

TABLE	OF	CONTENTS
EDK	II	C	Coding	Standards	Specification

1	Introduction

1.1	Abstract

1.2	Rationale

1.3	Scope

1.4	References

1.5	Glossary

2	Guiding	Principles

2.1	Software	Design

2.2	Principles	for	Software	Maintenance

2.3	Additional	Recommendations

3	Quick	Reference

3.1	Naming

3.2	Formatting

3.3	Files:	General	Rules

3.4	Documentation

4	Naming	Conventions

4.1	General	Naming	Rules

4.2	Directory	Names

4.3	File	Names

4.4	Identifiers

4.5	Global	&	Module	Variables

4.6	Name	Space	Rules

5	Source	Files

5.1	General	Rules

5.2	Spacing

5.3	Include	Files

5.4	Code	File	Structure

5.5	Preprocessor	Directives

5.6	Declarations	and	Types

5.7	C	Programming

5.8	Error	Handling	and	ASSERT

6	Documenting	Software

6.1	Documentation	Concepts

6.2	Comments

6.3	What	NOT	to	Comment

6.4	What	You	Must	Comment

6.5	Types	of	Comments

6.6	Introducing	Doxygen

EDK	II	C	Coding	Standards	Specification[DRAFT]

2DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.7	How	Doxygen	Works

6.8	Special	Documentation	Blocks

6.9	Putting	Documentation	after	Members

6.10	Special	Commands

APPENDIX	A	Common	Examples

APPENDIX	B	Reserved	Identifiers

APPENDIX	C	Optimization	and	Performance

Tables

Table	1	Common	Opposites

Table	2	EFI	Supported	Abbreviations

Table	3	EFI	Supported	Acronyms

Table	4	Reserved	Keywords

Table	5	Permissible	Escape	Sequences	(ISO/IEC	9899:1990	6.1.3.4)

Table	6	EFI	Data	Types	(slightly	modified	from	UEFI	2.3.1)

Table	7	Modifiers	for	Common	EFI	Data	Types	(reference	the	UEFI	Specification	and	Beyond	Bios)

Table	8	EFI	Constants

Table	9	Parameter	Modifiers

Table	10	Predicate	Expression	Examples

Table	11	HTML	Character	Entities

Table	12	HTML	Commands

EDK	II	C	Coding	Standards	Specification[DRAFT]

3DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

EDK	II	C	Coding	Standards	Specification
DRAFT	FOR	REVIEW

11/18/2022	01:47:51

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2006-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

0.0.1 First	swag. 6/23/00

0.0.2 Included	feedback	from	team. 8/3/00

0.3 Add	comments. 8/10/00

0.3001 Pre-vacation	update,	need	to	sync	with	new	numbering	process. 9/11/00

0.31 Incorporated	Sync	1	learnings. 12/12/00

0.32 Completed	TAT	ARs. 6/8/01

0.33 Added	goto	rules. 8/16/01

0.34 Updated	to	match	driver	and	Runtime	Lib. 11/15/01

0.9 Updated	to	Intel(R)	Platform	Innovation	Framework	for	EFI.	Added
checklist	appendix. 1/8/04

0.91 Completed	editing	and	formatting	pass. 3/3/04

0.92 Updated	the	structure	declaration	rules:	Added	section	4.8	and
modified	the	checklist	in	Appendix	A. 4/8/04

EDK	II	C	Coding	Standards	SpecificationEDK	II	C	Coding	Standards	Specification[DRAFT]

4DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

0.93 Added	some	minor	clarifications	in	section	3.1,	4.5,	7.1,	and	10. 9/14/04

0.94 Revised	to	accommodate	Doxygen	style	commenting	standards 3/1/06

0.50 Change	to	new	numbering	scheme.	Incorporate	Review	Comments.
Editing	and	formatting. 4/21/06

0.51 Changed	to	EDK	II. 7/13/06

0.52 Update	rules	to	clarify	areas	of	misinterpretation.	Add	copyright
formatting	rules. 2/09/2010

0.60 Re-organize	document	and	update	to	current	rules. 2/15/2010

0.70 Release	for	Review 3/1/2010

0.95 Review	comments	incorporated,	Release	to	Tech	Pubs	for	Finalization 3/10/2010

1.00 First	full	release 3/15/2010

1.01 Restructure	into	book	format. 12/08/2011

1.02 Incorporate	suggestions	and	trackers 3/19/2012

Release	For	Review 4/2/2012

Release 4/16/2012

1.03 Update	and	incorporate	requests	and	bug	fixes.	Remove	"Intel
Confidential"	classification. 9/11/2014

1.50 Release	for	Review 9/26/2014

1.80 Incorporate	US	Review	Comments 10/10/2014

1.85 Incorporate	PRC	Review	Comments 10/24/2014

Release	for	Extended	US	&	PRC	Review 10/28/2014

2.0 Release 11/14/2014

2.1 DRAFT	for	REFORMAT 10/30/2015

2.2 Convert	to	Gitbook June	2017

#425	[CCS]	clarify	line	breaking	and	indentation	requirements	for
multi-line	function	calls

#1656	Update	all	Wiki	pages	for	the	BSD+Patent	license	change	with
SPDX	identifiers

#607	Document	code	comment	requirements	for	spurious	variable
assignments

2.3 Add	4.2	Directory	names	section	and	update	File	names	section	for
the	guidelines	of	module	directory	and	file	naming

September
2022

EDK	II	C	Coding	Standards	SpecificationEDK	II	C	Coding	Standards	Specification[DRAFT]

5DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

https://bugzilla.tianocore.org/show_bug.cgi?id=425
https://bugzilla.tianocore.org/show_bug.cgi?id=1656
https://bugzilla.tianocore.org/show_bug.cgi?id=607

1	INTRODUCTION

1.1	Abstract
This	specification	establishes	a	set	of	rules	to:

Establish	uniformity	of	style.

Set	minimum	information	content	requirements.

Allow	all	programmers	to	easily	understand	the	code.

Facilitate	support	tasks	by	establishing	uniform	conventions.

Ease	documentation	efforts	by	embedding	the	design	documentation	in	the	code.

Reduce	customer	and	new	employee	learning	curves	by	providing	accurate	code	documentation	and
uniform	style.

These	rules	apply	to	all	code	developed	for	inclusion	in	the	EDK	II	code	base,	and	are	intended	as	an
enabling	philosophy.	All	changes	or	additions	from	this	point	on	shall	conform	to	this	specification.	Pre-
existing	code	does	not	need	to	be	updated	for	the	sole	purpose	of	conforming	to	this	specification.	As
conforming	updates	are	made,	the	developer	may	update	other	content	within	the	modified	file	to	bring
it	within	compliance	with	this	specification.	Code	originally	developed	for	other	environments	that	has
been	ported	to,	or	modified	for,	the	EDK	II	environment,	is	not	obligated	to	conform.	However,	any	new
code	added	to	the	ported	code	must	conform.

This	specification	addresses	the	chronic	problem	of	providing	accurate	documentation	of	the	code	base
by	embedding	the	documentation	within	the	code.	While	this	does	not	guarantee	that	the
documentation	will	be	kept	up	to	date,	it	significantly	increases	the	chances.	A	document	generation
system,	Doxygen,	then	produce	formatted	documentation	by	extracting	information	from	specially
formatted	comment	blocks	and	the	syntactic	elements	of	the	code.

This	specification	presents	protocol	standards	that	will	ensure	that	the	contractual	relationship
between	APIs	and	their	callers	is	clear	and	well	maintained.

This	specification	describes	standard	practices	designed	to	eliminate	or	mitigate	pitfalls	inherent	in	the
C	language.

In	recognition	that	a	coding	standard	of	this	size	can	be	a	bit	daunting,	a	concise	reference	to	the
standard's	key	elements	is	available	in	"Quick	Reference".

1.2	Rationale
Software	engineering	is	much	more	than	writing	code	that	will	work	one	time.	Software	engineering
entails	writing	code	that:

1.	 Meets	project	requirements.

2.	 Is	testable.

3.	 Can	be	maintained	by	the	author	or	by	others	that	have	varying	degrees	of	experience	and
familiarity	with	the	code.

4.	 Minimizes	the	learning	curve	for	programmers	new	to	the	product.	(Our	customers)

1	IntroductionEDK	II	C	Coding	Standards	Specification[DRAFT]

6DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

We	use	the	C	programming	language	because	of	its	simplicity,	flexibility,	and	wide	support.	On	the
downside	in	that	each	developer's	C	code	could	(conceivably)	be	constructed	in	totally	different	and
inconsistent	ways.	This	lack	of	uniformity	makes	understanding	and	maintaining	the	code	very	difficult.

Uniformity	is	the	key	theme	of	these	rules.	You	may	disagree	with	some	of	our	decisions.	Nevertheless,
we	ask	that	you	commit	to	conforming	to	standards	of	this	specification.	Also,	there	are	pitfalls	inherent
in	the	C	language	that	this	style	guide	may	help	you	to	avoid.	The	goal	of	this	document	is	making	you,
and	those	who	follow	you,	more	productive.

Some	of	the	strict	rules	for	protocol	and	driver	construction	may	seem	overly	onerous.	Don't	panic	-
there	is	a	method	to	our	madness	-	we	intend	to	construct	wizards	to	aid	in	the	construction	of	protocol
include	files	and	device	driver	templates.	The	resulting	consistency	will	help	prevent	name	collision	and
require	much	less	rote	memory	(or	code	surfing)	to	remember	the	names	of	protocol	declarations	or
GUID	definitions.

Good	software	engineers	think	about	maintaining	a	consistent	and	uniform	coding	style.	Having	a	set	of
rules	to	follow	allows	them	to	spend	time	solving	actual	problems	and	less	time	thinking	about	style.
Junior	software	engineers	may	not	see	the	benefits,	but	now	is	a	good	time	for	them	to	start	thinking
about	what	it	will	take	to	maintain	their	code.	Junior	software	engineers	will	also	benefit	by	being	able	to
understand	other	people's	code	much	more	easily	because	the	code	will	be	written	in	a	consistent
manner.	Consistency	and	uniformity	enable	productivity.

In	conclusion,	it's	uniformity,	uniformity,	uniformity.	With	that	said,	this	document	is	not	intended	to	be
dogma.	However,	violating	a	rule	is	contingent	on	valid	reasons	for	the	violation,	and	the	approval	of	the
various	stakeholders	involved.	It	is	not	something	to	venture	into	lightly	and	is	not	recommended.

1.3	Scope
This	specification	describes	stylistic	conventions	and	requirements	as	they	apply	to	writing	C	code	for
inclusion	within	the	EDK	II	code	base.	Its	bulk	is	intended	to	provide	rationale	and	disambiguating	detail
for	each	rule	and	requirement.	The	rules	are	also	presented	in	summary	form	for	quick	reference.
Rationale	and	detail	for	each	of	the	rules	is	then	presented	in	subsequent	sections.

The	majority	of	code	produced	for	EDK	II	must	support	multiple	compilers	and	be	able	to	be	retargeted
to	multiple	processor	and	system	architectures.	This	requires	coding	practices	to	conform	to	the
"lowest	common	denominator"	of	the	supported	tools,	processor,	and	system	architectures.

The	C	dialect	we	use	is	ISO/IEC	9899:199409,	or	C95,	with	some	elements	from	C99	If	you	are	not
familiar	with	this	dialect,	refer	to	Harbison	and	Steele's	C:	A	Reference	Manual.	This	is	the	language
dialect	held	in	common	with	all	of	the	compilers	supported	by	EDK	II.

Note:	There	are	some	significant	differences	between	ANSI	C	(C89)	and	the	dialect	recognized	by
compilers	supported	by	EDK	II	(C95).	These	differences	primarily	revolve	around	use	of	the	external
storage	class	and	the	elimination	of	implicit	types	and	storage	classes.

The	use	of	compiler-specific	language	extensions	is	very	strongly	discouraged.

Topics	covered	in	this	coding	standard	include:

File	structure	and	formats
C	language	rules	and	guidelines
Naming	Conventions
Documentation
Commenting	rules

1	IntroductionEDK	II	C	Coding	Standards	Specification[DRAFT]

7DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Doxygen

These	guidelines	represent	an	attempt	make	you	aware	of	your	actions,	because	those	actions	affect
the	future	readers	and	maintainers	of	the	code	you	produce.

Pre-existing	code	ported	to	the	EDK	II	environment	does	not	have	to	conform	to	this	specification.	New
code	which	is	added	to,	or	which	accompanies,	the	ported	code	must	conform.

This	specification	considers	the	core	firmware,	applications,	and	individual	UEFI	drivers	as	distinct	and
separate	units.	This	is	because	UEFI	drivers,	like	applications,	are	not	linked	to	the	main	body	of	code
and	do	not	expose	their	internal	namespaces	to	other	components	of	the	firmware	system.

1.4	References
MISRA-C:	2004	Guidelines	for	the	use	of	the	C	language	in	critical	systems,	Tyler	Doering
http://www.misra-c.com,	Guidelines	for	the	Use	of	the	C	Language	in	Critical	Systems,	ISBN	978-1-
906400-10-1	(paperback),	ISBN	978-1-906400-11-8	(PDF),	March	2013.

Universal	Principles	of	Design	by	William	Lidwell,	Kritina	Holden,	and	Jill	Butler.	ISBN	159253-007-9.

C:	A	Reference	Manual	by	Samuel	P.	Harbison	III	and	Guy	L.	Steele	Jr.	ISBN	0-13-089592x.

Enough	Rope	to	Shoot	Yourself	in	the	Foot	by	Allen	I.	Holub.	ISBN	0-07-029689-8.

Code	Complete	by	Steven	C.	McConnell.	ISBN	1-55615-484-4.

The	C	Programming	Language	by	Brian	W.	Kernighan	and	Dennis	M.	Ritchie.	ISBN	0-13110362-8.

ISO/IEC	9899:	1990,	Programming	Languages	-	C.	This	specifies	ANSI	C.

ISO/IEC	9899:	199409,	Programming	Languages	-	C.	This	specifies	C95.

ISO/IEC	9899:	1999;	Cor-3,	Programming	Languages	-	C.	This	specifies	C99.

Writing	Solid	Code	by	Steve	Maguire.	ISBN	1-55615-551-4.

EFI	Application	Toolkit	Project	Engineering	Conventions.	10/4/1999.

ISO/IEC	6592:	2000,	Information	Technology	-	Guidelines	for	the	Documentation	of	Computer-based
Application	Systems.

ISO/IEC	18019:	2004,	Software	and	System	Engineering	-	Guidelines	for	the	Design	and	Preparation
of	User	Documentation	for	Application	Software.

Indian	Hill	C	Style	and	Coding	Standard	by	L.W.	Cannon,	R.A.	Elliott,	L.W.	Kirchhoff,	J.H.	Miller,	J.M.
Milner,	R.W.	Mitze,	E.P.	Schan,	N.O.	Whittington,	Bell	Labs;	Henry	Spencer,	Zoology	Computer
Systems,	University	of	Toronto;	David	Keppel,	EECS,	UC	Berkeley	CS&E,	University	of	Washington;
Mark	Brader,	SoftQuad	Incorporated,	Toronto.	6/25/1990.

Doxygen	manual,	https://www.doxygen.org/manual/,	Version	1.4.6-NO

Doxygen	Primer	by	Daryl	McDaniel,	IBM	2002;	Updated	for	Intel	Corporation	1/2006

UEFI	Specification,	https://www.uefi.org

Beyond	Bios:Developing	with	the	Unified	Extensible	Firmware	Interface,	Second	Edition,	Zimmer,
Michael	Rothman,	Suresh	Marisetty	Copyright	@2010	Intel	Corporation	ISBN	13	978-1-934053-29-4

1.5	Glossary
ANSI

1	IntroductionEDK	II	C	Coding	Standards	Specification[DRAFT]

8DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

http://www.misra-c.com
https://www.doxygen.org/manual/
https://www.uefi.org

American	National	Standards	Institute

C

The	generic	name	for	the	C	Programming	Language.	Originally	finalized	as	an	ANSI	standard	in	1989
('C89')	and	updated	in	1999	('C99').	Subsequently	adopted	by	the	ISO	(ISO/IEC	9899:1990),	which	has
replaced	the	ANSI	standard,	even	in	the	US.

CVS

Concurrent	Versioning	System

EFI

Extensible	Firmware	Interface

ISO

International	Standards	Organization

SVN

The	Subversion	revision	management	system.

Tab	Stop

EDK	II	uses	space	characters	instead	of	Horizontal	Tab	characters.	If	the	left-most	column	is	column	1,
then	every	odd	numbered	column	is	a	Tab	Stop.	Code	elements	are	aligned	at	Tab	Stops.

1	IntroductionEDK	II	C	Coding	Standards	Specification[DRAFT]

9DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

2	GUIDING	PRINCIPLES
This	chapter	discusses	the	principles	of	high-quality	software.	It	is	likely	that	your	design	will	not	be	able
to	achieve	all	of	these	goals;	if	it	does,	your	design	is	very	good	indeed.	Note	that	some	of	these	design
goals	contradict	other	design	goals.	Contradiction	is	part	of	the	challenge	of	doing	a	good	design.

Maintainability	of	software	is	of	such	importance	that	those	principles	are	expanded	separately	in
"Principles	for	Software	Maintenance".

2.1	Software	Design
The	following	is	an	alphabetical	list	of	software	design	principles:

Accessibility

This	entails	designing	objects	and	environments	to	be	usable,	with	no	modification,	by	the	greatest
number	of	people	as	possible,	including	people	with	varying	educational	and	social	backgrounds,	as
well	as	those	with	motor	or	sensory	challenges.

Alignment

Elements	within	a	design	should	be	aligned	with	one	or	more	other	elements.	Alignment	of	related	or
like	elements	within	a	design	reduces	the	perception	of	disorder	and	promotes	understanding.

Chunking.

Chunking	groups	units	of	information	into	a	small	number	of	units	(maximum	of	four	plus	or	minus	one)
to	help	the	efficient	processing	of	information	by	shortterm	memory,	as	well	as	to	accommodate	its
limits.

Confirmation.

This	is	a	technique	used	for	critical	actions,	inputs,	or	commands.	Confirmations	are	primarily	used	to
prevent	unintended	actions.	Minimize	errors	in	critical	or	irreversible	operations	with	confirmations.	If
you	overuse	confirmations,	expect	that	they	will	be	ignored	Avoid	overusing	confirmations	to	ensure	that
they	remain	unexpected	and	uncommon;	otherwise,	they	may	be	ignored.	Use	a	two-step	operation	for
hardware	confirmations	and	dialogs	for	software	confirmations.

Consistency.

Express	similar	parts	or	concepts	in	similar	ways	to	make	a	system	to	improve	usability	and	learnability.
Apply	consistency	to	design	and	coding	style,	as	well	as	user	interfaces.	Do	not	apply	consistency	to
the	point	of	compromising	clarity	or	usability.

Maintainability

Design	for	the	maintenance	programmer	or	sustaining	engineer	for	maintainability,	or	ease	of
maintenance.	The	design	of	the	system	should	be	self-explanatory.

Extensibility

Extensibility	entails	enhancing	a	system	without	violating	the	underlying	structure.	The	most	likely
changes	should	cause	the	system	the	least	trauma.	For	example,	you	know	the	BIOS	is	responsible	for
booting	the	system,	so	adding	a	new	type	of	boot	device	should	not	cause	trauma	to	the	system.	Be
careful	about	the	assumptions	you	make.

Forgiveness

2	Guiding	PrinciplesEDK	II	C	Coding	Standards	Specification[DRAFT]

10DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Design	to	help	users	avoid	errors	and	reduce	the	negative	consequences	of	errors	any	errors	made.
Recommended	methods	for	achieving	design	forgiveness	include	affordances,	reversibility	of	actions,
and	safety	nets.	Effectively	designing	for	forgiveness	results	in	a	design	needing	minimal	confirmations,
warnings,	and	help.

High	fan-in

Sharing	a	high	number	of	routines	that	call	a	given	routine	produces	high	fan-in.	Sharing	entails
designing	a	system	to	make	good	use	of	utility	routines	at	the	lower	levels.

Horror	Vacui

This	is	a	Latin	phrase	for	"fear	of	emptiness",	which	is	the	desire	to	fill	empty	spaces	with	information	or
objects.	Research	shows	that	as	horror	vacui	increases,	perceived	value	decreases.	In	programming,
lines	consisting	solely	of	comment	characters,	with	no	actual	comment,	are	good	examples	of	horror
vacui.

Intellectual	manageability

Intellectual	manageability	is	a	primary	goal	in	any	system.	It	is	essential	to	the	overall	system	integrity
and	affects	how	easily	programmers	can	initially	build	a	system	as	well	as	maintain	it	later.

Interference	Effects

When	two	or	more	perceptual	(or	cognitive)	processes	are	in	conflict,	the	competing	mental	processes
slow	down	mental	processing	or	make	mental	processing	less	accurate.	Examples	of	this	include
violations	of	convention	(a	red	OK	light),	information	conflicts	(a	color	name,	GREEN,	in	a	different
color),	and	incorrect	use	of	opposites.

Leanness

Design	the	system	so	that	it	has	no	extra	parts,	i.e.	"lean".	If	you	add	extra	code,	remember	that	it
needs	to	be	developed,	reviewed,	tested,	maintained,	understood,	and	taken	into	account	when	the
code	is	modified.	Also,	future	versions	of	the	code	may	have	to	be	backward	compatible	with	the	extra
code.

Low	complexity

Low	complexity	is	part	of	intellectual	manageability.

Minimal	connectedness

Design	so	that	you	keep	connections	among	subprograms	to	a	minimum.	This	minimizes	work	during
integration,	testing,	and	maintenance.	Use	industry	standards	whenever	possible.	Make	sure	you	are
not	reinventing	something	that	already	exists.

Minimize	code	size

Unlike	many	software	engineering	projects,	EDK	II	firmware	is	targeted	to	be	stored	in	a	device	that
represents	a	tangible	cost	to	the	system.	Thus,	the	minimization	of	code	size	is	important	to	reduce	the
overall	cost	of	a	system.

Portability

Design	the	system	so	that	it	is	easily	moved	to	another	environment.	With	EDK	II,	making	sure	the	code
will	run	on	IA32,	X64	and	Intel(R)	Itanium(R)	processors	(IPF)	is	an	example	of	portability.

Reusability

Design	the	system	so	that	pieces	of	it	can	be	reused	in	other	systems.	In	EDK	II,	reusability	also	means
designing	code	so	that	it	can	be	used	in	various	classes	of	platforms	from	embedded	systems	to
massively	parallel	computers.

2	Guiding	PrinciplesEDK	II	C	Coding	Standards	Specification[DRAFT]

11DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Standard	techniques

Greater	reliance	on	unique	or	exotic	pieces	makes	a	system	harder	to	understand,	and	more
intimidating	for	someone	trying	to	understand	it	the	first	time.	Using	standardized,	common	approaches
should	be	to	give	the	whole	system	a	familiar	feeling.	This	standardization	is	one	of	the	primary	goals	of
this	document.

Stratified	design

In	order	to	view	the	system	at	any	single	level	and	get	a	consistent	view	of	it,	you	should	attempt	to
keep	the	levels	of	decomposition	layered.	The	OSI	multi-layernetworking	model	is	an	example	of
stratified	design.

2.2	Principles	for	Software	Maintenance

2.2.1	Understand	the	problem	before	you	fix	it.
The	best	way	to	ruin	a	code	base	is	to	attempt	to	fix	problems	without	a	clear	understanding	of	the
problem	itself.	If	your	fix	is	out	of	context,	the	next	fix	in	the	routine	will	be	four	times	more	complicated.
Triangulate	the	error	with	cases	that	should	and	should	not	cause	the	error.	Keep	at	it	until	you
understand	the	error.

2.2.2	Understand	the	program,	not	just	the	problem.
Understanding	the	context	in	which	a	problem	occurs	will	increase	your	likelihood	of	solving	the	problem
completely.

2.2.3	Fix	the	symptom	AND	the	underlying	problem.
Fix	the	symptom,	but	your	focus	should	be	on	fixing	the	underlying	problem.	Without	thoroughly
understanding	the	problem,	you	will	not	fix	the	code.	You	will	also	feel	very	uncomfortable	when	a	peer
reviews	your	fix	before	you	check	it	into	the	source	base.

2.2.4	Change	the	code	only	for	good	reason.
Do	not	change	code	at	random	until	it	seems	to	work;	that	isn't	effective.	If	you	do	this	you	are	not
learning	anything	and	are	just	goofing	around.	You	should	have	confidence	that	a	change	will	work
before	making	a	change.	Being	wrong	about	a	change	should	be	rare	and	cause	personal	reevaluation.

