

TABLE	OF	CONTENTS
EDK	II	Platform	Description	(DSC)	File	Specification

1	Introduction

1.1	Overview

1.2	Terms

1.3	Related	Information

1.4	Conventions	Used	in	this	Document

2	DSC	Overview

2.1	Processing	Overview

2.2	Build	Description	File	Format

2.3	[Defines]	Section	Processing

2.4	[BuildOptions]	Section

2.5	[SkuIds]	Section	Processing

2.6	[LibraryClasses]	Section	Processing

2.7	PCD	Section	Processing

2.8	PCD	Sections

2.9	PCD	Database

2.10	[Components]	Section	Processing

2.11	[UserExtensions]	Section

2.12	[DefaultStores]	Section

3	EDK	II	DSC	File	Format

3.1	Building	multiple	architectures

3.2	General	Rules

3.3	Platform	DSC	Definition

3.4	Header	Section

3.5	[Defines]	Section

3.6	[BuildOptions]	Sections

3.7	[SkuIds]	Section

3.8	[LibraryClasses]	Sections

3.9	PCD	Sections

3.10	[Components]	Sections

3.11	[UserExtensions]	Sections

3.12	[DefaultStores]	Sections

Appendix	A	Variables

Appendix	B	Sample	EDK	II	DSC	File

Appendix	C	Module	Types

Appendix	D	Vpd	Data	Files

D.1	EDK	II	Build	System	Output	File	Format

D.2	Vpd	Info	File	Format

Tables

EDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Table	1	EDK	Build	Infrastructure	Support	Matrix

Table	2	Well-known	Macro	Statements

Table	3	Using	System	Environment	Variable

Table	4	Well-known	Macro	Statements

Table	5	Operator	Precedence	and	Supported	Operands

Table	6	EDK	II	[Defines]	Section	Elements

Table	7	EDK	II	[BuildOptions]	Section	Elements:	Optional	Tags

Table	8	EDK	II	[BuildOptions]	Variable	Descriptions

Table	9	HII	Attributes

Table	10	Standard	Variables

Table	11	EDK	II	Module	Types

Figures

Figure	1	EDK	II	Parsing	Data	Flow

EDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

EDK	II	Platform	Description	(DSC)	File	Specification
DRAFT	FOR	REVIEW

12/01/2020	04:56:55

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2006-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. December
2007

1.1 Updated	based	on	errata August
2008

1.2 Updated	based	on	enhancement	requests June	2009

1.21 Updated	based	on	errata	and	enhancement	requests March
2010

Added	language	filters:	RFC_LANGUAGES	and	ISO_LANGUAGES

Added	Note	that	a	reserved	macro	name,	MDEPKG_NDEBUG

Definitions	in	DSC	file	are	now	global	to	both	DSC	and	FDF	files

PCD	Values	may	be	constructed	using	C-style	expressions	provided	the
result	of	the	expression	matches	the	datum	type	of	the	PCD

FeatureFlagExpression	is	now	defined	as	a	C-style	expression	using	C
relational,	equality	and	logical	numeric	and	bitwise	operators	and/or
arithmetic	and	bitwise	operators	that	evaluate	to	a	value	that	matches

EDK	II	Platform	Description	(DSC)	File	SpecificationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

the	Datum	Type	of	the	PCD.	Precedence	and	associativity	follow	C
standards

Spec	changed	to	match	existing	formats:

SUPPORTED_ARCHITECTURES	and		BUILD_TARGETS		use	the	"|"	separator,	not
the	comma	character

1.22 Errata	and	grammatical	changes May	2010

1.22	w/ Updates: December
2011

Errata	A Updated	to	support	UEFI	version	2.3.1	and	updated	spec	release	dates
in	Introduction

Clarify	UEFI's	PI	Distribution	Package	Specification

Standardize	Common	data	definitions	for	all	specifications

Grammatical,	formatting	and	spelling	changes

Replaced	"should"	with	wording	saying	that	it	is	"recommended"

Remove	"$(WORKSPACE)/"	from	the	examples

Removed	content	that	only	applied	to	the	EDK	build	system	and	EDK
DSC	format	that	is	not	used	by	the	EDK	II	build	system

Rename	$(TAGNAME)	to	$(TOOL_CHAIN_TAG)	and	remove	the	synonym
$(TOOLCHAIN)

Added	TIME_STAMP_FILE	back	into	the	[Defines]	section

Added	the	SOURCE_OVERRIDE_PATH	for	EDK	components	(not	valid	for
EDK	II	modules)

Added	EDK_GLOBAL	as	a	special	type	of	MACRO	statement	only	valid	for
EDK	INF	files

Added	VPD_TOOL_GUID	in	[Defines]	section

Allow	the	OUTPUT_DIRECTORY	path	to	be	either	absolute	or	relative	to
the	WORKSPACE

Revised	EBNF	for	PCD	sections	to	allow	more	precise	definitions

Added	EBNF	for		<Extension>	

Added	EBNF	for		<Keyword>		3.9.x	and	renamed		<LibInstanceMap>		to
	<ClassInstanceMap>		in	3.10.

Require	PCDs	to	use	the	full	name,	removing	ShortPcdName	from
definitions

Updated	to	clarify	that	a	PCD	cannot	be	used	in	multiple	methods;	a
PCD	can	ONLY	be	used	in	one	way,	Also,	the		<PcdsDyanmic>		sub	section
can	only	be	used	if	the	PCD	is	not	listed	in	any	of	the	common	sections;
All	instances	of	the	PCD	must	then	use	this	method

Revised	grammar	and	include	additional	clarifications	for	conditional
directives	and	macro	usage;	clarify	PCD	usage	in	conditional	directives
and	expressions	-	the	$(PcdName)	format	is	never	used

Fixed	VPD	PCD	format;	allow	the	MAX	size	value	to	use	a	wildcard
character	&	added	info	about	where	it	comes	from;	added	appendix	for
BPDG	file	formats;	renamed	some	PCD	example	tokens	and	PCD	names;
cleaned	up	the	sample	DSC	file

Removed	invalid		[|MaximumDatumSize]		for	HII	PCDs	in	section	2.2.13.3

Document	where	VOID*	lengths	are	derived	from	when	not	specified	in
the	DSC	file

EDK	II	Platform	Description	(DSC)	File	SpecificationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Clarify	that	C	data	arrays	must	be	byte	arrays	for	PCD	value	fields;	both
C	format	and	Registry	format	GUIDs	structures	are	not	permitted	in
VOID*	PCD	value	fields

Removed	the	SET	statement,	used	to	define	values	for	PCDs	from	all
sections	of	this	document.	The	SET	statement	is	only	valid	in	FDF	files

Specify	how	sections	are	merged	during	parsing	of	the	EDK	II	meta-data
files

December
2011

Specifically	state	how	[BuildOptions]	content	should	be	applied;	define
how	[BuildOptions]	sections	are	merged

Clarify	where	macros	are	evaluated/expanded

Provide	rules	for	how	macros	can	be	used	in	different	BuildOptions
sections

Clarify	Macros	in	[Defines]	section	can	automatically	be	used	in	FDF
files.

Removed	references	to	system	environment	variables	in	the	Macros
section

Updated	conditional	rules	in	2.2.7	for	how	to	use	macro	and	PCDs;
change	#elif	to	#elseif	in	3.2.3	to	match	implementation

Added	the	"IN"	operator	as	an	Equality	Operator	-	added	description
and	restriction	of	it's	usage	using		<MemberExpression>	

Corrected	[Defines]	section	information,	changed	format	of	for	paths,
directories	and	files	in	common	section

Added	table	of	valid	environment	variables	that	can	be	used	in	this	file

Make	sure	that	macros	are	not	restricted	to	directory/path	usage	-	also
update	EBNF	to	specifically	show	MACROVAL	-	Added		<Filename>		to	macro
values.

Removed	unused		<VALUE>		EBNF	from	[Defines]	section

Prohibit	macros	in	the	filename	specified	in	!include	statements;	clarify
the	rules	for	finding	the	!include	files

Clarify	how	macros	can	be	shared	between	sections

1..22	w/ Updates: June	2012

Errata	B Section	3.2.1	Fixed	the	DOS	EOL	character	sequence

Section	1.2	and	1.3,	Updated	specs	to	include	current	errata	versions

Section	3.2.1	Removed	reference	to	the	LineExtension	parameter
description;1	line	entries	in	the	DSC	file	cannot	be	extended	to	multiple
lines

Section	3.2.2	Prohibit	macros	that	replace	or	define	tokens	that	are
defined	in	this	specification,	as	well	as	to	prohibit		<EOL>		characters	in	a
macro's	value	field

Section	3.4	Revised	the	value	of	the		BuildNumber		to	be	a		NumValUint16	,	per
the	PI	Specification

Section	2.8,	fix	precedence	description	for	obtaining	the	length	of	a
	VOID	*	PCD:	DSC,	INF,	DEC

Section	1.3	and	1.4,	updated	UEFI	PI	Distribution	Package	Specification
Errata	from	A	to	B

Section	2.2.8,and	3.2.3	Clarify	PCD	usage	in	conditional	directive
statements

Section	2.3,	and	3.4	Clarify	location	of	FDF	file

EDK	II	Platform	Description	(DSC)	File	SpecificationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.22	w/ Updates: August
2013

Errata	C Sections	1.3	and	1.4	updated	UEFI	specification	versions

Sections	2.2.8	and	3.2.3	Clarify	PCD	usage	in	conditional	directive
statements

Sections	2.3	and	3.4,	Clarify	location	of	FDF	file

Section	2.8,	fixed	precedence	description	for	obtaining	the	length	of
VOID*	PCDs

Section	3.2.1	Fixed	DOS	EOL	Character	Sequence

Section	3.2.1	Removed	reference	to	the	LineExtension	parameter
description;	1	line	entries	in	the	DSC	file	cannot	be	extended	to
multiple	lines.

Section	3.2.1	Require	C	format	for	all	arrays	using	curly	braces	around
the	byte	elements	in	an	array

Section	3.2.2	Prohibit	macros	that	replace	or	define	tokens	that	are
defined	in	this	specification,	as	well	as	to	prohibit		<EOL>		characters	in	a
macro's	value	field

Section	3.4,	Revised	the	value	of	the	BUILD_NUMBER	to	be
NumValUint16,	per	the	PI	Specification

Section	3.8	Restrict	the	size	of	the	HiiOffset	to	a	UINT16

Appendix	D,	Added	VPD	data	file	examples.

Various	locations,	replaced	UCS-2	with	UCS-2LE

1.24 Updates: December
2014

Changed	specification	from	1.22	Errata	C	to	1.24.

Allow	specifying	the	DSC_SPECIFICATION	as	either	0x00010018	or	1.24.

Updates	specification	dates	in	1.2	and	added	new	specifications.

Removed	Expression	syntax	with	reference	to	external	document.

Provide	information	on	how	to	build	multiple	instances	of	a	single
module.

Updated	the	Terms	in	1.3.

1.24	w/ Updates: March
2015

Errata	A Update	link	to	the	EDK	II	Specifications,	fixed	the	name	of	the	Multi-
String	.UNI	File	Format	Specification

1.25 Updates: June	2015

Updated	support	for	UEFI	2.5	and	PI	1.4

Added	clarification	regarding	the	use	of	..	and	.	in	path	names	in
section	2

In	section	2.8.3.7,	added	clarification	regarding	allocation	of	memory
based	on	calculation	of	maximum	size	for	VOID*	PCD	entries	when	the
maximum	size	is	not	specified	in	the	DSC	file

In	section	3.6	added	optional		<ModuleType>		element	to	the	section
header	in	order	to	support	UEFI	2.5	Runtime	Drivers	that	must	be	4K
page	aligned

Also	in	3.6,	updated	the	priority	of	[BuildOptions]	to	match	current
implementation	that	follows	the	Build	Specification

EDK	II	Platform	Description	(DSC)	File	SpecificationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

In	sections	2.3	and	3.5,	added	new	[Defines]	boolean	entry
PCD_VAR_CHECK_GENERATION

In	sections	2.9.3.2,	2.9.3.5,	3.10.4	and	3.10.5	added	HII	Attribute	entry.

Since	the	above	changes	are	new	features,	update	the	minor	revision
of	the	DSC_SPECIFICATION	to	0x00010019,	older	DSC	files	that	do	not
use	the	new	features	do	not	need	to	modify	the	DSC_SPECIFICATION
values

Added	clarification	on	when	the	DSC_SPECIFICATION	value	must	be
updated	to	0x00010019

1.26 Specification	revision	to	1.26 January
2016

Update	the	DSC_SPECIFICATION	version	to	0x0001001A

Revised	WORKSPACE	wording	for	updated	build	system	that	can	handle
packages	located	outside	of	the	WORKSPACE	directory	tree	(refer	to
the	TianoCore.org/	EDKII	website	for	additional	instructions	on	setting
up	a	development	environment).

Added	new	system	environment	variables	used	by	the	build	system.

1.27 Convert	to	GitBooks June	2017

#351	[DSC	Spec]	Extend	macro	usage	in	the	!include	statement

#484	DSC	spec:	support	Prebuild	and	Postbuild	in	the	[Defines]	section

#353	Build	spec:	Allow	nested	includes	in	DSC	and	FDF	files

#521	DSC	spec:	add	clarification	for	mixed	PCD	usage	in	the	DSC	spec

#519	DSC	Spec:	update	Precedence	of	PCD	Values

#584	DSC	Spec:	Update	the	DSC_SPECIFICATION	version	to	0x0001001B
or	1.27

#645	DSC	Spec:	Remove	Restriction	on	Using	NULL	in	[LibraryClasses]
Section

#669	DSC	Spec:	Add	multi-arg	support	to	PREBUILD/POSTBUILD

#597	DSC	Spec:	Hii	type	Pcd	VariableName	is	NOT	allowed	to	be	empty
string

1.28 Update	Version	to	1.28 Mar	2018

Update	Skuid	value	to	support	Hex	number

Add	flexible	PCD	value	format	into	spec

Add	syntax	to	support	SKU	ID	inherit	from	another	SKU	ID

Add	DefaultStores	section	to	describe	the	default	setting

Add	structure	PCD	field	value	assignment	syntax

Add	!error	statement	section

#1110	Extend	exclamation	statement's	keyword	to	case-insensitive

1.29 #1453	Update	DSC	spec	to	remove	EDK	related	contents Mar	2019

1.30 #1952	add	HOST_APPLIACTION	ModuleTpye July	2019

EDK	II	Platform	Description	(DSC)	File	SpecificationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

https://bugzilla.tianocore.org/show_bug.cgi?id=351
https://bugzilla.tianocore.org/show_bug.cgi?id=484
https://bugzilla.tianocore.org/show_bug.cgi?id=353
https://bugzilla.tianocore.org/show_bug.cgi?id=521
https://bugzilla.tianocore.org/show_bug.cgi?id=519
https://bugzilla.tianocore.org/show_bug.cgi?id=584
https://bugzilla.tianocore.org/show_bug.cgi?id=645
https://bugzilla.tianocore.org/show_bug.cgi?id=669
https://bugzilla.tianocore.org/show_bug.cgi?id=597
https://bugzilla.tianocore.org/show_bug.cgi?id=1110
https://bugzilla.tianocore.org/show_bug.cgi?id=1453
https://bugzilla.tianocore.org/show_bug.cgi?id=1952

1	INTRODUCTION

1	IntroductionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.1	Overview
This	document	describes	the	EDK	II	Platform	Description	file	(DSC)	format.	The	EDK	Build	Tools	are
included	as	part	of	the	EDK	II	compatibility	package.	In	order	to	use	EDK	II	Modules	or	the	EDK	II	Build
Tools,	an	EDK	II	DSC	and	FDF	file	must	be	used.

EDK	II	tools	use	INI	style	text	based	files	to	describe	components,	platforms	and	firmware	volumes.	While
similar	to	EDK	DSC	files,	the	EDK	II	DSC	file	format	is	different,	and	new	utilities	have	been	provided	to
process	these	files.

The	EDK	II	Build	Infrastructure	supports	creation	of	binary	images	that	comply	with	Unified	EFI	(UEFI)	2.5
and	UEFI	Platform	Infrastructure	(PI)	1.4	specifications.

This	design	has	the	following	goals.

Compatible

The	EDK	II	DSC	format	does	not	support	EDK	DSC	format,	nor	can	EDK	tools	be	used	to	parse	the	EDK	II
DSC	format	files.

Simplified	platform	build	and	configuration

One	goal	of	this	format	is	to	simplify	the	build	setup	and	configuration	for	a	given	platform.	It	was	also
designed	to	simplify	the	process	of	adding	EDK	II	firmware	components	to	a	firmware	volume	on	a	given
platform.

Table	1	describes	the	compatibility	between	platform,	module	and	component	builds.

Table	1	EDK	Build	Infrastructure	Support	Matrix

EDK
DSC

EDK	II
DSC

EDK
FDF

EDK	II
FDF

EDK
INF EDK	II	INF

EDK	Build	Tools YES NO YES NO YES NO

EDK	II	Build
Tools NO YES NO YES NO YES

Note:	This	document	is	intended	for	persons	doing	EFI	development	and	support	for	different
platforms.	It	is	most	likely	only	of	interest	in	the	event	that	there	is	a	problem	with	a	build,	or	if	a
developer	needs	to	perform	special	customizations	of	a	build	for	a	platform.	This	document	is	most	likely
only	of	interest	in	the	event	that	there	is	a	problem	with	a	build,	or	if	a	developer	needs	to	perform
special	customizations	of	a	build	for	a	platform.

The	EDK	II	build	processes,	defined	in	the	EDK	II	Build	Specification,	use	separate	steps	to	create	EFI
images.	The	EDK	II	DSC	file	is	used	in	conjunction	with	EDK	II	Flash	Description	files	(FDF),	EDK	II	DEC,	EDK
II	module	INF	and	EDK	component	INF	files	to	generate	binary	PE32/PE32+/Coff	files.	The	EDK	II
Makefiles,	generated	by	the	EDK	II	parsing	tool,	contain	only	enough	instructions	to	build	the
PE32/PE32+/Coff	image	files.	These	makefiles	do	not	contain	information	on	the	EFI	format	for	FFS	or	FV
file	creation.	The	Makefiles	will	support	third	party	compilation	tools	-	Microsoft,	Intel	and	GCC	tool
chains	-	and	at	least	one	EDK	II	tool,	GenFw.	The	GenFw	tool	is	used	to	manipulate	the	files	emitted	from
the	compilation	tools.

The	EDK	II	build	provides	UEFI	and	PI	(Unified	EFI,	Inc.)	specification-compliant	images.

1.1	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.1	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.2	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

BaseTools

The	BaseTools	are	the	tools	required	for	an	EDK	II	build.

BDS

Framework	Boot	Device	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form."	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DEC

EDK	II	Package	Declaration	File.	This	file	declares	information	about	what	is	provided	in	the	package.	An
EDK	II	package	is	a	collection	of	like	content.

DEPEX

Module	dependency	expressions	that	describe	runtime	process	restrictions.

Dist

This	refers	to	a	distribution	package	that	conforms	to	the	UEFI	Platform	Initialization	Distribution
Package	Specification.

DSC

EDK	II	Platform	Description	File.	This	file	describes	what	and	how	modules,	libraries	and	components	are
to	be	built,	as	well	as	defining	library	instances	which	will	be	used	when	linking	EDK	II	modules.

DXE

Framework	Driver	Execution	Environment	phase.

DXE	SAL

A	special	class	of	DXE	module	that	produces	SAL	Runtime	Services.	DXE	SAL	modules	differ	from	DXE
Runtime	modules	in	that	the	DXE	Runtime	modules	support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE
SAL	modules	support	intermixing	Virtual	or	Physical	mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	module	that	is	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

Special	class	of	DXE	module	that	provides	Runtime	Services

EBNF

1.2	TermsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Extended	"Backus-Naur	Form"	meta-syntax	notation	with	the	following	additional	constructs:	square
brackets	"[...]"	surround	optional	items,	suffix	"*"	for	a	sequence	of	zero	or	more	of	an	item,	suffix	"+"	for
one	or	more	of	an	item,	suffix	"?"	for	zero	or	one	of	an	item,	curly	braces	"{...}"	enclosing	a	list	of
alternatives	and	super/subscripts	indicating	between	n	and	m	occurrences.

EDK

Extensible	Firmware	Interface	Development	Kit,	the	original	implementation	of	the	Intel(R)	Platform
Innovation	Framework	for	EFI	Specifications	developed	in	2007.

EDK	II

EFI	Development	Kit,	version	II	that	provides	updated	firmware	module	layouts	and	custom	tools,
superseding	the	original	EDK.

EDK	Compatibility	Package	(ECP)

The	EDK	Compatibility	Package	(ECP)	provides	libraries	that	will	permit	using	most	existing	EDK	drivers
with	the	EDK	II	build	environment	and	EDK	II	platforms.

EFI

Generic	term	that	refers	to	one	of	the	versions	of	the	EFI	specification:	EFI	1.02,	EFI	1.10	or	any	of	the
UEFI	specifications.

FDF

EDK	II	Flash	definition	file.	This	file	is	used	to	define	the	content	and	binary	image	layouts	for	firmware
images,	update	capsules	and	PCI	option	ROMs.

FLASH

This	term	is	used	throughout	this	document	to	describe	one	of	the	following:

An	image	that	is	loaded	into	a	hardware	device	on	a	platform	-	traditional	ROM	image

An	image	that	is	loaded	into	an	Option	ROM	device	on	an	add-in	card

A	boot	able	image	that	is	installed	on	removable,	boot	able	media,	such	as	a	Floppy,	CD-ROM	or	USB
storage	device.

An	image	that	is	contains	update	information	that	will	be	processed	by	OS	Runtime	services	to
interact	with	EFI	Runtime	services	to	update	a	traditional	ROM	image.

A	UEFI	application	that	can	be	accessed	during	boot	(at	an	EFI	Shell	Prompt),	prior	to	hand-off	to
the	OS	Loader.

Foundation

The	set	of	code	and	interfaces	that	glue	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consists	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	Tiano	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	A	unique	GUID	can	be
generated	by	an	individual	without	the	help	of	a	centralized	authority.	This	allows	the	generation	of
names	that	will	never	conflict,	even	among	multiple,	unrelated	parties.	GUID	values	can	be	registry
format	(8-4-4-4-12)	or	C	data	structure	format.

GUID	also	refers	to	an	API	named	by	a	GUID.

1.2	TermsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

HII

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font,	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

HOB

Hand-off	blocks	are	key	architectural	mechanisms	that	are	used	to	hand	off	system	information	in	the
early	pre-boot	stages.

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

INF

EDK	II	Module	Information	File.	This	file	describes	how	the	module	is	coded.	For	EDK,	this	file	describes
how	the	component	or	library	is	coded	as	well	as	providing	some	basic	build	information.

Source	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	a	[Sources]	section	and	it
does	not	contain	a	[Binaries]	section.	If	the	[Binaries]	section	is	empty	or	the	only	entries	in	the
[Binaries]	section	are	of	type	DISPOSABLE,	then	the	[Binaries]	section	is	ignored.

Binary	INF	-	An	EDK	II	Module	Information	file	that	has	a	[Binaries]	section	and	does	not	contain	a
[Sources]	section	or	the	[Sources]	section	is	empty.

Mixed	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	both	[Sources]	and	[Binaries]
sections	and	there	are	entries	in	the	[Binaries]	section	are	not	of	type	DISPOSABLE.

AsBuilt	INF	-	An	EDK	II	Module	Information	file	generated	by	the	EDK	II	build	system	when	building
source	content	(listed	in	a	[Sources]	section).

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is	coded	to	the
library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file	that	is	published	by	a
package.

Library	Instance

A	module	implementation	of	one	or	more	library	classes.

Module

A	module	is	either	an	executable	image	or	a	library	instance.	For	a	list	of	module	types	supported	by
this	package,	see	module	type.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	DXE_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER	,	or		UEFI_APPLICATION	.	These
definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module	that	is	of
module	type		BASE	,	depends	only	on	headers	and	libraries	provided	in	the	MDE,	while	a	module	that	is	of
module	type	DXE_DRIVER	depends	on	common	DXE	components.	The	EDK	II	build	system	also	permits
modules	of	type		USER_DEFINED		and		HOST_APPLICATOIN	.	These	modules	will	not	be	processed	by	the	EDK	II	Build
system.	For	a	definition	of	the	various	module	types,	see	Appendix	C.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	one	of	the	following	types	of	modules:

source	modules,	containing	all	source	files	and	descriptions	of	a	module

1.2	TermsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

binary	modules,	containing	EFI	Sections	or	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD,)

mixed	modules,	with	both	binary	and	source	modules

Multiple	modules	can	be	combined	into	a	package,	and	multiple	packages	can	be	combined	into	a
single	package.

PCD

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase.

PEIM

An	API	named	by	a	GUID.

PPI

A	PEIM-to-PEIM	Interface	that	is	named	by	a	GUID.

Protocol

An	API	named	by	a	GUID.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.	These	services	become	active	during	the	boot	process	but
also	persist	after	the	OS	loader	terminates	boot	services.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

SKU

Stock	Keeping	Unit.

SMM

System	Management	Mode.	A	generic	term	for	the	execution	mode	entered	when	a	CPU	detects	an	SMI.
The	firmware,	in	response	to	the	interrupt	type,	will	gain	control	in	physical	mode.	For	this	document,
"SMM"	describes	the	operational	regime	for	IA32	and	x64	processors	that	share	the	OS-transparent
characteristics.

UEFI	Application

An	application	that	follows	the	UEFI	specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	specification.

1.2	TermsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

UEFI	Specification	Version	2.5

Current	UEFI	version.

UEFI	Platform	Initialization	Distribution	Package	Specification	Version	1.0

The	current	version	of	the	specification	includes	Errata	B.

UEFI	Platform	Initialization	Specification	1.4

Current	version	of	the	PI	specification.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	www.uefi.org.

VFR

Visual	Forms	Representation.

VPD

Vital	Product	Data	that	is	read-only	binary	configuration	data,	typically	located	within	a	region	of	a	flash
part.	This	data	would	typically	be	updated	as	part	of	the	firmware	build,	post	firmware	build	(via	patching
tools),	through	automation	on	a	manufacturing	line	as	the	'FLASH'	parts	are	programmed	or	through
special	tools.

