party Tools
	7.3 GUIDed Tools

	8 Pre-Build AutoGen Stage
	8.1 Overview
	8.2 Auto-generation Process
	8.3 Auto-generated code
	8.4 Auto-generated PCD Database File
	8.5 Auto-generated Makefiles
	8.6 Binary Modules
	8.7 Generated AsBuilt INF Files

	9 Build or $(MAKE) Stage
	9.1 Overview
	9.2 Preprocess/Trim
	9.3 Compile/Assembly
	9.4 Static Link
	9.5 Dynamic Link
	9.6 Generate Module Images
	9.7 Generate Platform Images

	10 Post-Build ImageGen Stage - FLASH
	10.1 Overview of Flash Device Layout
	10.2 Parsing FDF Meta-Data File
	10.3 Build Intermediate Images
	10.4 Create the FV Image File(s)
	10.5 Create the FD image file(s)
	10.6 Post Build Processing

	11 Post-Build ImageGen Stage - Other
	11.1 EFI PCI Option ROM Images
	11.2 UEFI Applications
	11.3 Capsules

	12 Build Changes and Customizations
	12.1 Building for Debug
	12.2 Adding Custom Compression Tools
	12.3 Using Custom Build Tools
	12.4 Customizing Compilation for a Component
	12.5 Platform Specific ASL Tools
	12.6 Build Reproducibility

	13 Build Reports
	13.1 Build Report Generation Options
	13.2 Sample Launch Steps: NT32 platform
	13.3 Output
	13.4 Platform Summary
	13.5 Mixed PCD Section
	13.6 Global PCD Section
	13.7 FD Section
	13.8 Module Section
	13.9 Execution Order Prediction Section

	Appendix A Variables
	Appendix B tools_def.txt
	Appendix C target.txt
	Appendix D build.exe command
	D.1 Overview
	D.2 Makefile actions
	D.3 Build Targets and options
	D.4 Usage

	Appendix E NT32 Platform Emulation
	Appendix F Firmware Volume INF
	F.1 Firmware Volume INF Description
	F.2 [Attributes] Section
	F.3 [Files] Section
	F.4 [Options] Section

	Appendix G VS2005 Team Suite Performance
	G.1 Step 1 - Create a new project
	G.2 Step 2 - Update the project

	Appendix H Module Types
	Appendix I VPD Tool
	I.1 Build System Output File Format
	I.2 VPD Tool Map File Format

	Appendix J Makefiles
	Appendix K Third Party Tool Flags