2.2.5	Do	not	debug	by	superstition.
Don't	blame	every	problem	on	the	computer,	bad	data,	or	the	effects	of	a	full	moon.	You	wrote	the
program;	take	responsibility	for	it.

2.2.6	Don't	blame	everyone	else's	code.
It	is	human	nature	to	trust	the	code	that	you	wrote	and	understand,	and	to	distrust	all	other	code.	You
must	resist	this	tendency	and	root	cause	the	problem	systematically.

2.2.7	Don't	use	source	control	to	debug	problems.
You	don't	debug	by	randomly	trying	previous	versions	of	code.	You	can	use	previous	versions	as	a	single
test	of	your	triangulated	test	cases.	Bugs	are	not	always	introduced	by	changes.	Bugs	can	lie	dormant
in	a	code	base	for	long	periods	of	time.	By	blindly	rolling	back	changes,	you	could	just	be	hiding	a	bug,
versus	fixing	one.

2	Guiding	PrinciplesEDK	II	C	Coding	Standards	Specification[DRAFT]

12DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

2.2.8	Check	your	fix.
Run	the	triangulated	test	cases	against	your	code.	Have	another	set	of	eyes	look	at	your	change,
preferably	someone	who	is	experienced	in	the	code.

2.2.9	Look	for	similar	errors.
Errors	tend	to	occur	in	groups,	so	check	to	make	sure	a	similar	mistake	was	not	made	in	other	parts	of
the	code.

2.2.10	Fix	the	code	AND	the	comments.
When	you	have	correct	code	but	incorrect	comments,	you	will	confuse	the	next	person	in	the	code.
Remember,	programming	is	a	team	sport.

2.2.11	Fix	the	comments	AND	the	documentation.
The	next	person	to	make	a	large	change	to	code	will	thank	you	and	might	even	not	camp	out	in	your
cube	for	a	week.	This	has	been	simplified	in	EDK	II	by	embedding	the	documentation	within	the
comments.

2.3	Additional	Recommendations
If	you	have	trouble	debugging	without	violating	these	rules,	please	ask	for	help.

Learn	to	debug	by	debugging	with	someone	who	is	good	at	it.	There	is	(approximately)	a	20-to-1
difference	in	the	time	it	takes	an	experienced	programmer	to	find	the	same	set	of	errors	as	an
inexperienced	programmer.

Try	to	not	focus	only	on	the	bug,	but	on	the	process	and	techniques	the	experienced	programmer
uses	to	find	bugs.

When	working	with	a	more	experienced	debugger,	your	goal	should	be	to	improve	your	debugging
skills.

If	you	rely	too	heavily	on	the	debugging	skills	of	others,	your	own	expertise	suffers.

2	Guiding	PrinciplesEDK	II	C	Coding	Standards	Specification[DRAFT]

13DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

3	QUICK	REFERENCE

3.1	Naming
Names	must	clearly	represent	the	purpose	of	the	named	object.	See	"General	Naming	Rules".

Do	not	use	names	that	are	very	similar	to	existing	concepts,	such	as	'event'.	See	"General	Naming
Rules".

Do	not	use	the	names	of	symbols	declared	in	standard	header	files	as	internal	symbols.	See
"Function	and	Data	Names".

Overloading	function	or	type	names	is	not	allowed.	"Name	Space	Rules".

Use	the	correct	opposites	when	naming.	See	"Common	Opposites	in	Variable	Names".

Use	standard	abbreviations	only.	See	"Abbreviation	Usage".

Use	industry	standard	acronyms	only.	See	"Acronym	Usage".

Any	nonstandard	abbreviation	or	acronym	must	be	defined	in	the	file	header	of	any	file	using	the
abbreviation	or	acronym.	See	"Abbreviation	Usage"	and	"Glossary".

There	is	no	limit	to	name	lengths.	A	length	of	10	to	30	characters	is	",	recommended.	See	"File
Names"	&	"Identifiers	that	are	always	reserved".

File	names	must	not	start	with	numbers.	See	"File	Names".

Each	include	file	name	must	be	unique.	See	"Include	Files".

File,	function,	variable,	enumeration,	and	data	structure	elements	must	have	names	like	the
following:		EachWordIsDistinctEvenAcronymsLikeAcpi	.	See	"Identifiers".

Don't	capitalize	all	letters	in	acronyms.		MyPCIAddress		is	hard	to	read,	compared	to		MyPciAddress	,
especially	if	acronyms	are	mixed	with	numbers,	like		My870PCIBus0BDF	.	See	"Acronym	Usage".

Acronyms	in	comments	and	documentation	shall	follow	English	rules	and	be	capitalized.	See
"Acronym	Usage".

Functional	macros,		#defines	,	and		typedefs		must	have	names	like:
	EACH_WORD_IS_DISTINCT_EVEN_ACRONYMS_LIKE_ACPI		See	"Type	and	Macro	Names".

Hungarian	naming	is	not	allowed.	See	"Hungarian	Prefixes".

Global	data	names	must	be	prefaced	with	a	'	g	'.	Example:		gMyGuid	.	See	"Global	&	Module	Variables".

Module	global	data	names	must	be	prefaced	with	an	'	m	'.	Example:		mMyGuid	.	See	"Global	&	Module
Variables".

3.2	Formatting

3.2.1	Formatting:	General	Rules
Tab	characters	are	not	allowed.	See	"General	Rules".

All	indentation	(tabs)	is	two	spaces.	See	"General	Rules".

3.2.2	Formatting:	Vertical	spacing

3	Quick	ReferenceEDK	II	C	Coding	Standards	Specification[DRAFT]

14DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Use	blank	lines	and	comments	to	group	blocks	of	related	code.	See	"Vertical	Spacing".

Never	put	more	than	one	statement	per	line.	See	"Vertical	Spacing".

Never	put	the	code	and	conditional	on	one	line.	See	"Vertical	Spacing

Never	put	more	than	one	declaration	per	line.		UINT8	MyData1,	MyData2;		is	illegal.	See	"Vertical	Spacing".

Always	put	open	braces	'	{	'	on	their	own	line	for	functions	or	multi-line	predicate	expressions.	All
other	uses	put	the	brace	following	the	conditional.	See	"Vertical	Spacing".

Always	put	close	braces	'	}	'	on	their	own	line,	indented	to	match	the	first	line	of	the	construct.
Exceptions	are		else	,		else	if	,	and		do-while		code.	See	"Vertical	Spacing".

3.2.3	Formatting:	Horizontal	spacing
Always	put	space	before	and	after	binary	operators.	See	"Horizontal	Spacing".

Never	put	space	between	unary	operators	and	the	operand.	See	"Horizontal	Spacing".

Always	put	space	after	'	,	',	or	'	;	'	if	more	code	follows.	See	"Horizontal	Spacing".

Always	put	space	before	a	'	('	except	for	'	(('.	See	"Horizontal	Spacing".

Always	put	space	before	a	'	{	'	if	it	is	not	on	its	own	line.	See	"Horizontal	Spacing".

Never	put	spaces	around	'	.	'	or	'	->	'	operators.	See	"Horizontal	Spacing".

Never	put	a	space	between	array	operands	and	'	['.	See	"Horizontal	Spacing".

Always	Line	up	continued	lines	with	the	element	being	continued.	See	"Horizontal	Spacing".

3.2.4	Formatting:	Predicate	Expressions
Always	use	parentheses	rather	than	relying	on	"Horizontal	Spacing"	(above)	operator	precedence.
"Predicate	Expressions".

Booleans	do	not	need	to	be	compared	with		TRUE		or		FALSE	.	See	"Predicate	Expressions".

Pointers	must	be	explicitly	compared	to		NULL	.	See	"Predicate	Expressions".

Numbers	must	be	explicitly	compared	to	another	number.	See	"Predicate	Expressions".

3.3	Files:	General	Rules
Do	not	use	tabs,	only	use	Spaces.	"General	Rules".

Unless	explicitly	stated	otherwise,	spaces	(white	space)	may	be	one	or	more	space	characters	long.
See	"General	Rules".

Files	may	only	contain	the	ASCII	characters	0x0A,	0x0D,	and	0x20	through	0x7E,	inclusive.	See
"General	Rules".

Do	not	produce	lines	that	exceed	120	columns	in	your	source	files.	See	"General	Rules".

New	files	shall	not	use		#pragma		except	for		#pragma	pack(#)	.	See	"General	Rules".

Ported	files	may	retain	pre-existing		#pragma	s.	See	"General	Rules".

Ported	files	may	contain		#pragma	s	to	disable	prevalent	warning	messages.

All	lines	must	end	with	CRLF	(Carriage	Return	Line	Feed);	0x0D	followed	by	0x0A.

All	files	must	end	with	CRLF.	See	"General	Rules".

3	Quick	ReferenceEDK	II	C	Coding	Standards	Specification[DRAFT]

15DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Every	new	file	must	begin	with	a	"File	Heading"	comment	block.	See	"File	Heading"

3.3.1	Files:	Horizontal	Spacing
Always	put	space	before	and	after	binary	operators.	See	"Horizontal	Spacing".

Do	not	put	space	between	unary	operators	and	their	object.	See	"Horizontal	Spacing".

Horizontal	spacing	for	multi-line	function	calls	should	line	up	one	or	two	tab	stops	after	the
beginning	of	the	function	name.	See	"Horizontal	Spacing".

Always	put	space	after	commas	or	semicolons	that	separate	items.	See	"Horizontal	Spacing".

Always	put	space	before	an	open	parenthesis,	except	for	macro	definitions.	See	"Horizontal
Spacing".

Put	space	before	an	open	brace	if	it	is	not	on	its	own	line.	See	"Horizontal	Spacing".

Do	not	put	space	around	the	structure	member,	'	.	',	and	pointer,	'	->	',	operators.	See	"Horizontal
Spacing".

Do	not	put	space	before	the	open	brackets,	'	['	of	array	subscripts.	See	"Horizontal	Spacing".

Align	a	continuation	line	with	the	part	of	the	line	that	it	continues.	See	"Horizontal	Spacing".

Use	parentheses	instead	of	relying	upon	knowledge	of	C	precedence	ordering.	See	"Horizontal
Spacing".

3.3.2	Include	Files
Every	header	file	must	have	a	'	#ifndef	FILE_NAME_H_	'	and	'	#endif	'	guard	surrounding	all	code.	See
"Include	Files".

The		#ifndef		must	be	the	first	line	of	code	following	the	file	header	comment.

The		#endif		must	appear	alone	on	the	last	line	in	the	file.

All	C	include	files	shall	use	the	same	extension	and	it	shall	be		.h	.	See	"Include	Files".

Include	statements	shall	not	contain	absolute	paths	or	paths	that	contain	'..'.	See	"#include"

Functional	macros	are	discouraged	except	for	includes,	debug,	CR,	and	linked	lists.	See	"Macros".

Macros	should	be	defined	with	the	maximum	use	of	parentheses	to	remove	any	possible	ambiguity.
See	"Macros".

Include	files	must	contain	either	public	or	private	data,	not	both.	See	"Include	Files".

Include	files	must	not	contain	code	generating	statements.	See	"Include	Files".

Every	parameter	must	have	the	proper		IN	,		OUT	,		OPTIONAL	,	etc.,	modifiers.	See	"Function	Definition
Layout".

Only	use	UEFI	data	types.	Use	of	standard	C	data	types	is	prohibited.	See	"Common	Data	Types".

3.3.3	Code	Files
Only	use	UEFI	data	types.	Use	of	standard	C	data	types	is	prohibited.	See	"Common	Data	Types".

Code	files	should	not	contain		#define		and		typedef		statements.

Do	not	use	inline	assembler	in	the	source	files.	See	"General	Rules".

3	Quick	ReferenceEDK	II	C	Coding	Standards	Specification[DRAFT]

16DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Function	definitions,	as	well	as		if	,		for	,		while	,	and		switch		statements,	must	follow	strict	rules.	See
"Function	Definition	Layout",	"Flow	Control	Statements,	and	"Introducing	Doxygen".

Enumerated	types	must	end	with	a	maximum	element.	See	"Enumerated	Types".

Enumerated	types	should	begin	with	a	minimum	element.

Structures	are	always	defined	with	a		typedef		format.	See	"Structure	Definitions".

The	open	and	closing	braces	of	a	function	definition	are	in	column	one	and	on	their	own	lines.	See
"Function	Definition	Layout".

3.3.4	Code	Files:	Vertical	Spacing
There	shall	be	only	one	statement	per	line.	See	"Vertical	Spacing".

Open	braces,	'	{	',	shall	be	on	the	same	line	as	the	closing	parenthesis,	')	',	of	one-line	predicate
expressions.	See	"Vertical	Spacing".

Open	braces,	'	{	',	shall	be	on	a	line	by	themselves	and	aligned	with	the	first	character	of	the
associated	flow	control	statement	when	following	a	multi-line	predicate	expression.	See	"Vertical
Spacing".

Close	braces,	'	}	',	always	go	at	the	beginning	of	the	last	line	of	the	body.	See	"Vertical	Spacing".

A	close	brace	may	share	a	line	with	the		else	{	,		else	if	()	{	,	and	do-while	constructs.	See	"Vertical
Spacing".

Each	sub-expression	of	a	complex	predicate	expression	must	be	on	a	separate	line.	See	"Vertical
Spacing".

3.4	Documentation

3.4.1	Documentation:	Commenting
Comments	must	explain	why	the	code	does	what	it	does.	See	"Comments".

Every	file	must	have	a	properly	formatted	file	header.	See	"File	Heading".

Every	function	and	functional	macro	must	have	a	correct	function	header	in	both	the	source	and
include	files.	See	"Macros"	&	"Function	Headings".

3.4.1.1	Documentation:	Internal	comments
Local	comments	must	use	the	C++	comment	style,	'	//	'.	See	"Internal	Comments".

Local	comments	must	have	a	blank	line	before	the	comment	block.	See	"Internal	Comments".

Comments	must	be	indented	to	match	the	code.	See	"Internal	Comments".

If	a	comment	applies	to	more	than	one	block	of	code,	there	should	be	a	blank	line	after	the
comment.	See	"Internal	Comments".

If	a	comment	applies	to	a	single	block	of	code,	there	should	not	be	a	blank	line	separating	the
comment	from	the	code.	See	"Internal	Comments".

3.4.1.2	Documentation:	What	not	to	comment
No	comment	markers	are	allowed	in	code,	including:

	BUGBUG	

3	Quick	ReferenceEDK	II	C	Coding	Standards	Specification[DRAFT]

17DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Your	name
Your	initials
Special	markers,	such	as		FIX_THIS	,		TEST		.	See	"What	NOT	to	Comment".

Use	your	bug	tracking	system	to	track	bugs	instead	of	markers	within	the	code.	If	you	really	must
mark	the	code,	use	Doxygen's		@bug		or		@todo		commands.	See	"What	NOT	to	Comment".

3.4.2	Doxygen
Doxygen	comments	are	used	to	document	global	and	file-scope	elements.	See	"Global	Comments".

C-style	comment	blocks	are	of	the	form:

/**	Brief	Description.

	*		...	More	text	...

*/

C++	style	comment	blocks	begin	with		///	.

Comments	precede	the	semantic	element	they	document.	See	"Special	Documentation	Blocks".

The	special	form,		///<	...	,	allows	documentation	to	be	after	the	documented	element.	See"Putting
Documentation	after	Members".

Comment	blocks	automatically	start	with	a	brief	description	and	end	at	the	first	period.	See	"Special
Documentation	Blocks"	.

The	most	frequently	used	Doxygen	commands	are:	(See	"Special	Commands").

@file	[<name>]

@param[in,	out]	<parameter	name>	{	parameter	description	}

@retval	<return	value>	{	description	}

@sa	{	references	}

@test	{	description	of	a	test	case	}

3	Quick	ReferenceEDK	II	C	Coding	Standards	Specification[DRAFT]

18DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4	NAMING	CONVENTIONS

4.1	General	Naming	Rules
Use	good	naming	practice	when	declaring	variable	names.

Studies	show	that	programs	with	names	averaging	10	to	16	characters	are	the	easiest	to	debug.	The
name	length	is	just	a	guideline;	the	most	important	thing	is	that	the	name	conveys	a	clear	meaning	of
what	it	represents.

Do	not	overload	commonly	used	terms.

For	example,	EFI	has	an	event	model,	so	don't	call	some	abstraction	that	you	define	an	Event.	People
will	get	confused.	Make	sure	someone	reading	the	code	can	tell	what	you	are	talking	about.

Each	word	or	concept	must	start	with	a	capital	letter	and	be	followed	by	lower-case	letters.

The	intent	is	for	names	to	be	consistent	and	easily	readable.	Each	word	in	a	compound	name	should	be
visually	distinct.

4.1.1	Identifiers	that	are	always	reserved
Identifiers	beginning	with	an	underscore	are	always	reserved

Define	them	only	in	the	special	ways	allowed	elsewhere	in	this	document.

Identifiers	that	are	defined	in	the	Standard	C	and	POSIX	libraries	are	always	reserved.

This	includes	macros,	typedefs,	variables,	and	functions,	whether	with	external	linkage	or	file	scope.	The
only	exception	is	with	modules	that	are	mutually	exclusive	with	these	libraries.	These	reserved	identifiers
are	listed	in	"Reserved	Identifiers"	and	reserved	keywords	are	listed	in	"Reserved	Keywords".

4.1.2	Common	Opposites	in	Variable	Names
Use	the	correct	opposites	when	declaring	names.

Table	1	Common	Opposites

add	/	remove begin	/	end create	/	destroy

increment	/	decrement first	/	last get	/	release

lock	/	unlock put	/	get up	/	down

old	/	new min	/	max next	/	previous

source	/	destination open	/	close show	/	hide

source	/	target start	/	stop

4.1.3	Abbreviation	Usage

4.1.3.1	The	use	of	abbreviations	shall	be	regulated.
This	document	describes	a	common	set	of	abbreviations	that	can	be	freely	used.	If	you	must	make	up
abbreviations,	remember	the	name	is	most	important	to	the	reader	of	the	code,	not	the	writer.

4	Naming	ConventionsEDK	II	C	Coding	Standards	Specification[DRAFT]

19DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.1.3.2	New	abbreviations	must	be	documented	in	the	header	of
each	using	file.
Any	abbreviation	used,	which	is	not	documented	in	this	specification,	or	in	the	UEFI	Specification	shall
be	placed	into	a	Glossary	section	of	the	File	header	as	specified	in	See	"File	Heading".

Do	not	define	a	new	abbreviation	to	replace	an	abbreviation	that	is	already	defined	in	this	document.
For	example,	do	not	define	No	to	mean	Number,	because	Num	is	the	supported	abbreviation.

"EFI	Supported	Abbreviations"	below	lists	the	abbreviations	that	are	standardized	by	this	document	and
do	not	require	a	defining	comment.

Table	2	EFI	Supported	Abbreviations

Abbreviation Description

Ptr Pointer

Str Unicode	string

Ascii ASCII	string

Len Length

Arg Argument

Max Maximum

Min Minimum

Char Character

Num Number

Temp Temporary

Src Source

Dst Destination

BS EFI	Boot	Services	Table

RT EFI	Runtime	Table

ST EFI	System	Table

Tpl EFI	Task	Priority	Level

4.1.3.3	Powers	of	2	and	10
You	are	encouraged	to	use	the	IEC	international	abbreviations	for	powers	of	2	(KiB	for	2^10,	MiB	for
2^20,	GiB	for	2^30,	etc.)	rather	than	the	old	KB,	MB,	and	GB,	which	IEC	now	reserves	for	powers	of	10
(10^3,	10^6,	10^9).	Given	that	many	readers	of	the	code	may	not	have	made	the	conversion	to	add
the	'i',	do	not	use	KB,	MB,	and	GB	for	powers	of	10	Instead,	use	e.g.	"2*10^6	bytes"	instead	of	2MB	to
avoid	confusion.	Note	that	GiB	is	derived	from	the	G	in	'Giga',	the	'i'	in	binary,	and	the	B	in	'Byte'.

4.1.4	Acronym	Usage

4.1.4.1	The	use	of	acronyms	shall	be	limited.
Please	remember	the	golden	rule:	Code	for	the	person	who	will	have	to	read	and	maintain	your	code.
Making	up	your	own	vocabulary	to	describe	your	module	can	lead	to	lots	of	confusion.

4.1.4.2	Created	Acronyms	must	be	fully	defined.

4	Naming	ConventionsEDK	II	C	Coding	Standards	Specification[DRAFT]

20DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

If	you	must	create	acronyms,	they	must	be	fully	defined	in	the	documentation

4.1.4.2.1	Translation	tables	are	required	for	each	module	using	a	created	acronym

Each	module	that	uses	the	acronym	must	contain	a	translation	table	comment	in	the	file	header.	This
definition	is	required	so	that	others	can	understand	your	names	and	comments.

4.1.4.3	Industry-Standard	Acronyms	are	allowed
It's	okay	to	use	acronyms	for	industry	standards.

Acronyms	such	as	Pci,	Acpi,	Smbios,	Isa,	(capitalized	per	the	variable	naming	convention)	are	all	legal	to
use	without	defining	their	meaning.

If	you	reference	an	industry	standard	acronym,	the	file	header	must	define	to	which	version	of	the
specification	the	code	is	written.	Thus,	a	PCI	resource	manager	would	state	that	it	was	coded	to	follow
the	PCI	2.2	Specification	and	which	optional	features	it	included	support	for.

4.1.4.4	Capitalize	Acronyms	in	comments	and	documentation	to
match	their	industry	standard	use.
For	example,	use	"PCI"	in	comments	and	documentation,	and	"Pci"	for	functions,	files,	etc.

The	table	below	lists	the	acronyms	that	are	considered	integral	to	the	EDK	II	vernacular,	and	may	be
used	without	defining	their	meaning	in	a	comment.

Table	3	EFI	Supported	Acronyms

Acronyms In	an	Identifier Description

ACPI Acpi Advanced	Configuration	and	Power	Interface

AGP Agp Accelerated	Graphics	Port

ANSI Ansi American	National	Standards	Institute

ASCII Ascii American	Standard	Code	for	Information	Interchange

ATA Ata Advanced	Technology	Attachment

ATAPI Atapi Advanced	Technology	Attachment	Packet	Interface

BFD Bfd Boot	Flash	Device

BIOS Bios Basic	Input/Output	System

BIS Bis Boot	Integrity	Services

CMOS Cmos Complementary	metal	oxide	semiconductor

CPU Cpu Central	processing	unit

CRC Crc Cyclic	Redundancy	Check

DMA Dma Direct	Memory	Access

DXE Dxe Driver	Execution	Environment

EFI Efi Extensible	Firmware	Interface

FD Fd Flash	Device

FIFO Fifo First	In	First	Out

FV Fv Firmware	Volume

GUID Guid Globally	Unique	Identifier

4	Naming	ConventionsEDK	II	C	Coding	Standards	Specification[DRAFT]

21DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

IEC Iec International	Electrotechnical	Commission

ISA Isa Industry	Standard	Architecture

ISO Iso International	Standards	Organization

NVRAM Nvram Nonvolatile	Random	Access	Memory

PCI Pci Peripheral	Component	Interconnect

PEI Pei Pre-EFI	Initialization	environment

RAM Ram Random	Access	Memory

ROM Rom Read-Only	Memory

SRAM Sram Static	Random	Access	Memory

TPL Tpl Task	Priority	Level

UEFI Uefi Unified	Extensible	Firmware	Interface

UNDI Undi Universal	Network	Driver	Interface

USB Usb Universal	Serial	Bus

VGA Vga Video	graphics	array

4	Naming	ConventionsEDK	II	C	Coding	Standards	Specification[DRAFT]

22DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.2	Directory	Names
Below	sections	are	the	directory	naming	guidelines	for	EDK	II	modules.	The	guidelines	are	not	just
considering	the	uniformity	of	directory	naming,	but	they	also	provide	the	flexibility	of	directory	name
construction	for	the	scenario	of	different	EDK	II	module	designs;	such	as	the	support	for	multiple
processor	architectures	and	vendors.	It	may	require	further	discussions	between	EDK	II	maintainers	and
contributors	in	order	to	determine	the	best	naming	of	the	EDK	II	module	directory.