1.2	TermsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

16DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.3	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification:

Unified	Extensible	Firmware	Interface	Specification,	Version	2.5,	Unified	EFI,	Inc,	2015,
http://www.uefi.org.

UEFI	Platform	Initialization	Specification,	Version	1.4,	Unified	EFI,	Inc.,	2015,	http://www.uefi.org.

UEFI	Platform	Initialization	Distribution	Package	Specification,	Version	1.0	with	Errata	B,	Unified	EFI,
Inc.,	2014,	http://www.uefi.org.

Intel(R)	Platform	Innovation	Framework	for	EFI	Specifications,	Intel,	2007,
http://www.intel.com/technology/framework/.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

EDK	II	Module	Writers	Guide,	Intel,	2010.
EDK	II	User	Manual,	Intel,	2010.
EDK	II	C	Coding	Standard,	Intel,	2015.
EDK	II	Build	Specification,	Intel,	2016.
EDK	II	DEC	File	Specification,	Intel,	2016.
EDK	II	FDF	Specification,	Intel,	2016.
EDK	II	INF	Specification,	Intel,	2016.
Multi-String	UNI	File	Format	Specification,	Intel,	2016.
EDK	II	Expression	Syntax	Specification,	Intel,	2015.
VFR	Programming	Language,	Intel,	2015.
UEFI	Packaging	Tool	(UEFIPT)	Quick	Start,	Intel,	2015.
EDK	II	Platform	Configuration	Database	Infrastructure	Description,	Intel,	2009.

INI	file,	Wikipedia,	http://en.wikipedia.org/wiki/INI_file.

C	Now	-	C	Programming	Information,	Langston	University,	Tulsa	Oklahoma,	J.H.	Young,	1999-2011,
http://c.comsci.us/syntax/expression/ebnf.html.

1.3	Related	InformationEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

17DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

http://www.uefi.org
http://www.uefi.org
http://www.uefi.org
http://www.intel.com/technology/framework/
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications
http://en.wikipedia.org/wiki/INI_file
http://c.comsci.us/syntax/expression/ebnf.html

1.4	Conventions	Used	in	this	Document
This	document	uses	typographic	and	illustrative	conventions	described	below.

1.4.1	Data	Structure	Descriptions
Intel(R)	processors	based	on	32	bit	Intel(R)	architecture	(IA	32)	are	"little	endian"	machines.	This
distinction	means	that	the	low-order	byte	of	a	multi	byte	data	item	in	memory	is	at	the	lowest	address,
while	the	high-order	byte	is	at	the	highest	address.

Processors	of	the	Intel(R)	Itanium(R)	processor	family	may	be	configured	for	both	"little	endian"	and	"big
endian"	operation.	All	implementations	designed	to	conform	to	this	specification	will	use	"little	endian"
operation.

In	some	memory	layout	descriptions,	certain	fields	are	marked	reserved.	Software	must	initialize	such
fields	to	zero	and	ignore	them	when	read.	On	an	update	operation,	software	must	preserve	any
reserved	field.

The	data	structures	described	in	this	document	generally	have	the	following	format:

Summary
A	brief	description	of	the	data	structure.

Prototype
An	EBNF-type	declaration	for	the	data	structure.

Example
Sample	data	structure	using	the	prototype.

1.4.2	Pseudo-Code	Conventions
Pseudo	code	is	presented	to	describe	algorithms	in	a	more	concise	form.	None	of	the	algorithms	in	this
document	are	intended	to	be	compiled	directly.	The	code	is	presented	at	a	level	corresponding	to	the
surrounding	text.

In	describing	variables,	a	list	is	an	unordered	collection	of	homogeneous	objects.	A	queue	is	an	ordered
list	of	homogeneous	objects.	Unless	otherwise	noted,	the	ordering	is	assumed	to	be	FIFO.

Pseudo	code	is	presented	in	a	C-like	format,	using	C	conventions	where	appropriate.	The	coding	style,
particularly	the	indentation	style,	is	used	for	readability	and	does	not	necessarily	comply	with	an
implementation	of	the	UEFI	Specification.

1.4.3	Typographic	Conventions
This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

1.4	Conventions	Used	in	this	DocumentEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

18DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Bold In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,
a	Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		Bold	Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyper	link.

$(VAR) This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non-underlined	BOLD	Monospace	typeface.	Find	the	first	instance
of	the	name	(in	the	underlined	BOLD	Monospace	typeface)	on	the	page	and	click	on	the	word	to	jump
to	the	function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a	given
line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

(range-
range)

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)	indicates	a
single	digit.

"item" Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must
appear	in	the	output	text	file.

? The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

* The	star	character	denotes	zero	or	more	occurrences	of	an	item.

+ The	plus	character	denotes	one	or	more	occurrences	of	an	item.

	item{n}	

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be	used.
Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so	01234567	is	valid,
while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	brackets,	preceded	by	a	comma	","indicates	a
maximum	number	of	occurrences	of	the	item.

	item{n,m}	
A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates	that	the
number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,	inclusive.

1.4	Conventions	Used	in	this	DocumentEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

19DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

1.4	Conventions	Used	in	this	DocumentEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

20DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2	DSC	OVERVIEW
This	section	of	the	document	provides	an	overview	to	processing	EDK	II	platform	description	(DSC)	file.
Additional	chapters	describe	different	sections	of	the	EDK	II	DSC	file	in	detail.

EDK	II	parsing	tools	contain	the	templates	for	processing	files	to	create	the	component	binary	images
from	source	files.	EDK	II	Binary	Modules	are	not	required	to	be	included	in	EDK	II	DSC	files	(they	must	be
included	if	the	Binary	Module	uses	PCDs	that	use	PatchableInModule	or	DynamicEx	PCD	access
methods).	EDK	II	DSC	files	are	a	list	of:

EDK	II	Module	INF	Files
EDK	Components
EDK	libraries	(only	used	by	EDK	Components)
EDK	II	Library	Class	Instance	Mappings	(only	used	by	EDK	II	Modules)
EDK	II	PCD	Entries

There	are	no	new	features	or	format	introduced	in	this	specification.

DSC	files	that	use	any	new	features	must	use	the	new		DSC_SPECIFICATION	=	0x0001001C		in	the		[Defines]	
section.	Older	DSC	files	that	do	not	use	any	of	these	features	do	not	need	to	update	the
	DSC_SPECIFICATION		value.

This	version	of	the	specification	reflects	changes	to	the	EDK	II	reference	build	system	that	has	been
updated	to	support	builds	using	EDK	II	Packages	that	are	located	in	directories	outside	of	the	directory
specified	by	the	system	environment	variable,	WORKSPACE.

An	EDK	II	Package	(directory)	is	a	directory	that	contains	an	EDK	II	package	declaration	(DEC)	file.

The	EDK	II	build	system	has	been	updated	to	allow	the	setting	of	multiple	paths	that	will	be	searched
when	attempting	to	resolve	the	location	of	EDK	II	packages.	This	new	feature	allows	for	more	flexibility
when	designing	a	tree	layout	or	combining	sources	from	different	sources.	The	new	functionality	is
enabled	through	the	addition	of	a	new	environment	variable	(PACKAGES_PATH).

The	PACKAGES_PATH	variable	is	an	ordered	list	of	additional	search	paths	using	the	default	path
separator	of	the	host	OS	between	each	entry	(";"	on	Windows,	":"	on	Linux	and	OS/X).	The	path
specified	by	the	WORKSPACE	variable	always	has	the	highest	search	priority	over	any	PACKAGE_PATH
entries.	The	first	path	(left	to	right)	in	the	PACKAGES_PATH	list	has	the	highest	priority	and	the	last	path
has	the	lowest	priority.

For	the	remainder	of	this	document,	unless	otherwise	specified	(using	"system	environment	variable,
WORKSPACE"),	references	to	the		WORKSPACE		and		$(WORKSPACE)		refer	to	the	ordered	list	of	directories
specified	by	the	combination	of		WORKSPACE	+	PACKAGES_PATH	.	The	build	system	will	automatically	join	the
directories	and	search	these	paths	to	locate	content,	with	the	first	match	terminating	the	search.	For
example	given	the	following	set	of	environment	variables,	and	the	MdeModulePkg	is	located	in	both	the
edk2	and	edk2Copy	directories,	the	build	system	would	use	the	C:\work\edk2\MdeModulePkg	when
attempting	to	locate	the	MdeModulePkg.dec	file.

set	WORKSPACE=c:\work

set	PACKAGES_PATH=c:\work\edk2;c:\work\edk2Copy

Build	tools	will	stop	searching	when	the	first	location	is	resolved.

Refer	to	the	TianoCore.org	web-site	for	more	information	on	the	EDK	II	build	system.

2	DSC	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

21DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Note:	Path	and	Filename	elements	within	the	DSC	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Use	of	"/../"	in	a	path	and,	"./"	or	"../"	at	the	start	of	a	path	is	prohibited.

Note:	This	document	uses	"\"	to	indicate	that	a	line	that	cannot	be	displayed	in	this	document	on	a
single	line.	Within	the	DSC	specification,	each	entry	must	appear	on	a	single	line.

Note:	The	total	path	and	file	name	length	is	limited	by	the	operating	system	and	third	party	tools.	It	is
recommended	that	for	EDK	II	builds	that	the	WORKSPACE	(or	directories	listed	in	the	PACKAGESPATH
system	environment	variable)	directory	be	either	a	directory	under	a	subst	drive	in	Windows	(s:/build	as
an	example)	or	be	located	in	either	the	/opt	directory	or	in	the	user's	/home/username	directory	for
Linux	and	OS/X.

2	DSC	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

22DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.1	Processing	Overview
Each	platform	DSC	file	is	broken	out	into	sections	in	a	manner	similar	to	the	component	description
(INF)	files.	However,	while	the	intent	of	a	component's	INF	file	is	to	define	the	source	files,	libraries	(or
library	classes),	and	definitions	relevant	to	building	the	component,	the	function	of	the	platform	DSC	file
is	to	specify	the	library	instances,	components	and	output	formats	used	to	generate	binary	files	that	will
be	processed	by	other	tools	to	generate	an	image	that	is	either	put	into	a	flash	device,	made	available
for	recovery	booting	or	updating	existing	firmware	on	a	platform.

Note:	For	users	familiar	with	EDK,	the	EDK	II	DSC	file	is	not	used	to	specify	how	compiled	binary	images
get	placed	into	UEFI/PI	compliant	binaries.	The	EDK	II	Flash	Description	File	(FDF)	file	specifies	how	to
package	the	binaries	files	into	UEFI/PI	compliant	images.

In	general,	the	parsing	utilities	read	each	line	from	the	sections	of	the	platform	description	(DSC)	file,
process	the	component,	module,	or	library's	INF	file	on	the	line	to	generate	a	makefile,	and	then
continue	with	the	next	line.

Figure	1	illustrates	the	process	flow,	with	the	dark	format	indicating	the	process	for	building
PE/PE32+/Coff	files.

2.1	Processing	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

23DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Figure	1	EDK	II	Parsing	Data	Flow

2.1	Processing	OverviewEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

24DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.2	Build	Description	File	Format
EDK	II	build	description	files--DSC,	FDF,	DEC	and	INF	files,	along	with	other	files	like	build_rules.txt,
target.txt	and	tools_def.txt,	contain	information	used	by	the	parsing	utility	to	create	makefiles	that
process	source	files	to	generate	binary	(PE32/PE32+/Coff)	files.	The	binary	files	can	be	distributed	as
EDK	II	binary	packages	or	used	to	create	a	platform	are	defined	in	an	FDF	file,	rather	than	the	EDK	II	DSC
file	unless	the	binary	modules	included	in	a	platform	use	PCDs.

2.2.1	Section	Entries
To	simplify	parsing,	the	EDK	II	meta-data	files	continue	using	the	INI	format.	This	style	was	introduced	for
EDK	meta-data	files,	when	only	the	Windows	tool	chains	were	supported.	It	was	decided	that	for
compatibility	purposes,	that	INI	format	would	continue	to	be	used.	EDK	II	formats	differ	from	the	de	facto
INI	format	in	that	the	semicolon	";"	character	cannot	be	used	to	indicate	a	comment.

Leading	and	trailing	space/tab	characters	must	be	ignored.

Duplicate	section	names	must	be	merged	by	tools.

This	description	file	consists	of	sections	delineated	by	section	tags	enclosed	within	square		[]	
brackets.	Section	tag	entries	are	case-insensitive.	The	different	sections	and	their	usage	are	described
below.	The	text	of	a	given	section	can	be	used	for	multiple	section	names	by	separating	the	section
names	with	a	comma.	For	example:

	[LibraryClasses.X64,	LibraryClasses.EBC]	

The	content	below	each	section	heading	is	processed	by	the	parsing	utilities	in	the	order	that	they
occur	in	the	file.	The	precedence	for	processing	these	architecture	section	tags	is	from	right	to	left,
with	sections	defining	an	architecture	having	a	higher	precedence	than	a	section	which	uses	common
(or	no	architecture	extension)	as	the	architecture.

Note:	Content,	such	as	filenames,	directory	names,	macros	and	C	variable	names,	within	a	section	IS
case	sensitive.	IA32,	Ia32	and	ia32	within	a	section	are	processed	as	separate	items.	(Refer	to	Naming
Conventions	below	for	more	information	on	directory	and/or	file	naming.)

Sections	are	terminated	by	the	start	of	another	section	or	the	end	of	the	file.

Comments	are	not	permitted	between	square	brackets	of	a	section	specifier.

Duplicate	sections	(two	sections	with	identical	section	tags)	will	be	merged	by	tools,	with	the	second
section	appended	to	the	first.

If	architectural	modifiers	are	used	in	the	section	tag,	the	section	is	merged	by	tools	with	content	from
common	sections	(if	specified)	with	the	architectural	section	appended	to	the	first,	into	an	architectural
section.	For	example,	given	the	following:

[BuildOptions]

		MSFT:*_*_*_CC_FLAGS	=	/nologo

[BuildOptions.IA32]

		MSFT:*_*_IA32_CC_FLAGS	=	/D	MDEPKG_NDEBUG

[BuildOptions.X64]

		MSFT:*_*_X64_CC_FLAGS	=	/Gy

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

25DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

After	the	first	pass	of	the	tools,	when	building	the	module	for	IA32,	the	source	files	will	logically	be:

[BuildOptions.IA32]

		MSFT:*_*_*_CC_FLAGS				=	/nologo

		MSFT:*_*_IA32_CC_FLAGS	=	/D	MDEPKG_NDEBUG

When	building	the	module	for	X64,	the	source	files	will	logically	be:

[BuildOptions.X64]

		MSFT:*_*_*_CC_FLAGS			=	/nologo

		MSFT:*_*_X64_CC_FLAGS	=	/Gy

The		[Defines]		section	tag	prohibits	use	of	architectural	modifiers.	All	other	sections	can	specify
architectural	modifiers.

2.2.2	Comments
The	hash	"#"	character	indicates	comments	in	the	Platform	Description	(DSC)	file.	In	line	comments
terminate	the	processing	of	a	line.	In	line	comments	must	be	placed	at	the	end	of	the	line,	and	may	not
be	placed	within	the	section		[]		tags.

Only		FIX_LOAD_TOP_MEMORY_ADDRESS	=	0xF0000000		in	the	following	example	is	processed	by	tools;	the	remainder	of
the	line	is	ignored:

	FIX_LOAD_TOP_MEMORY_ADDRESS	=	0xF0000000	#	set	top	memory	address	

Note:	Blank	lines	and	lines	that	start	with	the	hash	"#"	character	must	be	ignored	by	tools.

Hash	characters	appearing	within	a	quoted	string	are	permitted,	with	the	string	being	processed	as	a
single	entity.	The	following	example	must	handle	the	quoted	string	as	single	element	by	tools.

	UI	=	"#	Copyright	2007,	NoSuch,	ltd.	All	rights	reserved."	

2.2.3	Valid	Entries
Processing	of	the	line	is	terminated	if	a	comment	is	encountered.

Processing	of	a	line	is	terminated	by	the	end	of	the	line.

Items	in	quotation	marks	are	treated	as	a	single	token	and	have	the	highest	precedence.	Items
encapsulated	in	parenthesis	are	also	treated	as	tokens,	with	embedded	tokens	being	processed	first.
All	other	processing	occurs	from	left	to	right.

In	the	following	example,	B	-	C	is	processed	first,	then	result	is	added	to	A	followed	by	adding	2;	finally	3
is	added	to	the	result.

	(A	+	(B	-	C)	+	2)	+	3	

In	the	next	example,	A	+	B	is	processed	first,	then	C	+	D	is	processed	and	finally	the	two	results	are
added.

	(A	+	B)	+	(C	+	D)	

Space	and	tab	characters	are	permitted	around	field	separators.

2.2.4	Naming	Conventions

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

26DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The	EDK	II	build	infrastructure	is	supported	under	Microsoft	Windows,	Linux*	and	MAC	OS/X	operating
systems.	All	directory	and	file	names	must	be	treated	as	case	sensitive	because	of	multiple	environment
support.

The	use	of	special	characters	in	directory	names	and	file	names	is	restricted	to	the	dash,
underscore,	and	period	characters,	respectively	"-",	"_",	and	".".

Period	characters	may	not	be	followed	by	another	period	character.	File	and	Directory	names	must
not	start	with	"./",	"."	or	"..".

Directory	names	and	file	names	must	not	contain	space	characters.

Directory	Names	must	only	contain	alphanumeric	characters,	the	dash	and	underscore	characters
and	start	with	an	alpha	character.	A	single	period	character	is	permitted	in	the	name	provided	that
alphanumeric	characters	appear	before	and	after	the	period	character	(as	in:	MdePkg.1).

Additionally,	all	EDK	II	directories	that	are	architecturally	dependent	must	use	a	name	with	only	the
first	character	capitalized.	Ia32,	X64	and	Ebc	are	valid	architectural	directory	names.	IA32,	X64	and
EBC	are	not	acceptable	directory	names,	and	may	cause	build	breaks.	From	a	build	tools
perspective,	IA32	is	not	equivalent	to	Ia32	or	ia32.

The	build	tools	must	be	able	to	process	the	tool	definitions	file:		tools_def.txt		(describing	the	location
and	flags	for	compiler	and	user	defined	tools),	which	may	contain	space	characters	in	paths	on
Windows*	systems.

Note:	The	toolsdef.txt	file	and		[BuildOptions]		sections	are	the	places	that	permit	the	use	of	space
characters	in	a	directory	path.

The	EDK	II	Coding	Style	specification	covers	naming	conventions	for	use	within	C	Code	files,	and	as	well
as	specifying	the	rules	for	directory	and	file	names.	This	section	is	meant	to	highlight	those	rules	as
they	apply	to	the	content	of	the	INF	files.

Architecture	keywords	(IA32	,		X64		and		EBC)	are	used	by	build	tools	and	in	metadata	files	for	describing
alternate	threads	for	processing	of	files.	These	keywords	must	not	be	used	for	describing	directory
paths.	Additionally,	directory	names	with	architectural	names	(Ia32,	X64	and	Ebc)	do	not	automatically
cause	the	build	tools	or	meta-data	files	to	follow	these	alternate	paths.	Directories	and	Architectural
Keywords	are	similar	in	name	only.

All	directory	paths	within	EDK	II	INF	files	must	use	the	"/"	forward	slash	character	to	separate	directories
as	well	as	directories	from	filenames.	Example:

	C:/Work/Edk2/edksetup.bat	

File	names	must	also	follow	the	same	naming	convention	required	for	directories.	No	space	characters
are	permitted.	The	special	characters	permitted	in	directory	names	are	the	only	special	characters
permitted	in	file	names.

2.2.5	!include	Statement	Processing
The		!include		statement	may	appear	within	any	section	of	EDK	II	DSC	file.	The	included	file	content	must
match	the	content	type	of	the	current	section	definition,	contain	complete	sections,	or	combination	of
both.	And	the	keyword		!include		is	case-insensitive.

The	argument	of	this	statement	is	a	filename.	The	file	is	relative	to	the	directory	that	contains	this	DSC
file,	and	if	not	found	the	tool	must	attempt	to	find	the	file	relative	to	the	paths	listed	in	the	system
environment	variable		$(WORKSPACE)	.	If	the	file	is	still	not	found,	the	parsing	tools	must	terminate	with	an

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

27DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

error.

Macros,	defined	in	this	file,	are	permitted	in	the	path	or	file	name	of	the	!include	statement,	as	these
files	are	included	prior	to	processing	the	file	for	macros.	The	system	environment	variable		$(WORKSPACE)	,
may	also	be	used;	only	these	system	environment	variables	are	permitted	to	start	the	path	of	the
included	file.

Statements	in		!include		files	must	not	break	the	integrity	of	the	DSC	file,	the	included	file	is	read	in	by
tools	in	the	exact	position	of	the	file,	and	is	functionally	equivalent	of	copying	the	contents	of	the
included	file	and	inserting	(paste)	the	content	into	the	DSC	file.

The	following	examples	show	the	valid	usage	of	the		!include		statement.

[LibraryClasses]

		BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

		!include	MyPlatformCommonLibs.txt

[LibraryClasses]

		DEFINE	MDELIBUAEP	=	MdePkg/Library/UefiApplicationEntryPoint

		UefiApplicationEntryPoint|$(MDELIBUAEP)/UefiApplicationEntryPoint.inf

		!include	Sample.txt

		###	Contents	of	Sample.txt

		DEFINE	EMULATE	=	1

		!if	$(EMULATE)	==	0

		[LibraryClasses.IA32]

				TimerLib|Some/Existing/TimerLib/Instance.inf

		[LibraryClasses.X64]

				TimerLib|Another/Existing/TimerLib/Instance.inf

		!else

				TimerLib|The/NULL/TimerLib/Instance.inf

		!endif

2.2.6	Macro	Statements
The	use	of	MACRO	statements,	which	assign	a	value	to	a	variable.	Macros	defined	in	the		[Defines]	
section	are	considered	global	during	the	processing	of	the	DSC	file	and	the	FDF	file.	This	means	that	a
Macro	can	be	used	in	the	FDF	file	without	defining	it	in	the	FDF	as	long	as	it	is	defined	in	the	DSC	file.

Token	names	(words	defined	in	the	EDK	II	meta-data	file	specifications)	cannot	be	used	as	macro
names.	As	an	example,	using	PLATFORM_NAME	as	a	macro	name	is	not	permitted,	as	it	is	a	token
defined	in	the	DSC	file's		[Defines]		section.

Macros	in	the	DSC	file	can	be	used	to	specify	paths	(and	paths	and	filenames),	and	build	options.	They
can	define	other	items,	such	as	values	for	PCDs,	expressions	or	names	that	can	be	used	in	conditional
directive	statements,	which	allows	customization	of	the	build,	allowing	the	platform	integrator	to	select
features	from	the	command-line.

The	format	for	the	macro	statements	is:

	DEFINE	MACRO	=	Path	

Any	portion	on	a	path	or	path	and	filename	can	be	defined	by	a	macro.

When	assigning	a	string	value	to	a	macro,	the	string	must	follow	the	C	format	for	specifying	a	string,	as
shown	below:

DEFINE	MACRO1	=	"SETUP"

DEFINE	MACRO2	=	L"SETUP"

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

28DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

When	assigning	a	numeric	value	to	a	macro,	the	number	may	be	a	decimal,	integer	or	hex	value,	as
shown	below:

DEFINE	MACRO1	=	0xFFFFFFFF

DEFINE	MACRO2	=	2.3

DEFINE	MACRO3	=	10

The	format	for	usage	of	a	Macro	varies.	When	used	as	a	value,	the	Macro	name	must	be	encapsulated
by	"$("	and	")"	as	shown	below:

	$(MACRO)/filename.foo	

When	a	macro	is	tested	in	a	conditional	directive	statement,	determining	whether	it	has	been	define	or
undefined	uses	the	following	format:

	!ifdef	MACRO	

Note:	For	backward	compatibility,	tools	may	allow		$(MACRO)		in	the		!ifdef		and		!ifndef		statements.	This
functionality	may	disappear	in	future	releases,	therefore,	it	is	recommended	that	platform	integrators
update	their	DSC	files	if	they	also	alter	other	content.

When	using	string	comparisons	of	Macro	elements	to	string	literals,	the	format	of	the	conditional
directive	must	be:

	!if	$(MACRO)	==	"Literal	String"	

Note:	For	backward	compatibility,	tools	may	allow	testing	literal	strings	that	are	not	encapsulated	by
double	quotation	marks.	This	functionality	may	disappear	in	future	releases,	therefore,	it	is
recommended	that	platform	integrators	update	their	DSC	files	if	they	also	alter	other	content.

When	testing	Macro	against	another	Macro:

	!if	$(MACROALPHA)	==	$(MACROBETA)	

When	testing	a	Macro	against	a	value:

	!if	$(MACRONUM)	==	2	

or

	!if	$(MACROBOOL)	==	TRUE	

When	used	with	the		!if		or		!elseif		statements	or	in	an	expression	used	in	a	value	field,	a	macro	that
has	not	been	defined	has	a	value	of		0	.

Any	defined	MACRO	definitions	will	be	expanded	by	tools	when	they	encounter	the	entry	in	the	section
except	when	the	macro	is	within	double	quotation	marks	in	build	options	sections.	The	expectation	is
that	macros	in	the	quoted	values	will	be	expanded	by	external	build	scripting	tools,	such	as	nmake	or
gmake;	they	will	not	be	expanded	by	the	build	tools.	If	a	macro	that	is	not	defined	is	used	in	locations
that	are	not	expressions	(where	the	tools	would	just	do	macro	expansion	as	in	C	flags	in	a		[BuildOptions]	
section),	nothing	will	be	emitted.	If	the	macro,	MACRO1,	has	not	been	defined,	then:

	MSFT:*_*_*_CC_FLAGS	=	/c	/nologo	$(MACRO1)	/Od	

After	macro	expansion,	the	logical	result	would	be	equal	to:

	MSFT:*_*_*_CC_FLAGS	=	/c	/nologo	/Od	

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

29DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

It	is	recommended	that	tools	remove	any	excess	space	characters	when	processing	these	types	of
lines.