4.2.1	EDKII	package	directory

<PackageName>Pkg

			<PackageName>	REQUIRED		*

4.2.2	EDKII	Module	directory
The	guideline	below	is	applied	to	all	CPU	architectures	support,	specific	CPU	architecture	and
vendors	support,	or	the	implementation	is	shared	by	certain	CPU	archs:

<Feature><Phase>[<CpuArch>[<Vendor>]]

		or

<Feature><Phase>[/<CpuArch>[/<Vendor>]]

			<Feature>						REQUIRED				*

			<Phase>								REQUIRED				Base,	Sec,	Pei,	Dxe,	DxeRuntime,	Mm,	StandaloneMm,	Smm,

																														Uefi.

			<CpuArch>						OPTIONAL				The	<CpuArch>	is	represented	with	a	BNF,

																														<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																								'LoongArch64'	|	'Ebc'			

																														<CpuArch>	::=	<arch>[<arch>]*

																														Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>							OPTIONAL				*

Example:

			-	SmbiosDxe/

			-	CpuDxe/																				#	First	implementation	of	CpuDxe.

			-	CpuDxeIa32X64Amd/										#	Ia32	and	X64	AMD	specific	implementation.

			-	CpuDxe/RiscV64/												#	RiscV64	specific	implementation.

											/																				#	Common	files	for	the	RiscV64	and	other	archs.

			-	CpuDxe/Ia32X64/Amd/								#	Ia32	and	X64	AMD	specific	implementation.

																			/												#	Common	files	for	Ia32	and	X64	archs.

											/ArmAArch64/									#	Arm	and	AArch64	implementation	of	CpuDxe.

											/																				#	Common	files	for	the	Arm,	AArch64,	Ia32	and	X64.

If	the	implementation	does	not	have	any	shared	code	between	phases	(e.g.
MdeModulePkg/Universal/PCD).	The	guideline	below	is	applied	to	all	CPU	architectures	support,
specific	CPU	architecture	and	vendors	support,	or	the	implementation	is	shared	by	certain	CPU
architectures:

<Feature>/<Phase>[/<CpuArch>[/<Vendor>]]

			<Feature>						REQUIRED				*

			<Phase>								REQUIRED				Base,	Sec,	Pei,	Dxe,	DxeRuntime,	Mm,	StandaloneMm,	Smm,

																														Uefi.

			<CpuArch>						OPTIONAL				The	<CpuArch>	is	represented	with	a	BNF,

																														<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																								'LoongArch64'	|	'Ebc'

																														<CpuArch>	::=	<arch>[<arch>]*

4.2	Directory	NamesEDK	II	C	Coding	Standards	Specification[DRAFT]

23DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

																														Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>							OPTIONAL				*

Example:

			Pcd/Dxe/

4.2.3	EDKII	Library	directory

<Phase>[<CpuArch>[<Vendor>]]<LibraryClassName>[<Dependency>]

		or

<Phase><LibraryClassName>[<Dependency>]/[<CpuArch>[/<Vendor>]]

			<Phase>														REQUIRED					Base,	Sec,	Pei,	Dxe,	DxeRuntime,	Mm,

																																					StandaloneMm,	Smm,	Uefi.

			<CpuArch>												OPTIONAL					The	<CpuArch>	is	represented	with	a	BNF,

																																					<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																															'LoongArch64'	|	'Ebc'

																																					<CpuArch>	::=	<arch>[<arch>]*

																																					Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>													OPTIONAL					*

			<LibraryClassName>			REQUIRED					*

			<Dependency>									OPTIONAL					*	(Typically	name	of	PPI,	Protocol,	LibraryClass

																																							that	the	implementation	is	layered	on	top	of).

Example:

			-	BaseXApicLib/

			-	SmmIa32X64AmdSmmCpuFeaturesLib/

			-	SmmArmAArch64SmmCpuFeaturesLib/

			-	BaseMpInitLib/RiscV64/								#	RiscV64	specific	implementation.

																		/Ia32X64/								#	Ia32	and	X64	specific	implementation.

																		/Ia32X64/Amd					#	Ia32	and	X64	AMD	specific	implementation.

																		/ArmAArch64/					#	Arm	and	AAch64	specific	implementation.

																		/LoongArch64/				#	LoongArch64	specific	implementation.

																		/																#	Common	files	for	RiscV64,	Ia32,	X64,	Arm,	AArch64	and

																																			LoongArch64.

4.2	Directory	NamesEDK	II	C	Coding	Standards	Specification[DRAFT]

24DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.3	File	Names

4.3.1	There	is	no	limit	to	file	name	lengths.
Do	not	assume	that	file	names	must	be	8.3	compatible.	Be	reasonable	though.	Let	the	file	names	be	as
long	as	necessary,	but	no	longer.	Some	operating	systems	limit	file	names	to	32	characters.

4.3.2	Spaces	in	file	and	directory	names	are	NOT	permitted.
Allowing	spaces	would	cause	problems	with	certain	versions	of	existing	industry	tools	and	does	not
provide	additional	clarity.

4.3.3	Never	start	file	names	with	numbers.
Most	source	control	systems	will	not	be	able	to	handle	file	names	that	start	with	numbers.

4.3.4	Non-standard	characters	shall	not	occur	in	file	names.
All	file	names	within	an	EDK	II	source	tree	must	comply	with	the	following	regular	expression:

[A-Za-z][_A-Za-z0-9-]*[A-Za-z0-9]+

That	is,	a	letter	followed	by	zero,	or	more,	letters,	underscores,	dashes,	or	digits	followed	by	a	period
followed	by	one	or	more	letters	or	digits.

4.3.5	File	naming	guidelines	for	modules
Below	sections	are	the	file	naming	guidelines	for	EDK	II	meta	files	and	source	files.	The	guidelines	are
not	just	considering	the	the	uniformity	of	file	naming,	but	it	also	provides	the	flexibility	of	file	name
construction	for	the	scenario	of	different	EDK	II	module	designs;	such	as	the	support	for	multiple
processor	architectures	and	vendors.	It	may	require	the	further	discussions	between	EDK	II	maintainers
and	contributors	in	order	to	determine	the	best	naming	of	the	EDK	II	module	file.

4.3.5.1	EDK	II	meta	files	within	a	package

<PackageName>Pkg.dec

<PackageName>Pkg.dsc

			<PackageName>	REQUIRED		*

4.3.5.2	EDK	II	INF	file	within	a	Module	instance
If	the	implementation	is	for	all	CPU	architectures,	specific	CPU	architectures,	CPU	vendors	or	the
implementation	is	shared	by	certain	CPU	archs:

<Feature><Phase>[<CpuArch>][<Vendor>].inf

			<Feature>						REQUIRED				*

			<Phase>								REQUIRED				Base,	Sec,	Pei,	Dxe,	DxeRuntime,	Mm,	StandaloneMm,

																														Smm,	Uefi.

			<CpuArch>						OPTIONAL				The	<CpuArch>	is	represented	with	a	BNF,

																														<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																								'LoongArch64'	|	'Ebc'

																														<CpuArch>	::=	<arch>[<arch>]*

4.3	File	NamesEDK	II	C	Coding	Standards	Specification[DRAFT]

25DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

																														Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>							OPTIONAL				*

Example:

			-	SmbiosDxe.inf

			-	CpuIo2Dxe.inf

			-	CpuIo2DxeAmd.inf

			-	CpuIo2DxeIa32X64.inf

			-	CpuIo2DxeIa32X64Intel.inf

If	the	implementation	does	not	have	any	shared	code	between	phases	(e.g.,	Pcd/Dxe):

[<Feature>][<CpuArch>][<Vendor>].inf

			<Feature>						OPTIONAL				*

			<CpuArch>						OPTIONAL				The	<CpuArch>	is	represented	with	a	BNF,

																														<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																								'LoongArch64'	|	'Ebc'

																														<CpuArch>	::=	<arch>[<arch>]*

																														Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>							OPTIONAL				*

Example:

			Pcd.inf

4.3.5.3	EDK	II	INF	file	within	a	Library	instance

<Phase>[<CpuArch>][<Vendor>]<LibraryClassName>[<Dependency>].inf

			<Phase>														REQUIRED					Base,	Sec,	Pei,	Dxe,	DxeRuntime,	Mm,

																																					StandaloneMm,	Smm,	Uefi.

			<CpuArch>												OPTIONAL					The	<CpuArch>	is	represented	with	a	BNF,

																																					<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																															'LoongArch64'	|	'Ebc'

																																					<CpuArch>	::=	<arch>[<arch>]*

																																					Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>													OPTIONAL					*

			<LibraryClassName>			REQUIRED					*

			<Dependency>									OPTIONAL					*	(Typically	name	of	PPI,	Protocol,	LibraryClass

																																							that	the	implementation	is	layered	on	top	of)

Example:

			-	SmmAmdSmmCpuFeaturesLib.inf

			-	SmmIa32X64SmmCpuFeaturesLib.inf

4.3.5.4	EDK	II	source	files	within	a	Library/Module	instance
In	generally,	the	file	name	is	constructed	as	below:

[<CpuArch>][<Vendor>]<FileName>.*

			<CpuArch>			OPTIONAL			The	<CpuArch>	is	represented	with	a	BNF,

																										<arch>	::='Ia32'	|	'X64'	|	'Arm'	|	'AArch64'	|	'RiscV64'	|

																																				'LoongArch64'	|	'Ebc'

																										<CpuArch>	::=	<arch>[<arch>]*

																										Example:	Ia32X64Arm	or	RiscV64LoongArch64

			<Vendor>				OPTIONAL			*

			<FileName>		REQUIRED			Refer	to	4.3.1	to	4.3.4	sections	for	the	file

																										naming	format.

Example:

			SmmCpuFeatureLib.c

			SmmCpuFeatureLibCommon.c

			Ia32X64SmmCpuFeaturesLib.c

			Ia32X64IntelSmmCpuFeaturesLib.c

4.3	File	NamesEDK	II	C	Coding	Standards	Specification[DRAFT]

26DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

			AmdSmmCpuFeaturesLib.c

4.3	File	NamesEDK	II	C	Coding	Standards	Specification[DRAFT]

27DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.4	Identifiers

4.4.1	Identifiers	shall	not	rely	on	the	significance	of	more	than	31
characters.
Identifiers	(variable	names,	labels,	structure	tags,	derived	macro	names,	etc.)	may	be	an	arbitrary
length.	The	ISO	standard	only	guarantees	that	language	processors	only	pay	attention	to	the	first	31
symbols	when	comparing	identifiers.	Note	that	the	same	ISO	standard	requires	that	external	labels
(those	visible	to	the	linker)	be	unique	in	their	first	six	characters.	Since	it	has	been	confirmed	that	31
character	/	case	significance	is	supported	by	EDK	II	supported	tool	chains,	there	is	no	requirement	to
ensure	uniqueness	of	externals	within	the	first	6	characters.

4.4.2	Always	make	identifier	names	that	are	visually	distinguishable.
While	not	as	big	an	issue	as	it	has	been	in	the	past,	when	choosing	labels	ensure	that	the	label	is
unlikely	to	be	confused	with	other	labels	used	in	the	file.	Ensure	that	long	label	names	vary	by	more
than	one	or	two	characters.	Ensure	that	labels	don't	vary	between	zero	and	oh	(0	and	O),	one	and	ell	(1
and	l).	Some	also	consider	2	and	Z,	and	5	and	S	to	be	similar.

4.4.3	Hungarian	Prefixes

4.4.3.1	Use	of	Hungarian	notation	is	not	allowed
This	set	of	detailed	guidelines	for	naming	variables	and	routines	is	a	convention	widely	used	with	the	C
programming	language,	especially	in	Microsoft	Windows	programming.	An	example	of	a	non-compliant
variable	named	with	the	Hungarian	conventions	follows:

bmRequestType;		//	Byte	mask,	First	byte	in	the	USB	message	header

pachInsert;					//	A	pointer	to	an	array	of	characters	to	insert.

Global	data	and	module	data	shall	be	prefixed	with	'g'	or	'm',	respectively.	Pointer	variables	may
optionally	be	prefixed	with	'p'.	These	are	the	only	exceptions	to	the	prohibition	against	Hungarian
notation.

4.4.3.2	Any	variable	with	file	scope,	or	better,	shall	be	prefixed	by	an
'm'	or	'g'
There	are	no	exceptions	to	this	rule.	The	'	m	'	prefix	identifies	a	variable	with	module	scope,	while	a	'	g	'
prefix	identifies	a	global	variable.

gThisIsAGlobalVariableName

mThisIsAModuleVariableName

4.4.3.3	Pointer	variables	may	optionally	be	prefixed	with	a	'p'
Time	has	shown	that	pass-by-value	vs.	pass-by-reference	errors	are	significantly	reduced	with	only	the
introduction	of	a	'	p	'	prefix	for	pointer	variables.

4.4.3.4	Reasons	use	of	Hungarian	prefixes	not	allowed

4.4	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

28DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	abstraction	of	abstract	data	types	is	ignored.	Instead,	base	types	based	on	programminglanguage
integers	or	long	integers	are	abstracted.	Thus,	the	names	are	focused	on	data	types	instead	of	the
object-oriented	abstraction	that	they	represent.	This	focus	is	of	little	value	and	forces	manual	type
checking	that	can	be	accomplished	easily	by	the	compiler	with	warnings	promoted	to	errors.

Hungarian	notation	combines	data	meaning	with	data	representation.	If	you	change	a	data	type	you
have	to	rename	the	variable.	There	is	no	mechanism	to	ensure	that	the	names	are	accurate.

Studies	have	shown	that	Hungarian	notation	tends	to	encourage	lazy	variable	names.	It's	common	to
focus	on	the	Hungarian	prefix	without	putting	effort	into	a	descriptive	name.

4.4.4	Function	and	Data	Names

4.4.4.1	Identifiers	shall	contain	mixed	upper-	and	lower-case	text.
Use	of	all	upper-	or	all	lower-case	is	very	difficult	to	read	because	compound	words	cannot	be	clearly
separated.

4.4.4.2	The	names	of	newly	created	global	entities	(such	as
structures,	macros,	and	defines)	shall	not	use	an		EFI_		prefix.
From	now	on,	the	use	of		DXE_		and		PEI_		prefixes	shall	be	reserved	for	DXE	and	PEI	drivers,	respectively.	If
a	structure	happens	to	apply	equally	to	PEI	and	DXE,	it	should	use	the	prefix		DXE_	.	If	a	structure	is	local
to	a	particular	module	only,	no	special	prefix	is	required.

4.4.4.3	Acronyms	are	not	capitalized	in	Function	and	Data	Names.
When	all	letters	in	an	acronym	are	capitalized,	it	makes	the	prior	and	subsequent	words	visually	difficult
to	distinguish.

ThisIsAnExampleOfWhatToDoForPci

4.4.4.4	Never	use	C	keywords	or	the	names	of	symbols	declared	in
the	standard	header	files	as	internal	symbols.
When	you	need	to	use	the	name	of	an	existing	library	function	for	a	user-defined	function,	each	use	of
the	user-defined	function	must	be	paired	with	a	corresponding	comment.	The	ISO	standard	does	not,
however,	guarantee	that	the	user-defined	function	will	take	priority	over	the	library	function.

4.4.4.4.1	List	of	the	C-reserved	keywords.

In	principle,	the	ISO	standard,	reserves	all	names	beginning	with	underscore	+	capital	letter,	or	with
underscore	+	underscore.	External	symbols	names	shall	not	begin	with	an	underscore.

Table	4	Reserved	Keywords

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

a

a

4.4	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

29DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

volatile while inline restrict wchar_t

bool true false NULL _Bool

_Complex _Imaginary and and_eq bitand

bitor compl not not_eq or

or_eq xor xor_eq

.	Floating	point	operations	are	not	recommended	in	UEFI	firmware.	↩

.	These	keywords	are	specific	to	C99	and	are	not	reserved	in	C++.	↩

.	Macros	defined	in	header	iso646.h.	These	identifiers	are	reserved	in	C++	and	are	defined	as
part	of	the	C	Standard	Library.	↩

In	addition	to	those	listed,	the	identifiers	asm	and	fortran	are	common	language	extensions	and	should
also	be	treated	as	reserved.

4.4.5	Type	and	Macro	Names

4.4.5.1	Use	all	capital	letters	for	both	#define	and	typedef
declarations.
This	clearly	differentiates	static	declarations	from	dynamic	data	types.

4.4.5.2	Each	word	of	a	concept	shall	be	separated	by	an	underscore
character.
The	underscore	effectively	separates	the	words,	making	names	more	readable.

4.4.5.3	The	use	of	the	"_t"	suffix,	designating	a	type,	is	not	allowed.

typedef	UINT32	THIS_IS_AN_EXAMPLE_OF_WHAT_TO_DO_FOR_PCI;

4.4.5.4	The	names	of	guard	macros	shall	end	with	an	underscore
character.
The	guard	macro,	used	in	the		#ifndef		at	the	start	of	an	include	file,	uses	a	postfix	underscore	character
'	_	',	in	its	name	in	order	to	prevent	collision	with	other	names	that	follow	the	naming	convention.	This
may	not	be	sufficient	for	header	files	that	don't	have	a	unique	name.	In	that	case,	additional	text	may
have	to	be	added	to	the	macro	name	in	order	to	make	it	unique.	This	may	not	be	required	if	the	header
files	are	mutually	exclusive.

#ifndef	FILE_NAME_H_

#define	FILE_NAME_H_

...

#if	(A_NUMBER	>	72)

...

#else	//	NOT	(A_NUMBER	>	72)

...

#endif	//	(A_NUMBER	>	72)

...

#endif	/*	FILE_NAME_H_	*/

4.4.5.5	The	#else	and	#endif	clauses	of	conditional	compilation
blocks	shall	be	commented	to	identify	their	context.

b

b b c c c

c c c c c

c c c

a

b

c

4.4	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

30DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

If	a	conditional	compilation	construct	spans	more	than	seven	lines,	a	comment	shall	be	added	to	the
construct's		#else		and		#endif		clauses	identifying	the	block	the	clause	is	associated	with.	This	is
illustrated	in	the	preceding	code	example.	The	comment	shall	be	on	the	same	line	as	the		#else		or
	#endif		clause.

4.4	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

31DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.5	Global	&	Module	Variables
There	is	often	confusion	about	what	constitutes	module	variables	versus	global	variables.	Technically,
both	global	and	module	variables	are	defined	at	file	scope	with	external	linkage.	A	module	variable	is
intended	to	only	be	accessed	across	a	small	set	of	related	routines	that	have	strict	rules	for	accessing
the	data;	in	effect,	constrained	to	the	set	of	files	described	within	a	single	.inf	file.	A	global	variable	is
intended	to	be	accessed	throughout	the	firmware,	usually	indirectly	through	a	protocol	pointer	or
similar	mechanism.

This	is	important	when	the	time	comes	to	maintain	a	module.	A	module	variable	should	be	fairly	safe
and	easy	to	change	because	it	is	only	accessed	from	a	small	number	of	routines.	On	the	other	hand,	a
global	variable	is	accessed	throughout	the	firmware	and	as	the	firmware	evolves	more	code	will	tend	to
access	the	data	resulting	in	a	large	number	of	uses	to	track	down.

4.5.1	Recommendations	for	Global	and	Module	Variables

4.5.1.1	The	use	of	global	and	module	data	is	strongly	discouraged.
Global	variables	are	appropriate	for	GUID,	protocol,	PPI	definitions	and	other	immutable	objects.
Attempting	to	create	global	variables	can	cause	many	problems,	including:	increased	image	size	and
variables	actually	residing	in	ROM.

The	use	of	global	and	module	variables	may	be	appropriate	for	solving	certain	programming	issues.	A
module	is	defined	to	be	a	set	of	data	and	routines	that	act	on	that	data.	Thus,	in	EFI	a	protocol	could
be	thought	of	as	a	module.	A	complicated	protocol	may	be	built	out	of	several	smaller	modules.

4.5.1.2	Use	locking	to	protect	access	to	global	and	module	variables.
This	protection	is	strongly	encouraged	and	especially	useful	for	data	that	is	accessed	at	various	task
priority	levels.

4.5	Global	&	Module	VariablesEDK	II	C	Coding	Standards	Specification[DRAFT]

32DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

4.6	Name	Space	Rules
ISO	C	defines	several	name	spaces	(see	ISO/IEC	9899:1994	6.1.2.3).	The	same	name	could	be	used	in	a
separate	name	space	for	a	completely	different	item.

Name	spaces	are	defined	as:

label	names
tags	of	structures,	unions	and	enumerators
Members	of	structures	or	unions
All	other	identifiers.

Note:	Name	space	and	scope	are	not	synonymous.	Name	space	rules	do	not	apply	to	scope.	Scope	is
described	in	"Scoping	Rules".

4.6.1	Names	shall	be	used	consistently	within	the	same	type.
For	example,	structure	tags	may	only	be	reused	as	structure	types,	and	union	tags	may	be	reused	only
for	union	types.

typedef	struct	MyStruct	{

		UINT32		One;

		UINT32		Two;

		UINT32		Three;

}	MY_STRUCT;

Because	of	the	similarity	of		MyStruct		to		MY_STRUCT	,	they	may	only	be	used	to	refer	to	the	same	structure
type.

4.6.2	No	identifier	in	one	name	space	may	be	reused	as	an	identifier
in	another	name	space
Exceptions	are	structure	member	and	union	member	names.

typedef	struct	StructOne	{

		INT32													One;

		INT16													Two;

		struct	StructOne		*MySelf;

}	STRUCT_ONE;

typedef	struct	StructTwo	{

		INT16													One;

		INT8														*Two;

		struct	StructTwo		*MySelf;

}	STRUCT_TWO;

typedef	struct	{

		STRUCT_ONE		*StructOne;					//	NOT	ALLOWED

		STRUCT_TWO		*StructTwoPtr;		//	ALLOWED,	it	is	unique

}	BAD_STRUCT;

4.6.3	A	typedef	name	shall	be	a	unique	identifier.

4.6	Name	Space	RulesEDK	II	C	Coding	Standards	Specification[DRAFT]

33DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	name	that	appears	at	the	end	of	a	typedef	(STRUCT_ONE		and		STRUCT_TWO		in	the	example	in	Section
4.6.2)	is	known	as	a	typedef	name.	Because	of	ambiguity	in	the	C	specifications,	and	to	avoid	confusion,
and	once	a	typedef	name	is	used	in	a	structure	declaration,	it	may	not	be	declared	elsewhere

Note:	Including	the	declaration	in	a	header	file	that	is	then	included	in	a	number	of	files	is	not	a
violation	of	this	rule.

4.6.4	A	tag	name	shall	be	unique.
The	name	after	the		struct		in	structure	definitions	(StructOne		and		StructTwo		in	the	example	in	4.6.2)	is
known	as	a	structure	tag	or	simply	a	tag.	To	avoid	confusion,	once	a	tag	is	used	for	declaring	a
structure	it	shall	not	be	declared	elsewhere.

Note:	Including	a	header	file	that	contains	a	structure	definition	is	not	a	violation	of	this	rule.

4.6.5	Prefix	module-scope	identifiers	for	cleaner	namespaces.
The	use	of	prefixes	is	not	an	absolute	requirement,	but	has	been	shown	as	a	successful	method	of
avoiding	namespace	pollution	and	makes	it	easier	to	meet	other	naming	requirements.	A	useful	prefix	is
the	module's	name.	For	example,	the	UEFI	Shell	uses	the	prefix	"Shell"	for	its	identifiers.

SHELL_FREE_NON_NULL	(Buffer);

ShellCommandLibConstructor	(ImageHandle,	SystemTable);

4.6	Name	Space	RulesEDK	II	C	Coding	Standards	Specification[DRAFT]

34DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5	SOURCE	FILES

5.1	General	Rules

5.1.1	Lines	shall	be	120	columns,	or	less
Preferably,	limit	line	lengths	to	80	columns	or	less.	When	this	doesn't	leave	sufficient	space	for	a	good
postfix	style	comment,	extend	the	line	to	a	total	of	120	columns.	Having	some	level	of	uniformity	in	the
expected	width	of	the	source	is	useful	for	viewing	and	printing	the	code.

5.1.2	Do	not	use	tab	characters
Tabs	shall	be	set	in	all	editors	to	expand	to	two	spaces.	All	indentation	is	on	two	space	boundaries.
There	are	no	exceptions	to	this	rule!	This	rule	makes	code	look	the	same	in	all	editors.

5.1.3	Files	may	only	contain	the	ASCII	characters	0x0A,	0x0D,	and
0x20	through	0x7E
Files	should	be	saved	using	either	ASCII	or	UTF8	encoding.

5.1.4	Only	escape	sequences	defined	in	the	ISO	C	standard	shall	be
used	in	string	literals.
Implementing	hexadecimal	escape	sequences,	'\x20'	for	example,	is	prohibited	because	they	vary	from
compiler	to	compiler.

The	ISO	standard	defines	octal	escape	sequences:	'\102',	for	example.	Because	of	the	similarity	to
decimal	values,	and	octal	having	fallen	into	disuse,	use	of	this	construct	is	prohibited.	The	only
exception	to	this	rule	is	'\0'.

Other	than	'\0',	the	only	permissible	escape	sequences	are:

Table	5	Permissible	Escape	Sequences	(ISO/IEC	9899:1990	6.1.3.4)

	\a	 Alert:	Visual	or	audible	alert

	\b	 Backspace:	Move	to	previous	position

	\f	 Form	Feed:	Move	to	next	logical	page

	\n	 New	Line:	Move	to	start	of	next	line

	\r	 Carriage	Return:	Move	to	start	of	line

	\t	 Horiz.	Tab:	Move	to	next	tab	position

	\v	 Vert.	Tab:	Move	to	next	Vert.	Tab	pos.

	\’	 Single	Quote

	\”	 Double	Quote

	\0	 NUL	character

	\\	 Single	Backslash

5.1.5	Octal	constants	(Base	8)	shall	not	be	used.

5	Source	FilesEDK	II	C	Coding	Standards	Specification[DRAFT]

35DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	C	language	specification	has	defined	numbers	whose	first	digit	is	zero	as	octal,	so	010	is	decimal	8
The	use	of	octal	has	declined	considerably	since	C	was	first	defined	but	this	construct	remains	for
backwards	compatibility.	Its	use	is	prohibited.	In	particular,	do	not	be	tempted	to	use	the	zero	prefix	in
tables	of	numbers	to	ensure	visual	alignment:

Address[0]	=	00130;		//	Decimal	88

Address[1]	=	01450;		//	Decimal	808

Address[3]	=	81200;		//	Decimal	81200

5.1.6	Only	use	CRLF	(Carriage	Return	Line	Feed)	line	endings.
Use	Windows,	or	MSDOS,	style	line	endings.	Do	NOT	use	Unix	/	Linux	/	MacOS	/	OS-X	file	formats.

5.1.7	All	files	must	end	with	CRLF
The	last	two	characters	in	any	source	file	within	EDK	II	must	be	a	CRLF:	0x0D	followed	by	0x0A.

5.1.8	Trigraphs	shall	not	be	used
Trigraphs	are	a	construct	to	allow	character	representations	that	do	not	support	all	ASCII	characters	to
enter	the	equivalent	of	the	ASCII	character.	Trigraphs	are	three	characters	long	(hence	the	"tri").	The
first	two	characters	are	"??"	while	the	third	character	disambiguates	the	trigraph.	Technically	therefore,
a[5]	could	be	written	a??(5??).	Trigraphs	have	provided	both	confusing	and	unnecessary	and	are
prohibited.

5.1.9	In-line	assembler	shall	not	be	used
There	are	really	no	reasons	for	in-line	assembler	to	be	used	in	EDK	II	code.	The	only	exceptions	in	this
case	are	largely	associated	with	the	lowest	level	Architectural	Protocols.	Using	in-line	assembly
language	deviates	against	the	Scope	rules	defined	in	Section	1.3	"Scope"	because	it	is	an	extension	to
standard	C.	This.

5.1.10	Do	not	use	#pragma,	except	for	#pragma	pack	(#).
The	only	other	exception	for	this	would	be	in	the		ProcessorBind.h		file.

5	Source	FilesEDK	II	C	Coding	Standards	Specification[DRAFT]

36DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.2	Spacing
Some	people	claim	that	spacing	is	not	important	and	that	spacing	rules	in	a	coding	style	are
burdensome	and	bogus.	Review	the	following	example	to	see	why	spacing	is	important,	especially	in	C:

int	i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hello,

world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

Dishonorable	mention,	Obfuscated	C	Code	Contest,	1984.

Author	requested	anonymity.

5.2.1	Vertical	Spacing
Use	blank	lines	to

make	code	more	readable
group	logically	related	sections	together.

5.2.1.1	There	shall	be	only	one	statement	on	a	line
This	requirement	does	not	include		for		loops,	where	the	initial,	conditional,	and	loop	statements	may	go
on	a	single	line.

5.2.1.2	The	if	and	while	statements	are	no	exception
The	conditional	and	code	always	go	on	a	separate	line.

It	should	be:

if	(MyVar	!=	0)	{

		MyTrueCode	();

}

5.2.1.3	An	open	brace	'{'	goes	on	the	same	line	as	the	closing
parenthesis	')'	of	simple	predicate	expressions
This	requirement	includes	functions	and	data.	A	simple	predicate	expression	is	one	containing	zero	or
one	operator	which	fits	on	the	same	line	as	the	keyword.

while	(MyVar	!=	0)	{

5.2.1.4	A	close	brace	'}'	always	goes	at	the	beginning	of	the	last	line
of	the	body
Indent	the	brace	to	match	the	first	line	of	the	construct.

while	(MyVar	!=	0)	{

		MyTrueCode	();

}

5.2.1.5	A	close	brace	may	share	a	line	with	the	else	{,	else	if	()	{,
and	do-while	constructs

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

37DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

}	else	{

}	else	if	(foo)	{

}	while	(bar);

5.2.1.6	Each	sub-expression	of	a	complex	predicate	expression	must
be	on	a	separate	line
Predicate	expressions	containing	multiple	operators	with	sub-expressions	joined	by	&&	or	||	must	have
each	sub-expression	on	a	separate	line.	The	opening	brace,	'	{	'	of	the	body	shall	be	on	a	line	by	itself
and	aligned	in	the	starting	column	of	the	associated	keyword.

while	((Code	==	MEETS_STANDARD)

		&&	(Code	==	FUNCTIONAL))

{

		ShipIt	();

}

5.2.2	Horizontal	Spacing

5.2.2.1	Unless	explicitly	stated	otherwise,	space	may	be	one	or	more
spaces	long

5.2.2.2	Always	put	space	before	and	after	binary	operators.
This	space	makes	both	operands	much	easier	to	read.

if	(MyVar	!=	0)	{

		MyTrueCode	();

}

5.2.2.3	Do	not	put	space	between	unary	operators	and	their	object

If	((--MyInteger)	>	0)	{

5.2.2.4	Subsequent	lines	of	multi-line	function	calls	should	line	up	two
spaces	from	the	beginning	of	the	function	name
If	a	function	call	or	function	like	macro	invocation	is	broken	up	into	multiple	lines,	then:

One	argument	per	line,	including	the	first	argument	on	its	own	line.
Indent	each	argument	2	spaces	from	the	start	of	the	function	name.	If	a	function	is	called	through	a
structure	or	union	member,	of	type	pointer-to-function,	then	indent	each	argument	2	spaces	from
the	start	of	the	member	name.
Align	the	close	parenthesis	with	the	start	of	the	last	argument

CopyMem	(

		Destination,

		Source,

		SIZE_4KB

);

Status	=	gBS->AllocatePool	(

																EfiBootServicesData,

																sizeof	(DRIVER_NAME_INSTANCE),

																&PrivateData

);

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

38DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

DEBUG	((

		DEBUG_INFO,

		"The	addresses	of	the	4	buffers	are	%p,	%p,	%p,	and	%p\n",

		Buffer1,

		Buffer2,

		Buffer3,

		Buffer4

));

5.2.2.5	Always	put	space	after	commas	or	semicolons	that	separate
items
This	punctuation	is	not	necessary	if	no	code	or	comments	follow	the	comma	or	semicolon.

EfiLibAllocateCopyPool	(Size,	DevicePath);

for	(Size	=	0;	FileName[Size]	!=	0;	Size++)	{...

5.2.2.6	Always	put	space	before	an	open	parenthesis
The	only	exception	is	macro	definitions.

if	(...

while	(...

EfiLibAllocateCopyPool	(...

5.2.2.7	Put	a	space	before	an	open	brace	if	it	is	not	on	its	own	line

if	()	{

while	()	{

5.2.2.8	Do	not	put	spaces	around	structure	member	and	pointer
operators

Data.Index

Pointer->Index	=	*Ptr;

5.2.2.9	Do	not	put	spaces	before	open	brackets	of	array	subscripts

Array[(Max	+	Min)	/	2]

5.2.2.10	Use	extra	parentheses	rather	than	depending	on	in-depth
knowledge	of	the	order	of	precedence	of	C
(The	order	of	precedence	should	be	the	compiler's	job,	not	yours.)

Consider	the	following	expression:

8	|	8	==	8

On	first	glance,	one	might	think	that	the	expression	would	evaluate	to		TRUE	.	This	is	not	the	case.	The
bitwise	OR	operator,	'	|	',	has	lower	precedence	than	the	equality	operator,	'	==	'.	This	results	in	the
expression	being	evaluated	as	if	one	had	entered:

8	|	(8	==	8)

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

39DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

This	evaluates	to	the	value	9.

5.2.2.11	Align	a	continuation	line	with	the	part	of	the	line	that	it
continues.

Value	=	(GetData	(BubbaBaes	+	BUBBA_HIGH_DATA)	<<	8)	|

									GetData	(BubbaBaes	+	BUBBA_LOW_DATA);

5.2.3	File	Heading

5.2.3.1	Every	new	file	shall	begin	with	a	file	header	comment	block
This	block	shall	begin	on	the	first	line	of	the	file.	This	is	a	Doxygen	file	descriptor	comment	block,	so	line
1	of	the	file	will	be:

/**	@file

And	the	comment	will	end	with:

**/

The	File	Heading	comment	block	is	comprised	of	the	following	sections:	File	Description,	Copyright,
License,	and	the	optional	Specification	Reference	and	Glossary	sections.

/**	@file

		File	Description.

		Copyright

		License

		Specification	Reference

		Glossary	Section

**/

The	following	example	begins	each	body	line	with	a	tab	(two	spaces).	This	is	the	preferred	indentation,
but	two	tabs	(four	spaces)	is	also	acceptable.

Example

/**	@file

		Brief	description	of	the	file’s	purpose.

		Detailed	description	of	the	file’s	contents	and	other	useful

		information	for	a	person	viewing	the	file	for	the	first	time.

		Copyright	(C)	--20XX,	Acme	Corporation.	All	rights	reserved.

		SPDX-License-Identifier:	BSD-2-Clause-Patent

		@par	Revision	Reference:

				-	PI	Version	1.0

		@par	Glossary:

				-	IETF	-	Internet	Engineering	Task	Force

				-	NASA	-	National	Aeronautics	and	Space	Administration

**/

5.2.3.2	File	Description

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

40DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	file	description	consists	of	a	brief,	one	sentence,	description	of	the	file's	purpose	as	well	as	a
detailed	description	of	the	files	purpose	and	content.

The	brief	description	begins	on	the	second	line	of	the	comment	block	and	terminates	at	the	first	period.
Do	not	include	text	indicating	that	the	file	is	a	header,	include,	declaration,	or	definition	file	as	this	is
intrinsically	obvious.

The	detailed	description	follows	the	brief	description,	separated	by	a	blank	line.	All	subsequent	text	and
blank	lines	are	part	of	the	detailed	description	until	terminated	by	a	Doxygen	command	or	the	end	of
the	comment.

Note:	The	Copyright	Notice	and	License	comprise	the	last	paragraph	of	the	detailed	file	description.
They	are	described	separately,	below.

The	file	description	describes	the	purpose	of	the	file	(why	the	file	exists),	a	general	description	of	what
it	contains,	and	the	relationship	of	the	file	to	a	particular	module	or	modules,	if	any.

5.2.3.3	Copyright
The	first	line	of	the	last	paragraph	of	the	file	description	is	made	up	of	the	copyright	notice.	The
copyright	notice	must	consist	of	the	following	text	with	the		FIRST		and		LAST		symbols	replaced	with	the
year	the	file	was	created	and	the	year	the	file	was	last	edited,	respectively.

Copyright	(C)	FIRST	-	LAST,	Acme	Corporation.	All	rights	reserved.

A	file	that	has	been	created	but	not	edited	in	subsequent	years	would	have	a	copyright	notice	with	a
single	date,	such	as:

Copyright	(C)	2007,	Acme	Corporation.	All	rights	reserved.

If	this	file	is	subsequently	edited,	the	copyright	notice	would	be	updated	as	follows.

Copyright	(C)	2007	-	2014,	Acme	Corporation.	All	rights	reserved.

The		FIRST	-	LAST		format	for	the	copyright	date,	as	described	above,	is	the	only	format	allowed.	Do	not
use	a	comma	separated	list	or	keep	updating	a	single	date.	The	space	surrounding	the	hyphen,	'	-	',
between	the		FIRST		and		LAST		dates	is	optional.

The		
		at	the	end	of	the	line	is	required.	Doxygen	uses	XML	for	its	internal	format,	so	repeated
spaces	and	new	lines	are	treated	as	a	single	space.	The		
		will	force	Doxygen	to	start	the	following
text,	the	license	notice,	on	a	new	line.

5.2.3.4	License
EDK	II	code	files	may	contain	one	of	several	different	licenses,	depending	upon	the	location	and	content
of	the	file.	The	correct	license	will	be	determined	by	the	project	leader	at	the	time	the	file	is	created.	In
most	cases,	the	license	will	be	the	same	as	for	other	files	in	the	module	or	package.

The	preferred	license	for	EDK	II	is	the	"BSD+Patent"	license.	The	license	for	a	file	is	provided	in	the	file
header	using	an	SPDX	identifier.	The	following	shows	the	SPDX	identifier	for	the	"BSD+Patent"	license.

SPDX-License-Identifier:	BSD-2-Clause-Patent

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

41DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	license	follows	the	copyright	notice.	The	license	is	separated	from	the	Specification	Reference,	if
present,	by	a	single	blank	line.

5.2.3.5	Specification	Reference
If	the	file	declares	or	implements	something	described	in	one	or	more	UEFI	or	Industry	Standard
specifications,	it	must	include	a	specification	reference	section	in	the	file	description	comment	block.
The	section	begins	with	a	Doxygen	directive:

@par	Revision	Reference:

Each	specification	is	listed	on	a	separate	line.	All	specification	references	must	use	the	list	format.	An
indented	line	beginning	with	a	dash	character,	'-',	indicates	list	format.

@par	Revision	Reference:

		-	UEFI	Version	2.2

		-	PI	Version	1.0

5.2.3.6	Glossary
If	the	file	uses	a	non-standard	Abbreviation	or	Acronym,	it	must	include	a	Glossary	section	in	the	file
description	comment	block.	The	section	begins	with	a	Doxygen	directive:

@par	Glossary:

Each	Glossary	definition	is	listed	on	a	separate	line.	All	Glossary	definitions	must	use	the	list	format.

@par	Glossary:

		-	IETF	-	the	Internet	Engineering	Task	Force

		-	NASA	-	National	Aeronautics	and	Space	Administration

5.2	SpacingEDK	II	C	Coding	Standards	Specification[DRAFT]

42DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.3	Include	Files

5.3.1	All	C	include	file	names	shall	contain	only	one	extension	and	it
must	be	.h.
Using	only	one	extension	dramatically	simplifies	build	issues	and	standardizes	naming.

5.3.2	Every	include	file	shall	have	a	unique	name.
The	name	of	all	include	files,	within	the	EDK	II	code	base,	must	be	unique.	The	uniqueness	test	applies
to	the	entire	path	used	in	the	#include	directive.	For	example:

#include	<Peach/Pit.h>

#include	"Olive/Pit.h"

#include	<MoneyPit.h>

#include	"OpenPit.h"

These	are	unique,	even	if	the	file	name	itself	is	not,	as	long	as	the	preceding	path	component	is
included.

To	see	why	this	is	necessary,	consider	a	package,		FruitPkg	,	that	has	the	following	in	its	DEC	file:

[Includes]

		Include

		Include/Olive

		Include/Peach

Both	the		Include/Olive		and		Include/Peach		directories	contain	a	file		Pit.h	.	It	then	becomes	ambiguous
which	file	is	being	referenced	if	one	encounters		#include	<Pit.h>		in	a	source	file.	This	ambiguity	would	be
compounded	if	another	package,	also	dependent	upon		FruitPkg	,	contained	a		Pit.h		file	in	its		Include	
directory.

Existing	automatically	generated	include	files,	such	as		AutoGen.h	,	are	exempted	from	this	rule.	It	is	not
mandatory	to	rename	pre-existing	include	files.

Unique	file	names	may	also	be	formed	by	appending	or	prepending	a	short	character	sequence,	such
as	the	module	or	package	name	in	which	the	file	resides,	or	an	abbreviation	of	one	of	these,	to	the	file
name.

PeachPit.h	OlivePit.h	MoneyPit.h	PitBoss.h

5.3.3	Include	files	shall	not	consist	mainly	of	include	directives.
This	type	of	omnibus	header	file	can	significantly	increase	the	time	required	to	rebuild	a	project.	If	any
of	the	included	files	changes,	every	file	that	includes	the	omnibus	file	will	have	to	be	recompiled;	even	if
that	particular	file	did	not	use	the	changed	header	file.

5.3.4	Include	files	may	include	only	those	headers	that	it	directly
depends	upon.
This	maintains	proper	dependency	relationships	between	the	files	and	allows	the	header	file	to	be	used
without	prior	knowledge	of	its	dependencies.

5.3.5	All	include	file	contents	must	be	protected	by	a	#include	guard.

5.3	Include	FilesEDK	II	C	Coding	Standards	Specification[DRAFT]

43DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Also	known	as	a	"macro	guard",	use	#include	guards	to	avoid	multiple	inclusions	when	dealing	with	the
include	directive.	Adding		#include		guards	to	a	header	file	makes	that	file	idempotent.

#ifndef	FILE_NAME_H_

#define	FILE_NAME_H_

...

#endif	//	FILE_NAME_H_

Avoid	duplicating	the	guard	macro	name	in	different	header	files.	Including	a	duplicate	guard	macro
name	prevents	the	symbols	in	the	other	from	being	defined.	Names	starting	with	one	or	two
underscores,	such	as		_MACRO_GUARD_FILE_NAME_H_	,	must	not	be	used.	They	are	reserved	for	compiler
implementation.

With	modern	programming	practices,	particularly	include	files	including	other	include	files,	it	is	almost
impossible	to	avoid	including	the	same	file	more	than	once.	This	can	only	slow	down	the	processing	time
and	may	cause	difficult	to	diagnose	issues.	To	avoid	this,	the	use	of	macro	guards	is	required	in	all
include	files	to	protect	against	inadvertent	multiple	inclusion.

The		#ifndef		shall	be	on	the	first	line	following	the	file	header	comment.	This	location	ensures	that	all
code	is	contained.

The		#endif		shall	appear	as	the	last	line	in	the	file.	The		#endif		is	followed	by	a	comment	consisting
solely	of	the	guard	token.	The	line	shall	end	with	a	carriage	return	(new	line)	as	the	last	thing	in	the
file,	thus	ensuring	that	all	code	is	contained.

5.3.6	Include	files	shall	contain	only	public	or	only	private	data.
Include	files	must	not	contain	both	types	of	information.	Examples	of	public	include	files	would	be
protocol	definitions	or	industry	standard	specifications	(EFI,	SAL,	ACPI,	SMBIOS,	etc.).	Private	data	would
include	functions	and	internal	data	structure	declarations	used	only	within	a	single	module.

5.3.7	Include	files	shall	not	generate	code	or	define	data	variables.
Including	code	or	defining	variables	can	result	in	issues	that	are	very	difficult	to	debug.

The	sample	below	shows	the	suggested	order	of	declarations	in	an	include	file.	Not	all	types	of
declarations	are	present	in	every	file.

/**	@file

		Public	declarations	of	bizarre	protocols	for	something.

		This	is	a	detailed	description	of	the	something	for	which	this

		file	exists.	Something	rotates	upon	the	blarvitz	allowing

		implementation	of	bizarre	protocols.	If	the	blarvitz	is	NULL,

		describe	what	is	happening	in	more	detail.	If	non-null,	then

		you	should	probably	also	explain	your	rationale.

		Copyright	(c)	20XX,	Acme	Corporation.	All	rights	reserved.

		SPDX-License-Identifier:	BSD-2-Clause-Patent

		@par	Specification	Reference:

				-	UEFI	2.3,	Chapter	9,	Device	Path	Protocol

				-	PI	1.1,	Chapter	10,	Boot	Paths

**/

#ifndef	SAMPLE_THING_H_

#define	SAMPLE_THING_H_

/*	Include	directives	for	dependent	header	files	*/

/*	Simple	defines	of	such	items	as	status	codes	and	macros	*/

/*	Type	definitions	*/

5.3	Include	FilesEDK	II	C	Coding	Standards	Specification[DRAFT]

44DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

/*	Function	prototype	declarations	*/

/*	Protocol	declarations	*/

#endif	/*	SAMPLE_THING_H_	*/

5.3	Include	FilesEDK	II	C	Coding	Standards	Specification[DRAFT]

45DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.4	Code	File	Structure
All	code	generating	files	use	the	following	general	structure.	Typically	these	are	C	files	with	an	extension
of	"	.c	".

/**	@file

		Definitions	of	bizarre	protocols	for	something.

		This	is	a	detailed	description	of	the	something	for	which	this

		file	exists.	Something	rotates	upon	the	blarvitz	allowing

		implementation	of	bizarre	protocols.	If	the	blarvitz	is	NULL,

		describe	what	is	happening	in	more	detail.	If	non-NULL,	then

		you	should	probably	also	explain	your	rationale.

		Copyright	(c)	20XX,	Acme	Corporation.	All	rights	reserved.

		SPDX-License-Identifier:	BSD-2-Clause-Patent

		@par	Specification	Reference:

				-	UEFI	2.3,	Chapter	9,	Device	Path	Protocol

				-	PI	1.1,	Chapter	10,	Boot	Paths

**/

/*	Include	necessary	header	files	here	*/

#include	<DxeCore.h>

#include	<Uefi.h>

#include	"SampleThing.h"

/*	Define	external,	global	and	module	variables	here	*/

/*	Function	Definitions	*/

/*	If	this	is	a	protocol	definition,	the

protocol	structure	is	defined	and	initialized	here.

*/

5.4.1	Scoping	Rules
There	are	three	components	of	the	C	language	that	interact	to	affect	when	a	particular	variable	can	be
used,	or	not.

Scope:	The	context	in	which	an	identifier	is	visible	constitutes	the	scope	of	that	identifier..

Visibility:	If	an	identifier	can	be	referenced	within	a	particular	scope	it	is	said	to	be	visible.

Storage	Class:	Allocation	of	storage	space	is	controlled	by	the	storage	class	of	an	identifier.

5.4.1.1	Scope
Understanding	the	C	scoping	rules	is	critical	for	good	programming.	The	various	identifier	scopes
encountered	are:	file,	prototype,	function,	and	block	or	local	scope.

File	Scope

Top-level	identifiers	and	preprocessor	macros	are	said	to	have	file	scope.	Their	scope	extends	from	their
declaration	point	to	the	end	of	the	source	program	file.	A	preprocessor	macro	can	go	out-of-scope
earlier	if	a		#undef		command	that	cancels	its	definition	is	encountered.

Prototype	Scope

The	identifiers	making	up	the	formal	parameters	in	function	prototypes	have	prototype	scope.
Identifiers	with	prototype	scope	have	scopes	extending	from	their	declaration	point	to	the	end	of	the
prototype.

5.4	Code	File	StructureEDK	II	C	Coding	Standards	Specification[DRAFT]

46DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Function	Scope

Statement	labels	have	function	scope.	Function	scope	identifiers	have	scope	which	encompasses	the
entire	function	body	in	which	they	appear.	This	means	that	statement	labels	can	be	referenced	before
they	are	declared.

Block	(local)	Scope

Formal	parameters	in	function	definitions	and	data	defined	within	compound	statements	have	block
scope.	Any	group	of	statements	that	are	encompassed	within	a	pair	of	braces,	{	},	is	a	compound
statement.	The	body	of	a	function	is	also	a	compound	statement.	Compound	statements	can	be
nested,	with	each	creating	a	new	scope.

Data	declarations	may	follow	the	opening	brace	of	a	compound	statement,	regardless	of	nesting	depth,
and	before	any	code	generating	statements	have	been	entered.	Other	than	at	the	outermost	block	of	a
function	body,	this	type	of	declaration	is	strongly	discouraged.

Note:	Visual	C++	gives	all	structure	declarations	File	Scope,	even	though	ISO/IEC	9899	specifies	that
structure	declarations	may	have	Block	Scope.