Macro	evaluation	is	done	at	the	time	the	macro	is	used	in	an	expression,	conditional	directive	or	value
field,	not	when	a	macro	is	defined.	Macros	in	quoted	strings	will	not	be	expanded	by	parsing	tools;	all
other	macro	values	will	be	expanded,	without	evaluation,	as	other	elements	of	the	build	system	will
perform	any	needed	tests.	Macro	Definition	statements	that	appear	within	a	section	of	the	file	(other
than	the		[Defines]		section)	are	scoped	to	the	section	they	are	defined	in.	If	the	Macro	statement	is
within	the		[Defines]		section,	then	the	Macro	is	considered	global	to	the	entire	DSC	file,	files	included
using	the	!include	statement	and	global	to	the	FDF	file,	with	local	definitions	taking	precedence	(if	the
same	MACRO	name	is	redefined	in	subsequent	sections,	then	that	MACRO	value	is	local	to	only	that
section.)

Macros	may	be	used	in	conditional	statements	located	within	the	DSC	(and	FDF)	file.	Conditional
MACROs	may	be	defined	on	a	command	line	of	a	parsing	tool.	It	is	highly	recommended	that	a	macro
defined	in	this	manner	have	a		DEFINE		statement	to	set	a	default	value	in	the		[Defines]		section.	(Macro
values	specified	on	the	command-line	override	all	definitions	of	that	Macro.)	In	the	reference	build
(Nt32Pkg/Nt32Pkg.dsc),	macros	set	on	a	command	line	override	any	macro	value	defined	in	the	DSC	(or
FDF)	file.

MACROs	may	also	be	used	as	values	in	PCD	statements.	See	Section	3.10	for	more	information	on	PCD
statements.

Macros	that	appear	within	double	quotation	marks	in	build	options	sections	are	not	expanded.	It	is
assumed	that	they	will	be	expanded	by	the	OS	or	external	scripting	tools.

Global	variables	that	may	be	used	in	EDK	II	DSC	and	FDF	meta-data	files	are	listed	in	the	Well-known
Macro	Statements	table,	while	the	format	of	the	System	Environment	variables	that	may	be	used	in	EDK
II	DSC	and	FDF	files	are	in	the	next	table.

Table	2	Well-known	Macro	Statements

Exact	Notation Derivation

	$(OUTPUT_DIRECTORY)	

Used	in	FDF		[FV]		and		[Capsule]		sections;	the	value	comes	from	parsing	either
the	DSC	file	or	via	a	command	line	option.	This	is	commonly	the	Build/Platform
name	directory	created	by	the	build	system	in	the	EDK	II	WORKSPACE,	however,
it	is	possible	to	specify	the	output	directory	outside	of	the	EDK	II	WORKSPACE.

	$(TARGET)	

Used	in	various	locations;	valid	values	are	derived	from	INF,	DSC,	target.txt,
tool	options	and	tools_def.txt.	FDF	parsing	tools	may	obtain	these	values	from
command-line	options.

	$(TOOL_CHAIN_TAG)	

Used	in	various	locations;	valid	values	are	derived	from	INF,	DSC,	target.txt,
tool	options	and	tools_def.txt.	FDF	parsing	tools	may	obtain	these	values	from
command-line	options.

	$(TOOLCHAIN)	
A	synonym	for	$(TOOL_CHAIN_TAG),	with	the	value	derived	from	INF,	DSC,
target.txt	and	tools_def.txt.

This	item	has	been	deprecated,	and	must	not	be	used.

	$(ARCH)	

Used	in	various	locations,	valid	values	are	derived	from	INF,	DSC,	target.txt,
tool	options	and	tools_def.txt.	FDF	parsing	tools	may	obtain	these	values	from
command-line	options.

System	environment	variables	may	be	referenced,	however	their	values	must	not	be	altered.

Table	3	Using	System	Environment	Variable

Macro	Style	Used	in
Meta-Data	Files

Matches	Windows
Environment	Variable

Matches	Linux	&	OS/X
Environment	Variable

$(WORKSPACE) %WORKSPACE% $WORKSPACE

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

30DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

$(EDK_TOOLS_PATH) %EDK_TOOLS_PATH% $EDK_TOOLS_PATH

The	system	environment	variables,	PACKAGES_PATH	and	EDK_TOOLS_BIN,	are	not	permitted	in	EDK	II
meta-data	files.

Macros	defined	in	the	DSC	file's		[Defines]		section	may	be	used	within	an	FDF	file.	They	are	also
positional	in	nature,	with	later	definitions	overriding	previous	definitions	for	the	remainder	of	the	file.

Additionally,	the	macros	defined	in	the	DSC	file	may	be	used	in	conditional	directive	statements	located
within	the	DSC	and	FDF	files.	Macros	in	the	DSC	file	can	be	used	for	file	names,	paths,	PCD	values,	in	the
	[BuildOptions]		section,	on	the	right	(value)	side	of	the	statements	and	in	conditional	directives.	Macros
can	also	be	defined	or	used	in	the		[Defines]	,		[LibraryClasses]	,		[Libraries]	,		[Components]		and	all	PCD
sections.

Macros	defined	by	the	user	cannot	be	used	in	the		!include		statements	in	either	the	DSC	or	FDF	file.

Macros	defined	in	common	sections	may	be	used	in	the	architecturally	modified	sections	of	the	same
section	type.	Macros	defined	in	architectural	sections	cannot	be	used	in	other	architectural	sections,
nor	can	they	be	used	in	the	common	section.	Section	modifiers	in	addition	to	the	architectural	modifier
follow	the	same	rules	as	architectural	modifiers.

Example

[LibraryClasses.common]

		DEFINE	MDE	=	MdePkg/Library

		BaseLib|$(MDE)/BaseLib.inf

[LibraryClasses.X64,	LibraryClasses.IA32]

		#	Can	use	$(MDE),	cannot	use	$(MDEMEM)

		DEFINE	PERF	=	PerformancePkg/Library

		TimerLib|$(PERF)/DxeTscTimerLib/DxeTscTimerLib.inf

[LibraryClasses.X64.PEIM]

		#	Can	use	$(MDE)	and	$(PERF)

		DEFINE	MDEMEM	=	$(MDE)/PeiMemoryAllocationLib

		MemoryAllocationLib|$(MDEMEM)/PeiMemoryAllocationLib.inf

[LibraryClasses.EBC]

		#	Cannot	use	$(PERF)	or	$(MDEMEM)

		#	Can	use	$(MDE)	from	the	common	section

		PalLib|$(MDE)/UefiPalLib/UefiPalLib.inf

		TimerLib|$(MDE)/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf

2.2.7	Conditional	Directive	Statements	(!if...)
Conditional	directive	statements	are	used	by	the	build	tools	preprocessor	function	to	include	or	exclude
statements	in	the	DSC	file.	A	limited	number	of	statements	are	supported,	and	nesting	of	conditionals	is
also	supported.	Statements	are	prefixed	by	the	exclamation	"!"	character.	Conditional	statements	may
appear	anywhere	within	the	DSC	file.

Note:	A	limited	number	of	statements	are	supported.	This	specification	does	not	support	every
conditional	statement	that	C	programmers	are	familiar	with.

Supported	following	statements	and	the	keyword	are	case-insensitive:

	!ifdef,	!ifndef,	!if,	!elseif,	!else	and	!endif	

Refer	to	the	Macro	Statement	section	for	information	on	using	Macros	in	conditional	directives.

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

31DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

When	using	the		!ifdef		or		!ifndef	,	the	macro	name	can	be	used;	the	macro	name	must	not	be
encapsulated	between		$(and)	.	It	is	the	name	of	the	macro	that	is	used	for	testing,	not	the	value	of
the	macro.

PCDs	must	not	be	used	in	the		!ifdef		or		!ifndef		statements.

Note:	For	backward	compatibility,	the	EDK	II	build	system	will	also	process	the		!ifdef		or		!ifndef	
statements	with	the	macro	encapsulated	between	"$("	and	")".

When	using	a	marco	in	the		!if		or		!elseif		conditionals,	the	macro	name	must	be	encapsulated
between		$(and)	.

A	macro	that	is	not	defined	has	a	default	value	of		0		(FALSE)	when	used	in	a	conditional	comparison
statement.

When	using	a	PCD	in	the		!if		or		!elseif		conditionals,	the	PCD	name	(TokenSpaceGuidCName.PcdCname)	can	be
used;	the	PCD	name	must	not	be	encapsulated	between	"$("	and	")"	nor	between	"PCD("	and	")".	Do	not
encapsulate	the	PCD	name	in	the	"$("	and	")"	required	for	macro	values	as	shown	in	the	example	below.

!if	(gTokenSpaceGuid.PcdCname	==	1)	AND	($(MY_MACRO)	==	TRUE)

DEFINE	FOO=TRUE

!endif

If	the	PCD	is	a	string,	only	the	string	needs	to	be	encapsulated	by	double	quotation	marks,	while	a
Unicode	string	can	have	the	double	quoted	string	prefixed	by	"L",	as	in	the	following	example:

!if	gTokenSpaceGuid.PcdCname	==	L"Setup"

DEFINE	FOO=TRUE

!endif

If	a	PCD	is	used	in	a	conditional	statement,	the	value	must	first	come	from	the	FDF	file,	then	from	the
DSC	file.	If	the	value	cannot	be	determined	from	these	two	locations,	the	build	system	should	break	with
an	error	message.

Note:	PCDs,	used	in	conditional	directives,	must	be	defined	and	the	value	set	in	either	the	FDF	or	DSC
file	in	order	to	be	used	in	a	conditional	statement;	values	from	INF	or	DEC	files	are	not	permitted.

When	used	in		!if		and		!elseif		conditional	comparison	statements,	it	is	the	value	of	the	Macro	or	the
PCD	that	is	used	for	testing,	not	the	name	of	the	macro	or	PCD.

Strings	can	only	be	compared	to	strings	of	a	like	type	(testing	an	ASCII	string	against	a	Unicode	format
string	must	fail),	numbers	can	only	be	compared	against	numbers	and	boolean	objects	can	only
evaluate	to		TRUE		or		FALSE	.	See	the	Operator	Precedence	table,	in	the	Expressions	section	below	for	a
list	of	restrictions	on	comparisons.

Using	macros	in	conditional	directives	that	contain	flags	for	use	in	the		[BuildOptions]		sections	is	not
recommended.

The	following	external	macro	names	can	be	used	in	conditional	directives	without	defining	them	in	DSC
or	FDF	files.

Table	4	Well-known	Macro	Statements

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

32DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Tag Value Notes

	$(FAMILY)	
Tool	Chain
Family

The	value	must	be	a	string	comparison	against	a	FAMILY	value
that	is	defined	in	the	Conf/	tools_def.txt	file

	$(TARGET)	 Build	Target The	value	must	be	a	string	comparison	against	a	TARGET	value
that	is	defined	in	the	Conf/	tools_def.txt	file

	$(TOOL_CHAIN_TAG)	
Tool	Chain
Name

The	value	must	be	a	string	comparison	against	a	tool	chain	tag
name	value	that	is	defined	in	the	Conf/tools_def.txt	file.

	$(ARCH)	 Architecture The	value	must	be	a	string	comparison	against	an	architecture
that	is	defined	in	the	Conf/	tools_def.txt	file.

The	macro	values	listed	above	are	derived	from	the	build	command-line	options	(highest	priority)	or	the
	Conf/target.txt		file.	They	may	be	combined	in	directive	statements	using	logical	expressions.

Most	section	definitions	in	the	EDK	II	meta-data	files	have	architecture	modifiers.	Use	of	architectural
modifiers	in	the	section	tag	is	the	recommended	method	for	specifying	architectural	differences.	Some
sections	do	not	have	architectural	modifiers	and	there	are	some	unique	cases	where	having	a	method
for	specifying	architectural	specific	items	would	be	valuable,	hence	the	ability	to	use	these	values.

The	following	are	examples	of	conditional	directives.

!if	("MSFT"	IN	$(FAMILY))	or	("INTEL"	IN	$(FAMILY))

...	statements

!elseif	$(FAMILY)	==	"GCC"

...	statements

!endif

!ifdef	FOO

		!ifndef	BAR

				#	FOO	defined,	BAR	not	defined

		!else

				#	FOO	defined,	BAR	is	defined

		!endif

!elseif	$(BARFOO)

		#	FOO	is	not	defined,	BARFOO	evaluates	to	TRUE

!elseif	$(BARFOO)	==	$(FOOBAR)

		#	FOO	is	not	defined,	BARFOO	equals	the	value	of	FOOBAR

		#	(in	this	case,	FALSE)

!else

		#	FOO	is	not	defined	while	BARFOO	evaluates	to	FALSE	and	FOOBAR

		#	evaluates	to	TRUE

!endif

!if	$(FOO)	==	2

		#	The	numeric	value	of	FOO	was	defined	as	2,	as	in	DEFINE	FOO	=	2

!endif

!if	MyTspGUID.MyPcd	==	2

		#	The	value	of	PCD,	MyTspGUID.MyPcd,	is	2

!endif

!if	$(FOO)	==	"MyPlatformName"

		#	This	is	a	string	comparison,	where	the	MACRO	FOO	was	set	using:

		#	DEFINE	FOO	=	"MyPlatformName"

!endif

!if	MyTspGUID.MyTspGUID	==	"MyPlatform"

		#	This	is	a	string	comparison	where	PCD	VOID*	value	is	"MyPlatform",

		#	and	must	be	a	null	terminated	string.

!else

		#	The	strings	do	not	match	exactly

!endif

2.2.8	!error	Statement

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

33DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The		!error		statement	may	appear	within	any	section	of	EDK	II	DSC	file.	The	argument	of	this	statement
is	an	error	message,	it	causes	build	tool	to	stop	at	the	location	where	the	statement	is	encountered
and	error	message	following	the		!error		statement	is	output	as	a	message.	The	keyword		!error		is	not
case-sensitive.

The	following	example	show	the	valid	usage	of	the		!error		statement.

!if	$(FEATURE_ENABLE)	==	TRUE

		!error	"unsupported	feature!"

!endif

2.2.9	Expressions
Expressions	can	be	used	in	conditional	directive	comparison	statements	and	in	value	fields	for	Macros
and	PCDs	in	the	DSC	and	FDF	files.

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

Note:	Note	that	the	data	types	are	not	required	to	be	literal	numbers,	but	rather	they	can	be	a	Macro
or	a	PCD	whose	value	is	a	number	or	a	boolean.	The	same	rule	applies	for	strings,	where	the	value	of
the	Macro	or	a	VOID*	PCD	can	be	tested	as	a	string.

Table	5	Operator	Precedence	and	Supported	Operands

Operator
Use
with
Data
Types

Notes Priority

	?	:	 All conditional	operator Lowest

	or	,		OR	,
	||	

Number,
Boolean

	XOR	,		xor	 Number,
Boolean

	and	,		AND	,
	&&	

Number,
Boolean

	|	
Number,
Boolean Bitwise	OR

	̂ 	
Number,
Boolean Bitwise	XOR

	&	
Number,
Boolean Bitwise	AND

	==	,		!=	,
	EQ	,		NE	,
	IN	

All	types The	IN	operator	can	only	be	used	to	test	a	quoted	unary
literal	string	for	membership	in	a	list.

Strings	compared	to	boolean	or	numeric	values	using
"=="	or	"EQ"	will	always	return	FALSE,	while	using	the	"!="
or	"NE"	operators	will	always	return	TRUE

	<=	,		>=	,
	<	,		>	,		LE	,
	GE	,		LT	,
	GT	

All

Number,

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

34DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Boolean

	+	,		-	 Number,
Boolean

Cannot	be	used	with	strings	-	the	system	does	not
automatically	do	concatenation.

	*	,		/	,		%	, Number,
Boolean Cannot	be	used	with	strings.

	!	,		not	,
	NOT	,		~	

Number,
Boolean Highest

The	"IN"	operator	can	only	be	used	to	test	a	literal	string	against	elements	in	the	following	global
variables:

$(FAMILY)

	$(FAMILY)		is	considered	a	list	of	families	that	different		TOOL_CHAIN_TAG		values	belong	to.	The		TOOL_CHAIN_TAG		is
defined	in	the		Conf/target.txt		or	on	the	command-line.	The		FAMILY		is	associated	with	the		TOOL_CHAIN_TAG		in
the		Conf/tools_def.txt		file	(or	the		TOOLS_DEF_CONF		file	specified	in	the		Conf/target.txt		file)	file.	While	different
family	names	can	be	defined,	ARMGCC,	GCC,	INTEL,	MSFT,	RVCT,	RVCTCYGWIN	and	XCODE	have	been
predefined	in	the		tools_def.txt		file.

$(ARCH)

	$(ARCH)		is	considered	the	list	of	architectures	that	are	to	be	built,	that	were	specified	on	the	command
line	or	come	from	the		Conf/target.txt		file.

$(TOOL_CHAIN_TAG)

	$(TOOL_CHAIN_TAG)		is	considered	the	list	of	tool	chain	tag	names	specified	on	the	command	line

$(TARGET)

	$(TARGET)		is	considered	the	list	of	target	(such	as	DEBUG,	RELEASE	and	NOOPT)	names	specified	on	the
command	line	or	come	from	the		Conf/target.txt		file.

For	logical	expressions,	any	non-zero	value	must	be	considered		TRUE	.

Invalid	expressions	must	cause	a	build	break	with	an	appropriate	error	message.

2.2.10	Section	Handling
The	DSC	file	parsing	routines	must	process	the	sections	so	that	common	architecture	sections	are
logically	merged	with	the	architecturally	specific	sections.	The	architectural	sections	need	to	be
processed	so	that	they	are	logically	after	the	common	section.	It	is	recommended	that	EDK	II	developers
use	a	logical	ordering	of	the	sections.

Other	section	modifiers	must	also	be	logically	appended	to	the	merged	sections	(for	DSC	files	that	have
architectural	and	common	architecture	sections)	after	the	merge.

For		[BuildOptions]		sections	in	the	DSC	file,	the	entries	with	a	common	left	side	(of	the	"=")	will	be	either
appended	or	replace	previous	entries	based	on	the	"=="	replace	or	"="	append	assignment	character
sequence.

		Common	Section	+	Architectural	Section	+	Common	Section	w/extra	Modifier

		+	Architectural	Section	w/extra	Modifier

Example:

[BuildOptions.Common]

		MSFT:*_*_*_CC_FLAGS	=	/nologo

[BuildOptions.IA32]

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

35DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

[BuildOptions.IA32]

		MSFT:*_*_IA32_CC_FLAGS	=	/D	EFI32

For	IA32	architecture	builds	of	an	EDK	II	INF	file	would	logically	be:

	MSFT:*_*_IA32_CC_FLAGS	=	/nologo	/D	EFI32	

2.2	Build	Description	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

36DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.3	[Defines]	Section	Processing
The	defines	section	of	an	EDK	II	DSC	file	is	used	to	define	variable	assignments	that	can	be	used	in	later
build	steps.

This	section	is	required	in	all	EDK	II	DSC	files.

The	DSC_SPECIFICATION	of	existing	DSC	files	does	not	need	to	be	updated	unless	content	in	the	file	has
been	updated	to	match	new	content	specified	by	this	revision	of	the	specification.

This	section	must	be	the	first	section	in	the	file	(following	the	header	comments)	in	order	to	simplify
definition	of	macro	statement	processing.	Ordering	statements	within	the	section	is	not	required,	with
the	exception	that	a	Macro	must	be	defined	before	it	is	used.

The	defines	section	uses	the	following	section	definition:

	[Defines]	

The	format	for	entries	in	this	section	is:

	Name	=	Value	

If	the		PREBUILD		and/or		POSTBUILD		entries	are	specified,	value	must	be	a	tool	that	can	be	executed.	If	the
value	contains	space	characters,	then	the	value	must	be	a	quoted	string.	The		PREBUILD		and		POSTBUILD	
entry	support	multiple	arguments,	and	tool	will	convert	the	arguments	that	are	WORKSPACE	or
PACKAGES_PATH	relative	paths	to	absolute	paths.	Quotes	may	be	used	for	arguments	that	have	spaces
or	special	characters.	The		build		tool	suspends	processing	of	the	DSC	file	if	the		PREBUILD		entry	is
present,	calls	the	script,	and	either	terminates	or	continues	processing	the	DSC	file	depending	on	the
exit	code	from	the	script.	If	the		POSTBUILD		entry	is	present,	prior	to	the	successful		build		exit,	the	script	is
called.	If	the	script	fails	(non-zero	exit	code	from	the	script)		build		terminates	immediately	using	the	exit
code	returned	from	the	script,	otherwise,		build		terminates	normally.	The	author	of	the	script	is
responsible	for	ensuring	that	the	script	terminates	with	a	non-zero	exit	code	when	it	fails.

All	defined	elements	of	the	DSC	file's		[Defines]		section	are	valid	when	parsing	the	FDF	file.	The	these
elements	must	be	treated	as	Macros	when	using	them	in	other	sections	of	the	DSC	and	FDF	file,	as	in
$(PLATFORM_NAME).

The	use	of	the		DEFINE	MACRO	=	Value		statements	in	this	section	globally	define	the	MACRO	name	during	the
processing	of	this	file,	files	included	by	the		!include		statement	and	the	FDF	file.

Warning:	The	DEFINE	MACRO	=	Value	statements	in	other	sections	are	local	to	the	section,	and
override	the	global	definition	for	entries	in	the	section	that	follow	the	macro	definition:		DEFINE	MACRO	=
Value.	

The	EDK	II	tools	will	locate	the	FDF	file	specified	in	the		FLASH_DEFINITION		entry	in	the	same	directory	as	the
DSC	file.	When	the	PCD_VAR_CHECK_GENERATION	entry	is	present	and	set	to	TRUE,	tools	will	generate	a
binary	file	for	DynamicHii	and	DynamicExHii	PCD	variable	checking.

The	following	table	lists	the	valid	content	of	this	section	and	whether	the	item	is	required.

Table	6	EDK	II	[Defines]	Section	Elements

Typical	Tag	Names
Required

/
Optional

Value Notes

This	entry	is	required	for	all	EDK	II	DSC

2.3	[Defines]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

37DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	DSC_SPECIFICATION	 Required 0x0001001C
or	1.28

files.	The	value,	0x0001001C	matches
the	1.28	version	of	this	specification.
Build	tools	must	continue	to	support	DSC
files	that	correspond	to	earlier	versions
of	the	document	until	such	time	as
earlier	versions	are	no	longer	in	use.	In
order	to	maintain	backward	compatibility,
this	value	must	only	be	updated	in
existing	DSC	files	if	other	content	in	the
file	is	updated.

This	value	may	also	be	specified	as
decimal	value,	i.e.,	1.28.

	PLATFORM_GUID	 Required
Registry
Format
GUID(8-4-4-
4-12)

The	GUID	value,	along	the
PLATFORM_VERSION,	is	used	to	uniquely
identify	a	platform	file.	It	is	recommended
that	minor	changes	to	the	file	increment
the	PLATFORM_VERSION	value,	and	that
the	GUID	value	change	for	completely
new	platforms.

	PLATFORM_VERSION	 Required
Integer	or
Decimal
Number

The	Version	value,	along	the
PLATFORM_GUID,	is	used	to	uniquely
identify	a	platform	file.	It	is	recommended
that	minor	changes	to	the	file	increment
the	PLATFORM_VERSION	value,	and	that
the	GUID	value	change	for	completely
new	platforms.

	PLATFORM_NAME	 Required Single	Word Only	alphanumeric,	dash	and	underscore
character	are	permitted

	SKUID_IDENTIFIER	 Required Formatted
text

This	value	may	be	passed	on	the
command	line	and	must	match	one	of
the	defined	names	in	the	[SkuIds]
section.	If	it	is	passed	on	the	command
line,	the	command	line	value	takes
precedence.

	SUPPORTED_ARCHITECTURES	 Required List Pipe	("	|	")	separated	list	of
architectures	that	the	platform	supports

	BUILD_TARGETS	 Required List Pipe	("	|	")	separated	list	of	build	targets
(that	are	defined	in	the	tools_def.txt	file)

	OUTPUT_DIRECTORY	 Optional Directory
Either	a		WORKSPACE		relative	or	absolute
directory	location.	The	default	location
is:		$(WORKSPACE)/Build/PlatformName	

	FLASH_DEFINITION	 Optional Filename

The	Filename	(FDF)	that	contains	the
Flash	Part	Definition	information.	It	is
recommended	that	the	file	name	be
relative	to	the	directory	containing	the
DSC	file,	however,	it	is	possible	to	use	an
absolute	path,	a	path	relative	to	the
directory	containing	the	DSC	file.

	BUILD_NUMBER	 Optional
Up	to	four
digit
numbers

Set	this	value	in	the	generated	Makefile.

	FIX_LOAD_TOP_MEMORY_ADDRESS	 Optional Address

The	top	memory	address	-	the	starting
location	in	memory	for	all	drivers,
application	loading.	When	it	is	not	set,	or
set	to	0,	the	load	fixed	address	feature
will	be	disabled.	When	it	is	set	to
0xFFFFFFFFFFFFFFFF,	enable	the	feature
as	fixed	offset	to	TOLM.	When	it	is	set	to
the	positive	address,	enable	the	feature
as	fixed	address.

The	timestamp	file	contains	a	timestamp

2.3	[Defines]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

38DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	TIME_STAMP_FILE	 Optional Filename

that	will	be	used	to	set	the	creation
timestamp	on	all	created	files.	If	this	file
is	specified,	it	will	be	used	to	adjust	the
timestamp	of	created	files,	if	it	does	not
exist	at	the	start	of	a	build,	the	file	will
be	created,	using	the	current	date	and
time.

If	this	variable	is	not	specified,	the	time
and	date	of	the	start	of	the	build	are
used	by	the	EDK	II	tools	that	modify	the
time/date	portion	of	a	PE32/PE32+/Coff
header.	This	file's	path	is	either	relative
to	the	directory	containing	the	DSC	file
or	a		WORKSPACE	 	relative	path	followed	by
the	file	name.

	DEFINE	 Optional
MACRO	=
PATH	or
Value

A	name	that	is	assigned	to	either	a	path
or	a	value.	This	statement	can	be	used
to	make	the	DSC	file	more	readable,	as
in:		DEFINE	MDE	=	MdePkg/Library		Then,	later,
	$(MDE)/BaseLib/	BaseLib.inf	

	RFC_LANGUAGES	 Optional
RFC4646
Language
code	list

A	semi-colon	";"	separated	list	of
RFC4646	Language	codes	(EDK	II
Modules)	used	during	the	generation	of
only	a	set,	rather	than	all,	UNICODE
languages	during	the	StrGather	AutoGen
phase.	The	list	must	be	encapsulated	in
double	quotes.