5.4.1.2	Visibility
A	declaration	of	an	identifier	is	visible	in	some	context	if	a	use	of	the	identifier	in	that	context	is
associated	with	that	declaration.	A	declaration	might	be	visible	throughout	its	scope,	but	it	might	also
be	hidden	by	other	declarations	whose	scope	and	visibility	overlap	that	of	the	first	declaration.

5.4.1.2.1	No	two	different	identifiers	in	a	function	may	have	the	same	name	nor	may	any	of
the	names	in	a	function	be	the	same	as	those	declared	at	a	global	or	module	level.

Identifiers	with	file	scope	have	the	outermost	scope.	Those	with	block	scope	have	the	innermost
scope.	Nesting	successive	blocks	creates	more	inner	scopes.

Only	disallow	instances	where	an	outer	definition	is	hidden	by	a	second	inner	definition.	This	rule	is
not	violated	when	the	first	definition	is	not	hidden	by	the	second	definition.

The	following	example	shows	how	the	scope	visibility	of	identifiers	can	overlap	and	hide	each	other.
Never	write	code	that	does	this.

	1	UINTN	MyVar	=	7;	//	File	scope

	2

	3	VOID

	4	MyFunction	(

	5			OUT	UINT32	*MyVar	//	Function	scope

	6)

	7	{

	8			UINT32	i;

	9

10			for	(i	=	0;	i	<	5;	++i)	{

11					UCHAR8	MyVar	=	i;	//	Block	scope

12					INT16	i	=	12;

13

14					MyVar	+=	'A';

15					process	(MyVar,	i);

16			}

17			*MyVar	=	i;

18	}

19

20	main()

21	{

22			UINT32	George	=	4;

5.4	Code	File	StructureEDK	II	C	Coding	Standards	Specification[DRAFT]

47DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

23

24			MyFunction	(&George);

25			process	(MyVar,	0);

26	}

27

In	the	above	example,	there	are	three	declarations	of		MyVar	:

On	line	1,		MyVar		is	defined	with	file	scope	and	value	7	This	scope	extends	from	line	1	through	line
26.

On	line	5,		MyVar		is	declared	as	a	formal	parameter	of	MyFunction.	Its	context	extends	from	line	5
through	the	end	of	the	function	on	line	18.

On	line	11,		MyVar		is	declared	with	block	scope.	From	its	declaration	point	on	line	11	through	the	end
of	the	block	in	which	it	was	declared,	this	declaration	of		MyVar		will	be	in	scope.	It	is	initialized	to	the
current	value	of		i	.

To	test	yourself	on	your	understanding	of	scope	and	visibility	rules,	determine	the	value	and	associated
declaration	for	each	use	of		MyVar		before	reading	further.

The	first	use	of		MyVar		is	on	line	14	Its	associated	declaration	is	on	line	11	Each	time	through	the	for
loop	it	will	have	the	values	'A',	'B',	'C',	and	'D'	in	succession.

On	line	15,		MyVar		is	used	again	with	its	associated	declaration	on	line	11	with	the	same	succession	of
values	assigned	as	on	line	14.

	MyVar	,	on	line	17,	associates	with	the	formal	parameter	declaration	on	line	5	In	this	case	the	value	of
	i	,	which	is	5,	is	stored	in	the	location		MyVar		points	to.	The	location	is	established	in	the	call	to
	MyFunction		on	line	24.

The	last	use	of		MyVar		occurs	on	line	25	This	occurrence	associates	with	the	declaration	on	line	1	and
has	the	value	7.

Things	get	extremely	tricky	on	line	12	The	identifier		i	,	which	is	the	control	variable	for	the	enclosing
	for		loop,	is	declared	with	a	different	type	and	value.	It	is	ambiguous	as	to	which		i		was	wanted	in	line
11.	How	does	this	affect	the		for		loop?	What	will	be	the	value	of		i		at	lines	15	and	17?

The	scope	rules	tell	us	the	answers,	but	they	still	aren't	obvious.

The		i		on	line	10	is	outside	the	block,	which	is	the	body	of	the		for		loop.	It	associates	with	the
declaration	on	line	8,	so	the		for		loop	will	continue	to	work	as	expected.

On	line	11,		MyVar		will	be	initialized	to	the	current	value	of		i	.	It	is	compiler	dependent	whether	this	is
the	first	value	of		i	,	0,	or	the	value	of		i		for	each	loop.

Line	12	declares	a	new	variable		i		which	is	given	the	value	12	C	scoping	rules	state	that	a	scope
begins	at	the	declaration	point,	not	at	the	beginning	of	the	block	in	which	the	declaration	appears.
Because	of	this,	the		i		used	on	line	11	is	not	the	same		i		declared	here.

The	value	of		i		used	on	line	15	is	12,	the	value	of	the	associated	and	currently	visible	identifier	with
that	name.

As	you	can	see,	using	the	same	identifier	at	different	scopes	can	be	confusing	at	best.	All	it	takes	is
one	mistake	and	a	bug	is	introduced	that	is	very	hard	to	locate.

5.4.1.3	Compile-Time	Names
So	far	we	have	been	talking	about	variable	and	function	identifiers,	which	have	an	existence	at	run	time.
However,	the	scope	and	visibility	rules	apply	equally	to	identifiers	applied	to	objects	that	don't
necessarily	exist	at	run	time:		typedef		names,	type	tags,	enumeration	constants,	macros,	and	labels.

5.4	Code	File	StructureEDK	II	C	Coding	Standards	Specification[DRAFT]

48DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Macros	and	labels	follow	the	rules	outlined	for	them	in	Section	5.4.1.1	"Scope".	The	other	compile-time
names	follow	the	same	scope	and	visibility	rules	as	any	variable	defined	at	the	same	location.

5.4.2	Storage	Class

5.4.2.1	extern
A	special	case	of	scope	and	visibility	is	the	external	identifier,	also	called	an	identifier	with	external
linkage.	All	instances	of	an	external	identifier,	among	all	the	files	making	up	a	C	module,	are	forced	to
refer	to	the	same	object	or	function.	Each	instance	of	the	external	identifier	must	be	declared	with	the
same	type	in	each	file	or	else	the	result	is	undefined.

External	names	are	declared	using	the		extern		keyword.	In	C89,	and	earlier	dialects,	external	identifiers
declared	at	file	scope	are	implicitly	extern.	But,	not	all	identifiers	declared		extern		were	external.

The	compilers	supported	by	EDK	II	follow	the	C99	specification	for		extern	.	All	declarations	of	the	external
variable	must	use	the		extern		keyword.	There	must	be	a	single	definition	of	the	external	variable	which
does	not	use	the		extern		keyword.	This	definition	may	also	include	an	initializer.

By	convention,	external	names	are	declared	at	the	top	level	of	a	C	program	and	therefore	have	file
scope.	For	EDK	II,	external	names	must	be	declared	in	a	single	header	file	and	must	be	defined	at	the
top	level	of	a	C	file	as	specified	in	Section	5.4.1.3	"Compile-Time	Names".

Thus,	while	it	might	be	legal	C,	do	not	declare	external	variables	anywhere	other	than	at	the	top	level	of
a	file	as	specified	by	this	document.

5.4.2.2	Static
An	object	declared		STATIC		has	either	file	or	block	scope.

5.4.2.2.1	Do	not	reuse	an	object	or	function	identifier	with	static	storage	duration.

Throughout	the	set	of	source	files	defined	within	a	single	.inf	file,	do	not	reuse	an	identifier	with	static
storage	duration.	The	compiler	may	not	be	confused	by	this,	but	the	user	may	confuse	unrelated
variables	with	the	same	name.

5.4.2.2.2	Functions	should	not	be	declared	STATIC.

Some	source-level	debuggers	are	unable	to	resolve	static	functions.	Until	it	can	be	verified	that	no	one
is	dependent	upon	a	debugger	with	this	limitation,	it	is	strongly	recommended	that	functions	not	be
declared	static.

5.4	Code	File	StructureEDK	II	C	Coding	Standards	Specification[DRAFT]

49DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.5	Preprocessor	Directives

5.5.1	#include

5.5.1.1	Use	the	proper	file	delimiters	when	including	files
Use	either	double	quotes	or	angle	brackets.	A	file	name	delimited	by	angle	brackets,		<FileName.h>	,
indicates	that	the	compiler	should	search	the	default	include	paths	and	those	specified	by	'	-I	'
directives	on	the	compiler	command	line	(System	Include	Files).	If	one	uses	double	quotes	to	delimit	the
file	name,	"	FileName.h	",	the	compiler	will	first	search	the	directory	containing	the	file	being	compiled
before	then	searching	the	System	include	paths.

The	general	rule	to	be	derived	from	this	is	that	one	should	use	double	quotes	to	include	files	in	the
same	directory	as,	or	a	subdirectory	of,	the	file	being	compiled,	and	angle	brackets	for	all	other	include
files.

#include	<Uefi.h>	/*	System	include	file.	*/

#include	"SampleThing.h"	/*	In	same	directory	as	the	C	file.	*/

5.5.1.2	Include	file	paths	shall	be	relative	and	shall	not	contain	".."
elements.
All	include	paths	must	be	relative	to	either	the	current	.c	file,	or	a	predefined	include	directory.

5.5.2	Macros

5.5.2.1	Functional	macros	are	generally	discouraged.
Parameterized	macros	are	difficult	to	debug,	have	difficult	syntax,	do	not	encourage	strong
commenting,	and	generally	negatively	impact	maintainability	and	understandability	of	code.	Macros	are
appropriate	for	some	concepts,	such	as	containment	records	and	include	path	abstraction.

5.5.2.2	Macros	follow	the	standard	data	naming	conventions	used	by
typedef	and	#define.
The	main	reason	for	making	a	macro	different	from	a	function	is	the	difference	in	the	order	of
precedence	that	can	occur	between	poorly	constructed	macros	and	functions.

5.5.2.3	Overusing	parentheses	is	strongly	encouraged.
An	order-of-precedence	bug	in	a	macro	is	very	hard	to	debug.	The	following	are	examples	of	macro
construction:

#define	BAD_MACRO(a,	b)	a	*	b

#define	GOOD_MACRO(a,	b)	((a)	*	(b))

The	following	examples	should	explain	the	difference	between		BAD_MACRO	()		and		GOOD_MACRO	()	:

	BAD_MACRO	(10,	2)		and		GOOD_MACRO	(10,	2)		both	evaluate	to	20.

	BAD_MACRO	(7	+	3,	2)		returns	13	=	7	+	(3	*	2).

	GOOD_MACRO	(7	+	3,	2)		returns	20.

5.5	Preprocessor	DirectivesEDK	II	C	Coding	Standards	Specification[DRAFT]

50DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Also,	consider	the	following	expression:

8	|	8	==	8

On	first	glance,	one	might	think	that	the	expression	would	evaluate	to		TRUE	.	This	is	not	the	case.	The
bitwise	OR	operator,	'	|	',	has	lower	precedence	than	the	equality	operator,	'	==	'.	This	results	in	the
expression	being	evaluated	as	if	one	had	entered:

8	|	(8	==	8)

This	evaluates	to	the	value	9	The	desired	result	of		TRUE	,	(1),	can	be	achieved	by	specifying	the
expression	as:

((8	|	8)	==	8)

5.5.2.4	Macros	must	have	comment	blocks	like	functions.
Macros	can	be	very	difficult	to	debug,	so	explicit	descriptions	of	the	input,	output,	and	behavior	are
required.	This	is	true	whether	it	is	a	parameterized	or	a	simple	substitution	macro.

5.5.2.5	Parameterized	macro	definitions	shall	not	have	a	space
between	the	name	and	the	'(.'
Failure	to	do	this	will	cause	the	build	to	break.

#define	GOOD_MACRO(a,	b)	((a)	*	(b))

This	is	because	the	compiler	has	no	way	to	differentiate	between

#define	SIMPLE_MACRO	(a)	(TXT)

which	substitutes	all	subsequent	occurrences	of	SIMPLE_MACRO	with	(a)	(TXT),	and

#define	PARAM_MACRO(a)	(a)	(TXT)

which	defines	a	parameterized	macro.

5.5.2.6	When	using	a	macro,	there	must	be	a	space	between	the
name	and	the	'('	to	comply	with	function	calling	conventions.
Failure	to	separate	macro	names	from	parameters	negatively	impacts	readability	and	consistency	with
other	coding	style	rules.

GOOD_MACRO	(7	+	3,	2)

5.5.2.7	Single-line	Functions
Most	uses	of	parameterized	macros	can	be	replaced	by	one	or	two	line	functions.	The	compilers	will
almost	always	in-line	the	function	resulting	in	the	same	effect	as	the	parameterized	macro.	An
additional	benefit	of	single-line	functions	is	the	type	checking	the	compiler	can	now	provide.

5.5	Preprocessor	DirectivesEDK	II	C	Coding	Standards	Specification[DRAFT]

51DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.5	Preprocessor	DirectivesEDK	II	C	Coding	Standards	Specification[DRAFT]

52DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.6	Declarations	and	Types

5.6.1	Common	Data	Types

5.6.1.1	The	UEFI	Specification	defines	a	set	of	common	data	types
that	must	be	used	to	ensure	portability	between	different	compilers
and	processor	architectures.
Any	abstract	type	that	is	defined	must	be	constructed	from	other	abstract	types	or	from	common	EFI
data	types.

5.6.1.2	The	use	of	int,	unsigned,	char,	void,	static,	long	is	a	violation
of	the	coding	convention.
The	corresponding	EFI	types	must	be	used	instead.

"EFI	Data	Types"	below	contains	the	common	data	types	that	are	referenced	in	the	interface	definitions
defined	by	this	specification.	Per	the	UEFI	Specification,	version	2.3.1:

"Unless	otherwise	specified,	all	data	types	are	naturally	aligned.	Structures	are	aligned	on	boundaries
equal	to	the	largest	internal	datum	of	the	structure,	and	internal	data	is	implicitly	padded	to	achieve
natural	alignment."

Table	6	EFI	Data	Types	(slightly	modified	from	UEFI	2.3.1)

Mnemonic Description

	BOOLEAN	
Logical	Boolean.	1-byte	value	containing	a	0	for		False		or	a	1	for		True	.	Other	values
are	undefined.

	INTN	
Signed	value	of	native	width.	(4	bytes	on	IA-32,	8	bytes	on	X64,	and	8	bytes	on	the
Intel(R)	Itanium(R)	processor	family)

	UINTN	
Unsigned	value	of	native	width.	(4	bytes	on	IA-32,	8	bytes	on	X64,	and	8	bytes	on
the	Intel(R)	Itanium(R)	processor	family)

	INT8	 1-byte	signed	value.

	UINT8	 1-byte	unsigned	value.

	INT16	 2-byte	signed	value.

	UINT16	 2-byte	unsigned	value.

	INT32	 4-byte	signed	value.

	UINT32	 4-byte	unsigned	value.

	INT64	 8-byte	signed	value.

	UINT64	 8-byte	unsigned	value.

	CHAR8	 1-byte	character.

	CHAR16	
2-byte	character.	Unless	otherwise	specified,	all	strings	are	stored	in	the	UTF-16,	2-
byte,	encoding	format	as	defined	by	the	Unicode	2.1	and	ISO/IEC	10646	standards.

	VOID	 Undeclared	type.

	EFI_GUID	
128-bit	buffer	containing	a	unique	identifier	value.	Unless	otherwise	specified,
aligned	on	a	64bit	boundary.

	EFI_STATUS	 Status	code.	Type		UINTN	.

5.6	Declarations	and	TypesEDK	II	C	Coding	Standards	Specification[DRAFT]

53DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	EFI_HANDLE	 Handle	to	a	device	driver.	Type		VOID	*	.

	EFI_EVENT	 Handle	to	an	event	structure.	Type		VOID	*	.

	EFI_LBA	 Logical	block	address.	Type		UINT64	.

	EFI_TPL	 Task	priority	level.	Type		UINTN	.

"Modifiers	for	Common	EFI	Data	Types"	defines	modifiers	that	are	used	in	function	and	data
declarations.	The		IN	,		OUT	,		OPTIONAL	,	and		UNALIGNED		modifiers	are	used	only	to	qualify	arguments	to	a
function.	They	should	never	appear	in	a	data	type	declaration.	The		EFIAPI		modifier	is	used	to	ensure
the	correct	calling	convention	is	used	between	different	modules	that	are	not	linked	together.	Use	this
modifier	at	the	entry	of	drivers,	events,	and	member	functions	of	protocols.

The		EFIAPI		modifier	must	be	used	for	all	UEFI	defined	API	functions,	as	well	as	for	any	function	that
takes	a	variable	number	of	arguments.	All	protocol	functions	as	well	as	public	functions	exposed	by
drivers	must	also	be	declared		EFIAPI	.	This	establishes	a	common	calling	convention	for	functions	that
could	be	referenced	by	other	code	that	has	potentially	been	built	using	a	different	compiler,	with	a
different	native	calling	convention.

Table	7	Modifiers	for	Common	EFI	Data	Types	(reference	the	UEFI	Specification	and	Beyond
Bios)

Mnemonic Description

	IN	 Datum	is	passed	to	the	function.

	OUT	 Datum	is	returned	from	the	function.

	OPTIONAL	
Datum	that	is	passed	to	the	function	is	optional,	and	a		NULL		may	be	passed	if	the
value	is	not	supplied.

	UNALIGNED	 Datum	is	byte	packed	and	is	not	naturally	aligned.

	VOLATILE	

Declares	a	variable	to	be	volatile	and	thus	exempt	from	optimization	to	remove
redundant	or	unneeded	accesses.	Any	variable	that	represents	a	hardware	device
should	be	declared	as		VOLATILE	.

	CONST	
Declares	a	variable	to	be	of	type		const	.	This	type	is	a	hint	to	the	compiler	to	enable
optimization	and	stronger	type	checking	at	compile	time.

	EFIAPI	
Defines	the	calling	convention	for	EFI	interfaces.	All	EFI	intrinsic	services	and	any
member	function	of	a	protocol	must	use	this	modifier	on	the	function	definition.

5.6.2	Constants

5.6.2.1	EFI	Constants
"EFI	Constants"	below	lists	the	EFI	constants	that	should	be	used	to	represent	certain	concepts.

Table	8	EFI	Constants

Mnemonic Description

	TRUE	 One	=	(1	<	2)	==	1;	Any	non-zero	value	is		TRUE	.

	FALSE	 Zero	=	(2	<	1)	==	0

	NULL	 	VOID		pointer	to	zero.	((void*)0)

5.6.2.2	Enumerated	Types
The	elements	of	the	enumerated	type	must	follow	the	data	and	function	naming	convention.

5.6	Declarations	and	TypesEDK	II	C	Coding	Standards	Specification[DRAFT]

54DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The		enum		shall	be	declared	as	a		typedef		with	the	name	of	the		typedef		following	the	type	and	macro
naming	conventions	in`	"Type	and	Macro	Names".

The	last	element	of	the	enum	should	be	a	maximum	member	element.

This	convention	allows	for	bounds	checking	on	an		enum		to	support	debugging	and	sanity	checking
the	value	that	is	assigned	to	an		enum	.	It	is	also	recommended	that	the		enum		members	be	named
carefully,	such	that	their	names	would	not	tend	to	collide	with	other	variable	or	function	names.

typedef	enum	{

		EnumMemberOne,		///<	Automatically	initialized	to	zero.

		EnumMemberTwo,		///<	This	has	the	value	1

		EnumMemberMax			///<	The	value	2	here	indicates	there	are	two	elements.

}	ENUMERATED_TYPE;

This	obviously	will	not	work	if	values	are	explicitly	assigned	out-of-sequence	or	are	duplicated.

All	constants	that	will	be	used	"as	is"	should	be	declared	as	enums.

An	enum	does	not	cause	code	to	be	generated	until	the	enum	is	used,	whereas	a	const	int	will
cause	space	for	the	int	to	be	allocated	as	well	as	the	code	generated	whenever	the	int	is	used.	The
use	of	enums	allows	type	checking	to	be	performed,	while	the	use	of	macros	does	not	.	

5.6.2.3	Macro	Constants
Constants	that	will	be	used	to	construct	other	values	should	be	declared	as	macros.	These	include	bit
field	definitions	and	masks.

5.6.2.4	Pointers	and	Constants
There	are	three	different	ways	pointers	and	constants	can	interact:

Pointer	to	Constant:

CONST	UINTN	*	PointerToConst;

	PointerToConst		is	a	variable	pointer	to	a	constant		UINTN	.

Constant	pointer	to	variable:

UINTN	*	CONST	ConstPointer;

	ConstPointer		is	a	constant	pointer	to	a	variable		UINTN	.

Constant	pointer	to	constant:

CONST	UINTN	*	CONST	ConstPointerToConst;

	ConstPointerToConst		is	a	constant	pointer	to	a	constant		UINTN	.

5.6.3	Structure	Declaration
Structures	shall	be	declared	as	a		typedef		with	one	of	two	different	styles	depending	on	the	use	of	the
structure.	If	the	structure	is	not	self-referential,	or	there	is	no	forward	reference	to	it,	the	structure	may
be	defined	anonymously;	see	Section	"Structure	Reference".

This	anonymous	definition	is	valid	because	we	typedef	the	structure	in	the	definition.

5.6	Declarations	and	TypesEDK	II	C	Coding	Standards	Specification[DRAFT]

55DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	structure	name	and	typedef	name	shall	follow	the	type	and	macro	naming	conventions	in	"Type
and	Macro	Names"	on	page	24`

Structure	instances:	Variables,	parameters,	members,	etc.,	must	follow	the	file,	function,	and	data
naming	conventions	in	"Identifiers"	through	"Name	Space	Rules".

Structures	are	always	defined	in	a		typedef	struct	name	{...}	type;		format.

The	"name"	tag	is	allowed	only	if	the	structure	is	self-referential	or	the	target	of	a	forward	reference.

5.6.3.1	Structures	shall	not	be	directly	declared.
The	following	are	not	allowed:

struct	name	{...};	//	OK	if	object	of	forward	reference

struct	{...}	variable;	//	Never	OK

struct	name	{...}	variable;	//	Never	OK

5.6.3.2	Structure	Declaration	with	Forward	Reference	or	Self-
Reference

///	Sample	forward	declaration	of	a	structure.

typedef	struct	EFI_STRUCT_NAME	EFI_STRUCT_NAME;

///	Sample	self-referential	structure	declaration.

typedef	struct	EFI_STRUCTURE_NAME	{

		...

		struct	EFI_STRUCTURE_NAME	*StructPointer;		///<	Sample	self	reference

}	EFI_STRUCT_NAME;

5.6.3.3	Structure	Declaration	without	Forward	Reference

/**	Brief	description	of	sample	structure	declaration.

		*

		*	Detailed	description	of	purpose	and	use	of	this	structure.

**/

typedef	struct	{

		Atype		memberOne;		///<	Briefly	describe	memberOne

		...

		Ztype		memberN;				///<	Briefly	describe	memberN

}	EFI_STRUCTURE_NAME;

5.6.3.4	Bit	Fields
A	member	of	a	structure	or	union	may	be	declared	to	consist	of	a	specified	number	of	bits	(including	a
sign	bit,	if	any).	That	member	is	referred	to	as	a	bit-field.	Bit	fields	differ	from	other	members	in	that:

Bit	fields	may	only	be	of	type		INT32	,		signed	INT32	,		UINT32	,	or	a	typedef	name	defined	as	one	of	the
three		INT32		variants.

It	is	compiler	defined	whether		INT32		is	signed	or	unsigned.

The	order	of	allocation	of	bit-fields	within	a	storage	unit	is	compiler	defined.

The	alignment	of	the	addressable	storage	unit	is	unspecified.

A	bit-field	may	not	extend	from	one	storage	unit	into	another.

A	bit-field	with	only	a	colon	and	a	width	(no	declarator),	indicates	an	unnamed	bit-field.	Unnamed	bit-
fields	are	useful	for	padding	to	conform	to	externally	imposed	layouts.

5.6	Declarations	and	TypesEDK	II	C	Coding	Standards	Specification[DRAFT]

56DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Specifying	a	bit-field	with	a	width	of	0	(zero)	indicates	that	no	further	bit-fields	are	to	be	packed	into	the
unit	in	which	the	previous	bit-field,	if	any,	was	placed.

5.6.3.4.1	Visual	C++	Specific

The	alignment	requirement	for	each	non-bit-field	member	is	the	same	as	the	largest	alignment
requirement	of	the	members.	Thus,	every	member	will	have	the	same	alignment.

A	"plain"		int		bit-field	is	treated	as	a		signed	int		bit	field.

Bit	fields	are	allocated	within	a	storage	unit	from	least-significant	to	most-significant	bit.

5.6.3.4.2	GCC	Specific

The	alignment	requirement	for	non-bit-field	members	of	structures	is	determined	by	the	target	ABI.

By	default,	a	"plain"		int		bit-field	is	treated	as	a		signed	int	,	but	this	may	be	changed	by	the	'-
funsigned-bitfields'	option.

The	order	of	allocation	of	bit-fields	within	a	unit	is	determined	by	the	target	ABI.

5.6	Declarations	and	TypesEDK	II	C	Coding	Standards	Specification[DRAFT]

57DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.7	C	Programming

5.7.1	Function	Definition	Layout
Every	function	should	be	constructed	to	the	conventions	described	in	this	section.

5.7.1.1	Precede	the	function	with	a	Doxygen	style	comment	block.
The	function	header	comment	block	must	describe	the	intent	and	purpose	of	the	function,	parameters
used,	and	return	values.

5.7.1.2	The	line	immediately	following	the	function	header	comment
block	optionally	specifies	the	storage	class	of	the	function.
If	the	storage	class	is	not	specified,	the	return	type	will	be	on	the	first	line	following	the	comment	block.

5.7.1.3	The	next	line	of	the	function	definition	must	specify	the
function's	return	type.
If	the	function	does	not	return	a	value,	this	line	must	contain		VOID	.

5.7.1.4	The	next	line	contains	any	optional	functional	modifiers.
For	example,		EFIAPI	,	or	other	valid	modifiers.

5.7.1.5	The	next	line	contains	the	function	name,	left	justified,
followed	by	the	beginning	of	the	parameter	list,	"(."
No	parameters	are	allowed	on	this	line.	If	no	parameters	are	present,	it	is	acceptable	to	place	the
closing	parenthesis	on	the	same	line,	"	(VOID)	".

5.7.1.6	A	function	that	takes	no	parameters	shall	be	declared	with
VOID	as	the	parameter	list.
Declaring	a	function	with	an	empty	parameter	list,		()	,	is	prohibited.

5.7.1.7	The	next	lines	contain	parameters.
Each	line	will	contain	a	single	argument	and	will	start	indented	two	spaces	(one	tab	stop).	Type	and
argument	columns	should	be	aligned	to	maximize	readability	and	should	include	appropriate	spacing	to
ensure	this	alignment.	No	comments	are	allowed	in	this	region.	Parameters	are	documented	clearly	in
the	function	header	comment	block.

5.7.1.8	The	closing	parenthesis	is	on	its	own	line	and	is	also	indented
two	spaces.
A	valid	exception	exists	if	the	function	has	no	parameters.

5.7.1.9	Function	prototypes	have	the	same	form	as	function
definitions,	with	the	exception	of	requiring	a	semicolon	after	the
closing	parenthesis	of	the	parameter	list.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

58DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.7.1.10	The	opening	brace	of	the	function	body	is	alone	on	the	next
line.
Both	the	opening	and	closing	brace	of	the	function	body	must	be	aligned	in	the	left	most	column.	All
other	lines	of	the	function	body	are	indented	in	multiples	of	two	spaces.

/**	Brief	and	Detailed	Descriptions.

		@param[in]						Arg1		Description	of	Arg1.

		@param[in]						Arg2		Description	of	Arg2,	which	is	optional.

		@param[out]					Arg3		Description	of	Arg3.

		@param[in,out]		Arg4		Description	of	Arg4.

		@retval		EFI_SUCCESS			Description	of	what	EFI_SUCCESS	means.

		@retval		!EFI_SUCCESS		Failure.

--*/

EFI_STATUS

EFIAPI

FooName	(

		IN	UINTN						Arg1,

		IN	UINTN						Arg2,	OPTIONAL

		OUT	UINTN					*Arg3,

		IN	OUT	UINTN		*Arg4

)

{

		UINTN	Local;

		...

}

5.7.1.11	Each	argument	variable's	type	specification	should	be
preceded	by	IN	and/or	OUT	modifiers.
The	modifiers	are	used	to	indicate	whether	the	argument	is	an	input	or	output	variable.	It	is	strongly
suggested	that	the		IN		variables	are	first	and		OUT		variables	come	next.	If	data	is	both	passed	in	and
passed	out	through	a	variable,	then	it	should	be	marked	as	both		IN		and		OUT	.	A	buffer	that	is	passed
into	a	routine	that	modifies	the	contents	of	the	buffer	is	marked	as		IN		and		OUT	.	"Parameter	Modifiers"
below	describes	the	usage	of	the		IN		and		OUT		modifiers.

The		IN		and		OUT		modifiers	may	be	omitted	if	the	mandatory		@param[in,out]		descriptions	are	provided	in
the	function	header	comment.

Table	9	Parameter	Modifiers

Mnemonic Description

	IN	
Passed	by	value.	For	C,	this	modifier	is	any	argument	whose	name	is	not	preceded
by	an	asterisk	(*).

	IN	
Passed	by	reference,	and	referenced	data	is	not	modified	by	the	routine.	An
asterisk	precedes	the	argument	name.

	OUT	
Passed	by	reference,	and	the	referenced	data	is	modified	by	the	routine.	The
passed-in	state	of	the	referenced	data	is	not	used	by	the	routine.

	IN	OUT	
Passed	by	reference,	and	the	passed-in	referenced	data	is	consumed	and	then
modified	by	the	routine.

	OPTIONAL	
Indicates	that	if	a	pointer	argument	is		NULL	,	it	is	not	present.	If	the	value	is	not
	NULL	,	then	it	is	a	valid	argument	and	may	be	used.

5.7.1.12	The	body	of	a	function	is	contained	within	open	and	close
braces	that	must	be	in	the	first	column.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

59DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.7.1.13	File-Scope	data	definitions	must	be	the	first	code	in	a
module.
The	type	definition	must	start	indented	and	be	followed	by	the	variable	name	with	at	least	one	indent
between	the	two.	Each	variable	name	must	have	its	own	line;	do	not	use	a	comma	to	separate	multiple
declarations.	Do	not	comment	data	declarations;	they	should	contain	selfdescribing	names.	If
comments	are	required	for	complex	data	declarations,	place	the	comments	in	the	include	file	that
defines	the	complex	data	type,	or	make	comments	in	the	routine	description	block.	This	restriction	does
not	apply	to	the	members	of	structures,	unions,	or	enums.

5.7.1.14	File-Scope	Data	definitions	appearing	anywhere	but	at	the
beginning	of	the	module	are	illegal.

5.7.1.15	Function	Headings
5.7.1.15.1	Every	new	function	created	as	part	of	EDK	II	must	have	a	function	header
comment	block	immediately	preceding	the	function	definition.

The	function	header	comment	block	takes	the	form	shown	in	the	example	below.

/**

		Brief	description	of	the	function's	purpose.

		Detailed	description	of	the	function's	purpose	and	how	it

		works.	Describe	algorithms,	side-effects,	or	other	attributes

		of	the	function	that	would	be	of	use	to	a	programmer	unfamiliar

		with	the	code.

		@param[in]	Arg1		Description	of	Arg1	This	can	span	multiple

																			lines	if	needed.

		@param[in]	Arg2		Description	of	Arg2.

		@retval		EFI_SUCCESS		Procedure	returned	successfully.

		@retval		VALUE								Line	for	each	possible	return	value.

**/

EFI_STATUS

Foo	(

		IN	UINTN		Arg1,

		IN	UINTN		Arg2

)

{

		//	Function	body

}

5.7.1.15.2	Function	comment	headings	must	be	present	in	both	the	.c	file	containing	the
function	implementation	and	in	the	.h	file	containing	the	function	prototype.

The	function	comment	heading	in	the	.c	file	shall,	at	a	minimum,	be	a	duplicate	of	the	heading	in	the
include	file.	In	all	cases,	the	function	comment	heading	in	the	include	file	is	the	authoritative	source.
Function	comment	headings	in	.c	files	may	contain	implementation	specific	comments	which	are	not
permitted	in	the		.h		file.

5.7.1.15.3	Any	function	that	is	shared	must	have	the	function	prototype	in	a	shared	.h	file.

Private	functions	may	be	declared	in	the	.c	file	implementing	them	if	they	are	not	used	in	any	other	file.
All	such	private	function	declarations	must	be	present	at	the	beginning	of	the		.c		file,	before	any
function	implementations	and	after	global	data.

5.7.1.15.4	All	public	types,	macros,	and	declarations	for	a	module	shall	be	in	a	single	include
file	resident	in	the	hierarchy	of	the	top-level	include	directory	of	the	package	the	module	is
part	of.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

60DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.7.2	Predicate	Expressions

5.7.2.1	Boolean	values,	variable	type		BOOLEAN	,	do	not	require	explicit
comparisons	to		TRUE		or		FALSE	.
Non-Boolean	comparisons	must	use	a	compare	operator	(==	,		!=	,		>	,		<	>=	,		<=).

5.7.2.2	A	comparison	of	any	pointer	to	zero	must	be	done	via	the
	NULL		type.
"Predicate	Expression	Examples"	below	shows	examples	using	the	following:

BOOLEAN	Done;

UINTN	Index;

VOID	*Ptr;

Table	10	Predicate	Expression	Examples

Incorrect Correct

	if	(Index)	{	 	if	(Index	!=	0)	{	

	if	(!Index)	{	 	if	(Index	==	0)	{	

	if	(Done	==	TRUE)	{	 	if	(Done)	{	

	if	(Done	==	FALSE)	{	 	if	(!Done)	{	

	if	(Ptr)	{	 	if	(Ptr	!=	NULL)	{	

	if	(Ptr	==0)	{	 	if	(Ptr	==	NULL)	{	

5.7.2.3	Comparison	of	unsigned	integer	types	to	be	>=0	is
permitted.
There	has	been	some	controversy	on	this	since	unsigned	integers	are	always	>=0,	and	some	compilers
will	emit	a	warning	when	this	type	of	construct	is	seen.	This	is	perfectly	valid	code	and,	with	some
compilers,	is	needed	for	limit	checking	against	enumerated	types.	These	compilers	will	assign	the	type
to	the	enum	based	upon	the	range	of	values	the	enum	is	assigned	at	compile	time.

if	((foo	>=	0)	&&

				(foo	<	MaxVal))

{	...

If	one	wants	to	be	perfectly	safe	in	their	comparison,	the	potentially	unsigned	term	can	be	cast	to	a
signed	integer	type	of	sufficient	size;	if	the	range	of	possible	values	is	known.		if	((INTN)foo	>=	0)	{	...	

5.7.2.4	The	ordering	of	terms	in	predicate	expressions	may	impact
performance	significantly.
This	is	because	only	enough	of	the	expression	has	to	be	evaluated	to	determine	the	outcome.	For
example,	the	first	term	in	an	OR	expression	that	evaluates	to		TRUE		is	sufficient	to	determine	that	the
entire	OR	expression	will	be		TRUE	.

The	following	code	sample	consists	of	a	predicate	expression	within	a	for	loop.	The	predicate
expression	is	a	compound	AND	expression	with	four	terms.	Each	term	is	itself	a	simple	predicate
expression.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

61DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

This	is	a	real	example	from	a	previous	version	of	the	EDK	II	code	and	was	used	in	the	implementation	of
the	PERF_END	functionality.	It	finds	the	first	open	(EndTimeStamp	is	zero)	performance	trace	record
matching	the	Handle,	Token,	and	Module	parameters	of	a	PERF_END	invocation.

for	(Index	=	0;	Index	<	NumberOfEntries;	Index++)	{

		if	((LogEntryArray[Index].Handle	==	(EFI_PHYSICAL_ADDRESS)(UINTN)	Handle)

							&&	AsciiStrnCmp	(LogEntryArray[Index].Token,	Token,	PEI_PERFORMANCE_STRING_LENGTH)	==	0

							&&	AsciiStrnCmp	(LogEntryArray[Index].Module,	Module,	PEI_PERFORMANCE_STRING_LENGTH)	==	0

							&&	LogEntryArray[Index].EndTimeStamp	==	0

)

		{

				break;	//	Exit	the	enclosing	for	loop.

		}

}

While	there	is	nothing	really	wrong	with	this	code,	a	little	knowledge	of	the	data	it	will	be	working	on	will
allow	us	to	significantly	speed	things	up.	Again	taking	from	a	real-world	example:

NumberOfEntries	=	25,172

Target	entry	is	at	Index	25,159

There	are	532	completed	measurement	records	with	the	same	Handle,	Token,	and	Module	values
prior	to	the	target.

There	are	6	measurement	records	with	the	same	Handle	and	different	Token	and	Module	values
prior	to	the	target.

There	are	25,157	completed	entries	prior	to	the	target.

From	this	information,	we	can	see	that	the	terms,	in	order	of	importance,	are:

1.	 EndTimeStamp	1	match	(2	max	over	life	of	a	session)

2.	 Handle	538	matches

3.	 Module	532	matches

4.	 Token	532	matches

We	also	can	determine	that	this	ordering	is	valid	for	any	measurement.	Re-ordering	the	predicate
expression	using	this	information	produces:

for	(Index	=	0;	Index	<	NumberOfEntries;	Index++)	{

		if	(LogEntryArray[Index].EndTimeStamp	==	0

							&&	LogEntryArray[Index].Handle	==	(EFI_PHYSICAL_ADDRESS)(UINTN)	Handle

							&&	AsciiStrnCmp	(LogEntryArray[Index].Module,	Module,	PEI_PERFORMANCE_STRING_LENGTH)	==	0

							&&	AsciiStrnCmp	(LogEntryArray[Index].Token,	Token,	PEI_PERFORMANCE_STRING_LENGTH)	==	0

)

		{

				break;	//	Exit	the	enclosing	for	loop.

		}

}

The	new	ordering	results	in	538	fewer	64-bit	integer	comparisons	and	1,069	fewer	string	comparisons
for	this	single	PERF_END	invocation.	Considering	that	there	will	be	25,170	PERF_END	invocations	one
can	see	how	the	savings	add	up	to	a	sizable	amount:	around	2.7	seconds	if	the	string	comparisons	only
took	100ns	each.

5.7.3	Flow	Control	Statements

5.7.3.1	The	body	of	looping	statements	must	be	compound
statements.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

62DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The		if	,		for	,		do	,	and		while		statements	shall	use	a	compound	statement	as	their	bodies,	even	if	it	is
necessary	to	use	a	null	compound.

5.7.3.2	Null	compound	statements	shall	occupy	three	source	lines.
The	opening	brace	shall	be	on	the	same	line	as	the	controlling	keyword,	followed	by	a	line	consisting	of
a	properly	indented	semicolon,	then	closed	with	a	closing	brace,	aligned	in	the	same	column	as	the
opening	keyword,	as	the	first	non-white-space	character	on	the	third	line.

5.7.3.3	Any	loop	that	contains	no	code	in	the	body	must	use	a	null
compound	statement	as	the	body.
For	example,	the	following	statement	has	a	null	compound	for	its	body.

for	(Index	=	0;	Index	<	MAX_INDEX;	Foo[Index]	=	Index++)	{

		;

}

Avoid	this	type	of	construct	because	it	is	harder	to	read	than	other	control	structures.

5.7.3.4	if	Statements
5.7.3.4.1	The	if	statement	shall	be	followed	by	a	space	and	then	the	open	parenthesis.

The	open	parenthesis	is	followed	by	a	conditional	(predicate)	expression	and	a	close	parenthesis.

There	is	a	space	after	the	close	parenthesis	followed	by	an	open	brace.

The	code	body	follows	and	is	indented	by	two	spaces.

The	close	bracket	is	on	its	own	line	and	indented	to	the	same	level	as	the	if.

The	following	is	the	allowed	if	construct:

if	(TRUE)	{

		IamTheCode	();

}

5.7.3.4.2	When	an	else	is	used,	it	may	start	on	the	same	line	as	the	close	brace	of	the	if,	or
be	on	the	following	line	and	aligned	with	the	closing	brace.

A	single	space	must	separate		else		from	the	close	and	open	braces.

An	open	brace	always	follows	the		else	.

The	following	are	the	allowed		if		and		else		constructs:

if	(EXPR_1)	{

		IamTheCode	();

}	else	if	(EXPR_2)	{

		IamTheCode	();

}

else	{	//	Alternative	format

		IamTheCode	();

}

5.7.3.5	while	and	do	-	while	Statements

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

63DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	while		statements	execute	their	body	zero	or	more	times	depending	upon	the	result	of	a	predicate
expression.	The	expression	is	evaluated	at	the	beginning	of	the	loop	and	the	body	is	executed	if	the
expression	evaluates	to		TRUE	.	Code	must	be	constructed	so	that	nothing	outside	of	the	while	loop	is
dependent	upon	the	body	of	the	loop	having	been	executed.

while	(TRUE)	{

		IamTheCode	();

}

For	those	cases	where	the	body	of	the	loop	must	be	executed	at	least	once,	there	is	the	do-while
statement.	In	this	statement,	the	predicate	is	evaluated	at	the	end	of	the	loop,	with	the	statement's
body	being	re-executed	as	long	as	the	predicate	evaluates	to		TRUE	.

do	{

		IamTheCode	();

}	while	(TRUE);

5.7.3.6	for	Statements
A		for		loop	occupies	a	minimum	of	three	lines.	It	is	comprised	of	the		for		keyword	followed	by	three
expressions	within	parentheses,	followed	by	a	compound	statement.	The	three	expressions	within
parentheses	are	separated	by	semicolons,	';',	and	consist	of	the	initialization,	conditional,	and
increment	expressions.	Any	one	or	combination	of	these	expressions	may	be	omitted	if	needed.

for	(Index	=	0;	Index	<	MAX_INDEX;	Index++)	{

		IamTheCode	(Index);

}

5.7.3.7	switch	Statements
The	following	is	a	switch	statement:

switch	(Variable)	{

case	1:

		IamTheCode	();

		break;

case	2:

		IamTheCode	();

		break;

default:

		IamTheCode	();

		break;

};

The	case	statements	are	indented	either	zero	tab	stops	or	one	tab	stop	and	the	bodies	of	each	case
one	tab	stop	from	the	case.

The	closing	brace	of	the	switch	statement	should	be	in	the	same	column	as	the	'	s	'	in	the		switch	
keyword.

Always	include	the		default		case.	It	should	always	end	with	a		break		statement,	even	if	the		break		is	the
last	thing	before	the	closing	brace.

The	indenting	of	the	case	statements	should	be	consistent	with	all	other	files	in	the	module	containing
the	new	.c	file.	Use	the	legacy,	zero	indent,	style	if	any	other	file	within	the	module	uses	that	style,
otherwise	you	may	indent	a	single	tab	stop.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

64DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

A	descriptive	comment	is	required	in	cases	where	the	intention	is	for	a	preceding		case		to	fall	through	to
the	next		case	.	That	is	to	say,	a	descriptive	comment	is	required	where	there	is	no		break		preceding	the
second	or	beyond		case		in	a		switch		block.

5.7.3.8	Goto	Statements	should	not	be	used	(in	general)
In	almost	all	cases,	it	is	possible	to	write	the	code	so	that	a		goto		is	not	needed.	If	a		goto		is	used,	be
ready	to	defend	it	during	review.

It	is	common	to	use		goto		for	error	handling	and	thus,	exiting	a	routine	in	an	error	case	is	the	only	legal
use	of	a		goto	.	A		goto		allows	the	error	exit	code	to	be	contained	in	one	place	in	the	routine.	This	one
place	reduces	software	life	cycle	maintenance	issues,	as	there	can	be	one	copy	of	error	cleanup	code
per	routine.

The		goto		follows	the	normal	rules	for	C	code.	The	label	must	be	indented	one	level	less	than	the	code	it
is	marking.

Status	=	IAmTheCode	();

if	(EFI_ERROR	(Status))	{

		goto	ErrorExit;

}

IDoTheWork	();

ErrorExit:

		return	Status;

The	above	example	could	have	been	rewritten	as	below,	eliminating	the	need	for	a		goto	.

Status	=	IAmTheCode	();

if	(!EFI_ERROR	(Status))	{

		IDoTheWork	();

}

return	Status;

5.7.4	Structure	Definitions

5.7.4.1	Structure	Reference

/**	Sample	reference	to	a	structure.

	*

	*	Sample	code	showing	a	reference	to	a	structure	as	a

	*	function	parameter.	This	function	should	be	called	as:

	*	FooName	(&Structure);

	*

	*	@param[in]	Arg1	A	pointer	to	the	sample	structure.

**/

VOID

EFIAPI

FooName	(

		IN	EFI_STRUCTURE_NAME		*Arg1

);

In	any	situation,	definition	of	structure	instances	shall	be	in	the	following	form:

EFI_STRUCTURE_NAME		StructureName;

Never	pass	structures	as	function	parameters	by	value.	Use	the	"address	of"	operator,	'	&	',	and	pass
structures	by	reference.

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

65DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

FooName	(&StructureName);

5.7	C	ProgrammingEDK	II	C	Coding	Standards	Specification[DRAFT]

66DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

5.8	Error	Handling	and	ASSERT
	ASSERT		macros	are	development	and	debugging	aids	and	shall	never	be	used	for	error	handling.

Assertions	are	used	to	catch	conditions	caused	by	programming	errors	that	are	resolved	prior	to
product	release.

The	EDK	II	PCD,		PcdDebugPropertyMask	,	can	be	used	to	enable	or	disable	the	generation	of	code	associated
with		ASSERT		usage.	Thus,	all	code	must	be	able	to	operate,	and	recover	in	a	reasonable	manner	with
	ASSERT	s	disabled.

Parameters	and	conditions	that	are	beyond	the	programmers	control	need	to	be	checked
programmatically.	Care	must	be	taken,	though,	to	ensure	that	the	need	for	programmatic	error	handling
is	minimized.

The		ASSERT_EFI_ERROR	,		ASSERT_PROTOCOL_ALREADY_INSTALLED	,	and	all	other		ASSERT		macros	defined	in		DebugLib.h		are
covered	by	this	rule.

5.8	Error	Handling	and	ASSERTEDK	II	C	Coding	Standards	Specification[DRAFT]

67DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6	DOCUMENTING	SOFTWARE

6.1	Documentation	Concepts
A	program	is	meant	to	be	read	by	the	programmer,	by	another	programmer	at	a	future	date,	and	by	a
machine.	In	this	sense	it	is	a	kind	of	publication.

However,	the	machine	is	concerned	with	whether	the	program	compiles,	while	people	are	necessarily
concerned	about	coding	conventions	or	style.

Sensible	and	consistently	applied	typographic	(stylistic)	conventions	are	important	to	the	creation	of	a
clear	presentation.	Conventions	are	created	to	facilitate	clarity,	should	not	become	an	end	in	and	of
themselves.	As	Rob	Pike	points	out,	we	should	avoid	typographic	silliness	and	decoration:"	.	.	.	keep
comments	brief	and	banner	free.	Say	what	you	want	to	say	in	the	program,	neatly	and	consistently.
Then	move	on."

6.1.1	Requirements
The	EDK	II	code	documentation	shall	fulfill	the	following	main	functions:

6.1.1.1	Instruction
It	shall	serve	as:

Working	instructions	(e.g.	error	and	interrupt	handling,	data	archiving,	...)

A	working	basis	to	avoid	duplication	of	work

A	working	basis	for	software	maintenance	(e.g.	updates,	upgrades,	troubleshooting)

A	basis	for	brief	instruction	and	training	of	new	staff	members;	simple	training	courses

6.1.1.2	Verification,	Validation,	and	Objective	Evidence
Establishes	traceability	between	the	code	and	product	requirements

Reference	for	internal	and	external	auditors	(product	liability,	ISO	9001	certification)

Facilitates	project	management	and	monitoring

Increases	testability	of	the	software

6.1.1.3	Communications
Establishes	an	uniform	communication	basis	for:

All	software	developers

Contractors	and	customers

Increases	software	re-usability

Increases	transparency	of	the	software

6.1.2	Interfaces	or	Protocols

6	Documenting	SoftwareEDK	II	C	Coding	Standards	Specification[DRAFT]

68DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

The	EDK	II	architecture	forces	explicit	documentation	as	it	encourages	the	use	of	multiple,	independent
modules.	The	mechanism	for	these	modules	to	communicate	is	a	protocol.	A	protocol	is	an	instance	of
an	API	(a	class	in	C++	vernacular)	that	is	named	by	a	GUID.	The	GUID	defines	the	data	representation
and	member	functions	of	a	protocol.	Any	change	to	the	behavior	of	a	protocol	requires	the	GUID	to
change.	Given	this	property,	each	protocol	used	in	EDK	II	must	have	an	interface	document.