	ISO_LANGUAGES	 Optional
ISO-639-2
Language
code	list

A	non-separated	list	of	three	character
ISO	639-2	Language	codes	(EDK
Components)	used	during	the
generation	of	only	a	set,	rather	than	all,
UNICODE	languages	during	the	StrGather
AutoGen	phase.	The	list	must	be
encapsulated	in	double	quotes.

	VPD_TOOL_GUID	 Optional Registry
Format	GUID

When	this	element	is	present,	the	build
process	will	be	interrupted	during	the
AutoGen	stage	in	order	to	call	an
external	program,	named	by	GUID	that
must	also	be	defined	in	the
Conf/tools_def.txt	file	using	a	tool	code
name	of	VPDTOOL.	Refer	to	the	EDK	II
Build	specification	for	additional
information.

	PCD_INFO_GENERATION	 Optional TRUE	or
FALSE

If	present,	and	set	to	TRUE,	this	flag	will
generate	PCD	information	in	the	Pcd
Database.

	PCD_VAR_CHECK_GENERATION	 Optional TRUE	or
FALSE

If	present	and	set	to	TRUE,	this	flag	will
generate	the	variable	validation	table
binary	file	in	the	build	output	FV	floder.	If
not	present	ro	set	to	FALSE,	then	the
binary	file	will	not	be	generated.

	PREBUILD	 Optional
String	of
script	with
arguments

If	present,	build	tool	will	call	the	script	of
this	statement	to	execute.

	POSTBUILD	 Optional
String	of
script	with
arguments

If	present,	build	tool	will	call	the	script	of
this	statement	to	execute.

.	WORKSPACE	refers	to	the	combination	of	the	directories	specified	in	the	↩

WORKSPACE	system	environment	variable	and	the	PACKAGES_PATH	system	environment	variable.

1

1

2.3	[Defines]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

39DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Note:	EDK	II	Modules	can	have	unicode	string	files	that	contain	RFC4646	language	codes.	EDK	II
modules	cannot	have	unicode	string	files	that	contain	ISO-629-2	language	codes.	The	format	of	the
statement	is	specific	to	processing	RFC4646	language	code	lists.

2.3	[Defines]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

40DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.4	[BuildOptions]	Section
Content	in	the		[BuildOptions]		section	is	used	to	define	module	specific	tool	chain	flags	rather	than	use
the	default	flags	for	a	module.	These	flags	are	appended	to	any	standard	flags	that	are	defined	by	the
build	process.	They	can	be	applied	for	any	modules	or	those	modules	on	the	specific	ARCH	or	those
modules	with	the	specific	EDKII	module	style.	In	order	to	replace	the	standard	flags	that	are	defined	by
the	build	process,	an	alternate	assignment	operator	is	used;	"=="	is	used	for	replacement,	while	"="	is
used	to	append	the	flag	lines.	In	addition	to	flags,	other	tool	attributes	may	have	the	item	either
appended	or	replaced.

Valid	content	is	within	this	section	is	limited	to	the	following	description.

Table	7	EDK	II	[BuildOptions]	Section	Elements:	Optional	Tags

Tag Value Notes

	${FAMILY}:${TARGET}_${TAGNAME}_	

	${ARCH}_${TOOLCODE}_FLAGS	

Flags	for	specific
tool	codes	for	this
module

Used	to	specify	module	specific	flags.

	${FAMILY}:${TARGET}_${TAGNAME}_	

	${ARCH}_${TOOLCODE}_PATH	

The	fully	qualified
path	an
executable

Used	to	replace	a	specific	command,	such	as
forcing	the	ASL	to	be	iasl,	instead	of	asl.

	${FAMILY}:${TARGET}_${TAGNAME}_	

	${ARCH}_${TOOLCODE}_DPATH	

A	fully	qualified
path

A	path	that	will	be	added	to	the	system
Environment's	PATH	variable	prior	to
executing	a	command.

	${FAMILY}:${TARGET}_${TAGNAME}_	

	${ARCH}_${TOOLCODE}_${ATTRIBUTE}	

Attribute	specific
string

This	permits	overriding	other	attributes	if
required.

Table	8	EDK	II	[BuildOptions]	Variable	Descriptions

Variable Required Wildcard Source

	FAMILY	 NO No
Conf/tools_def.txt	defines	FAMILY	as	one	of	MSFT,	INTEL	or
GCC.	Typically,	this	field	is	used	to	help	the	build	tools
determine	whether	the	line	is	used	for	Microsoft	style
Makefiles	or	the	GNU	style	Makefiles.

By	not	specifying	the	FAMILY,	the	tools	assume	the	flags
are	applicable	to	all	families.

	TARGET	 YES Yes	=	* 	Conf/tools_def.txt		file	defines	two	values:

DEBUG	and	RELEASE.	Developers	may	define	additional
targets.

	TAGNAME	 YES Yes	=	*
	Conf/tools_def.txt		file	defines	several	different	tag	names	-
these	are	defined	by	developers;	the	default	tag	name,
MYTOOLS,	is	provided	in	the	template	for	tools_def.txt	and
set	in	the		Conf/target.txt		file.

	ARCH	 YES Yes	=	* 	Conf/tools_def.txt		defines	six	architectures:

ARM,	AARCH64,	IA32,	X64	and	EBC.	This	tag	must	use	all
capital	letters	for	the	tag.	Additional	Architectures,	such
as	PPC	may	be	added	as	support	becomes	available.

	TOOLCODE	 YES NO
The	tool	code	must	be	one	of	the	defined	tool	codes	in
the		Conf/tools_def.txt		file.	The	flags	defined	in	this	section
are	appended	to	flags	defined	in	the		tools_def.txt		file	for
individual	tools.

EXCEPTION:	If	the	INF	MODULE_TYPE,	defined	in	the
	[Defines]		section	is		USER_DEFINED	,	then	the	flags	listed	in

2.4	[BuildOptions]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

41DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

this	section	are	the	only	flags	used	for	the

TOOLCODE	command	specified	in	Conf/tools_def.txt`.

	ATTRIBUTE	 YES NO
The	attribute	must	be	specific	to	the	tool	code	and	must
be	a	valid	attribute	handled	by	the	build	system.	For	the
reference	build,	a	valid	rule	must	be	included	in	the
build_rule.txt.

Developers	must	use	extreme	caution	when	specifying	items	in	this	section.	The	EDK	II	build	is	designed
to	support	multiple	compilers	and	tool	chains,	expecting	that	code	is	written	in	ANSI	C.	If	custom	tool
flags	are	required	by	a	module,	developers	must	make	sure	that	all	consumers	of	the	module	are	aware
of	the	specific	tools	and	tag	names	required.

The	following	examples	show	the	usage	of	the		[BuildOptions]		section.	Note	that	the	lines	show	use	of	the
"\"	line	continuation	character.

[BuildOptions.common]

		MSFT:DEBUG_*_IA32_DLINK_FLAGS	=	/out:"$(BIN_DIR)\SecMain.exe"					\

														/base:0x10000000	/pdb:"$(BIN_DIR)\SecMain.pdb"								\

														/LIBPATH:"$(VCINSTALLDIR)\Lib"																								\

														/LIBPATH:"$(VCINSTALLDIR)\PlatformSdk\Lib"												\

														/NOLOGO	/SUBSYSTEM:CONSOLE	/NODEFAULTLIB	/IGNORE:4086	\

														/MAP	/OPT:REF	/DEBUG	/MACHINE:I386																				\

														/LTCG	Kernel32.lib	MSVCRTD.lib	Gdi32.lib	User32.lib			\

														Winmm.lib

		MSFT:DEBUG_*_IA32_CC_FLAGS	=	/nologo	/W4	/WX	/Gy	/c	/D	UNICODE		\

														/D	EFI32	/Od	/DSTRING_ARRAY_NAME=SecMainStrings					\

														/FI$(DEST_DIR_DEBUG)/AutoGen.h	/EHs-c-	/GF	/Gs8192		\

														/Zi	/Gm

The	following	examples	show	how		[BuildOptions]		sections	can	be	merged,	as	well	as	how	the	content	in
those	sections	can	be	merged.

It	is	appropriate	to	use	a		DEFINE		statement	in	the		[Defines]		section;	for	example	1:

	DEFINE	MSFT_COMMON_DEBUG_FLAGS	=	/Od	

Then	the	macro,	$(MSFT_COMMON_DEBUG_FLAGS)	can	be	used	in	statements	in	any	of	the
	[BuildOptions.*]		sections,	as	in:

[BuildOptions.X64]

		MSFT:DEBUG_*_*_CC_FLAGS	=	/nologo	/c	$(MSFT_COMMON_DEBUG_FLAGS)

[BuildOptions.IA32]

		MSFT:DEBUG_*_*_CC_FLAGS	=	/nologo	/c	$(MSFT_COMMON_DEBUG_FLAGS)

It	is	also	permissible	to	have	a		[BuildOptions.<arch>]		section	that	can	be	shared	be	used	for	different
statements	that	are	not	duplicate	content	from	the		[BuildOptions.<arch>.EDKII]		sections.	For	example:

[BuildOptions.Common]

		MSFT:*_*_*_ASL_OUTFLAGS	=	/Fo=

[BuildOptions.Common.EDKII]

		MSFT:DEBUG_*_*_CC_FLAGS	=	/nologo	/c	/D	UNICODE

[BuildOptions.IA32.EDKII]

		MSFT:DEBUG_*_IA32_CC_FLAGS	=	/W4	/WX	/Gy

2.4	[BuildOptions]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

42DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.5	[SkuIds]	Section	Processing
The	contents	of	this	section	are	used	to	define	valid		SKUID_IDENTIFIER		names.	Since	a	platform	may
support	different	SKUs,	and	different	SKUs	may	implement	different	methods	for	handing	platform
configuration	data	(PCD)	the	user	can	define,	in	this	section,	tag	names	to	use.	One	SKU	may	override
some	settings	in	another	SKU	setting,	and	inherit	other	setting	from	it.	If	not	specified,	SKU	will	inherit
DEFAULT	SKU	setting.	Use		0		for	the		DEFAULT		SKU	identifier.	Each	entry	below	the	section	header	is	of	the
form:

	Number	|	word	[|word]	

The	following	is	an	example	of	a		[SkuIds]		section:

[SkuIds]

		0|DEFAULT

		1|Sku_Two

		22|Sku1

		5|SkuSeven	|	Sku1		#SkuSeven	inherits	Sku1	setting.

2.5	[SkuIds]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

43DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.6	[LibraryClasses]	Section	Processing
The		[LibraryClasses]		section	is	used	to	provide	a	mapping	between	the	library	class	names	used	by	an
EDK	II	module	and	the	Library	Instances	that	are	selected	by	the	platform	integrator.	Library	Classes
allow	modules	to	be	coded	for	a	library	class,	and	then	allow	platform	integrator	then	chooses	a	Library
Instance	based	on	a	priori	knowledge	of	the	instances.	Library	Instances	are	classified	using	the
architecture	types	they	have	been	coded	for	as	well	as	the	supported	EDK	II	module	types.	As	an
example,	within	EDK	II,	the	library	class,	DebugLib	has	seven	potential	instances,	only	one	of	which	may
be	linked	to	a	single	component.	To	support	a	given	module	type	selection,	the		[LibraryClasses]		section
header	can	optionally	specify	the	EDK	II	module	type	(following	the	supported	architecture	field).	This	is
permitted	as	some	library	instances	can	be	used	by	any	or	all	module	types.

This	is	a	an	optional	section	for	EDK	II	DSC	files	only	if	there	are	no	EDK	II	modules	used	by	the	DSC	file.

The	following	is	the	generic	format	for	the	specifying	a	section

[LibraryClasses]

[LibraryClasses.IA32]

[LibraryClasses.X64]

[LibraryClasses.EBC]

[LibraryClasses.common]

Format	for	entries	in	this	section	is	as	follows:

LibraryClassName|Path/To/LibInstanceName.inf

LibraryClassName1|Path/To/LibInstanceName1.inf

Note:	"LibraryClassName"	is	a	keyword	in	the	first	field	of	the	above	example	format	can	not	be		NULL	.
The	"LibraryClassName"	name	must	be	unique	to	an	instance	specified	in	the	second	field.	All	INF	files
that	require	a	LibraryClassName	will	use	this	instance	when	linked	to	the	other	libraries	or	modules.

The	first	globally	defined	library	instance,	defined	in	a	DSC	file,	that	satisfies	a	module's	requirement	for
a	Library	Class,	unless	specifically	overridden	by	the	module	in	the		[Components]		section,	will	be	used.

The	Library	Instances	will	be	selected	using	the	following	rules	to	satisfy	a	library	class	for	each	module
listed	in	the		[Components]		section	(in	order	of	highest	precedence):

1.	 	<LibraryClasses>		associated	with	the	INF	file	in	the		[Components]		section
2.	 	[LibraryClasses.$(Arch).$(MODULE_TYPE),	LibraryClasses.$(Arch).$(MODULE_TYPE)]	
3.	 	[LibraryClasses.$(Arch).$(MODULE_TYPE)]	
4.	 	[LibraryClasses.common.$(MODULE_TYPE)]	
5.	 	[LibraryClasses.$(Arch)]	
6.	 	[LibraryClasses.common]		or		[LibraryClasses]	

If	the	Library	instance	is	specified	in	the	context	of	the	INF	file	(see		[Components]		section),	then	that
library	instance	will	be	used.	If	only	a	library	class	is	specified	in	the	context	of	the	INF	file,	then	the	first
matching	the		library	class	|	library	instance		following	the	above	precedence	rules	will	be	used.	If	no
instance	is	found	for	the	library	class,	the	build	tools	must	fail	with	an	error	similar	to	the	following.

ERROR:	Library	Class	[$(LibClassName)]	specified	by	the	Module	[$(InfFileName)]	does	not	have	a	Library	Class	Instance	Defined

.

2.6	[LibraryClasses]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

44DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Build	tools	can	propose	fixes,	as	shown	in	the	following:

Check	for	spelling	of	the	Library	Class	Name	for	the	module	in	the	components	section,	or

Check	the	EDK	II	Packages	(sub‐directories	in	directories	pointed	to	by	WORKSPACE	or
PACKAGES_PATH	system	environment	variables)	for	a	library	instance	that	satisfies	the	Library	Class,
then	add	that	instance	to	the	DSC	file	in	the	correct	Library	Class	section.

The	selected	library	instance	is	added	to	the	LIBS	definition	in	the	output	makefile:

	LIBS	=	$(LIBS)	$(LIB_DIR)/$(LibInstanceName)	

PCDs	that	are	used	by	a	library	instance	are	resolved	using	the	PCD	settings	of	the	driver	linking	the
library	instance.	Note	that	if	a	module's	PCD	section	is	used,	and	multiple	modules	specify	different
values	for	the	same	PCD	setting,	there	may	be	multiple	instances	of	the	library	instance	that	will	be
compiled,	matching	the	PCD	settings	for	each	module.

2.6	[LibraryClasses]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

45DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.7	PCD	Section	Processing
This	section	is	for	specifying	global	(or	default)	PCD	values	as	well	as	the	access	method	each	PCD	will
use	for	modules	in	the	platform.

2.7.1	PCD	Access	Methods
There	are	five	defined	PCD	access	methods.	The	five	access	methods	are:		FeatureFlag	,		FixedAtBuild	,
	PatchableInModule	,		Dynamic		and		DynamicEx		PCDs.

2.7.1.1	FeatureFlag	and	Dynamic	PCD	Types
The	two	recommended	access	methods	that	are	commonly	used	in	modules	are		FeatureFlag		and	the
generic		Dynamic	method	.	The		Dynamic		form	is	used	for	configuration	when	the	PCD	value	is	produced	and
consumed	by	drivers	during	execution,	the	value	may	be	user	configurable	from	setup	or	the	value	is
produced	by	the	platform	in	a	specified	area.	It	is	associated	with	modules	that	are	released	in	source
code.	The	dynamic	form	is	the	most	flexible	method,	as	platform	integrators	may	chose	a	to	use	a
different	access	method	for	a	given	platform	without	modifying	the	module's	INF	file	or	the	code	for	the
module.

2.7.1.2	DynamicEx,	FixedAtBuild	and	PatchableInModule	PCD	Access
Methods
Similar	in	function,	the		DynamicEx		access	method	can	be	used	with	modules	that	are	released	as	binary.
The		FixedAtBuild		and		PatchableInModule		PCDs	are	static	and	only	the		PatchableInModule		PCD	can	have	the
value	changed	in	a	binary	prior	to	including	the	module	in	a	firmware	image.

The	platform	integrator	must	check	DEC	file	that	declares	the	PCD	to	determine	the	PCD's	valid	access
methods.	If	a	module	defines	a	PCD	as	dynamic	(not		DynamicEx),	and	the	DEC	file	lists	the	PCD	under	all
access	methods,	the	platform	integrator	can	specify	any	access	method	(basically	making	a	dynamic
PCD	into	a	static,	fixed	PCD)	overriding	the	INF	module	definition.	However,	if	a	module	declares	a	PCD	is
coded	to	use	a	specific	access	method	,	then	the	platform	integrator	must	select	that	PCD	access
method.	For	example,	if	a	PCD	is	listed	as	FixedAtBuild	in	a	module	file,	then	the	platform	integrator
must	either	list	the	PCD	in	a		[PcdsFixedAtBuild]		section	of	the	DSC	or	let	the	tools	use	the	default	value
and	automatically	set	the	PCD	access	method	to	FixedAtBuild.	It	is	not	necessary	to	modify	an	INF	file	in
order	to	use	this	feature	-	the	tools	will	automatically	"correct"	the	PCD	access	method	for	platforms
that	use	an	alternate	access	method	for	Dynamic	PCDs.

The	content	in	these	sections	is	used	for	generating	the		AutoGen.c		and		AutoGen.h		files	for	each	of	the
EDK	II	modules	that	are	coded	for	the	PCD.

[Pcds(PcdType)]

[Pcds(PcdType).common]

[Pcds(PcdType).IA32]

[Pcds(PcdType).X64]

[Pcds(PcdType).EBC]

2.7.2	PCD	Access	Method	Categories
Of	the	five	access	methods	of	PCDs	that	have	been	defined,	they	fall	into	one	of	three	categories:

	FeatureFlag		-	always	has	a	Boolean	value.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

46DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	FixedAtBuild		and		PatchableInModule	,	will	have	a	value	of	one	of	three	datum	types,	Boolean,	numeric	or
pointer.	The		FixedAtBuild		PCD	will	be	a	defined	as	a	const,	while	the		PatchableInModule		will	be	defined	as
volatile.

	Dynamic		and		DynamicEx	,	will	have	a	value	of	one	of	the	three	data	types,	Boolean,	numeric	or	pointer.

Note:	For	the	dynamic	types	of	PCDs,	using	an		$(Arch)		extension	other	than		common		in	the	section
header	is	not	valid.

Warning:	A	PCD	can	only	use	one	type	for	all	source	modules.	It	is	not	permissible	to	list	a	PCD	in	a
PcdsFixedAtBuild	section	and	also	list	it	in	a	PcdsPatchableInModule	section.

Note:	Binary	modules	included	in	a	platform	build	are	permitted	to	use	the	PatchableInModule	or
DynamicEx	access	methods	(the	Binary	module	must	specify	which	of	these	two	methods	were	used	to
create	the	binary	module)	regardless	of	the	method	used	for	a	given	PCD	in	modules	built	from	source.
The	build	supports	binary	modules	that	use	the	same	or	different	PCD	access	method	than	the	source
modules	or	other	binary	modules.	The	build	parser	must	break	with	an	error	if	a	PCD	is	listed	as
FixedAtBuild	or	Dynamic	(not	DynamicEx)	in	the	Binary	INF.

Datum	Types	for	PCD	values	are	either	Boolean	(BOOLEAN		-	1	byte),	numeric	(UINT8		-	1	byte,		UINT16		-	2
bytes,		UINT32		-	4	bytes	or		UINT64		-	8	bytes)	or	variable	length	(VOID	,	which	indicates	that	the	value	is
usually	accessed	via	a	pointer).	To	put	a	limit	on	the	number	of	bytes	for	a	variable	length	value	(when
the	PCD	Datum	Type	is		VOID)	the	PCD	entry	must	include	the		MaximumDatumSize		parameter.	The
	MaximumDatumSize		parameter	is	optional	for	all	other	PCD	data	types.

Warning:	A		FixedAtBuild		or		PatchableInModule		PCD	may	have	a	different	datum	type	based	on	the
architecture.	For	example,	a	PCD	that	is	used	for	address	manipulation	may	have	a	datum	type	of
	UINT32		for	IA32	and		UINT64		for	X64	and	EBC	architectures.	This	will	be	declared	in	the	EDK	II	Package
Declaration	(DEC)	File.

2.7.3	PCD	Section	Usage
PCD	sections	are	optional	unless	the	EDK	II	modules	specified	in	the		[Components]		section	use	PCDs.

The	PCD	sections	are	used	to	define	the	access	method	for	a	PCD.	Since	each	module	is	built	once	for
a	given	architecture,	the	PCD	can	be	listed	under	different	PCD	access	methods	provided	they	are	listed
under	different	architectures.

2.7.3.1	Access	Methods
However,	once	a	PCD	access	method	is	selected	for	a	given	architecture,	the	PCD	can	only	use	that
access	method.

Example
A	PCD	that	will	use	the		FixedAtBuild		access	method	for	IA32	cannot	use	the		PatchableInModule		access
method	for	individual	modules	built	for	the	IA32	architecture.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

47DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.7.3.2	Different	Access	Methods
It	is	permissible	to	have	a	PCD	use	different	access	methods	for	different	architectures.

Example
A	PCD	that	will	use	the	FixedAtBuild	access	method	for	IA32	can	use	the	Patchable	in	Module	access
method	for	X64.

2.7.3.3	Item	Access	Methods
Multiple	item	access	methods,		PcdsFeatureFlag	,		PcdsFixedAtBuild	,		PcdsPatchableInModule	,		PcdsDynamic		and
	PcdsDynamicEx		are	not	allowed	to	be	specified	within	a	single	[]	section	tag.

Incorrect	example

[PcdsFixedAtBuild.IA32,	PcdsPatchableInModule.IA32,	PcdsDynamicDefault.IA32]

Correct	example

[PcdsFixedAtBuild.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize|1

		gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE

[PcdsPatchableInModule.IA32]

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000

[PcdsDynamicDefault.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved|0

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64|0

2.7.3.4	Mixing	PCD	Dynamic	item	storage	methods
It	is	not	permissible	to	mix	different	PCD	Dynamic	item	storage	methods	within	a	single	section,	as	the
format	for	the	PCD	entries	in	PcdsDynamicDefault,	PcdsDynamicVpd,	PcdsDynamicHii,	and
PcdsDynamicExDefault,	PcdsDynamicExVpd	and	PcdsDynamicExHii	sections	are	different.

Incorrect	Example

[PcdsDynamicExDefault.IA32,	PcdsDynamicExVpd.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved|0

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64|*|0

Correct	Example

[PcdsDynamicExDefault.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved|0

[PcdsDynamicExVpd.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64|*|0

2.7.3.5	Multiple	Architectural	Section	Tags
It	is	permissible	to	specify	multiple	architectural	section	tags	for	the	same	PCD	item	type	in	a	single
section.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

48DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Example

[PcdsFixedAtBuild.IA32,	PcdsFixedAtBuild.X64]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize|1

		gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE

[PcdsPatchableInModule.IA32,	PatchableInModule.X64]

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000

[PcdsDynamicDefault.IA32,	PcdsDynamicDefault.X64]

		gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved|0

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase64|0

2.7.3.6	Dynamic	and	DynamicEx	PCD	Storage	Methods
The	PCDs	that	use	Dynamic	and	DynamicEx	access	methods	can	have	their	values	stored	in	one	of
three	different	methods,	Default,	VPD	or	HII.	A	PCD	using	one	of	these	access	methods	can	use	one
storage	method.	It	is	not	permissible	to	have	a	PCD	try	to	store	the	data	in	the	Default	database	and	a
VPD	region	at	the	same	time.

The	Default	methods	([PcdsDynamicDefault]		and		[PcdsDynamicExDefault])	rely	on	internal	databases	generated
by	the	build	tools	and	stored	as	a	data	segment	in	the	PEI	and	DXE	PCD	drivers.	The	format	for	listing	a
boolean	or	numeric	datum	type	PCD	in	these	sections	is:

	TokenSpaceGuid.PcdCname|<Value>	

The	format	for	listing	a	VOID*	datum	type	PCD	in	these	sections	is:

	TokenSpaceGuid.PcdCname|<Value>|VOID*|<MaxSize>	

The	VPD	methods	([PcdsDynamicVpd]	and	[PcdsDynamicExVpd])	rely	on	data	stored	in	read-only
memory.	The	format	for	listing	a	boolean	or	numeric	datum	type	PCD	in	these	sections	is:

	TokenSpaceGuid.PcdCname|<Offset>|<Value>	

The	format	for	listing	a	VOID*	datum	type	PCD	in	these	sections	is:

	TokenSpaceGuid.PcdCname|<Offset>|<MaxSize>|<Value>	

The	HII	methods	([PcdsDynamicHii]	and	[PcdsDynamicExHii])	rely	on	an	HII	Data	Store.	The	format	for
listing	a	PCD	in	these	sections	is:

TokenSpaceGuid.PcdCname|<HiiString>|<VariableGuid>|<VariableOffset>|<Value>|<Attribute>

Note:	Some	of	the	above	fields	are	optional;	refer	to	"PCD	Sections"	in	the	next	chapter	for	the	exact
syntax.

2.7.3.7	Unique	PCDs
Unique	PCDs	are	identified	using	the	format	to	identify	the	named	PCD:

	TokenSpaceGuidCName.PcdCName	

The	content	for	a	PCD	in	this	section	is	the	PCD's	Name	(PCD	Token	Space	Guid	C	name,	the	PCD	C
name	and	the	optional	field	name	-	separated	by	a	period	character)	and	Default	value.	Field	entries	on
a	line	are	separated	by	the	pipe	"|"	character.