6	Documenting	SoftwareEDK	II	C	Coding	Standards	Specification[DRAFT]

69DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.2	Comments
Commenting	has	always	been	a	delicate	matter,	requiring	taste	and	judgment.	One	should	assume	that
others	reading	the	code	know	the	implementation	language.	Code	that	is	clear,	using	good	type	and
variable	names,	should	be	self-explanatory	-	at	a	micro	level.	Comments	should	explain	the	less-than-
obvious	aspects	of	the	code,	at	a	macro	level.

Note:	The	comments	need	to	explain	why	things	were	done	and	the	big	picture	of	how	something	works
and	the	ways	in	which	the	various	pieces	relate	to	each	other.

By	definition,	misleading	comments	can	cause	confusion.	When	you	modify	code,	you	should	always
check	the	comments	to	ensure	that	they	accurately	document	the	modified	code.	Comments	are	not
checked	by	the	compiler,	and	are	therefore	not	guaranteed	to	be	correct.	Comments	are	even	more	of
a	risk	following	code	modification.

Write	your	comments	assuming	that	they	are	going	to	be	read	by	someone	with	minimal	familiarity	with
the	code.	Clarity	is	important,	but	one	should	also	strive	for	terse	and	concise	comments.	One	should
be	able	to	see	both	the	comment,	and	the	code	being	commented	on,	on	the	same	screen.

6.2.1	Only	use	C	style,	"/*",	comments	on	the	same	line	as	pre-
processor	directives,	and	in	Doxygen-style	file	and	function	header
comment	blocks.
Compile	can	vary	in	their	support	for	use	of		//		in	preprocessor	directives	(e.g.		#define).	Note	that	the
mixing	of		/*	...	*/		and		//		is	not	handled	consistently.	This	goes	beyond	style	issues;	various	(pre	C99)
compilers	may	not	behave	the	same.

6.2.2	Avoid	banners	or	other	decoration	around	blocks	of	comments.
Banners	can	be	useful	to	highlight	logical	divisions	within	a	file;	such	as	before	vital	sections.	This	type
of	usage	should	be	minimized.

6.2.3	Do	not	include	jokes	or	obtuse	references	in	comments.

"Out	of	cheese	error!	Redo	from	start."

6.2	CommentsEDK	II	C	Coding	Standards	Specification[DRAFT]

70DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.3	What	NOT	to	Comment

6.3.1	Do	not	repeat	the	code	or	explain	it	in	a	comment.
Comments	should	clarify	the	intent	of	the	code	or	explain	higher-level	concepts.	The	code	itself	should
be	clear	and	self-documenting.

There	is	a	famously	bad	comment:

i	=	i	+	1;	//	Add	one	to	i

This	comment	provides	no	information	beyond	what	is	already	obvious	from	reading	the	code.	There	are
even	worse	ways	to	do	it,	such	as:

/**********************************

*	*

*	Add	one	to	i	*

*	*

**********************************/

						i=i+1;

6.3.2	Do	not	leave	markers	in	the	code.
Don’t	leave	flags,	such	as	your	name,	in	the	code.	They	may	have	meaning	to	you	but	they	do	not	to
other	people	or	projects.	Don’t	make	fancy	patterns	in	your	comments	so	you	can	search	for	them	later.
Always	consider	that	the	code	and	comments	represent	both	you	and	your	company	and	will	very	likely
be	publicly	available.	The	presence	of	flags,	like		BugBug	,	or		ToDo		statements	indicating	that	comments
should	be	added,	reflect	poorly	upon	the	programmer.

6.3.3	Sections	of	code	shall	not	be	“commented	out”.
Where	sections	of	source	code	must	not	be	compiled,	use	conditional	compilation	(such	as		#if		or
	#ifdef		constructs	with	a	descriptive	comment)	to	meet	this	requirement.	C	does	not	support	nested
comments,	and	the	application	of	start	and	end	comment	markers	to	meet	the	requirement	of	source
code	that	must	not	be	compiled	is	a	dangerous	practice.	This	is	because	comments	already	existing	in
the	section	of	code	would	change	the	outcome.

6.3.4	Do	not	comment	out,	or	otherwise	disable,	previous	revisions
of	the	code.
Rely	on	your	source	control	system	to	retain	history,	not	your	code.

6.3.5	Do	not	use	the	character	sequence	“/*”	within	a	comment.
C	does	not	support	the	nesting	of	comments,	despite	the	existence	of	such	support	(as	a	language
extension)	within	some	compilers.	Comment	start	with		/*		and	end	when	the	first		*/		is	encountered.

6.3	What	NOT	to	CommentEDK	II	C	Coding	Standards	Specification[DRAFT]

71DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.4	What	You	Must	Comment

6.4.1	Comment	function	declarations	if	public,	or	implementations	if
private	and	not	declared.
You	must	describe	the	purpose	of	the	function	and	any	side	effects.	Also	describe	the	purpose	or
meaning	of	each	parameter	and	return	value.

6.4.2	Comment	complicated,	tricky,	or	sensitive	pieces	of	code.
What	the	code	is	doing	must	be	made	clear.	Making	the	code	cleaner	is	often	better	than	adding	more
comments.

6.4.3	Comment	higher-level	concepts	in	the	code.
Focus	on	the	why	and	not	the	how.

6.4.4	Comment	data	structure	declarations	and	#define	statements.
The	include	files	should	be	sufficient	to	understand	what	data	or	code	are	for.	It	should	not	be
necessary	to	search	for	all	references	to	something	to	understand	its	purpose	and	use.	If	more	than
one	instance	of	a	structure	or	union	is	instantiated,	comment	each	one	as	to	its	intended	purpose.	It
should	be	clear	from	these	comments	why	there	are	multiple	instances	and	how	each	instance	differs.

6.4.5	File	comments	should	include	the	version	number	of	the
industry	standard	to	which	you	are	coding.
When	possible,	you	should	also	list	the	requirements	that	are	satisfied	by	the	code.

6.4.6	Comment	spurious	variable	assignments.
A	compiler	or	static	code	analyzer	may	warn	that	an	object	with	automatic	or	allocated	storage	duration
is	read	without	having	been	initialized,	while	visual	inspection	reveals	that	this	is	impossible.

In	order	to	suppress	such	a	warning	(which	is	emitted	due	to	invalid	data	flow	analysis),	developers
explicitly	assign	the	affected	object	the	value	to	which	the	same	object	would	be	initialized
automatically,	had	the	object	static	storage	duration,	and	no	initializer.	(The	value	assigned	could	be
arbitrary;	the	above-mentioned	value	is	chosen	for	stylistic	reasons.)	For	example:

UINTN	LocalIntegerVariable;

VOID		*LocalPointerVariable;

LocalIntegerVariable	=	0;

LocalPointerVariable	=	NULL;

This	kind	of	assignment	is	difficult	to	distinguish	from	assignments	where	the	initial	value	of	an	object	is
meaningful,	and	is	consumed	by	other	code	without	an	intervening	assignment.	Therefore,	each	such
assignment	must	be	documented,	as	follows:

UINTN	LocalIntegerVariable;

VOID		*LocalPointerVariable;

//

//	set	LocalIntegerVariable	to	suppress	incorrect	compiler/analyzer	warnings

//

6.4	What	You	Must	CommentEDK	II	C	Coding	Standards	Specification[DRAFT]

72DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

LocalIntegerVariable	=	0;

//

//	set	LocalPointerVariable	to	suppress	incorrect	compiler/analyzer	warnings

//

LocalPointerVariable	=	NULL;

6.4	What	You	Must	CommentEDK	II	C	Coding	Standards	Specification[DRAFT]

73DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.5	Types	of	Comments
Comments	can	be	either	global	or	internal.

6.5.1	Global	Comments
Global,	or	strategic,	comments	occur	outside	of	function	definitions	and	provide	structural	or
algorithmic	information	about	the	file	or	program.	Global	comments	are	almost	always	special	Doxygen
comment	blocks.	See	Section	6.6	"Introducing	Doxygen".

6.5.1.1	Comments	are	allowed	on	structure	member	declarations:

typedef	struct	{

		EFI_SAMPLE_STRUCTURE	*StructurePointer;	///<	Sample	comment	#1

		UINT64															SimpleVariable;				///<	Sample	comment	#2

}	EFI_STRUCTURE_NAME;

6.5.2	Internal	Comments
Internal,	or	tactical,	comments	occur	within	the	body	of	a	function	definition	and	are	used	to	convey
special	information	of	use	to	someone	actively	reading	the	code.	These	comments	are	never	special
Doxygen	comments.

6.5.2.1	For	internal	code	comments,	use	C++	style	(//)	comment
lines.

6.5.2.2	Include	a	blank	line	above	a	block	of	comment	lines
containing	text.
These	blank	lines	make	comments	visually	distinct	without	relying	on	the	editor.

6.5.2.3	A	blank	line	may	optionally	follow	a	block	of	comments.
This	should	generally	indicate	that	the	comment	is	for	a	large	block	of	code.	No	blank	line	implies	that
the	comment	is	for	the	next	few	lines	of	code.

6.5.2.4	Comments	are	allowed	on	the	parameters	of	a	function	call.
These	comments	provide	supplemental	information	about	the	parameters	for	that	specific	function	call.
The	information	in	parameter	comments	should	not	repeat	the	information	in	the	descriptive	text	for	the
	@param		entries	in	the	special	documentation	block	describing	the	function.	Function	call	parameter
comments	are	never	Doxygen	comments.

Status	=	TestString	(

											String,					//	Comment	for	first	parameter

											Index	+	3,		//	Comment	for	second	parameter

											&Value						//	Comment	for	third	parameter

);

6.5.2.5	Indent	the	comments	with	the	code.
This	indentation	conveys	the	scope	of	the	comment,	as	well	as	maintaining	readability	of	the	code.

6.5	Types	of	CommentsEDK	II	C	Coding	Standards	Specification[DRAFT]

74DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

///	Do	nothing,	carefully.

void

NoFun	(VOID)

{

		//	Only	process	data	if	mTest	is	TRUE.

		//	This	comment	block	applies	to	the	entire	if/else	statement.

		if	(mTest)	{

				//	This	is	an	example	comment	to	explain	why	this	behavior

				//	is	appropriate	if	mTest	is	true.

				//	This	comment	block	only	applies	when	mTest	is	true.

				ThisIsTheCode();

		}	else	{

				//	Explain	what	we	do	if	(mTest)	is	false.

				//	This	comment	block	only	applies	when	mTest	is	false.

				ThisIsMoreCode();

		}

}

6.5	Types	of	CommentsEDK	II	C	Coding	Standards	Specification[DRAFT]

75DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.6	Introducing	Doxygen
Doxygen	is	a	tool	that	allows	one	to	generate	documentation	directly	from	a	project's	source	code.
There	are	no	complicated,	specially	formatted	documentation	tags	required	for	one	to	get	significant
benefit	from	Doxygen.	By	simply	adding	an	additional	asterisk	(̀ *)	or	slash	(/`)	to	existing	comments,
they	become	special	documentation	blocks	that	Doxygen	will	add	to	any	generated	documentation.	A
few	simple	Doxygen	commands	allow	the	majority	of	special	documentation	tasks	to	be	performed.

Please	use	Doxygen	style	comment	blocks,	at	a	minimum,	when	writing	new	code.	If	you	have	time,	or
are	already	making	modifications,	please	update	existing	comments.	You	will	be	glad	you	did.

This	document	describes	the	Doxygen	elements	and	style	as	it	applies	to	EDK	II.	Other	supported
Doxygen	tag	and	comment	formats	are	to	be	eschewed	in	favor	of	the	style	documented	here.

6.6	Introducing	DoxygenEDK	II	C	Coding	Standards	Specification[DRAFT]

76DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.7	How	Doxygen	Works
Doxygen	understands	the		#include		and		#define		preprocessor	directives	as	well	as	the	syntax	of	C	and
C++.	Thus,	Doxygen	can	generate	documentation	using	just	the	existing	syntactic	elements	of	the
source	files,	or	one	can	supplement	the	syntactic	documentation	using	Section	6.8	"Special
Documentation	Blocks".	These	special	documentation	blocks	are	just	C	or	C++	comments	with	one	or
more	special	tags	added.

For	structures,	unions,	functions,	and	global	data,	you	have	two	documentation	options:

Place	a	special	documentation	block	in	front	of	the	declaration	or	definition.	For	enum,	structure,
and	union	members,	you	are	also	allowed	to	place	documentation	directly	after	a	member.	See
Section	6.8	"Special	Documentation	Blocks",	to	learn	more	about	special	documentation	blocks.

Place	a	special	documentation	block	somewhere	else	(another	file	or	location)	and	put	a	structural
command	in	the	documentation	block.	A	structural	command	links	a	documentation	block	to	a
certain	entity	that	can	be	documented	(e.g.	a	union,	structure,	function,	or	file).

The	text	inside	a	special	documentation	block	is	parsed	before	it	is	written	to	the	output	files.	During
parsing,	the	following	steps	take	place:

1.	 The	special	commands	inside	the	documentation	block	are	executed.

2.	 If	a	line	starts	with	some	whitespace	followed	by	one	or	more	asterisks	(*)	and	then	optionally	more
whitespace,	then	all	leading	whitespace	and	asterisks	are	removed.

3.	 All	resulting	blank	lines	are	treated	as	paragraph	separators.	This	saves	you	from	placing	new-
paragraph	commands	yourself	in	order	to	make	the	generated	documentation	readable.

4.	 Links	to	members	are	automatically	created	when	certain	patterns	are	found	in	the	text.	These
patterns	include:	URLs	and	email	addresses,	names	of	documented	classes	and	files,	function	and
variable	names,	typedef,	enum	types,	enum	values,	and	defines.

5.	 HTML	tags	that	are	in	the	documentation	are	interpreted	and	converted	to	the	proper	equivalents
for	the	selected	output	type.

6.7	How	Doxygen	WorksEDK	II	C	Coding	Standards	Specification[DRAFT]

77DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.8	Special	Documentation	Blocks
A	special	documentation	block	is	a	C	or	C++	comment	block	with	some	additional	markings,	so	that
Doxygen	knows	it	is	a	piece	of	documentation	that	needs	to	end	up	in	the	generated	documentation.

Normally,	Doxygen	expects	special	documentation	blocks	to	immediately	precede	the	syntactic	element
being	documented	(Prefix).	There	is	a	mechanism	to	allow	documentation	to	be	placed	after	the
element	to	be	documented	(Postfix).	Prefix	style	comment	blocks	are	described	here,	while	postfix
comment	blocks	are	described	in	"Putting	Documentation	after	Members"	on	page	66.

Each	code	item	can	have	two	types	of	descriptions.	Together,	a	brief	description	and	a	detailed
description	form	the	documentation:	Both	are	semantically	optional.	More	than	one	brief	or	detailed
description	per	code	item,	however,	is	not	allowed.	We	require	at	least	one	of	these	descriptions	to	be
present.

A	brief	description	is	short,	usually	a	single	line.	A	detailed	description	provides	longer	and	more
detailed	documentation.

You	may	place	these	descriptions	in	a	comment	block	in	several	ways:

Comment	blocks	will	automatically	start	a	brief	description	which	ends	at	the	first	period	followed	by
a	space	or	new	line.	For	example:

/**	Brief	description	which	ends	at	this	dot.

This	sentence	begins	the	detailed	description.	The	detailed	description

continues...

**/

The	behavior	also	exists	for	multi-line	special	C++	comments:

///	Brief	description	which	ends	at	this	dot.

///	This	sentence	begins	the	detailed	description.

It	is	preferred	that	any	special	documentation	block	longer	than	two	lines	use	C-style	commenting	as
shown	in	the	first	example	above.	While	not	required	by	Doxygen,	we	require	the	blank	line	between	the
brief	description	and	the	detailed	description.

Within	the	body	of	a	C-style	comment	block,	Doxygen	will	ignore	any	leading	spaces	and	asterisks,	'*'.
This	means	that	the	first	example	could	be	rewritten	as	follows	without	any	change	in	the	generated
documentation.

/**	Brief	description	which	ends	at	this	dot.

	*

	*	This	sentence	begins	the	detailed	description.	The	detailed

	*	description	continues...

**/

This	type	of	comment	decoration	is	acceptable	because	the	line	of	'*'	along	the	left	make	it	easier	to
determine	the	extent	of	the	comment.

As	you	can	see,	Doxygen	is	quite	flexible.	For	more	information,	see	the	full	Doxygen	documentation.

6.8	Special	Documentation	BlocksEDK	II	C	Coding	Standards	Specification[DRAFT]

78DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.9	Putting	Documentation	after	Members
For	example,	to	document	the	members	of	a		struct	,		union	,	or		enum	,	and	to	put	the	documentation	for
those	members	inside	the	compound,	it	might	be	desirable	to	place	the	documentation	block	after	the
member.	Do	this	by	putting	an	additional		<		marker	in	the	comment	block.

For	example:

int	var;	///<	Brief	description	after	the	member

Note:	These	blocks	have	the	same	structure	and	meaning	as	special	comment	blocks.	The		<		indicates
that	the	member	to	be	documented	is	located	before	the	comment.

Note:	Only	be	used	these	blocks	to	document	members	and	parameters.	Do	not	use	them	to
document	files,	classes,	unions,	structs,	groups,	namespace,	or	enums	themselves.	Furthermore,
structural	commands	(such	as		@struct)	are	ignored	inside	these	comment	blocks.

6.9	Putting	Documentation	after	MembersEDK	II	C	Coding	Standards	Specification[DRAFT]

79DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

6.10	Special	Commands
All	Doxygen	commands	start	with	an	"at"	sign	(@).	A	commands	may	have	one	or	more	arguments.	The
following	typographic	conventions	are	used	to	identify	each	arguments	range:

If	<sharp>	braces	are	used,	the	argument	is	a	single	word.

If	(round)	braces	are	used,	the	argument	extends	until	the	end	of	the	line	on	which	the	command
was	found.

If	{curly}	braces	are	used,	the	argument	extends	until	the	next	paragraph.	Paragraphs	are
delimited	by	a	blank	line	or	by	a	section	indicator.

If	[square]	brackets	are	used,	the	argument	is	optional.

The	following	sections	describe	the	special	Doxygen	commands.

6.10.1	@example
Indicates	that	a	comment	block	contains	documentation	for	a	source	code	example.

6.10.2	@file	[]
Indicates	that	a	comment	block	contains	documentation	for	a	source	or	header	file	with	name	.	If	the
file	name	is	omitted,	Doxygen	uses	the	name	of	the	file	that	contains	the		@file		command.	This	is	the
preferred	method.

6.10.3	@attention	{	attention	text	}
Starts	an	indented	paragraph	where	you	can	enter	a	message	about	an	issue	that	needs	attention.

6.10.4	@param[in,out]	{	parameter	description	}
Starts	a	parameter	description	for	a	function	parameter	named	.

6.10.5	@post	{	description	of	a	postcondition	}
Starts	an	indented	paragraph	where	you	can	describe	a	postcondition	of	an	entity.

6.10.6	@pre	{	description	of	a	precondition	}
Starts	an	indented	paragraph	where	you	can	describe	a	precondition	of	an	entity.

6.10.7	@retval	{	description	}
Starts	a	description	of	a	return	value	from	a	function.	Include	a	separate		@retval		for	each	unique	return
value.

6.10.8	@return	{	description	of	what	is	returned	}
Starts	a	description	for	a	function's	return	values	when	those	values	aren't	easily	described	by		@retval	
commands	(that	is,	the	return	values	are	something	other	than	a	small	set	of	unique	values	with
discrete	meanings).

6.10.9	@sa	{	references	}

6.10	Special	CommandsEDK	II	C	Coding	Standards	Specification[DRAFT]

80DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Starts	a	paragraph	where	you	can	specify	one	or	more	cross-references	to	functions,	structures,
variables,	files,	or	URLs.

6.10.10	@since	{	text	}
This	tag	can	be	used	to	specify	when	(version	or	time)	an	entity	is	available.

6.10.11	@test	{	paragraph	describing	a	test	case	}
Starts	a	paragraph	where	you	can	describe	a	test	case.	The	description	will	also	add	the	test	case	to	a
separate	test	list.	The	two	instances	of	the	description	will	be	cross-referenced.	Each	test	case	in	the
test	list	will	be	preceded	by	a	header	that	indicates	the	origin	of	the	test	case.

6.10.12	@todo	{	paragraph	describing	what	is	to	be	done	}
Starts	a	paragraph	where	a	TODO	item	is	described.	The	description	will	also	add	an	item	to	a	separate
TODO	list.	The	two	instances	of	the	description	will	be	cross-referenced.	Each	item	in	the	TODO	list	will
be	preceded	by	a	header	that	indicates	the	origin	of	the	item.

6.10.13	HTML	Commands
For	greater	control	over	the	format	of	generated	documentation,	you	may	add	HTML	commands	to
special	documentation	blocks.	"HTML	Character	Entities"	below	lists	the	special	HTML	character	entities
that	Doxygen	recognizes.

"HTML	Commands"	lists	the	HTML	commands	that	you	may	use	inside	the	documentation.

Finally,	to	put	invisible	comments	inside	comment	blocks,	you	may	use	HTML	style	comments:

/**	<!--	This	is	a	comment	within	a	comment	block	-->	Visible	text	*/

Table	11	HTML	Character	Entities

Entity Description

	©	 Copyright	symbol

	&tm;	 Trade	mark	symbol

	®	 Registered	trade	mark	symbol

	<	 Less-than	symbol

	>	 Greater-than	symbol

	&	 Ampersand

	'	 Single	quotation	mark	(straight)

	"	 Double	quotation	mark	(straight)

	‘	 Left	single	quotation	mark

	’	 Right	single	quotation	mark

	“	 Left	double	quotation	mark

	”	 Right	double	quotation	mark

	–	 En-dash	(for	numeric	ranges,	e.g.	2-8)

	—	 Em-dash	(for	parenthetical	punctuation-like	this)

Where	?	is	one	of	{A,E,I,O,U,Y,a,e,i,o,u,y},	writes	a	character	with	a	diaeresis	accent

6.10	Special	CommandsEDK	II	C	Coding	Standards	Specification[DRAFT]

81DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	&?uml;	 (ä).

	&?acute;	 Where	?	is	one	of	{A,E,I,O,U,Y,a,e,i,o,u,y},	writes	a	character	with	an	acute	accent	(á).

	&?grave;	 Where	?	is	one	of	{A,E,I,O,U,a,e,i,o,u,y},	writes	a	character	with	a	grave	accent	(à).

	&?circ;	 Where	?	is	one	of	{A,E,I,O,U,a,e,i,o,u,y},	writes	a	character	with	a	circumflex	accent	(â).

	&?tilde;	 Where	?	is	one	of	{A,N,O,a,n,o},	writes	a	character	with	a	tilde	accent	(ã).

	ß	 Sharp	s	(ß).

	&?cedil;	 Where	?	is	one	of	{c,C},	writes	a	c-cedille	(ç).

	&?ring;	 Where	?	is	one	of	{a,A},	writes	an	'a'	with	a	ring	(å).

	 	 A	non	breaking	space.

Table	12	HTML	Commands

Command Description

		 Starts	an	HTML	hyper-link.

		 Starts	a	named	anchor.

		 Ends	a	link	or	anchor.

		 Starts	a	piece	of	text	displayed	in	a	bold	font.

		 Ends	a				section.

	<BODY>	 Does	not	generate	any	output.

	</BODY>	 Does	not	generate	any	output.

	
	 Forces	a	line	break.

	<CENTER>	 Starts	a	section	of	centered	text.

	</CENTER>	 Ends	a	section	of	centered	text.

	<CAPTION>	 Starts	a	caption.	Use	within	a	table	only.

	</CAPTION>	 Ends	a	caption.	Use	within	a	table	only.

	<CODE>	 Starts	a	piece	of	text	displayed	in	a	typewriter	font.

	</CODE>	 End	a		<CODE>		section.

	<DD>	 Starts	an	item	description.

	<DFN>	 Starts	a	piece	of	text	displayed	in	a	typewriter	font.

	</DFN>	 Ends	a		<DFN>		section.

	<DIV>	 Starts	a	section	with	a	specific	style

	</DIV>	 Ends	a	section	with	a	specific	style

	<DL>	 Starts	a	description	list.

	</DL>	 Ends	a	description	list.

	<DT>	 Starts	an	item	title.

	</DT>	 Ends	an	item	title.

		 Starts	a	piece	of	text	displayed	in	an	italic	font.

		 Ends	a				section.

	<FORM>	 Does	not	generate	any	output.

6.10	Special	CommandsEDK	II	C	Coding	Standards	Specification[DRAFT]

82DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	</FORM>	 Does	not	generate	any	output.

	<HR>	 Writes	a	horizontal	rule.

	<H1>	 Starts	an	unnumbered	section.

	</H1>	 Ends	an	unnumbered	section.

	<H2>	 Starts	an	unnumbered	subsection.

	</H2>	 Ends	an	unnumbered	subsection.

	<H3>	 Starts	an	unnumbered	sub	subsection.

	</H3>	 Ends	an	unnumbered	sub	subsection.

	<I>	 Starts	a	piece	of	text	displayed	in	an	italic	font.

	<INPUT>	 Does	not	generate	any	output.

	</I>	 Ends	a		<I>		section.

		 This	command	is	written	with	attributes	to	the	HTML	output.

		 Starts	a	new	list	item.

		 Ends	a	list	item.

	<META>	 Does	not	generate	any	output.

	<MULTICOL>	 Ignored	by	Doxygen.

	</MUTLICOL>	 Ignored	by	Doxygen.

		 Starts	a	numbered	item	list.

		 Ends	a	numbered	item	list.

	<P>	 Starts	a	new	paragraph.

	</P>	 Ends	a	paragraph.

	<PRE>	 Starts	a	pre-formatted	fragment.

	</PRE>	 Ends	a	pre-formatted	fragment.

	<SMALL>	 Starts	a	section	of	text	displayed	in	a	smaller	font.

	</SMALL>	 Ends	a		<SMALL>		section.

		 Starts	an	inline	text	fragment	with	a	specific	style.

		 Ends	an	inline	text	fragment	with	a	specific	style.

		 Starts	a	section	of	bold	text.

		 Ends	a	section	of	bold	text.

	<SUB>	 Starts	a	piece	of	text	displayed	in	subscript.

	</SUB>	 Ends	a		<SUB>		section.

	<SUP>	 Starts	a	piece	of	text	displayed	in	superscript.

	</SUP>	 Ends	a		</SUP>		section.

	<TABLE>	 Starts	a	table.

	</TABLE>	 Ends	a	table.

	<TD>	 Starts	a	new	table	data	element.

	</TD>	 Ends	a	table	data	element.

6.10	Special	CommandsEDK	II	C	Coding	Standards	Specification[DRAFT]

83DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

Starts	a	new	table	row.

	</TR>	 Ends	a	table	row.

	<TT>	 Starts	a	piece	of	text	displayed	in	a	typewriter	font.

	</TT>	 Ends	a		<TT>		section.

	<KBD>	 Starts	a	piece	of	text	displayed	in	a	typewriter	font.

	</KBD>	 Ends	a		<KBD>		section.

		 Starts	an	unnumbered	item	list.

		 Ends	an	unnumbered	item	list.

	<VAR>	 Starts	a	piece	of	text	displayed	in	an	italic	font.

	</VAR>	 Ends	a		</VAR>		section.

6.10	Special	CommandsEDK	II	C	Coding	Standards	Specification[DRAFT]

84DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

APPENDIX	A	COMMON	EXAMPLES
File	Heading

/**	@file

		Brief	description	of	file’s	purpose.

		Detailed	description	of	file’s	purpose.

		Copyright	(c)	2006	-	2014,	Acme	Corporation.	All	rights	reserved.

		SPDX-License-Identifier:	BSD-2-Clause-Patent

		@par	Specification	Reference:

		-	UEFI	2.3,	Chapter	9,	Device	Path	Protocol

		-	PI	1.1,	Chapter	10,	Boot	Paths

**/

#ifndef	FOO_BAR_H_

#define	FOO_BAR_H_

//	Body	of	the	file	goes	here

#endif	//	FOO_BAR_H_

Functioon	Declarations

/**	Brief	description	of	this	function's	purpose.

		Follow	it	immediately	with	the	detailed	description.

		@param[in]							Arg1		Description	of	Arg1.

		@param[in]							Arg2		Description	of	Arg2	This	is	complicated	and	requires

																									multiple	lines	to	describe.

		@param[out]						Arg3		Description	of	Arg3.

		@param[in,	out]		Arg4		Description	of	Arg4.

		@retval		VAL_ONE		Description	of	what	VAL_ONE	signifies.

		@retval		OTHER				This	is	the	only	other	return	value.	If	there	were	other

																				return	values,	they	would	be	listed.

**/

EFI_STATUS

EFIAPI

FooBar	(

		IN					UINTN		Arg1,

		IN					UINTN		Arg2,	OPTIONAL

					OUT	UINTN		*Arg3,

		IN	OUT	UINTN		*Arg4

);

Type	Declarations

///	Brief	description	of	this	enum.

///	Detailed	description	if	justified.

typedef	enum	{

		EnumMenberOne,		///<	First	member	description.

		EnumMemberTwo,		///<	Second	member	description.

		EnumMemberMax			///<	Number	of	members	in	this	enum.

}	ENUMERATE_TYPE;

///	Structure	without	forward	reference.

typedef	struct	{

		UINT32																			Signature;		///<	Signature	description.

		EFI_HANDLE															Handle;					///<	Handle	description.

APPENDIX	A	Common	ExamplesEDK	II	C	Coding	Standards	Specification[DRAFT]

85DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

		EFI_PROD_PROT1_PROTOCOL		ProdProt1;		///<	ProdProt1	description.

		EFI_PROD_PROT2_PROTOCOL		ProdProt2;		///<	ProdProt2	description.

}	DRIVER_NAME_INSTANCE;

///	Self	referential	Structure.

typedef	struct	EFI_CPU_IO_PROTO	{

		struct	EFI_CPU_IO_PROTO					*Mem;

		EFI_CPU_IO_PROTOCOL_ACCESS		Io;

}	EFI_CPU_IO_PROTOCOL;

///	Forward	reference

typedef	struct	StructTag	MyStruct;

///	Forward	reference	target

struct	StructTag	{

		INT32	First;

		INT32	Second;

};

Function	Calling

Status	=	TestString	();

Status	=	TestString	(String,	Index	+	3,	&Value);

Status	=	TestString	(

											String,

											Index	+	3,

											&Value

);

Control	Statements

if	(Test	&&	!Test2)	{

		//	This	is	an	example	comment	to	explain	why	this	behavior

		//	is	appropriate.

		IamTheCode	();

}	else	if	(Test2)	{

		//	This	is	an	example	comment	to	explain	why	this	behavior

		//	is	appropriate.

		IamTheCode	();

}	else	{

		//	This	is	an	example	comment	to	explain	why	this	behavior

		//	is	appropriate.

		IamTheCode	();

}

while	(TRUE)	{

		IamTheCode	();

}

do	{

		IamTheCode	();

}	while	(TRUE);

for	(Index	=	0;	Index	<	MAX_INDEX;	Index++)	{

		IamTheCode	(Index);

}

switch	(Variable)	{

case	1:

		IamTheCode	();

		break;

case	2:

		IamTheCode	();

		break;

default:

APPENDIX	A	Common	ExamplesEDK	II	C	Coding	Standards	Specification[DRAFT]

86DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

		IamTheCode	();

		break;

};

APPENDIX	A	Common	ExamplesEDK	II	C	Coding	Standards	Specification[DRAFT]

87DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

APPENDIX	B	RESERVED	IDENTIFIERS

	__bool_true_false_are_defined	 	_Complex_I	 	_Exit	

	_IOFBF	 	_IOLBF	 	_IONBF	 	abs	

	abort	 	acos	 	acosf	 	acosh	

	acoshf	 	acoshl	 	acosl	 	and	

	and_eq	 	asctime	 	asin	 	asinf	

	asinh	 	asinhf	 	asinhl	 	asinl	

	assert	 	atan	 	atan2	 	atan2f	

	atan2l	 	atanf	 	atanh	 	atanhf	

	atanhl	 	atanl	 	atexit	 	atof	

	atoi	 	atol	 	atoll	 	BUFSIZ	

	bitand	 	bitor	 	bool	 	bsearch	

	btowc	 	cabs	 	cabsf	 	cabsl	

	cacos	 	cacosf	 	cacosh	 	cacosl	

	cacoshf	 	cacoshl	 	calloc	 	carg	

	cargf	 	cargl	 	casin	 	casinf	

	casinl	 	casinh	 	casinhf	 	casinhl	

	catan	 	catanf	 	catanl	 	catanh	

	catanhf	 	catanhl	 	cbrt	 	cbrtf	

	cbrtl	 	ccos	 	ccosf	 	ccosh	

	ccoshf	 	ccoshl	 	ccosl	 	ceil	

	ceilf	 	ceill	 	cexp	 	cexpf	

	cexpl	 	CHAR_BIT	 	CHAR_MIN	 	CHAR_MAX	

	cimag	 	cimagf	 	cimagl	 	clearerr	

	clock	 	clock_t	 	CLOCKS_PER_SEC	 	clog	

	clogf	 	clogl	 	compl	 	complex	

	conj	 	conjf	 	conjl	 	copysign	

	copysignf	 	copysignl	 	cos	 	cosf	

	cosl	 	cosh	 	coshf	 	coshl	

	cpow	 	cpowf	 	cpowl	 	cproj	

	cprojf	 	cprojl	 	creal	 	crealf	

	creall	 	csin	 	csinf	 	csinh	

	csinhf	 	csinhl	 	csinl	 	csqrt	

	csqrtf	 	csqrtl	 	ctan	 	ctanf	

	ctanl	 	ctanh	 	ctanhf	 	ctanhl	

	ctime	 	CX_LIMITED_RANGE	 	DBL_DIG	 	DBL_EPSILON	

	DBL_MAX	 	DBL_MANT_DIG	 	DBL_MAX_10_EXP	 	DBL_MAX_EXP	

	DBL_MIN	 	DBL_MIN_10_EXP	 	DBL_MIN_EXP	 	DECIMAL_DIG	

	difftime	 	div	 	div_t	 	double_t	

APPENDIX	B	Reserved	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

88DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	EDOM	 	EILSEQ	 	EOF	 	ERANGE	

	erf	 	erff	 	erfl	 	erfc	

	erfcf	 	erfcl	 	errno	 	exit	

	EXIT_FAILURE	 	EXIT_SUCCESS	 	exp	 	expf	

	expl	 	exp2	 	exp2f	 	exp2l	

	expm1	 	expm1f	 	expm1l	 	fabs	

	fabsf	 	fabsl	 	false	 	fclose	

	fdim	 	fdimf	 	fdiml	 	FE_ALL_EXCEPT	

	FE_DFL_ENV	 	FE_DIVBYZERO	 	FE_DOWNWARD	 	FE_INEXACT	

	FE_INVALID	 	FE_OVERFLOW	 	FE_TONEAREST	 	FE_TOWARDZERO	

	FE_UNDERFLOW	 	FE_UPWARD	 	feclearexcept	 	fegetenv	

	fegetexceptflag	 	feholdexcept	 	fegetround	 	feof	

	FENV_ACCESS	 	fenv_t	 	feraiseexcept	 	ferror	

	fesetenv	 	fesetexceptflag	 	fesetround	 	fetestexcept	

	feupdateenv	 	fexcept_t	 	fflush	 	fgetc	

	fgetpos	 	fgetwc	 	fgetws	 	fgets	

	FILE	 	FILENAME_MAX	 	float_t	 	floor	

	floorf	 	floorl	 	FLT_DIG	 	FLT_EPSILON	

	FLT_EVAL_METHOD	 	FLT_MANT_DIG	 	FLT_MAX	 	FLT_MAX_10_EXP	

	FLT_MAX_EXP	 	FLT_MIN	 	FLT_MIN_10_EXP	 	FLT_MIN_EXP	

	FLT_RADIX	 	FLT_ROUNDS	 	fma	 	fmaf	

	fmax	 	fmaxf	 	fmaxl	 	fmin	

	fminf	 	fminl	 	fmod	 	fmodf	

	fmodl	 	fopen	 	FOPEN_MAX	 	FP_CONTRACT	

	FP_FAST_FMA	 	FP_FAST_FMAF	 	FP_FAST_FMAL	 	FP_ILOGB0	

	FP_ILOGBNAN	 	FP_INFINITE	 	FP_NAN	 	FP_NORMAL	

	FP_SUBNORMAL	 	FP_ZERO	 	fpclassify	 	fputc	

	fputs	 	fpos_t	 	fprintf	 	fputwc	

	fputws	 	fread	 	free	 	freopen	

	frexp	 	frexpf	 	frexpl	 	fscanf	

	fseek	 	fsetpos	 	ftell	 	fwide	

	fwprintf	 	fwrite	 	fwscanf	 	getc	

	getchar	 	getenv	 	gets	 	getwc	

	getwchar	 	gmtime	 	HUGE_VAL	 	HUGE_VALF	

	HUGE_VALL	 	hypot	 	hypotf	 	hypotl	

	I	 	ilogb	 	ilogbf	 	ilogbl	

	imaginary	 	imaxdiv_t	 	imaxabs	 	imaxdiv	

	INFINITY	 	INT_FASTN_MIN	 	INT_FASTN_MAX	 	int_fastN_t	

	INT_LEASTN_MIN	 	INT_LEASTN_MAX	 	int_leastN_t	 	INT_MAX	

	INT_MIN	 	INTMAX_C	 	INTMAX_MAX	 	INTMAX_MIN	

	intmax_t	 	INTN_C	 	INTN_MIN	 	INTN_MAX	

	intN_t	 	intptr_t	 	INTPTR_MIN	 	INTPTR_MAX	

APPENDIX	B	Reserved	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

89DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	isalnum	 	isalpha	 	isblank	 	iscntrl	

	isdigit	 	isfinite	 	isgraph	 	isgreater	

	isgreaterequal	 	isinf	 	isless	 	islessequal	

	islessgreater	 	islower	 	isnan	 	isnormal	

	isprint	 	ispunct	 	isspace	 	isunordered	

	isupper	 	iswalnum	 	iswalpha	 	iswblank	

	iswcntrl	 	iswctype	 	iswdigit	 	iswgraph	

	iswlower	 	iswprint	 	iswpunct	 	iswspace	

	iswupper	 	iswxdigit	 	isxdigit	 	jmp_buf	

	L_tmpnam	 	labs	 	LC_ALL	 	LC_COLLATE	

	LC_CTYPE	 	LC_MONETARY	 	LC_NUMERIC	 	LC_TIME	

	LDBL_DIG	 	LDBL_EPSILON	 	LDBL_MANT_DIG	 	LDBL_MAX	

	LDBL_MAX_EXP	 	LDBL_MAX_10_EXP	 	LDBL_MIN	 	LDBL_MIN_EXP	

	LDBL_MIN_10_EXP	 	ldexp	 	ldexpf	 	ldexpl	

	ldiv	 	ldiv_t	 	lgamma	 	lgammaf	

	lgammal	 	llabs	 	lldiv	 	lldiv_t	

	LLONG_MAX	 	LLONG_MIN	 	llrint	 	llrintf	

	llrintl	 	llround	 	llroundf	 	llroundl	

	localeconv	 	localtime	 	log	 	logf	

	logl	 	log10	 	log10f	 	log10l	

	log1p	 	log1pf	 	log1pl	 	log2	

	log2f	 	log2l	 	logb	 	logbf	

	logbl	 	LONG_MAX	 	LONG_MIN	 	longjmp	

	lrint	 	lrintf	 	lrintl	 	lround	

	lroundf	 	lroundl	 	mal	 	malloc	

	MATH_ERREXCEPT	 	math_errhandling	 	MATH_ERRNO	 	MB_CUR_MAX	

	MB_LEN_MAX	 	mblen	 	mbrlen	 	mbrtowc	

	mbsinit	 	mbstate_t	 	mbstowcs	 	mbsrtowcs	

	mbtowc	 	memchr	 	memcmp	 	memcpy	

	memmove	 	memset	 	mktime	 	modf	

	modff	 	modfl	 	NAN	 	nan	

	nanf	 	nanl	 	NDEBUG	 	nearbyint	

	nearbyintf	 	nearbyintl	 	nextafter	 	nextafterf	

	nextafterl	 	nexttoward	 	nexttowardf	 	nexttowardl	

	not	 	not_eq	 	NULL	 	or	

	or_eq	 	offsetof	 	perror	 	pow	

	powf	 	powl	 	PRIdN	 	PRIiN	

	PRIoN	 	PRIuN	 	PRIXN	 	PRIxN	

	PRIdLEASTN	 	PRIdFASTN	 	PRIdMAX	 	PRIdPTR	

	PRIiLEASTN	 	PRIiFASTN	 	PRIiMAX	 	PRIiPTR	

	printf	 	PRIoLEASTN	 	PRIoFASTN	 	PRIoMAX	

	PRIoPTR	 	PRIuLEASTN	 	PRIuFASTN	 	PRIuMAX	

APPENDIX	B	Reserved	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

90DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	PRIuPTR	 	PRIXLEASTN	 	PRIxLEASTN	 	PRIXFASTN	

	PRIxFASTN	 	PRIXMAX	 	PRIxMAX	 	PRIXPTR	

	PRIxPTR	 	PTRDIFF_MAX	 	PTRDIFF_MIN	 	ptrdiff_t	

	putc	 	putchar	 	puts	 	putwc	

	putwchar	 	qsort	 	raise	 	rand	

	RAND_MAX	 	realloc	 	remainder	 	remainderf	

	remainderl	 	remove	 	remquo	 	remquof	

	remquol	 	rename	 	rewind	 	rint	

	rintf	 	rintl	 	round	 	roundf	

	roundl	 	scalbn	 	scalbnf	 	scalbnl	

	scalbln	 	scalblnf	 	scalblnl	 	scanf	

	SCHAR_MAX	 	SCHAR_MIN	 	SCNdN	 	SCNdFASTN	

	SCNdLEASTN	 	SCNdMAX	 	SCNdPTR	 	SCNiN	

	SCNiFASTN	 	SCNiLEASTN	 	SCNiMAX	 	SCNiPTR	

	SCNoN	 	SCNoFASTN	 	SCNoLEASTN	 	SCNoMAX	

	SCNoPTR	 	SCNuN	 	SCNuFASTN	 	SCNuLEASTN	

	SCNuMAX	 	SCNuPTR	 	SCNxN	 	SCNxFASTN	

	SCNxLEASTN	 	SCNxMAX	 	SCNxPTR	 	SEEK_CUR	

	SEEK_END	 	SEEK_SET	 	setbuf	 	setjmp	

	setlocale	 	setvbuf	 	SHRT_MAX	 	SHRT_MIN	

	SIG_ATOMIC_MAX	 	SIG_ATOMIC_MIN	 	sig_atomic_t	 	SIG_DFL	

	SIG_ERR	 	SIG_IGN	 	SIGABRT	 	SIGFPE	

	SIGILL	 	SIGINT	 	signal	 	signbit	

	SIGSEGV	 	SIGTERM	 	sin	 	sinf	

	sinl	 	sinh	 	sinhf	 	sinhl	

	SIZE_MAX	 	size_t	 	snprintf	 	sprintf	

	sqrt	 	sqrtf	 	sqrtl	 	srand	

	sscanf	 	stderr	 	stdin	 	stdout	

	strcat	 	strchr	 	strcmp	 	strcoll	

	strcpy	 	strcspn	 	strerror	 	strftime	

	strlen	 	strncat	 	strncmp	 	strncpy	

	strpbrk	 	strrchr	 	strspn	 	strstr	

	strtod	 	strtof	 	strtoimax	 	strtok	

	strtol	 	strtold	 	strtoll	 	strtoul	

	strtoull	 	strtoumax	 	strxfrm	 	swprintf	

	swscanf	 	system	 	tan	 	tanf	

	tanl	 	tanh	 	tanhf	 	tanhl	

	tgamma	 	tgammaf	 	tgammal	 	time	

	time_t	 	TMP_MAX	 	tmpfile	 	tmpnam	

	tolower	 	toupper	 	towlower	 	towupper	

	towctrans	 	true	 	trunc	 	truncf	

	truncl	 	UCHAR_MAX	 	UINT_FASTN_MAX	 	uint_fastN_t	

APPENDIX	B	Reserved	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

91DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	UINT_LEASTN_MAX	 	uint_leastN_t	 	UINT_MAX	 	UINTMAX_C	

	UINTMAX_MAX	 	uintmax_t	 	UINTN_C	 	UINTN_MAX	

	uintN_t	 	UINTPTR_MAX	 	uintptr_t	 	ULLONG_MAX	

	ULONG_MAX	 	ungetc	 	ungetwc	 	USHRT_MAX	

	va_arg	 	va_copy	 	va_end	 	va_list	

	va_start	 	vfprintf	 	vfscanf	 	vfwprintf	

	vfwscanf	 	vprintf	 	vscanf	 	vsnprintf	

	vsprintf	 	vsscanf	 	vswprintf	 	vswscanf	

	vwprintf	 	vwscanf	 	WCHAR_MAX	 	WCHAR_MIN	

	wchar_t	 	wcscat	 	wcschr	 	wcscmp	

	wcscoll	 	wcscpy	 	wcscspn	 	wcsftime	

	wcslen	 	wcsncat	 	wcsncmp	 	wcsncpy	

	wcspbrk	 	wcsrchr	 	wcsrtombs	 	wcsspn	

	wcsstr	 	wcstod	 	wcstof	 	wcstoimax	

	wcstok	 	wcstol	 	wcstold	 	wcstoll	

	wcrtomb	 	wcstombs	 	wcstoul	 	wcstoull	

	wcstoumax	 	wcsxfrm	 	wctob	 	wctomb	

	wctrans	 	wctrans_t	 	wctype	 	wctype_t	

	WEOF	 	WINT_MAX	 	WINT_MIN	 	wint_t	

	wmemchr	 	wmemcmp	 	wmemcpy	 	wmemmove	

	wmemset	 	wprintf	 	wscanf	 	xor	

	xor_eq	 	_Imaginary_I	

APPENDIX	B	Reserved	IdentifiersEDK	II	C	Coding	Standards	Specification[DRAFT]

92DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

APPENDIX	C	OPTIMIZATION	AND	PERFORMANCE
You	might	be	tempted	to	use	all	sorts	of	clever	techniques	to	optimize	the	code.	However,	this
optimization	comes	at	a	penalty.

Rob	Pike	provides	these	comments	on	program	complexity,	https://www.lysator.liu.se/c/pikestyle.html,
Notes	on	Programming	in	C.

"Most	programs	are	too	complicated	-	that	is,	more	complex	than	they	need	to	be	to	solve	their
problems	efficiently	.	.	.	But	programs	are	often	complicated	at	the	microscopic	level	.	.	."

The	following	are	also	condensed	from	Mr.	Pike's	1989	Notes	on	Programming	in	C

Rule	1.	Don't	guess	at	optimization

Prove	the	bottleneck	location,	then	put	in	a	speed	hack.

Rule	2.	Measure	before	tuning	for	speed

Be	judicious.	Only	tune	for	speed	if	absolutely	necessary.

Rule	3.	Use	simple	algorithms

Fancy	algorithms	are	slow.

Rule	4.	Use	simple	data	structures.

Pike	believes	that	these	data	structures	are	almost	always	enough:

array
linked	list
hash	table
binary	tree

Rule	5.	Data	structures	are	central	to	programming;	algorithms	are	not.

APPENDIX	C	Optimization	and	PerformanceEDK	II	C	Coding	Standards	Specification[DRAFT]

93DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

https://www.lysator.liu.se/c/pikestyle.html

TABLE	4	RESERVED	KEYWORDS

Table	4	Reserved	KeywordsEDK	II	C	Coding	Standards	Specification[DRAFT]

94DRAFT	FOR	REVIEW	[11/18/2022	01:47:51]

	EDK II C Coding Standards Specification
	1 Introduction
	2 Guiding Principles
	3 Quick Reference
	4 Naming Conventions
	4.2 Directory Names
	4.3 File Names
	4.4 Identifiers
	4.5 Global & Module Variables
	4.6 Name Space Rules

	5 Source Files
	5.2 Spacing
	5.3 Include Files
	5.4 Code File Structure
	5.5 Preprocessor Directives
	5.6 Declarations and Types
	5.7 C Programming
	5.8 Error Handling and ASSERT

	6 Documenting Software
	6.2 Comments
	6.3 What NOT to Comment
	6.4 What You Must Comment
	6.5 Types of Comments
	6.6 Introducing Doxygen
	6.7 How Doxygen Works
	6.8 Special Documentation Blocks
	6.9 Putting Documentation after Members
	6.10 Special Commands

	APPENDIX A Common Examples
	APPENDIX B Reserved Identifiers
	APPENDIX C Optimization and Performance
	Table 4 Reserved Keywords