This	specification	prohibits	setting	different	PCD	access	methods	for	a	single	PCD	in	different	modules.
The	access	methods	here	are		PcdsFixedAtBuild	,		PcdsPatchableInModule	,		PcdsDynamic		and		PcdsDynamicEx	.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

49DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Note:	A	future	version	of	this	specification	and	the	tool	may	allow	listing	a	PCD	in	both		PcdsFixedAtBuild	
and		PcdsPatchableInModule		sections.	For	example,	the	platform	integrator	may	want	to	use	one	module	with
a	given	PCD	as		FixedAtBuild	,	and	have	a	different	module	with	the	same	PCD	use	it	as		PatchableInModule	.

Note:	A	PCD	that	is	used	as	FixedAtBuild	for	one	module,	while	a	different	module	may	want	to	use	the
PCD	as	PatchableInModule	and	a	third	module	might	use	the	PCD	as	DynamicEx.	Under	normal
circumstances,	only	two	of	these	might	be	used	-		PcdsFixedAtBuild		for	modules	with	wellknown	values	for	a
PCD,	then	either		PcdsPatchableInModule		or		PcdsDynamicEx		-	the	first	being	for	testing	a	module,	the	second
giving	the	ability	for	doing	individual	driver	performance	tuning	"on-the-fly".

2.7.3.8	Precedence
Tools	must	assume	that	the	first	method	found	for	a	PCD	in	the	PCDs	sections	will	used	for	all	instances
of	a	PCD.	Tools	must	not	allow	for	different	modules	using	a	PCD	differently,	using	the		<Pcds*>	
statements	under	the	INF	file	definitions	in	the		[Components]		section.

Tools	must	process	VOID*	PCD	entries	that	do	not	include	the	maximum	length	field	by	determining	the
maximum	length	of	the	PCD	values	in	the	DSC,	DSC	and	INF	files.	Size	is	allocated	for	"string"	entries	to
be	the	length	of	the	string	plus	1	byte	for	the	null	terminator,	for	L"string"	entries	to	be	the	length	of
the	UCS-2	character	string	plus	2	bytes	for	the	null	terminator	and	the	exact	length	of	a	byte	array.

The	values	that	are	assigned	to	individual	PCDs	required	by	a	build	may	come	from	different	locations
and	different	meta-data	files.	The	following	provides	the	precedence	(high	to	low)	to	assign	a	value	to	a
PCD.

Command-line,		--pcd		flags	(left	most	has	higher	priority)

DSC	file,	FeatureFlag,	PatchableInModule	or	FixedAtBuild	PCD	value	defined	in	the		[Components]		INF
scoping		<Pcd*>		section	statements

FDF	file,	grammar	describing	automatic	assignment	of	PCD	values

FDF	file,	SET	statements	within	a	section

FDF	file,	SET	statement	in	the	[Defines]	section

DSC	file,	a	PCD	value	defined	in	a	PCD	access	method	section	with	an	architectural	modifier.

In	this	example,	modules	built	for	IA32	architecture,	the	PCD	will	use	PatchableInModule	access,
while	modules	built	for	all	other	architectures,	the	PCD	will	use	the	FixedAtBuild	access	method:

[PcdsFixedAtBuild.common]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize|1

		gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE

[PcdsPatchableInModule.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize|1

		gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE

DSC	file,	A	PCD	value	defined	in	a	PCD	access	method	(item	type)	global		[Pcd*]		section	for	common
architectures.

INF	file,	PCD	sections,	Default	Values	(provided	all	INF	files	have	defined	the	same	value)

DEC	file,	PCD	sections,	Default	Values

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

50DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Note:	Dynamic	or	DynamicEx	PCD	sections	with	architectural	modifiers	is	not	allowed	unless	the
platform	can	only	be	built	using	a	single	architecture,	even	if	there	is	more	than	one	architecture	listed
in	the	SUPPORTED_ARCHITECTURES	element	in	the		[Defines]		section.	When	building	more	than	one
architecture	for	a	given	platform	(the	platform	supports	multiple	architectures	in	firmware)	only	a	single
value	can	be	used	for	either	a	Dynamic	or	DynamicEx	PCD.	Therefore,	listing	PcdsDynamic	or
PcdsDynamicEx	sections	with	architectural	modifiers	is	prohibited	in	this	type	of	platform	description	file.

Note:	PCD	values	within	a	section	are	positional,	(last	wins)	if	a	PCD	is	listed	more	than	one	time	within
a	section.	List	a	PCD	in	one	of	the	other	access	methods	is	allowed,	provided	a	single	access	method
must	be	used	for	all	instances	of	the	PCD.	If	PCD	field	value	is	listed,	it	will	override	PCD	value	even	if
PCD	value	is	after	PCD	field	value.

2.7.3.9	Library	Instances
Library	Instances	that	use	PCDs	that	the	module	is	linked	with	must	use	the	same	PCD	setting	as	the
module	using	the	Library	Instance.	So	if	a	module	uses	a	PCD	as		PcdsFixedAtBuild	,	then	all	library
instances	that	use	that	PCD	must	also	use	the	PCD	as		PcdsFixedAtBuild		with	the	same	value.

Build	Tools	must	detect	missing	PCD	entries	(PCD	specified	in	an	INF	file,	but	not	in	the	DSC	file)	and
search	the	DEC	files	in	the	EDK	II	Packages	(sub‐directories	in	directories	pointed	to	by	WORKSPACE	or
PACKAGES_PATH	system	environment	variables),	in	order	to	use	the	default	value	from	the	DEC	file.	PCD
Values	may	be	absolute	(a	number,	string,	etc.)	a	MACRO	name	or	an	expression.	The	expression	is	a	C-
style	expression	using	C	relational,	equality	and	logical	numeric	and	bitwise	operators	or	numeric	and
bitwise	operators	that	evaluate	to	a	value	that	matches	the	PCD's	Datum	Type	(specified	in	the	DEC
package	declaration	file.)	Precedence	and	associativity	follow	C	standards.	Using	PCDs	in	expressions	is
also	permitted.

2.7.3.10	Maximum	Size	of	a	VOID*	PCD
If	the	maximum	size	of	a	VOID*	PCD	is	not	specified	in	the	DSC	file,	then	the	maximum	size	will	be
calculated	based	on	the	largest	size	of	the	following:

the	string	or	array	in	the	--pcd	option

the	string	or	array	in	the	FDF	file

the	string	or	array	in	the	DSC	file

the	string	or	array	in	the	INF	file

the	string	or	array	in	the	DEC	file

Scenario	A
If	for	a	given	PCD	and	architecture:

1.	 The	PCD	is	not	listed	anywhere	in	the	DSC	file,

2.	 If	the	PCD	is	listed	in	the	INF	file	of	at	least	one	of	the	modules	listed	in	the		[Components]		section,

3.	 All	of	the	modules	in	the		[Components]		section	that	use	the	PCD,	list	the	PCD	using	the	Dynamic
access	method	in	their	INF	files,

4.	 The	DEC	file	has	the	PCD	listed	in	the	sections	for	Dynamic,	Patchable	in	Module	and	FixedAtBuild,

The	build	tools	must	use	the	FixedAtBuild	access	method	for	this	PCD	in	this	scenario.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

51DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Scenario	B
If	for	a	given	PCD	and	architecture:

1.	 The	PCD	is	not	listed	anywhere	in	the	DSC	file,

2.	 If	the	PCD	is	listed	in	the	INF	file	of	at	least	one	of	the	modules	listed	in	the	[Components]	section,

3.	 All	of	the	modules	listed	in	the		[Components]		section	that	use	the	PCD,	list	the	PCD	using	the	Dynamic
access	method	in	their	INF	files,

4.	 The	DEC	file	has	the	PCD	listed	in	the	sections	for	Dynamic	and	FixedAtBuild.

The	build	tools	must	use	the	FixedAtBuild	access	method	for	this	PCD	in	this	scenario.

Scenario	C
If	for	a	given	PCD	and	architecture:

1.	 The	PCD	is	not	listed	anywhere	in	the	DSC	file,

2.	 If	the	PCD	is	listed	in	the	INF	file	of	at	least	one	of	the	modules	listed	in	the		[Components]		section,

3.	 One	or	more	module	uses	the	Patchable	in	Module	access	method	for	the	PCD	in	the	INF	files,

4.	 All	of	the	other	modules	listed	in	the		[Components]		section	that	use	the	PCD,	list	the	PCD	using	the
Dynamic	access	method	in	their	INF	files,

The	build	tools	must	use	the	Patchable	in	Module	access	method	for	the	PCD	in	all	of	the	modules	that
use	this	PCD	in	this	scenario.	Since	number	3	shows	that	there	are	modules	that	are	coded	for	only
patchable	in	module	access,	and	the	EDK	II	build	system	requires	that	for	a	single	architecture	a	single
access	method	must	be	selected	for	each	PCD,	no	other	methods	of	access,	such	as	FixedAtBuild,	can
be	used	for	modules	that	may	not	be	coded	specifically	for	patchable	in	module	access.

2.7	PCD	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

52DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.8	PCD	Sections

2.8.1	[PcdsFeatureFlag]	section
The	required	content	for	the	FeatureFlag	PCD	is	the	PCD	Token	Space	Guid	C	name,	the	PCD's	C	name
(these	two	entries	are	separated	by	the	period	character),	and	a	Boolean	value	of	either	TRUE,	FALSE,	1
or	0.	The	PCD	name	and	value	entries	are	separated	by	the	pipe	"|"	character.

FeatureFlag	PCDs	can	be	used	in	conditional	directive	statements	within	the	DSC	and	FDF	files.	These
PCDs	may	also	be	used	to	select	execution	paths	in	some	code	routines.	The	build	tools	will	generate	a
const	variable	for	each	PcdsFeatureFlag	used	by	a	module.

The	section	modifier,		SkuIdentifier	,	can	be	used	by	the	build	tools	to	create	images	for	one	specific	SKU.
Unlike	the		PcdsDynamic		and		PcdsDynamicEx		entries,	no	access	methods	are	allowed	for	having	different
values	during	runtime	for	different	SKUs.	Do	not	use	the		SkuIdentifier		when	building	all	SKUs.

The	following	are	typical	entries,	with	a	supported	module	type	qualifier	omitted	in	these	examples:

[PcdsFeatureFlag]

[PcdsFeatureFlag.common]

[PcdsFeatureFlag.IA32]

[PcdsFeatureFlag.X64]

[PcdsFeatureFlag.EBC]

Format	of	an	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value	

Example

[PcdsFeatureFlag.common]

		gEfiMdeModulePkgTokenSpaceGuid.PcdDxePcdDatabaseTraverseEnabled|1

2.8.2	[PcdsFixedAtBuild]	and	[PcdsPatchableInModule]	sections
The	section	modifier,		SkuIdentifier	,	can	be	used	by	the	build	tools	to	create	images	for	one	specific	SKU.
Unlike	the		PcdsDynamic		and		PcdsDynamicEx		entries,	no	access	methods	are	allowed	for	having	different
values	during	runtime	for	different	SKUs.	Do	not	use	the		SkuIdentifier		when	building	all	SKUs.

2.8.2.1	PcdsFixedAtBuild
The		FixedAtBuild		PCD	access	method	cannot	be	used	in	a	Binary	Module.

The	required	content	for	the		FixedAtBuild		PCD	are	the	PCD	Token	Space	Guid	C	name,	the	PCD's	C	name
(these	two	entries	are	separated	by	the	period	character)	and	the	Value	(any	one	of	Boolean,	numeric
or	pointer	types).	The	PCD	name	and	value	entries	are	separated	by	the	pipe	"|"	character.

If	the	Datum	Type	for	the	PCD	is		VOID	*,	then	a	fourth	field	that	specifies	the	maximum	datum	size	is
required.	This	is	the	maximum	size	allocated	by	the	Platform	Integrator.	Module	developers	won't	know
how	much	size	will	be	allocated,	and	just	use	it.	The	platform	integrator	must	figure	out	what	the
maximum	length	will	be,	based	on	the	usage	from	the	modules	included.

FixedAtBuild	PCDs	can	be	used	in	conditional	directive	statements	in	the	DSC	and	FDF	files.	The	build
tools	will	generate	a		const		variable	for	each		FixedAtBuild		PCD	used	by	a	module.

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

53DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The	following	are	typical	examples	of	the		[PcdsFixedAtBuild]		section	tag	(the		$(arch)		and		$(SkuIdentifier)	
would	be	replaced	with	real	values).

[PcdsFixedAtBuild]

[PcdsFixedAtBuild.common]

[PcdsFixedAtBuild.IA32]

[PcdsFixedAtBuild.X64]

[PcdsFixedAtBuild.EBC]

[PcdsFixedAtBuild.$(arch).$(SkuIdentifier)]

Format	of	a	point	(VOID*)	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value[|DatumType|MaximumDatumSize]	

Format	for	Boolean	and	numeric	entries	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value	

Examples

[PcdsFixedAtBuild.common]

		gEfiMdePkgTokenSpaceGuid.PcdFSBClock|200000000

		gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress|0x0

		gEfiEdkNt32PkgTokenSpaceGuid.PcdWinNtPhysicalDisk|L"E:RW;245760;512"|VOID*|32

2.8.2.2	PcdsPatchableInModule
The		PatchableInModule		PCD	access	method	can	be	used	with	modules	that	are	distributed	in	binary	form.
The	PCD's	value	can	be	patched	by	tools	that	know	the	offset	of	the	PCD	into	the	binary	file.

The	required	content	for	the		PatchableInModule		PCD	are	the	PCD	Token	Space	Guid	C	name,	the	PCD's	C
name	(these	two	entries	are	separated	by	the	period	character)	and	Value.	The	PCD	name	and	value
entries	are	separated	by	the	pipe	"|"	character.	If	the	Datum	Type	for	the	PCD	is		VOID*	,	then	a	fourth
field	that	specifies	the	maximum	datum	size	is	also	required.

PatchableInModule	PCDs	cannot	be	used	in	conditional	directive	statements.	Build	tools	will	generate	a
volatile	variable	for	each		PatchableInModule		PCD	that	is	used	by	a	module.

The	following	are	typical	examples	of	the		[PcdsPatchableInModule]		section	tag	(the		$(arch)		and
	$(SkuIdentifier)		would	be	replaced	with	real	values).

[PcdsPatchableInModule]

[PcdsPatchableInModule.IA32]

[PcdsPatchableInModule.X64]

[PcdsPatchableInModule.EBC]

[PcdsPatchableInModule.$(arch).$(SkuIdentifier)]

Format	of	an	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value[|DatumType|MaximumDatumSize]	

Example

[PcdsPatchableInModule.common]

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000|UINT32|4

2.8.3	[PcdsDynamic]	and	[PcdsDynamicEx]	sections
PCDs	listed	in	these	sections	cannot	be	used	in	conditional	directive	statements.

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

54DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The	Dynamic	PCD	access	method	cannot	be	used	for	modules	that	are	distributed	in	binary	form.

For	Dynamic	PCD	settings,	the	section	labels	must	include	one	of	Default,	Vpd	or	Hii	with	optional
architecture	and	an	optional		SKUID_IDENTIFIER		name.	The	Dynamic	entry	fields	are	separated	by	the	pipe
"|"	character.	If	the	Datum	Type	for	the	PCD	is		VOID*	,	then	a	field	that	specifies	the	maximum	datum	size
is	also	required.

The	use	of	the		SkuIdentifier		in	the		PcdsDynamic		and		PcdsDynamicEx		sections	may	be	needed	for	creating	the
PCD	database	when	a	single	platform	binary	image	supports	multiple	SKUs.	The	SKU	selection	based	on
things	like	a	hardware	jumper,	or	some	other	method	that	is	outside	the	scope	of	this	document.

For	using	the	standard	PCD	Get/Set	PPI	or	Protocol.

2.8.3.1	PcdsDynamicDefault
The	Dynamic	Default	PCD	access	method	will	generate	a	volatile	variable	that	can	be	accessed	at
runtime	using	PCD	a	Get	PPI	or	Protocol.

[PcdsDynamic.$(arch).DEFAULT]

[PcdsDynamicDefault.$(arch).$(SkuIdentifier)]

[PcdsDynamicHii.$(arch).$(SkuIdentifier)]

[PcdsDynamicVpd.$(arch).$(SkuIdentifier)]

The	format	for	a	boolean	or	numeric	datum	type	PCD	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value	

The	format	for	a	VOID*	PCD	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value[|DatumType[|MaximumDatumSize]]	

Examples

[PcdsDynamicDefault]

gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase|0x0

gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize|0x0

2.8.3.2	PcdsDynamicHII
The	Dynamic	Hii	PCD	access	method	will	generate	HII	data	content	that	can	be	accessed	at	runtime.

For	using	the	HII	for	PCD	data,	the	section	name	is	as	follows:

	[PcdsDynamicHii.$(arch).DEFAULT]	

Specifying	a	SKUID_IDENTIFIER	name	for	an	Hii	Pcd	selection	is	optional,	for	example:

	[PcdsDynamicHii.common.Sku1]	

While	the	format	for	content	of	this	section	is	as	follows,	note	that	the	backslash	character	is	used	here
to	indicate	the	continuation	of	the	line:

	PcdTokenSpaceGuidCName.PcdCName|VariableName|VariableGuid|VariableOffset[|[HiiDefaultValue][|HiiAttrubte]]	

For	VOID*	PCDs,	the	HiiDefaultValue	will	be	a	pointer;	specifying	the	optional	HiiDefaultValue	has	no
meaning.

The	optional	HII	Attribute	entry	is	a	comma	separated	list	of	attributes	as	described	in	the	following
table.

Table	9	HII	Attributes

Keyword C	Flag Value

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

55DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	NV	 	EFI_VARIABLE_NON_VOLATILE	 	0x00000001	

	BS	 	EFI_VARIABLE_BOOTSERVICE_ACCESS	 	0x00000002	

	RT	 	EFI_VARIABLE_RUNTIME_ACCESS	 	0x00000004	

	RO	 	VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY	 	BIT0	

Note:	The	VariableName	field	in	the	HII	format	PCD	entry	must	not	be	an	empty	string.

Examples

[PcdsDynamicHii.common.Sku_Two]

		NoSuchTokenSpaceGuid.PcdPreAllocatedMem|L"TestVariable"|gSysconfigGuid|0x000000A9|0x3

[PcdsDynamicHii.common.DEFAULT]

		gEfiMdeModulePkgTokenSpaceGuid.PcdValidRange|L"PcdValidRange"|gEfiGlobalVariableGuid|0x07|0|BS,RT,NV

2.8.3.3	PcdsDynamicVpd
The	Dynamic	Vpd	PCD	access	method	will	generate	macros	that	allow	the	data	content	(stored	in	read-
only	memory)	to	be	accessed	at	runtime.	Note	that	the	PCD	drivers	may	use	a	copy	of	the	VPD	data	to
allow	runtime	changes	to	these	variables.

For	using	the	VPD	for	PCD	data,	the	section	name	is:

	[PcdsDynamicVpd.$(arch).DEFAULT]	

Specifying	a		SKUID_IDENTIFIER		for	a	VPD	PCD	selection	is	optional,	for	example:

	[PcdsDynamicVpd.common.Vpd.SkuSeven]	

The	format	for	boolean	and	numeric	datum	type	content	of	this	section	is	as	follows:

	PcdTokenSpaceGuidCName.PcdCName|VpdOffset	[|Value]	

The	format	for	VOID*	datum	type	content	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|VpdOffset	[|MaximumDatumSize	[|Value]]	

Examples

[PcdsDynamicVpd.IA32.DEFAULT,	PcdsDynamicVpd.x64.DEFAULT]

		gEfiPhonyTokenSpaceGuidCName.PcdVpdCopyrightLine|0x000000A0

		gNoSuchTokenSpaceGuid.PcdPciDevice0Name				|	0x2282	|	64		|	"None"	#	VOID*

		gNoSuchTokenSpaceGuid.PcdPciDevice50Info			|	0x22C2	|	18		|	{0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xF

F,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF}		#	|VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionName	|	0x22D4	|	100	|	"	"				#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionPath	|	0x2338	|	100	|	"	"				#	VOID*

		gNoSuchTokenSpaceGuid.PcdEnableFastBoot				|	0x239C	|	1			|	FALSE		#	BOOLEAN

2.8.3.4	PcdsDynamicExDefault
The	DynamicEx	access	method	of	PCD	is	recommended	for	modules	that	are	distributed	in	binary	form.

Entries	for		DynamicEx		are	identical	to	the		Dynamic		entries.	The		DynamicEx		entry	fields	are	separated	by	the
pipe	"|"	character.	If	the	Datum	Type	for	the	PCD	is	VOID*,	then		MaximumDatumSize		field	that	specifies	the
maximum	datum	size	is	required.

[PcdsDynamicExDefault.$(arch).Default]

[PcdsDynamicExDefault.$(arch).$(SkuIdentifier)]

The	format	for	a	boolean	or	numeric	datum	type	PCD	entry	in	this	section	is:

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

56DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	PcdTokenSpaceGuidCName.PcdCName|Value	

The	format	for	a	VOID*	PCD	entry	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|Value[|DatumType[|MaximumDatumSize]]	

Examples

[PcdsDynamicExDefault.common.DEFAULT]

gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase|0x0

gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize|0x0

2.8.3.5	PcdsDynamicEx	Hii
For	using	the	HII	for	PCD	data,	the	section	name	is	as	follows:

	[PcdsDynamicExHii.$(arch).$(SKUID_IDENTIFIER)]	

Specifying	a		SKUID		for	an	HII	PCD	selection	is	optional,	for	example:

	[PcdsDynamicExHii.common.Sku1]	

While	the	format	for	content	of	this	section	is	as	follows,	note	that	the	backslash	character	is	used	here
to	indicate	the	continuation	of	the	line:

	PcdTokenSpaceGuidCName.PcdCName|VariableName|VariableGuid|VariableOffset[|[HiiDefaultValue]]	

The	optional	HII	Attribute	entry	is	a	comma	separated	list	of	attributes	as	described	in	Table	9	HII
Attributes.

Note:	The	VariableName	field	in	the	HII	format	PCD	entry	must	not	be	an	empty	string.

Examples

[PcdsDynamicExHii.IA32.Sku_Two]

		gNoSuchTokenSpaceGuid.PcdPreAllocatedMem|L"TestVariable"|gSysconfigGuid|0x000000A9|0x11

[PcdsDynamicExHii.common.DEFAULT]

		gEfiMdeModulePkgTokenSpaceGuid.PcdValidRange|L"PcdValidRange"|gEfiGlobalVariableGuid|0x07|0|BS,RT,NV

2.8.3.6	PcdsDynamicExVpd
For	using	the	VPD	for	PCD	data,	the	section	name	is:

	[PcdsDynamicExVpd.$(arch).$(SKUID_IDENTIFIER)]	

Specifying	a		SKUID		for	a	VPD	PCD	selection	is	optional,	for	example:

	[PcdsDynamicExVpd.common.SkuTwo]	

The	format	for	boolean	and	numeric	datum	type	content	of	this	section	is	as	follows:

Method

	PcdTokenSpaceGuidCName.PcdCName|VpdOffset[|Value]	

The	format	for	VOID*	datum	type	content	in	this	section	is:

	PcdTokenSpaceGuidCName.PcdCName|VpdOffset[|MaximumDatumSize[|Value]]	

Examples

[PcdsDynamicExVpd.common.DEFAULT]

		gEfiPhonyTokenSpaceGuidCName.PcdVpdCopyrightLine|0x000000A0

		gNoSuchTokenSpaceGuid.PcdPciDevice0Name			|0x2282|64	|	"None"		#	VOID*

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

57DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		gNoSuchTokenSpaceGuid.PcdPciDevice50Info		|0x22C2|18	|	{0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0x

FF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF}	#|VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionName|0x22D4|100|	"	"					#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionPath|0x2338|100|	"	"					#	VOID*

		gNoSuchTokenSpaceGuid.PcdEnableFastBoot			|0x239C|1		|	FALSE			#	BOOLEAN

2.8	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

58DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.9	PCD	Database
Dynamic	and	DynamicEx	PCDs	can	be	modified	during	the	boot/setup	stages.	In	order	to	support
modifications,	a	PEIM	and	a	DXE	driver	use	databases	of	these	PCDs	so	that	changes	can	persist
across	reboots.	These	databases	are	generated	prior	to	the	final	image	assembly.	The	following	rules
determine	when	the	build	system	will	add	the	PCDs	into	these	databases.

1.	 If	a	PCD	is	listed	in	a		PcdsDynamicVpd		or		PcdsDynamicExVpd		section,	and	the	PCD	is	not	used	by	any	module
that	is	listed	in	the	DSC	file,	the	build	MUST	ADD	the	entry	in	the	Platform's	PCD	Database,	and	the
parser	must	not	throw	an	error	or	warning	message.

2.	 If	PCD	is	listed	in	a		PcdsDynamicDefault		or		PcdsDynamicExDefault		section,	and	the	PCD	is	not	used	by	any
module	that	is	listed	in	the	DSC	and	FDF	file,	the	build	must	NOT	add	the	entry	in	the	Platform's	PCD
Database;	the	build	may	provide	a	warning	message.

3.	 If	PCD	is	listed	in	a		PcdsDynamicHii		or		PcdsDynamicExHii		section,	and	the	PCD	is	not	used	by	any	module
that	is	listed	in	the	DSC	and	FDF	file,	the	build	must	NOT	add	the	entry	in	the	Platform's	PCD
Database;	the	build	may	provide	a	warning	message.

4.	 If	a	PCD	is	not	listed	in	the	DSC	file	but	is	listed	under	a		[PcdEx]		section	in	a	Binary	INF	file	listed	in
the	FDF	file,	then	the	build	must	add	the	entry	to	the	Platform's	PCD	Database	as		PcdsDynamicExDefault	.

5.	 If	a	PCD	is	not	listed	in	the	DSC	file,	but	binary	INF	files	used	by	this	platform	all	(that	use	this	PCD)
list	the	PCD	in	a		[PcdEx]		section,	AND	all	source	INF	files	used	by	this	platform	the	build	that	use	the
PCD	list	the	PCD	in	either	a		[Pcd]		or		[PcdEx]		section,	then	the	tools	MUST	ADD	the	PCD	to	the
Platform's	PCD	Database;	the	build	must	assign	the	access	method	for	this	PCD	as
	PcdsDynamicExDefault	.

6.	 If	a	PCD	is	not	listed	in	the	DSC	file,	but	binary	INF	files	used	by	this	platform	all	(that	use	this	PCD)
list	the	PCD	in	a		[PatchPcd]		section,	AND	all	source	INF	files	used	by	this	platform	the	build	that	use
the	PCD	list	the	PCD	in	either	a		[Pcd]		or		[PatchPcd]		section,	then	the	tools	must	NOT	add	the	PCD	to
the	Platform's	PCD	Database;	the	build	must	assign	the	access	method	for	this	PCD	as
	PcdsPatchableInModule	

7.	 If	one	of	the	Source	built	modules	listed	in	the	DSC	is	not	listed	in	FDF	modules,	and	the	INF	lists	a
PCD	can	only	use	the		PcdsDynamic		access	method	(it	is	only	listed	in	the	DEC	file	that	declares	the
PCD	as		PcdsDynamic),	then	build	tool	will	report	warning	message-	notify	the	PI	that	they	are
attempting	to	build	a	module	that	must	be	included	in	a	flash	image	in	order	to	be	functional.	These
Dynamic	PCD	will	not	be	added	into	the	Database	unless	it	is	used	by	other	modules	that	are
included	in	the	FDF	file.

8.	 If	one	of	the	Source	built	modules	listed	in	the	DSC	is	not	listed	in	FDF	modules,	and	the	INF	lists	a
PCD	can	only	use	the		PcdsDynamicEx		access	method	(it	is	only	listed	in	the	DEC	file	that	declares	the
PCD	as		PcdsDynamicEx),	then	DO	NOT	break	the	build;	DO	NOT	add	the	PCD	to	the	Platform's	PCD
Database.

9.	 If	a	module	is	listed	in	FDF	file	and	use	a	Dynamic	or	DynamicEx	PCD,	the	PCD	MUST	be	added	into
the	PCD	Database.

2.9	PCD	DatabaseEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

59DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.10	[Components]	Section	Processing
One	or	more		[Components]		sections	contain	lists	of	EDK	II	Modules.	The	format	for	specifying	the	INF	file	for
EDK	II	modules	incorporates	new	scoping	capabilities.

This	section	uses	one	or	more	of	the	following	section	definitions:

	[Components]	

	[Components.IA32]	

	[Components.X64]	

	[Components.EBC]	

	[Components.common]	

A	scoping	structure,	that	binds	library	class	(with	an	optional	override	instance,)	PCD	settings	(also
overriding	the	values	specified	in	the		[PcdsPatchableInModule]		or		[PcdsFixedAtBuild]		sections)	and	build
options	for	an	EDK	II	module	may	be	required.	This	scoping	structure,	containing	sub-elements,	is
enclosed	within	curly	braces:	"{}".	The	opening	curly	brace,	"{",	must	appear	at	the	end	of	the	inf
filename	line,	before	any	comments.

Scoping	is	needed	only	if	specifying	a	non-default	library	class	(one	specified	in	the		[LibraryClasses]	
section),	changing	a	PCD	value	from	defaults	specified	in	either	the		[PcdsPatchableInModule]		or
	[PcdsFixedAtBuild]		sections,	or	overriding	tool	flags	set	either	in	the		[BuildOptions]		section	of	the	DSC	file	or
if	an	entry	in	the		tools_def.txt		file.	Scoping	can	also	be	used	to	support	building	multiple	versions	of	a
module	where	the	different	versions	are	built	using	a	different	FILE_GUID	value	declared	in	the	scoping
section.

Note:	Section	3.11	defines	the	sub-element	content	of	an	INF	file	specified	in	a	component	section.
This	code	paragraph	section	shows	the	format	of	a	"scoping	structure".

Path/and/Filename.inf	{

#	Sub-elements	-	See	EDK	II	INF	file	statement	structure

}

There	are	four	valid,	optional	sub-elements	for	EDK	II	modules.	These	sub-element	are	enclosed	within
angle	brackets:		<Defines>,	<LibraryClasses>	,		<Pcds*>		and		<BuildOptions>	.

An	INF	file	line	may	also	have	one	argument,	EXEC	=	Filename,	that	specifies	an	executable	file	that
takes	the	INF	filename	as	a	parameter.	The	Filename	must	be	executable,	and	must	take	the	INF
filename.	No	other	arguments	are	permitted	to	the	Filename.

The	parsing	tools	will	call	the	executable	specified	by	the	Filename,	as	follows:

	Filename	Path/and/Filename.inf	

If	the		EXEC		argument	is	included	on	the	component	or	module	INF	line,	EDK	II	Tools	will	ignore	processing
of	the	module.	Additionally,	EDK	II	build	tools	will	not	perform	any	dependency	checking	for	files	listed	in
the	INF	file	nor	on	the	output	object	file.	EXEC	example	follows:

	Path/and/Filename.inf	EXEC	=	exe2bin.exe	

The	structure	for	specifying	an	EDK	II	INF	filename	is	as	follows:

$(EDK_SOURCE)/Path/and/ComponentName.inf	[options]	{

		#	Library	Class	listing	-	Required	for	EDK	II	components.	One	or	more

		#	Library	mapping	lines	are	permitted.

2.10	[Components]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

60DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		<LibraryClasses>

				LibraryClassName|Path/and/LibraryInstanceName.inf

		#	Followed	by	zero	(no	pcds	are	used	by	the	module)	or	more	of	the

		#	following	individual	component	override	statements.

		#	Pcd	settings	are	applicable	to	both	Library	Instances	that

		#	are	linked	to	the	component	and	the	component	itself.

		#	If	a	PCD	entry	is	not	specified,	however	the	INF	files	for	either

		#	the	library	classes	that	are	linked	to	the	component,	or	the

		#	component's	INF	file	require	Pcd	settings,	a	globally	defined

		#	value	for	the	Pcd	([Pcd{AccessMethod}]	section	or	the	default

		#	value	from	the	DEC	file	that	declares	the	PCD)	will	be	used.	If

		#	none	of	these	values	are	specified,	build	tools	processing	this	file

		#	should	fail	with	an	error	message	(indicating	the	missing	PCD	#	entry.)

		#	NOTE:	MaximumDataSize	is	required	for	VOID*	datum	type	PCDs,	and	#	should	NOT	be	used	for	either	the	boolean	or	numeric	da

tum	types.

		#	PcdsDynamic	and	PcdsDynamicEx	cannot	be	specified	in	a	component	#	scoped	section	as	these	values	are	platform	scoped,	not

	module

		#	scoped.

		<PcdsFixedAtBuild>

				TokenSpaceGuidCName.PcdTokenName|Data[|MaximumDataSize]

		<PcdsFeatureFlag>

				TokenSpaceGuidCName.PcdTokenName|{TRUE}{FALSE}

		<PcdsPatchableInModule>

				TokenSpaceGuidCName.PcdTokenName|Data[|MaximumDataSize]

		#	BuildOption	Format	is	identical	to	the	format	used	for	the

		#tools_def.txt	file.	Options	specified	in	this	section	take

		#	precedence	over	the	platform	build	options	specified	in	the

		#[Defines]	section.	(The	[Defines]	section	options	take	precedence	#over	options	specified	in	the	tools_def.txt	file)

		<BuildOptions>

				TARGET_TOOLCHAIN_ARCH_COMMANDTYPE_FLAGS	=	string	of	flags

}

In	order	to	build	a	module	multiple	times,	the		<Defines>		tag	is	used.	In	the	following	example,	the
S3Resume2Pei	module	is	built	twice,	using	different	library	instances	and	PCD	values	(one	for	use	with
IA32	architecture	and	one	for	the	X64	architecture).	The	first	module	instance	uses	the	standard
	FILE_GUID		value	from	the	INF	file	when	creating	the	FFS	filename,	while	the	second	module	instances	will
use	the		FILE_GUID		value	specified	in	the	DSC	file	for	creating	the	FFS	filename.

		UefiCpuPkg/Universal/Acpi/S3Resume2Pei/S3Resume2Pei.inf	{

				<PcdsFeatureFlag>

						gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|FALSE

				<LibraryClasses>

						NULL|BinaryDistributionModulePkg/Library/SwitchToLongMode/SwitchToLongModeDisabledLib.inf

		}

		UefiCpuPkg/Universal/Acpi/S3Resume2Pei/S3Resume2Pei.inf	{

				<Defines>

						FILE_GUID	=	35B57EA0-4A41-4a12-B1F5-5F7B79095301

				<PcdsFeatureFlag>

						gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|TRUE

				<LibraryClasses>

						NULL|BinaryDistributionModulePkg/Library/SwitchToLongMode/SwitchToLongModeEnabledLib.inf

		}

If	the	values	for	the	PcdTokenName	are	specified	in	the	global		[Pcds{AccessMethod}]		section	and	no	values
are	specified	in	the	INF	filename	section,	then	the	global	values	will	be	used.	It	should	be	noted	that
only		LibraryClassName|library/instance		definitions	are	required.	Adding	just	the	library	class	name	without	the
library	instances	is	for	informational	purposes	only,	and	they	will	not	be	processed.

Example

MdeModulePkg/Universal/Disk/DiskIo/Dxe/DiskIo.inf	{

		#EDK	II	Module

		<LibraryClasses>

				DebugLib|MdePkg/Library/PeiDxeDebugLibReportStatusCode/PeiDxeDebugLibReportStatusCode.inf

				BaseMemoryLib|MdePkg/Library/DxeMemoryLib/DxeMemoryLib.inf

2.10	[Components]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

61DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

				MemoryAllocationLib|MdePkg/Library/DxeMemoryAllocationLib/DxeMemoryAllocationLib.inf

}

2.10	[Components]	Section	ProcessingEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

62DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.11	[UserExtensions]	Section
Users	may	develop	custom	tools	that	use	the		[UserExtensions]		sections.The	EDK	II		[UserExtensions]		sections
allow	for	extending	the	DSC	file	with	custom	processing	of	component	images.	The	format	for	a	user
extension	section	specifier	is:

	[UserExtensions.$(UserID).$(Identifier)]	

The	EDK	II	build	tools	do	not	use	this	section.	The	reference	tools	ignore	all	content	within	a
	[UserExtensions]		section.

The	following	is	an	example	of	a		[UserExtensions]		section:

[UserExtensions.Edk2AcpiTable."POST_PROCESSING"]

		PostBuild.cmd	-f	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)/FV/*.fd

2.11	[UserExtensions]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

63DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

2.12	[DefaultStores]	Section	Processing
The	contents	of	this	section	are	used	to	define	DefaultStores	names.	Default	store	is	UEFI	HII	concept.
It	is	used	to	define	HII	default	setting	for	the	different	store,	such	as	standard	default,	manufacturing
default.	Platform	can	define	the	supported	default	store	for	DynamicHii/DynamicExHii	PCD	in	this	section,
tag	name	to	be	used.	This	section	is	optional.	By	default,	standard	default	will	be	used.	Each	entry
below	the	section	header	is	of	the	form:

	Number	|	word	

The	following	is	an	example	of	a		[DefaultStores]		section:

[DefaultStores]

		0	|	Standard								#	UEFI	Standard	default

		1	|	Manufacturing			#	UEFI	Manufacturing	default

2.12	[DefaultStores]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

64DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3	EDK	II	DSC	FILE	FORMAT
This	section	of	the	document	describes	the	content	of	the	EDK	II	DSC	sections	using	an	Extended
Backus-Naur	Form.	The	DSC	file	must	define	all	libraries,	components	and/or	modules	that	will	be
processed	by	third	party	compiler	tool	chains,	such	as	the	GNU	C	compiler	(gcc).	Binary	Only	modules	do
not	need	to	be	listed	in	this	file,	as	they	can	be	specified	in	the	FDF	file.	However,	if	a	binary	module
uses	DynamicEx	style	PCDs,	then	the	module	must	be	included	in	this	file	in	order	to	add	the	PCD	to	the
generated	PCD	database.	There	may	also	be	modules	listed	in	this	file	that	are	not	required	in	the	FDF
file.	When	a	module	listed	in	the	DSC	file	is	excluded	from	FDF	file,	then	a	UEFIcompliant	binary	will	be
generated,	but	the	binary	will	not	be	put	into	any	firmware	volume.

3	EDK	II	DSC	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

65DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.1	Building	multiple	architectures
The	build	tools	use	EDK	II	meta-data	files	(INF,	DEC,	DSC	and,	optionally,	the	FDF)	to	create	Makefiles
that	are	then	processed	by	third	party	tools.	The	third	party	utility	that	is	called	after	all	pre-work	has
been	completed	is	define	in	the		Conf/tools_def.txt		file	using	the	tool	code	of	MAKE.	On	Windows	systems,
this	will	typically	point	to	the	(with	the	fully	qualified	path)	utility	"	nmake.exe	",	while	on	*NIX	systems,	the
utility	is	typically	just	"	make	".	The	build	system	will	also	generate	a	single	master	makefile,	one	Makefile
per	architecture	specified	on	the	command-line	or	listed	in	the		Conf/target.txt		file	and	one	Makefile	for
each	for	each	module	or	library	instance	within	the	architectural	tree.	Therefore,	the	build	system	must
be	capable	of	processing	and	keeping	track	of	common	items	and	architecturally	specific	content.
Common	content	(not	architecturally	dependent)	will	be	processed	for	each	architecture.	For	example,
if	-a	IA32	-a	X64	appear	on	the	command	line,	all	modules	that	do	not	specify	an	architecture	modifier	in
the		[Components]	,		[Libraries]		or		[LibraryClasses]		sections	will	be	processed	so	that	makefiles	for	the
module	entries	appear	under	IA32	and	under	X64	sub-directories	in	the	build	output	tree.	Where
architectural	modifiers	are	used,	the	build	tools	will	process	content	such	that	the	modules	(and	their
makefiles)	are	only	under	the	corresponding	architecture	trees.

3.1	Building	multiple	architecturesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

66DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.2	General	Rules
The	general	rules	for	all	EDK	II	INI	style	documents	follow.

Note:	Path	and	Filename	elements	within	the	DSC	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Additionally,	names	that	are	C	variables	or	used	as	a	macro	are	case
sensitive.	Other	elements	such	as	section	tags	or	hex	digits,	in	the	DSC	file	are	not	casesensitive.	The
use	of	"..",	"../"	and	"./"	in	paths	and	filenames	is	strictly	prohibited.

Note:	This	document	uses	"\"	to	indicate	that	a	line	that	cannot	be	displayed	in	this	document	on	a
single	line.	Within	the	DSC	specification,	each	entry	must	appear	on	a	single	line.

Multiple	DSC	files	may	exist	in	a	directory,	however	it	is	recommended	that	either	the		PLATFORM_GUID		or
the		PLATFORM_VERSION		be	unique	to	the	DSC	file.	It	is	recommended	that	the		PLATFORM_NAME		and
	OUTPUT_DIRECTORY		also	be	unique.

Text	in	section	tags	is	case	in-sensitive.

A	section	terminates	with	either	another	section	definition	or	the	end	of	the	file.

To	append	comment	information	to	any	item,	the	comment	must	start	with	a	hash	"#"	character.

All	comments	terminate	with	the	end	of	line	character.

Field	separators	for	lines	that	contain	more	than	one	field	are	pipe	"|"	characters.	This	character
was	selected	to	reduce	the	possibility	of	having	the	field	separator	character	appear	in	a	string,
such	as	a	filename	or	text	string.

Note:	The	only	notable	exception	is	the	PcdName	which	is	a	combination	of	the
PcdTokenSpaceGuidCName	and	the	PcdCName	that	are	separated	by	the	period	"."	character.	This
notation	for	a	PCD	name	is	used	to	uniquely	identify	the	PCD.

A	line	terminates	with	either	an	end	of	line	character	or	a	comment.

When	processing	numeric	values,	either	integer	or	hex,	leading	zeros	specified	in	the	entry	may	be
ignored.	For	example,	0x00000000000000000000001	can	be	a	valid	value	for	a		UINT8		data	type,	as
the	actual	value	is	1.

All	words	in	quotation	marks	in	the	EBNF	in	this	file	must	be	considered	reserved.	Redefining	a
reserved	word	is	not	permitted.

3.2.1	Backslash
Use	of	the	back	slash	character	"\"	in	this	document	is	only	for	lines	that	cannot	be	displayed	within	the
margins	of	this	document.	The	backslash	character	must	not	be	used	to	extend	a	line	over	multiple
lines	in	the	DSC	file.

3.2.2	Whitespace	characters

3.2	General	RulesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

67DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Whitespace	(space	and	tab)	characters	are	permitted	between	token	and	field	separator	elements	for
all	entries.

Whitespace	characters	are	not	permitted	between	the	PcdTokenSpaceGuidCName	and	the	dot,	nor	are
they	permitted	between	the	dot	and	the	PcdCName.

3.2.3	Paths	for	filenames
Note	that	for	specifying	the	path	for	a	file	name,	if	the	path	value	starts	with	a	dollar	sign	"$"	character,
either	a	local		MACRO		or	system	environment	variable	is	being	specified.	If	the	path	value	starts	with	one
of	"letter:\",	"/",	"\"	or	"\"	the	path	must	be	a	fully	qualified	URI	location.	If	it	does	not,	the	specified	path
is	relative	to	EDK	II	Packages	(sub-directories	in	directories	pointed	to	by	WORKSPACE	or	PACKAGES_PATH
system	environment	variables).

Caution:	The	use	of	"..",	"./"	and	"../"	in	a	path	element	is	prohibited.	For	all	DSC	files,	the	specified
directory	path	must	use	the	forward	slash	character	for	separating	directories.	For	example,
	MdePkg/Include/		is	Valid.

Note:	If	the	platform	integrator	is	working	on	a	Microsoft	Windows*	environment	and	will	not	be	working
on	a	non-windows	platform,	then	the	DOS-style	directory	separator	can	be	used.	The	forward	slash	Unix-
style	directory	separator	is	mandatory	for	distributions	where	the	build	environment	is	unknown.

Unless	otherwise	noted,	all	file	names	and	paths	are	relative	EDK	II	Packages	(subdirectories	in
directories	pointed	to	by	WORKSPACE	or	PACKAGES_PATH	system	environment	variables).	A	directory
name	that	starts	with	a	word	is	assumed	by	the	build	tools	to	be	an	EDK	II	Package	directory	name.

3.2	General	RulesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

68DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.3	Platform	DSC	Definition
The	DSC	definitions	set	the	final	properties	(including	final	PCD	values)	for	building	UEFI/PI	compliant
binaries.	Only	command-line	values	override	values	in	this	file.

Values	in	this	file	override	any	values	set	in	INF	or	DEC	files.

Binary	modules	do	not	need	to	be	listed	in	this	file	unless	they	reference	PatchableInModule	or
DynamicEx	PCDs.

Note:	Some	PCD	values	may	be	obtained	from	the	Flash	Description	(FDF)	file	specified	in	the		[Defines]	
section	or	SET	statements.

The		[Defines]		section	must	appear	before	any	other	sections	(except	the	header	comment	blocks).	The
remaining	sections	may	appear	in	any	order,	however	the	EBNF,	below,	shows	the	recommended	order.

Summary
The	EDK	II	Platform	Description	(DSC)	file	has	the	following	format	(using	the	EBNF).

<EDK_II_DSC>	::=	[<Header>]

																	<Defines>

																	[<SkuIds>]

																	<LibraryClasses>*

																	<Pcds>*

																	<Components>+

																	<BuildOptions>*

																	<UserExtensions>*

Note:	Assignments	set	as	command-line	arguments	to	the	parsing	tools	take	precedence	over	all
assignments	defined	in	the	DSC	file.	If	a	variable/value	assignment	is	specified	on	the	build	tool's
command-line,	that	value	will	override	any	variable/value	assignment	defined	in	the	DSC	file.

Note:	Conditional	statements	may	be	used	anywhere	within	the	DSC	file,	with	the	ability	to	group	any
item	within	a	section	as	well	as	entire	sections.

3.3.1	Common	Definitions

Summary
The	following	are	common	definitions	used	by	multiple	section	types.

Prototype

<Word>																	::=	(a-zA-Z0-9_)(a-zA-Z0-9_-.)*	Alphanumeric	characters

																											with	optional	period	".",	dash	"-"	and/or	underscore

																											"_"	characters.	A	period	character	may	not	be

																											followed	by	another	period	character.

																											No	white	space	characters	are	permitted.

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

69DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

<SimpleWord>											::=	(a-zA-Z0-9)(a-zA-Z0-9_-)*	A	word	that	cannot	contain

																											a	period	character.

<ToolWord>													::=	(A-Z)(a-zA-Z0-9)*	Alphanumeric	characters.	white

																											space	characters	are	not	permitted.

<FileSep>														::=	"/"

<Extension>												::=	(a-zA-Z0-9_-)+	One	or	more	alphanumeric	characters.

<File>																	::=	<Word>	["."	<Extension>]

<PATH>																	::=	[<MACROVAL>	<FileSep>]	<RelativePath>

<RelativePath>									::=	<DirName>	[<FileSep>	<DirName>]*

<DirName>														::=	{<Word>}	{<MACROVAL>}

<FullFilename>									::=	{<PATH>	<FileSep>	<File>}

																											{<MACROVAL>	<FileSep>	<File>}

																											{<MACROVAL>}

<Filename>													::=	{[<PATH>	<FileSep>]	<File>}

																											{[<RelativePath>	<FileSep>]	<File>}

																											{<MACROVAL>}

<Chars>																::=	(a-zA-Z0-9_)

<Digit>																::=	(0-9)

<NonDigit>													::=	(a-zA-Z_)

<Identifier>											::=	<NonDigit>	<Chars>*

<CName>																::=	<Identifier>	#	A	valid	C	variable	name.

<AsciiChars>											::=	(0x21	-	0x7E)

<CChars>															::=	[{0x21}	{(0x23	-	0x26)}	{(0x28	-	0x5B)}

																											{(0x5D	-	0x7E)}	{<EscapeSequence>}]*

<DblQuote>													::=	0x22

<SglQuote>													::=	0x27

<EscapeSequence>							::=	"\"	{"n"}	{"t"}	{"f"}	{"r"}	{"b"}	{"0"}	{"\"}

																											{<DblQuote>}	{<SglQuote>}

<TabSpace>													::=	{<Tab>}	{<Space>}

<TS>																			::=	<TabSpace>*

<MTS>																		::=	<TabSpace>+

<Tab>																		::=	0x09

<Space>																::=	0x20

<CR>																			::=	0x0D

<LF>																			::=	0x0A

<CRLF>																	::=	<CR>	<LF>

<WhiteSpace>											::=	{<TS>}	{<CR>}	{<LF>}	{<CRLF>}

<WS>																			::=	<WhiteSpace>*

<Eq>																			::=	<TS>	"="	<TS>

<FieldSeparator>							::=	"|"

<FS>																			::=	<TS>	<FieldSeparator>	<TS>

<Wildcard>													::=	"*"

<CommaSpace>											::=	","	<Space>*

<Cs>																			::=	","	<Space>*

<AsciiString>										::=	[<TS>*	<AsciiChars>*]*

<EmptyString>										::=	<DblQuote><DblQuote>

<CFlags>															::=	<AsciiString>

<PrintChars>											::=	{<TS>}	{<CChars>}

<QuotedString>									::=	<DblQuote>	<PrintChars>*	<DblQuote>

<SglQuotedString>						::=	<SglQuote>	<PrintChars>*	<SglQuote>

<CString>														::=	{<QuotedString>}	{<SglQuotedString>}

<NormalizedString>					::=	<DblQuote>	[{<Word>}	{<Space>}]+	<DblQuote>

<GlobalComment>								::=	<WS>	"#"	[<AsciiString>]	<EOL>+

<Comment>														::=	"#"	<AsciiString>	<EOL>+

<UnicodeString>								::=	"L"	{<QuotedString>}	{<SglQuotedString>}

<HexDigit>													::=	(a-fA-F0-9)

<HexByte>														::=	{"0x"}	{"0X"}	[<HexDigit>]	<HexDigit>

<HexNumber>												::=	{"0x"}	{"0X"}	<HexDigit>+

<HexVersion>											::=	"0x"	[0]*	<Major>	<Minor>

<Major>																::=	<HexDigit>?	<HexDigit>?	<HexDigit>?

																											<HexDigit>

<Minor>																::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<DecimalVersion>							::=	{"0"}	{(1-9)	[(0-9)]*}	["."	(0-9)+]

<VersionVal>											::=	{<HexVersion>}	{(0-9)+	"."	(0-99)}

<GUID>																	::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<RegistryFormatGUID>			::=	<RHex8>	"-"	<RHex4>	"-"	<RHex4>	"-"	<RHex4>	"-"

																											<RHex12>

<RHex4>																::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<RHex8>																::=	<RHex4>	<RHex4>

<RHex12>															::=	<RHex4>	<RHex4>	<RHex4>

<RawH2>																::=	<HexDigit>?	<HexDigit>

<RawH4>																::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

70DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

<OptRawH4>													::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>?

<Hex2>																	::=	{"0x"}	{"0X"}	<RawH2>

<Hex4>																	::=	{"0x"}	{"0X"}	<RawH4>

<Hex8>																	::=	{"0x"}	{"0X"}	<OptRawH4>	<RawH4>

<Hex12>																::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<RawH4>

<Hex16>																::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<OptRawH4>

																											<RawH4>

<CFormatGUID>										::=	"{"	<Hex8>	<CommaSpace>	<Hex4>	<CommaSpace>

																											<Hex4>	<CommaSpace>	"{"

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	"}"	"}"

<CArray>															::=	"{"	{<NList>}	{<CArray>}	"}"

<NList>																::=	<HexByte>	[<CommaSpace>	<HexByte>]*

<RawData>														::=	<TS>	<HexByte>

																											[<Cs>	<HexByte>	[<EOL>	<TS>]]*

<Integer>														::=	{(0-9)}	{(1-9)(0-9)+}

<Number>															::=	{<Integer>}	{<HexNumber>}

<HexNz>																::=	(\x1	-	\xFFFFFFFFFFFFFFFF)

<NumNz>																::=	(1-18446744073709551615)

<GZ>																			::=	{<NumNz>}	{<HexNz>}

<TRUE>																	::=	{"TRUE"}	{"true"}	{"True"}	{"0x1"}	{"0x01"}	{"1"}

<FALSE>																::=	{"FALSE"}	{"false"}	{"False"}	{"0x0"}	{"0x00"}	{"0"}

<BoolVal>														::=	{<TRUE>}	{<FALSE>}

<BoolType>													::=	{<BoolVal>}	{"{"<BoolVal>"}"}

<MACRO>																::=	(A-Z)(A-Z0-9_)*

<MACROVAL>													::=	"$("	<MACRO>	")"

<PcdFieldName>									::=	<TokenSpaceGuidCName>	"."	<PcdCName>	["["<Number>"]"]*	"."	<Field>

<PcdName>														::=	<TokenSpaceGuidCName>	"."	<PcdCName>

<PcdCName>													::=	<CName>

<TokenSpaceGuidCName>		::=	<CName>

<Field>																::=	<CName>

<PcdFieldEntry>								::=	<PcdFieldName>	<FS>	<PcdFieldValue>	<EOL>

<PcdFieldValue>								::=	{<BoolType>}	{<NumValUint8>}	{<NumValUint16>}

																											{<NumValUint32>}	{<NumValUint64>}	{<StringVal>}

																											{<MACROVAL>}	{<Expression>}

<PCDVAL>															::=	"PCD("	<PcdName>	")"

<UINT8>																::=	{"0x"}	{"0X"}	(\x0	-	\xFF)

<UINT16>															::=	{"0x"}	{"0X"}	(\x0	-	\xFFFF)

<UINT32>															::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFF)

<UINT64>															::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFFFFFFFFFF)

<UINT8z>															::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

<UINT16z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>

<UINT32z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>

<UINT64z>														::=	{"0x"	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>

<ShortNum>													::=	(0-255)

<IntNum>															::=	(0-65535)

<LongNum>														::=	(0-4294967295)

<LongLongNum>										::=	(0-18446744073709551615)

<ValUint8>													::=	{<ShortNum>}	{<UINT8>}	{<BoolVal>}

																											{<CString>}	{<UnicodeString>}

<ValUint16>												::=	{<IntNum>}	{<UINT16>}	{<BoolVal>}

																											{<CString>}	{<UnicodeString>}

<ValUint32>												::=	{<LongNum>}	{<UINT32>}	{<BoolVal>}

																											{<CString>}	{<UnicodeString>}

<ValUint64>												::=	{<LongLongNum>}	{<UINT64>}	{<BoolVal>}

																											{<CString>}	{<UnicodeString>}

<NumValUint8>										::=	{<ValUint8>}	{"{"<ValUint8>"}"}

<NumValUint16>									::=	{<ValUint16>}

																											{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

<NumValUint32>									::=	{<ValUint32>}

																											{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

<NumValUint64>									::=	{<ValUint64>}

																											{"{"<ValUint8>	[<CommaSpace>	<ValUint8>]*"}"}

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

71DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

<StringVal>												::=	{<UnicodeString>}	{<CString>}	{<Array>}

<Array>																::=	"{"	{<Array>}	{[<Lable>]	<ArrayVal>

																											[<CommaSpace>	[<Lable>]	<ArrayVal>]*	}	"}"

<ArrayVal>													::=	{<Num8Array>}	{<GuidStr>}	{<DevicePath>}	{<CodeStr>}

<NonNumType>											::=	{<BoolVal>}	{<UnicodeString>}	{<CString>}

																											{<Offset>}	{<UintMac>}

<GuidStr>														::=	"GUID("	<GuidVal>	")"

<CodeStr>														::=	"CODE("	<CData>	")"

<GuidVal>														::=	{<DblQuote>	<RegistryFormatGUID>	<DblQuote>}

																											{<CFormatGUID>}	{<CName>}

<DevicePath>											::=	"DEVICE_PATH("	<DevicePathStr>	")"

<DevicePathStr>								::=	A	double	quoted	string	that	follow	the	device	path

																											as	string	format	defined	in	UEFI	Specification	2.6

																											Section	9.6

<Num8Array>												::=	{<NonNumType>}	{<ShortNum>}	{<UINT8>}

<Num16Array>											::=	{<NonNumType>}	{<IntNum>}	{<UINT16>}

<Num32Array>											::=	{<NonNumType>}	{<LongNum>}	{<UINT32>}

<Num64Array>											::=	{<NonNumType>}	{<LongLongNum>}	{<UINT64>}

<UintMac>														::=	{<Uint8Mac>}	{<Uint16Mac>}	{<Uint32Mac>}	{<Uint64Mac>}

<Uint8Mac>													::=	"UINT8("	<Num8Array>	")"

<Uint16Mac>												::=	"UINT16("	<Num16Array>	")"

<Uint32Mac>												::=	"UINT32("	<Num32Array>	")"

<Uint64Mac>												::=	"UINT64("	<Num64Array>	")"

<Lable>																::=	"LABEL("	<CName>	")"

<Offset>															::=	"OFFSET_OF("	<CName>	")"

<ModuleType>											::=	{"BASE"}	{"SEC"}	{"PEI_CORE"}	{"PEIM"}

																											{"DXE_CORE"}	{"DXE_DRIVER"}	{"SMM_CORE"}

																											{"DXE_RUNTIME_DRIVER"}	{"DXE_SAL_DRIVER"}

																											{"DXE_SMM_DRIVER"}	{"UEFI_DRIVER"}

																											{"UEFI_APPLICATION"}	{"USER_DEFINED"}

																											{"HOST_APPLICATION"}

<ModuleTypeList>							::=	<ModuleType>	["	"	<ModuleType>]*

<Boolean>														::=	{<BoolType>}	{<Expression>}

<EOL>																		::=	<TS>	0x0A	0x0D

<OA>																			::=	(a-zA-Z)(a-zA-Z0-9)*

<arch>																	::=	{"IA32"}	{"X64"}	{"EBC"}	{<OA>}	{"COMMON"}

Note:	When	using	CString,	UnicodeString	or	byte	array	format	as	UINT8/UINT16/UINT32/UINT64	values,
please	make	sure	they	fit	in	the	target	type's	size,	otherwise	tool	would	report	failure.

Note:	LABEL()	macro	in	byte	arrays	to	tag	the	byte	offset	of	a	location	in	a	byte	array.	OFFSET_OF()
macro	in	byte	arrays	that	returns	the	byte	offset	of	a	LABEL()	declared	in	a	byte	array.

Note:	When	using	the	characters	"|"	or	"||"	in	an	expression,	the	expression	must	be	encapsulated	in
open	"("	and	close	")"	parenthesis.

Note:	Comments	may	appear	anywhere	within	a	DSC	file,	provided	they	follow	the	rules	that	a	comment
may	not	be	enclosed	within	Section	headers,	and	that	in	line	comments	must	appear	at	the	end	of	a
statement.

Parameters
Expression

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

72DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

There	is	also	a	membership	expression,	using	the	non-C	"in"	operator,	which	allows	for	testing	if	an	item
is	present	in	a	list.	The	usage	of	this	membership	expression	is	restricted	to	testing	architectures,
targets	and	tool	chain	tag	names	that	are	being	built.	Refer	to	the	EDK	II	Expression	Syntax
Specification	for	additional	information.

UnicodeString

When	the		<UnicodeString>		element	(these	characters	are	string	literals	as	defined	by	the	C99
specification:	L"string"/L'string',	not	actual	Unicode	characters)	is	included	in	a	value,	the	build	tools
may	be	required	to	expand	the	ASCII	string	between	the	quotation	marks	into	a	valid	UCS-2	character
string.	The	build	tools	parser	must	treat	all	content	between	the	field	separators	(excluding	white	space
characters	around	the	field	separators)	as	ASCII	literal	content	when	generating	the	AutoGen.c	and
AutoGen.h	files.

Comments

Strings	that	appear	in	comments	may	be	ignored	by	the	build	tools.	An	ASCII	string	matching	the	format
of	the	ASCII	string	defined	by		<UnicodeString>		(L"Foo"	for	example,)	that	appears	in	a	comment	must	never
be	expanded	by	any	tool.

CFlags

CFlags	refers	to	a	string	of	valid	arguments	appended	to	the	command	line	of	any	third	party	or
provided	tool.	It	is	not	limited	to	just	a	compiler	executable	tool.	MACRO	values	that	appear	in	quoted
strings	in	CFlags	content	must	not	be	expanded	by	parsing	tools.

OA

Other	Architecture	-	One	or	more	user	defined	target	architectures,	such	as	ARM	or	PPC.	The
architectures	listed	here	must	have	a	corresponding	entry	in	the	EDK	II	meta-data	file,		Conf/tools_def.txt	.
Only		IA32	,		X64	,		COMMON		and		EBC		are	routinely	validated.

FileSep

FileSep	refers	to	either	the	back	slash	"\"	or	forward	slash	"/"	characters	that	are	used	to	separate
directory	names.	All	EDK	II	DSC	files	must	use	the	"/"	forward	slash	character	when	specifying	the
directory	portion	of	a	filename.	Microsoft	operating	systems,	that	normally	use	a	back	slash	character
for	separating	directory	names,	will	interpret	the	forward	slash	character	correctly.

CArray

All	C	data	arrays	used	in	PCD	value	fields	must	be	byte	arrays.	The	C	format	GUID	style	is	a	special	case
that	is	permitted	in	some	fields	that	use	the		<CArray>		nomenclature.

CData

All	C	data	used	in	PCD	value	CODE	syntax	can	be	C	style	value	to	initialize	C	structure	or	Array	in	C
source	code.

EOL

The	DOS	End	Of	Line:	"0x0D	0x0A"	character	must	be	used	for	all	EDK	II	meta-data	files.	All	Nix	based
tools	can	properly	process	the	DOS	EOL	characters.	Microsoft	based	tools	cannot	process	the	Nix	style
EOL	characters.

3.3.2	MACRO	Statements
Use	of	MACRO	statements	is	optional.

Summary

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

73DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Macro	statements	are	characterize	by	a		DEFINE		token	or	may	be	defined	on	a	command	line	of	a	parsing
tool.

Define	statements	are	processed	according	to	the	following	precedence.

Highest	Priority

1.	 Command-line	option		-D	MACRO=Value	

2.	 Most	recent	in	file

3.	 Macros	defined	in	the	DSC	file's		[Defines]		section

Lowest	Priority

Macros	defined	in	the		[Defines]		section	are	considered	global	during	the	processing	of	the	FDF	file	and
the	DSC	file.

Macros	are	not	allowed	to	redefine	the	reserved	words	specified	in	this	file.	For	example,	it	is	not
permitted	to		DEFINE	DEFINE	=	FOOBAR	,	then	use		FOOBAR		as	a	the	reserved	word.

A	macro	that	is	not	defined	has	a	value	of	0.

If	the	Macro	statement	is	within	the		[Defines]		section,	then	the	Macro	is	common	to	the	entire	file	as
well	as	common	to	the	FDF	file,	with	later	definitions	overriding	previous	values	(if	the	same	MACRO
name	is	used	in	subsequent	sections,	then	the	MACRO	value	overrides	all	remaining	instances	that
following	the	definition.)

Macro	statements	referenced	before	they	are	defined	are	"undefined"	(for	the		!ifndef		and		!ifdef	
conditional	directive	statements).

If	the	tools	encounter	a	macroval	used	in	a	directive,	an	expression	or	a	value	field,	as	in		$(MACRO)	,	that
is	not	defined,	the	macro	will	have	a	value	of	0	and,	as	in	C	programming,	the	build	may	break.

While	it	is	recommended	that	tools	catch	exceptions	for	incorrect	content,	they	may	report	the	error	on
the	line	that	uses	the	macro,		$(MACRO)	,	rather	than	where	the	macro	was	defined.

Prototype

<MacroDefinition>	::=	{<NormalMacro>}

<NormalMacro>					::=	<TS>	"DEFINE"	<MTS>	<MACRO>	<Eq>	[<Value>]	<EOL>

<Value>											::=	{<Number>}	{<BoolType>}	{<GUID>}

																						{<CString>}	{<UnicodeString>}	{<CArray>}

																						{<PATH>}	{<Expression>}	{<CFlags>}

																						{<RelativePath>}	{<Filename>}

Restrictions
System	Environment	Variables

System	environment	variable	may	not	be	re-defined	in	this	file.	System	environment	variables	cannot	be
overridden	by	the	build	system	tools.

Token	and	Statements

It	is	not	permissible	to	use		$(MACRO)		to	replace	a	token	or	a	complete	token	statement.	Tokens	are	the
keywords	defined	in	this	specification.

Values

The	macro's	value	must	not	include	any		<EOL>		character	sequences.	(Using	\r	and	\n	within	a	quoted
string	is	permitted.

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

74DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

Note:	MACRO	values	defined	in	the		[Defines]		_section	and	PCD	values	defined	in	this	file	may	be	used	in
the	Flash	FDF	file.

Examples:

DEFINE	GEN_SKU	=	MyPlatformPkg/GenPei

DEFINE	SKU1	=	MyPlatformPkg/Sku1/Pei

DEFINE	HACK	=	DEBUG

3.3.3	Conditional	Directive	Blocks
Use	of	conditional	directive	blocks	is	optional.

Summary
The	conditional	statements	may	appear	anywhere	within	the	file.	Conditional	directive	blocks	can	be
nested.

All	conditional	directives	can	use	MACRO,	FixedAtBuild	or	FeatureFlag	PCD	values,	which	must
evaluate	to	either	"True"	or	"False".

Directives	must	be	the	only	statement	on	a	line.

String	evaluations	are	permitted,	and	are	case	sensitive;	the	two	string	values	must	be	an	exact
match	to	evaluate	to	"True".

The	expression	immediately	following	the	"!if"	statement	controls	whether	the	content	after	the	line
is	processed	or	not.		TRUE		is	any	non-zero	and/or	non-null	value	other	than	zero.

Each	"!if"	within	the	source	code	must	be	matched	with	a	closing	"!endif".

Zero	or	more	"!elseif"	statements	are	permitted;	only	one	"!else"	statement	is	permitted.

Conditional	directive	blocks	may	be	nested.

Keyword		!ifdef,	!ifndef,	!if,	!elseif,	!else,	!endif		are	case-insensitive.

Directives	can	be	used	to	encapsulate	entire	sections	or	elements	within	a	single	section,	such	that
they	do	not	break	the	integrity	of	the	section	definitions.

Directives	are	in-fix	expressions	that	are	evaluated	left	to	right;	content	within	parenthesis	is
evaluated	before	the	outer	statements	are	evaluated.	Use	of	parenthesis	is	recommended	to
remove	ambiguity.

The	values	of	the	FixedAtBuild	and	FeatureFlag	PCDs	used	in	the	conditional	statements	must	be	set
in	the		[PcdsFixedAtBuild]		or		[PcdsFeatureFlag]		section(s)	of	this	DSC	file.	Other	forms	of	PCDs	cannot	be
used	in	conditional	directive	statements.

Default	PCD	values	from	the	DEC	files	cannot	be	used	in	conditional	directives	within	the	DSC	file;	all
PCD	values	used	in	directive	statements	must	be	defined	in	the	DSC	file.

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

75DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Conditional	directives	may	appear	before	a	Macro,	FixedAtBuild	or	FeatureFlag	PCD	has	been	defined.
Therefore,	the	reference	build	tools	must	perform	two	passes	on	this	file:

1.	 Obtain	the	values	of	the	MACROs,	FixedAtBuild	and	FeatureFlag	PCDs	which	are	used	for	the
conditional	directives	(these	values	must	not	be	located	within	a	conditional	directive).

2.	 Evaluate	the	conditional	statements	for	inclusion	in	the	build.

If	the	value	of	a	FixedAtBuild	or	FeatureFlag	PCD	used	in	a	conditional	directive	cannot	be	determined
during	the	first	pass,	the	build	must	break.	It	is	permissible	to	have	a	Macro	that	is	undefined	after	the
first	pass.	Macros	must	be	defined	before	they	can	be	used	in	an	expression.	Macros,	FixedAtBuild	and
FeatureFlag	PCDs	used	in	conditional	statements	in	the	first	pass	must	not	be	located	within	conditional
directives.

The	build	system	must	break	if	a	PCD	in	the	directive	is	listed	in

	[PcdsPatchableInModule],	[PcdsDynamic]	or	[PcdsDynamicEx]	section.	

Note:	PCDs,	used	in	conditional	directives,	must	be	defined	and	the	value	set	in	either	the	FDF	or	DSC
file	in	order	to	be	used	in	a	conditional	statement;	values	from	INF	or	DEC	files	are	not	permitted.

Prototype

<Conditional>							::=	<IfStatement>	<EOL>

																								<ElseIfConditional>*

																								[<ElseConditional>]

																								<TS>	"!endif"	<EOL>

<IfStatement>							::=	{<TS>	"!if"	<MTS>	<Expression>	<EOL>}

																								{<TS>	"!ifdef"	<MTS>	<MACRO>	<EOL>}

																								{<TS>	"!ifndef"	<MTS>	<MACRO>	<EOL>}

																								<Statements>*

<Statements>								::=	{<Sections>}	{<Conditonal>}	{<SectionStatements>}

<Sections>										::=	_ValidStatements_

<SectionStatements>	::=	_ValidStatements_

<ElseIfConditional>	::=	<TS>	"!elseif"	<MTS>	<Expression>

																								<EOL>

																								<Statements>*

<ElseConditional>			::=	<TS>	"!else"	<EOL>

																								<Statements>*

Restrictions
MACRO	and	PCD	Values

When	a	MACRO	is	used	in	conditional	directives		!if		or		!elseif	,	the		<MACROVAL>		-	$(MACRO)	-	format	is
used.	When	a	PCD	is	used	in	a	conditional	directive	(or	in	an	expression)	just	the	PcdName	format	is
used.

Number	values

For	Numeric	expressions,	numbers	must	not	be	encapsulated	by	double	quotation	marks

Strings

Strings	in		PCD		elements	must	be	NULL	terminated.	The		NULL		character	is	not	part	of	the	string	that	is
tested.	All	other	string	comparisons	do	not	include	the	double	quotation	marks	encapsulating	the
string.	If	the	string	is	"myapple",	the	only	characters	that	would	be	tested	are	myapple.	When	using
strings	in	the	expression	statements,	there	must	be	a	comparison	operator.

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

76DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Parameters
ValidStatements

Any	valid	section,	multiple	sections,	section	statement	or	set	of	section	statements	defined	in	this
specification	may	be	within	the	scope	of	the	conditional	statements.

MACRO	Usage	in	Expression	Statements

A	macro	is	said	to	be	defined	if	and	only	if	it	has	been	set	to	a	non-NULL	value.	When	used	in	the		!ifdef	
and		!ifndef		statement,	the		<MACROVAL>		format	is	being	deprecated.

PcdFeatureFlag

The	FeatureFlag	PCD	is	a	boolean	PCD	that	is	set	to	either		True		(1)	or		False		(0).	The	PCD	datum	type
for	a	Feature	PCD	is	always		BOOLEAN	.	It	may	be	used	in	a	logical	expression.

FixedPcdName

A	FixedAtBuild	PCD	will	have	a	set	value	at	build	time,	and	the	value	cannot	be	modified	in	the	binary
image,	nor	modified	at	runtime.	For	directives,	the	PCD	datum	type	is	limited	to		UINT8	,		UINT16	,		UINT32	,
	UINT64	,		UINTN		and		BOOLEAN	.	Using	a	FixedAtBuild	PCD	that	has	a	datum	type	of		VOID	*	is	limited	to	text-
based	comparisons	in	directives.	Using	a	PCD	that	has	a	value	of	a	byte	array	is	not	permitted.
FixedAtBuild	PCDs	may	be	used	in	a	logical	expression.

Numeric	Expressions

This	is	a	test	of	numbers,	using	relational	or	equality	operators,	that	evaluates	to		TRUE		or		FALSE	

Logical	Expressions

This	is	a	test	where	the	expression,	MACRO	value	or	PCD	value	(include		<MACROVAL>		or		<PCDVAL>		used	in	an
expression)	must	evaluate	to	either		TRUE		(1)	or		FALSE		(0),	no	operators	are	required,	however	logical
operators,	as	well	full	expressions	can	be	used.	(expressions	that	do	not	evaluate	to		TRUE		or		FALSE	
must	break	the	build).

String	Expressions

The	strings	must	be	exactly	identical	in	order	to	match.	Literal	strings	must	be	encapsulated	by	double
quotation	marks.	There	must	be	a	comparison	operator	between	two	strings	(using	a	string	without	an
operator	is	not	permitted).	Also	permitted	are	the	membership	expressions,	for	architectures,	targets
and	tool	chain	tag	names.

All	Expressions

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

Example

!if	$(EBC_VERSION)	==	1

		[VTF.EBC.MyBsf]

				!ifdef	IA32RESET

						#	EBC_VERSION	is	1	and	IA32RESET	defined

						IA32_RST_BIN											=	IA32_RST.BIN

				!endif

				COMP_NAME														=	PAL_A

				COMP_LOC															=	F

				COMP_TYPE														=	0xF

				COMP_VER															=	7.01

				COMP_CS																=	1

				!if	$(PROCESSOR_NAME)	==	"M1"

						COMP_BIN															=	M1PalCode/PAL_A_M1.BIN

						COMP_SYM															=	M1PalCode/PAL_A_M1.SYM

				!elseif	PROCESSOR_NAME	==	"M2"

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

77DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

						COMP_BIN															=	M2PalCode/PAL_A_M2.BIN

						COMP_SYM															=	M2PalCode/PAL_A_M2.SYM

				!else

						COMP_BIN															=	GenPal/PAL_A_GEN.bin

						COMP_SYM															=	GenPal/PAL_A_GEN.sym

				!endif

				COMP_SIZE														=	-

!elseif	$(EBC_VERSION)	==	2

		[VTF.EBC.MyBsf]

				!ifdef	IA32RESET

						#	EBC_VERSION	is	2	and	IA32RESET	defined

						IA32_RST_BIN	=	IA32_RST.BIN

				!endif

				COMP_NAME				=	PAL_A

				COMP_LOC					=	F

				COMP_TYPE				=	0xF

				COMP_VER					=	7.01

				COMP_CS						=	1

				COMP_BIN					=	GenPal/PAL_A_GEN.bin

				COMP_SYM					=	GenPal/PAL_A_GEN.sym

				COMP_SIZE				=	-

				COMP_NAME				=	PAL_B

				COMP_LOC					=	F

				COMP_TYPE				=	0x01

				COMP_VER					=	-

				COMP_CS						=	1

				COMP_BIN					=	GenPal/PAL_B_GEN.bin

				COMP_SYM					=	GenPal/PAL_B_GEN.sym

				COMP_SIZE				=

!else

		[VTF.X64.MyVtf]

				IA32_RST_BIN	=	IA32_RST.BIN

!endif

[LibraryClasses]

!if	$(TARGET)	==	"DEBUG"

		#	List	Debug	Library	Class	Instances	here

!else

		#	List	Release	Library	Class	Instances	here

!endif

3.3.4	!include	Statements
Use	of	this	statement	is	optional.

Summary
This	section	defines	the		!include		statement	in	EDK	II	Platform	(DSC)	files.	This	statement	is	used	to
include,	at	the	statement's	line,	a	file	which	is	processed	at	that	point,	as	though	the	text	of	the
included	file	was	actually	in	the	DSC	file.	The	included	file's	content	must	match	the	content	of	the
section	that	the		!include		statement	resides,	or	it	may	contain	completely	new	sections.	If	the	included
file	starts	with	a	section	header,	then	the	section	being	processed	in	the	Platform	DSC	file	is	considered
to	have	been	terminated.

If	the		<Filename>		contains	"$"	characters,	then	macros	defined	in	the	DSC	file	and	the	system
environment	variable		$(WORKSPACE)		are	substituted	into		<Filename>	.

The	tools	look	for		<Filename>		relative	to	the	directory	the	DSC	file	resides.	If	the	file	is	not	found,	and	a
directory	separator	is	in		<Filename>	,	the	tools	attempt	to	find	the	file	in	a	WORKSPACE	(or	a	directory
listed	in	the	PACKAGES_PATH)	relative	path.	If	the	file	cannot	be	found,	the	build	system	must	exit	with
an	appropriate	error	message.

Statements	in	the	include	file	are	permitted	to	override	previous	definitions	as	well	as	to	define	new
entries.

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

78DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The	keyword		!include		is	case-insensitive.

Prototype
	<IncludeStatement>	::=	<TS>	"!include"	<MTS>	<Filename>	<EOL>	

Example	(EDK	II	DSC)

!include	MyPlatformPkg/feature_pcds.mak

!include	MyFeatures.mak

!include	$(WORKSPACE)/PackageDir/Features.dsc

!include	$(MACRO1)/AnotherDir/$(MACRO2)/Features.dsc

Note:	The	extension	used	in	the	example,	"mak",	is	just	a	three	character	extension,	and	would	not
processed	by		make		or		nmake		commands.	It	might	just	as	well	have	been	"foo".

3.3.5	!error	Statements
Use	of	this	statement	is	optional.

Summary
This	section	defines	the		!error		statement	in	EDK	II	Platform	(DSC)	files.	This	statement	is	used	to	cause
build	tool	to	stop	at	the	location	where	the	statement	is	encountered	and	error	message	following	the
	!error		statement	is	output	as	a	message.

The	keyword		!error		is	case-insensitive.

Prototype
	<ErrorStatement>	::=	<TS>	"!error"	<MTS>	<ErrorMessage>	<EOL>			<ErrorMessage>	::=	<AsciiString>	

Parameters
ErrorMessage

It	should	in	the	same	line	with		!error		statement,	and	it	can	consist	of	several	words	not	necessarily	in
quotes.

Example	(EDK	II	DSC)

!error	"unsupported	feature!"

3.3	Platform	DSC	DefinitionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

79DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.4	Header	Section
This	is	an	optional	section.

Summary
The	Copyright	and	License	notices	for	the	DSC	file	are	in	the	comments	that	start	the	file.	The	format	for
the	comment	section	is:

##	@file

#	Abstract

#

#	Description

#

#	Copyright

#

#	License

#

##

Developers	will	create	this	section	manually	(or	with	the	help	of	usage	enhancement	tools).	It	is
recommended	that	the	developer	maintain	a	text	file	that	contains	the	Copyright	and	License
information,	which	can	then	be	copied	into	a	new	DSC	file.

Prototype

<Header>						::=	<Comment>*

																		"##"	<Space>	[<Space>]	"@file"	<EOL>

																		[<Abstract>]

																		[<Description>]

																		<Copyright>+

																		"#"	<EOL>

																		<License>+

																		"##"	<EOL>

<Filename>				::=	<Word>	"."	<Extension>

<Abstract>				::=	"#"	<MTS>	<AsciiString>	<EOL>	["#"	<EOL>]

<Description>	::=	["#"	<MTS>	<AsciiString>	<EOL>]+

																		["#"	<EOL>]

<Copyright>			::=	"#"	<MTS>	<CopyName>	<Date>	","	<CompInfo>	<EOL>

<CopyName>				::=	["Portions"	<MTS>]	"Copyright	(c)"	<MTS>

<Date>								::=	<Year>	[<TS>	{<DateList>}	{<DateRange>}]

<Year>								::=	"2"	(0-9)(0-9)(0-9)

<DateList>				::=	<CommaSpace>	<Year>	[<CommaSpace>	<Year>]*

<DateRange>			::=	"-"	<TS>	<Year>

<CompInfo>				::=	(0x20	-	0x7e)*	<MTS>	"All	rights	reserved."	[<TS>	"
"]

<License>					::=	["#"	<MTS>	<AsciiString>	<EOL>]+

																		["#"	<EOL>]

Example

##	@file

#	EFI/Framework	Emulation	Platform

#

#	The	Emulation	Platform	can	be	used	to	debug	individual	modules,	prior

#	to	creating	a	real	platform.

#

#	Copyright	(c)	2006	-	2007,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

3.4	Header	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

80DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

#	The	full	text	of	the	license	may	be	found	at:

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

3.4	Header	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

81DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.5	[Defines]	Section
This	is	a	required	section.

Summary
Defines	the	content	of	the		[Defines]		section	used	in	EDK	II	DSC	files.	This	section	is	created	by	the
developer	and	is	an	input	to	the	EDK	II	parsing	utilities.	Elements	may	appear	in	any	order.	Some	of	the
entries	in	this	section	are	emitted	to	the	output	makefiles.

Entries	in	this	section	are	global	to	the	both	the	DSC	and	FDF	files	and	may	be	used	as	MACRO
statement	using	the	form		$(MACRO_NAME)	.

The	value	of		OUTPUT_DIRECTORY		can	be	referenced	in	other	meta-data	and	makefiles	as		$(OUTPUT_DIRECTORY)	.
Likewise,		BUILD_NUMBER		can	be	referenced	in	later	on	in	this	file	(or	may	be	used	in	files	specified	in	the
DSC	file)	as		$(BUILD_NUMBER)	.

Note:	The		OUTPUT_DIRECTORY		value	must	be	either	a	full	path	to	the	output	directory,	or	a		WORKSPACE		relative
path.

Some	entries	are	used	by	build	tools	in	conjunction	with	other	meta-data	files	and	command-line
options	for	context	sensitive	processing.	The		BUILD_TARGETS		value	describes	the	possible	build	targets
that	can	be	built,	with		tools_def.txt	,		target.txt		and	command-line	options	limiting	the	context	of	the
current	build	process.	For	example,	if		BUILD_TARGETS		is	set	to		DEBUG|RELEASE	,	and	the	two	tool	configuration
files,		target.txt		and		tools_def.txt		permit	building	both	of	these	targets,	and	no	target	is	specified	on	the
command-line	of	the	build	command,	the	tool	will	perform	two	builds	of	the	platform,	one		DEBUG		followed
by	a	build	for		RELEASE	.	The	two	entries	that	are	scoped	in	this	manner	are		SUPPORTED_ARCHITECTURES		and
	BUILD_TARGETS	.	These	items	may	be	referenced	as		$(TARGET)		and		$(ARCH)		in	other	meta-data	files.

Note:	Assignments	of	variables	in	other	sections	take	precedence	over	global	assignments.

This	revision	of	specification	does	not	add	new	features.	New	EDK	II	DSC	files	must	include	the
statement:		DSC_SPECIFICATION	=	0x0001001C		in	this	section.	Existing	DSC	files	do	not	need	to	update	the	value.

Individual	items	must	appear	on	a	single	line,	they	may	not	span	multiple	lines.

Of	special	note	is	the		FLASH_DEFINITION		file	name.	Unlike	other	file	names	in	the	document,	if	the	value
does	not	include	a	full	path,	the	file	name	is	relative	to	the	location	of	the	DSC	file	and	NOT	relative	to
the		WORKSPACE	.	If	the		FLASH_DEFINITION		entry	is	not	specified,	the	build	tools	assume	that	the	target	output
is	one	or	more		UEFI_APPLICATION		modules.

The		VPD_TOOL_GUID		definition	must	use	the	registry	format	GUID	of	the	tool	defined	in	the		Conf/tools_def.txt	
file.	If	present,	the	build	system	will	generate	a	temporary	file	and	call	the	tool	identified	by	this	GUID
value.	The	tool	must	provide	two	output	files,	an	ordered	list	of	VPD	PCDs	with	offsets	and	values,	as
well	as	a	binary	file	containing	the	VPD	data.	Refer	to	the	EDK	II	Build	Specification	for	information	about
using	"VPD	PCD	Data".

All	"reserved"	words	in	the		[Defines]		section	can	be	used	in		<MACROVAL>		format	in	this	file	and	in	the	FDF
file.	For	example,	$(PLATFORM_NAME)	can	be	used	in	processing	both	this	file	and	the	FDF	file.

3.5	[Defines]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

82DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The	statements	may	appear	in	any	order;	the	order	shown	in	the	EBNF	below	is	only	a	recommendation.

Use	of		<MACROVAL>	,	$(MACRO),	for	values	is	permitted	within	this	section,	however	the	macros	must	be
defined	before	they	can	be	used.	It	is	recommended	to	not	use	macros	for	the		DSC_SPECIFICATION	,
	RFC_LANGUAGES,	ISO_LANGUAGES	,		BUILD_TARGETS		and		SUPPORTED_ARCHITECTURES	.

The		!include		statement	may	be	used	in	a		[Defines]		section.

Prototype

<Defines>						::=	"[Defines]"	<EOL>

																			<Statements>*

<Statements>			::=	<TS>	"DSC_SPECIFICATION"	<Eq>	<SpecValue>	<EOL>

																			<TS>	"PLATFORM_NAME"	<Eq>	<Word>	<EOL>

																			<TS>	"PLATFORM_GUID"	<Eq>	<RegistryFormatGUID>	<EOL>	<TS>

																			"PLATFORM_VERSION"	<Eq>	<DecimalVersion>	<EOL>	[<TS>

																			"SKUID_IDENTIFIER"	<Eq>	<SkuUiName>	<EOL>]

																			<TS>	"SUPPORTED_ARCHITECTURES"	<Eq>	<ArchList>	<EOL>

																			<TS>	"BUILD_TARGETS"	<Eq>	<BuildTargets>	<EOL>	[<TS>

																			"OUTPUT_DIRECTORY"	<Eq>	<OUTPATH>	<EOL>]

																			[<TS>	"FLASH_DEFINITION"	<Eq>	<Filename>	<EOL>]	[<TS>

																			"BUILD_NUMBER"	<Eq>	<BuildNumber>	<EOL>]

																			[<TS>	"RFC_LANGUAGES"	<Eq>	<Rfc4646List>	<EOL>]

																			[<TS>	"ISO_LANGUAGES"	<Eq>	<Iso6392List>	<EOL>]	[<TS>

																			"TIME_STAMP_FILE"	<Eq>	<Filename>	<EOL>]

																			[<TS>	"VPD_TOOL_GUID"	<Eq>	<RegistryFormatGUID>

																			<EOL>]

																			[<TS>	"PCD_VAR_CHECK_GENERATION"	<Eq>	<TF>	<EOL>]

																			[<TS>	"PREBUILD"	<Eq>	<Script>	<EOL>]

																			[<TS>	"POSTBUILD"	<Eq>	<Script>	<EOL>]

																			[<TS>	<AddressStmts>]

																			<IncludeStatement>*

																			<MacroDefinition>*

<SpecValue>				::=	{<HexVersion>}	{(0-9)+	"."	(0-9)+}

<SkuUiName>				::=	<CName>	[<FS>	<CName>]*

<ArchList>					::=	<arch>	[<FS>	<arch>]*

<AddressStmts>	::=	"FIX_LOAD_TOP_MEMORY_ADDRESS"	<Eq>	<Address>	<EOL>

<Address>						::=	<NumValUint64>

<BuildTargets>	::=	_Target_	[<FS>	_Target_]*

<OUTPATH>						::=	[<AbsolutePath>]	<PATH>

<AbsolutePath>	::=	[<DosPath>]	<FileSep>

<DosPath>						::=	(a-zA-Z)	":"

<BuildNumber>		::=	<NumValUint16>

<Rfc4646List>		::=	<DblQuote>	<Rfc4646Code>	[<Ext4646>]*	<DblQuote>

<Ext4646>						::=	";"	<Rfc4646Code>

<Iso6392List>		::=	<DblQuote>	<Iso639-2Code>	[<Ext639>]*	<DblQuote>

<Ext639>							::=	<Iso639-2Code>

<Rfc4646Code>		::=	RFC4646	Format	Language	code

																			<Iso639-2

Code>										::=	ISO	639-2	Format	Language	code

<TF>											::=	{"TRUE"}	{"FALSE"}

<Script>							::=	[<Interpreter>]	<Filename>	[<Options>]

<Options>						::=	{<AsciiString>}	{<QuotedString>}

Parameters
SpecVal

New	DSC	files	or	DSC	files	that	get	updated	to	use	any	of	the	new	features	defined	in	this	specification
must	ensure	that	the	0x0001001C	value	is	used.	The	EDK	II	build	system	must	maintain	backward
compatibility,	therefore,	there	is	no	requirement	to	change	existing	DSC	files	if	no	other	content
changes.	This	value	may	also	be	specified	as	a	decimal	value	of	1.28.

SkuUiName

3.5	[Defines]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

83DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

If	specified,	the	image	created	from	the	DSC/FDF	file	pair	will	only	be	valid	for	the	SkuUiNames	listed.	If
not	specified,	and	the		[SKUIDS]		section	is	defined,	the	image	is	valid	for	all	SkuIds	listed	in	the		[SKUIDS]	
section.

RFC4646	Language	Code

One	or	more	language	codes,	formatted	per	RFC4646,	using	a	semi-colon	list	separator	(example:
"en;en-US;es;es-419;fr;fr-FR;zh-Hans-CN".)	This	list	can	be	used	to	filter	the	output	of	tools	that
generate	unicode	strings.	For	example,	if	the	unicode	strings	file	defines	50	different	languages	for
each	string,	but	the	platform	integrator	only	wants	to	support	only	three	languages,	then	specifying	the
three	language	codes	in	this	statement	will	limit	the	final	output	of	string	parsing	tools	to	strings	for
these	three	languages.	Tools	must	use	a	"Get	Best	Language"	function	when	filtering	the	content.	The
	RFC_LANGUAGES		statement	must	be	used	when	processing	EDK	II	Modules.	Space	characters	are	not
permitted	within	the	list.

BuildNumber

This	value,	if	present,	will	be	used	during	the	creation	of		EFI_SECTION_VERSION		sections.	Values	in	this	file
override	any	values	set	in	the	INF	files.	If	not	present,	the	EDK	II	build	tools	must	use	a	value	of		0	.

Target

All	BUILD_TARGET	values	must	be	defined	in	the		Conf/tools_def.txt		file.	Three	predefined	targets,		NOOPT	,
	DEBUG		and		RELEASE		exist,	however	users	may	choose	to	add	their	own	targets	in	the		Conf/tools_def.txt		file
(e.g.,	PERF	or	SHRINK).

FLASH_DEFINITION	Filename

The	FDF	filename	must	be	either	relative	to	the	directory	that	contains	this	DSC	file,	or	it	can	be
absolute,	as	well	as	relative	to	the	WORKSPACE	.

Interpreter

An	interpreter	is	a	computer	program	that	directly	executes,	i.e.	Python,	instructions	written	in	a
programming	or	scripting	language,	without	previously	compiling	them	into	a	machine	language
program.

Example

[Defines]

		PLATFORM_NAME											=	NT32

		PLATFORM_GUID											=	EB216561-961F-47EE-9EF9-CA426EF547C2

		PLATFORM_VERSION								=	0.3

		DSC_SPECIFICATION							=	0x0001001C

		OUTPUT_DIRECTORY								=	Build/Nt32

		SUPPORTED_ARCHITECTURES	=	IA32

		BUILD_TARGETS											=	DEBUG|RELEASE

		RFC_LANGUAGES											=	"en-us;

		zh-hans;fr-fr"

		SKUID_IDENTIFIER								=	SkuTwo|DEFAULT

3.5	[Defines]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

84DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.6	[BuildOptions]	Sections
The		[BuildOptions]		sections	are	optional	in	all	EDK	II	DSC	Files.

Summary
Use	of	the		!include		statement	in		[BuildOptions]		sections	is	permitted,	though	not	recommended.

Macro	Values	that	have	been	previously	defined	in	other	sections	of	this	document	may	be	used	in
	[BuildOptions]		sections.	Of	special	note,	a		<MACROVAL>		element	within	a	quoted	string	is	not	expanded	by
the	tools.	The		<MACRO>		in	the		<MACROVAL>		element	within	a	quoted	string	that	is	a	system	environment
variable	or	a	pre-defined	"Wellknown	Macro"	(see	Macro	Statements,	Section	2.2.6)	does	not	need	to	be
defined	in	this	file,	as	the	expectation	is	that	other	tools	will	be	responsible	for	expanding	the	macro.

This	section	is	used	to	replace	flags	or	append	flags	to	the	end	of	the	tool	code	flags	defined	in	the
	tools_def.txt		file.	The		Family		tag	can	be	used	for	elements	that	are	shared	between	different
architectures,	and	different	tool	chain	tag	names.

The		[BuildOptions]		section	modifier,	CodeBase,	(value	is	EDKII)	allows	for	platform	integrators	to	override
default	build	options	set	in	the		tools_def.txt		file	scoped	according	to	the	type	of	INF	file	being
processed.	EDK	II	INF	files	all	contain	an		INF_VERSION		element	in	their		[Defines]		section.	The		[BuildOptions]	
section	of	an	INF	file	override	both	the		tools_def.txt		options	and	the	options	set	in	the		[BuildOptions]	
section.	In	order	to	override	options	set	in	the	INF	file,	the	options	must	be	overridden	using	the	INF
scoped		<BuildOptions>		tag	after	an	INF	file	specified	in	the		[Components]		section.

Items	in	these	sections	are	either	appended	or	replace	options	specified	earlier.

Build	options	priority	(appended	from	lowest	to	highest	and/or	highest	replacement)	is:

Highest,	DSC	file's	component	scoped		<BuildOptions>		for	individual	INF	files.
	[BuildOptions.$(arch).CodeBase.ModuleType]	

	[BuildOptions.$(arch).CodeBase]	

	[BuildOptions.common.CodeBase]	

	[BuildOptions.$(arch)]	

	[BuildOptions.common]	

	[BuildOptions]	

INF	File's		[BuildOptions]		section
Lowest	-		tools_def.txt		entry

An	example	using	the	Family	tag	follows:

	MSFT:*_*_*_CC_FLAGS	=	/D	MDEPKG_NDEBUG	

An	optional,	special	Family	tag	can	be	used	at	the	start	of	the	command	line,	using	a	colon	":"	character
after	the		Family		tag.	If	not	specified,	specific	tool	chain	tags	must	be	specified	(the	use	of	the	asterisk
"*"	wild	card	character	is	not	permitted.)

Note:	The	following	is	an	example	which	does	not	use	the	Family	tag,	and	specific	to	a	specific	tool
chain	tag	name:

	RELEASE_MYTOOLS_IA32_CC_FLAGS	=	/nologo	/c	/WX	/GS-	/W4	/Gs8192	/Gy	

3.6	[BuildOptions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

85DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Two	types	of	assignment	operators	are	permitted,	the	single	equal	"="	sign	is	used	to	append	the	string
to	the	existing	definition,	while	the	double	equal	"=="	sign	is	used	to	override	any	previous	definition,
replacing	the	content	with	just	the	string.	For	example,	given:

[BuildOptions]

		RELEASE_MYTOOLS_IA32_CC_FLAGS	=	/nologo	/c	/WX	/GS-	/W4	/Gs8192	/Gy

Then	the	following	was	found	in	a	higher	priority	section,	as	in:

[BuildOptions.common.EDKII]

		RELEASE_MYTOOLS_IA32_CC_FLAGS	==	/nologo	/c	/WX	/GS-	/W4

The	logical	results	"clear"	the	/Gs8192	and	/Gy	flags	-	no	other	flags	from	the	tools_def.txt	or	other
	[BuildOptions]		sections	will	apply	-	as	in:

	RELEASE_MYTOOLS_IA32_CC_FLAGS	==	/nologo	/c	/WX	/GS-	/W4	

However,	if	a	module	as	a		<BuildOptions>		sub-section	defined,	as	in:

MyModule.inf	{

		<BuildOptions>

				RELEASE_MYTOOLS_IA32_CC_FLAGS	=	/D	EFI_DEBUG

}

Then,	the	logical	result	for	building	just	my	module	would	be:

	RELEASE_MYTOOLS_IA32_CC_FLAGS	==	/nologo	/c	/WX	/GS-	/W4	/D	EFI_DEBUG	

Other	modules	without	the		<BuildOptions>		sub-section	would	have	the	logical:

	RELEASE_MYTOOLS_IA32_CC_FLAGS	==	/nologo	/c	/WX	/GS-	/W4	

When	one	or	more	architectural	modifiers	are	used	in	the	section	tag,	as	in		[BuildOptions.IA32,
BuildOptions.X64]	,	the	option	lines	will	be	sorted	such	that	the	common	lines	appear	in	both	IA32	sub-
directory	and	X64	sub-directory	makefiles.	Furthermore,	using	the	architectural	modifiers	in	the
	<TargetArch>		field	of	the		<ToolSpec>		listed	below,	additional	sorting	will	be	done.

Sections	that	have	identical	names	are	appended	to	each	other	in	the	order	that	they	appear	in	the
file.	Sections	with	modifiers	are	logically	appended,	starting	with	the	common,	then	(for	each
architecture)	the	architectural	section,	followed	by	sections	that	use	a	code-base	modifier.

Assume	that		tools_def.txt		defines	the	following:

	*_*_*_TEST_FLAGS	=	/a	

Then,

[BuildOptions.common]

		#	entries	in	this	section	are	append	to	or	replace	items	that

		#	may	have	been	defined	in	the	tools_def.txt	file.

		*_*_*_TEST_FLAGS	=	/b

The	result	would	logically	be:		*_*_*_TEST_FLAGS	=	/a	/b	

[BuildOptions.common.EDKII]

		#	Entries	in	this	field	are	appended	for	EDK	II	modules	only

		*_*_*_TEST_FLAGS	=	/c

The	result	for	EDK	II	modules	would	be:		*_*_*_TEST_FLAGS	=	/a	/b	/c	

[BuildOptions.common.EDKII]

		#	Entries	are	for	EDK	II	components	and	libraries

3.6	[BuildOptions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

86DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		*_*_*_TEST_FLAGS	=	/d

The	result	for	EDKII	components	and	libraries	would	be:		*_*_*_TEST_FLAGS	=	/a	/b	/d	

[BuildOptions.IA32]

		#	Architectural	options	for	IA32

		*_*_*_TEST_FLAGS	=	/e

The	logical	result	is:		*_*_IA32_TEST_FLAGS	=	/a	/b	/c	/e	

[BuildOptions.X64.EDKII]

		#	Architectural	options	for	X64

		*_*_*_TEST_FLAGS							=	/f

		DEBUG_*_*_TEST_FLAGS			=	/g

		RELEASE_*_*_TEST_FLAGS	=	/h

The	logical	result	is	two	sets	of	flags:		DEBUG_*_X64_TEST_FLAGS	=	/a	/b	/d	/f	/g		and		RELEASE_*_X64_TEST_FLAGS	=	/a	/b	/d
/f	/h	

The	wildcard	character	"*"	is	permitted	in	the	Target,	Tagname	and	TargetArch	fields	of	the		<ToolSpec>	.
Specifying	the	wildcard	character	means	that	any	value	can	be	substituted.	The	values	of	the	well-
known	macros,		$(TARGET)	,		$(TOOL_CHAIN_TAG)		and		$(ARCH)		will	be	used	by	the	tool	in	place	of	the	wildcard
character	by	the	tools.	If	the	platform	build	uses	multiple	architectures,	the	build	tools	will	automatically
sort	the	statements,	putting	statements	into	the	appropriate	makefiles.

Entries	in		[BuildOptions]		sections	are	cumulative	(as	opposed	to	last	line	takes	precedence	in	other
section	of	the	DSC	file)	provided	the	"=="	character	sequence	is	not	used	in	statement	later	in	the
section.	For	example,	given	the	two	following	lines	in	a	section:

*_*_*_TEST_FLAGS	=	/e

*_*_*_TEST_FLAGS	=	/f

The	logical	result	is:

	*_*_*_TEST_FLAGS	=	/e	/f	

Prototype

<BuildOptions>	::=	"[BuildOptions"	[<attribs>]	"]"	<EOL>	<Statements>*

<attribs>						::=	"."	<arch>	[<CodeBase>	["."	<ModuleType>]]

<CodeBase>					::=	"."	{"Common"}	{"EDKII"}

<Statements>			::=	{<MacroDefinition>}	{<IncludeStatement>}

																			{<TS>	<BStatement>}

<BStatement>			::=	{<ToolFlag>}	{<ToolPath>}	{<ToolCmd>}	{<Other>}

<ToolFlag>					::=	[<Family>	":"]	<FlagSpec>	<Equal>	<Flags>	<EOL>

<ToolPath>					::=	[<Family>	":"]	<PathSpec>	<Equal>	<PATH>	<EOL>

<ToolCmd>						::=	[<Family>	":"]	<CmdSpec>	<ReplaceEq>

																			<ExecCmd>	<EOL>

<Other>								::=	[<Family>	":"]	<OtherSpec>	<Equal>	<String>	<EOL>

<Equal>								::=	{<AppendEq>}	{<ReplaceEq>}

<AppendEq>					::=	<Eq>

<ReplaceEq>				::=	<TS>	"=="	<TS>

<Family>							::=	_Family_

<ToolSpec>					::=	<Target>	"_"	<TagName>	"_"	<TargetArch>	"_"	<ToolCode>

<FlagSpec>					::=	<ToolSpec>	"_FLAGS"

<PathSpec>					::=	<ToolSpec>	"_DPATH"

<CmdSpec>						::=	<ToolSpec>	"_PATH"

<OtherSpec>				::=	<ToolSpec>	"_"	<Attribute>

<TargetArch>			::=	_TargetArch_

<Target>							::=	_Target_

<Attribute>				::=	_AttributeName_

<TagName>						::=	_TagName_

<ToolCode>					::=	_ToolCode_

3.6	[BuildOptions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

87DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

<Flags>								::=	_FlagString_

<ExecCmd>						::=	[<PATH>]	<Filename>

Parameters
Family

Must	match	a		FAMILY		name	defined	in	the	EDK	II		tools_def.txt		file.	If	not	present,	then	the	entry	is	valid
for	all	tool	chain	families.

Target

Must	match	a	target	identifier	in	the	EDK	II		tools_def.txt		file	-	the	first	field,	where	fields	are	separated	by
the	underscore	character.	The	"*"	character	is	a	valid	wildcard.

TagName

Must	match	a	tag	name	field	in	the	EDK	II		tools_def.txt		file	-	second	field.	The	"*"	character	is	a	valid	wild-
card.

TargetArch

Must	match	the	architecture	field	in	the	EDK	II		tools_def.txt		file	-	third	field.	The	"*"	character	is	a	valid
wild-card.

ToolCode

Must	match	a	tool	code	field	in	the	EDK	II		tools_def.txt		file	-	fourth	field.	Use	of	a	wild-card	character	is
not	permitted.

AttributeName

Must	match	a	tool	attribute	field	in	the	EDK	II		tools_def.txt		file	-	fifth	field.	Use	of	a	wild-card	character	is
not	permitted.	The	attributes,		_Flag	,		_PATH		and		_DPATH		are	defined	elsewhere	and	cannot	be	used	with
the		<OtherSpec>		definition.

FlagString

Must	be	a	valid	string	for	the	tool	specified.	The	string	will	be	appended	to	the	end	of	the	tool's	flags
(from	the		tools_def.txt).	Both	Microsoft	and	GCC	evaluate	options	from	left	to	right	on	the	command	line.
This	allows	disabling	some	flags	that	may	have	been	specified	in	the		tools_def.txt		by	providing	an
alternate	flag,	i.e.,	if	the		tools_def.txt		file's		CC_FLAGS		defines	/O2	and	an	/O1	options	is	specified	for	this
module,	the	module	will	compile	with		/O1		(size)	not	with	/O2	(speed).	Use	of	the	quote	characters
around	options	is	required	when	specifying	string	values	with	spaces,	path	names	with	spaces	or	values
containing	the	hash	"#"	character	not	within	a	string.	Note	that	a	macro	named	MDEPKG_NDEBUG	is
reserved	for	size	reduction	purposes.	The	user	must	not	use	this	keyword	to	define	a	new	macro.

ExecCmd

The	filename	of	an	executable.	If	the	executable	can	be	located	under	a	directory	specified	in	the
system	environment		PATH		variable,	only	the	filename	is	required.	Otherwise,	the	filename	must	be
relative	to	a	directory	in	either	the	WORKSPACE	or	PACKAGES_PATH	environment	variable	or	an	absolute
path	must	be	given.	If	an	absolute	path	is	used,	the	build	system	will	fail	the	build	if	the	executable
cannot	be	found.

Example

[BuildOptions]

		*_WINDDK3790x1830_*_CC_FLAGS	=	/Qwd1418,810

		*_MYTOOLS_*_CC_FLAGS									=	/Qwd1418,810

		*_VS2003_*_CC_FLAGS										=	/wd4244

3.6	[BuildOptions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

88DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		*_WINDDK3790x1830_*_CC_FLAGS	=	/wd4244

		*_MYTOOLS_*_CC_FLAGS									=	/wd4244

		#	Flags	used	by	Dynamic	linker

		DEBUG_WINDDK3790x1830_IA32_DLINK_FLAGS	=	/EXPORT:InitializeDriver=_ModuleEntryPoint	/ALIGN:4096	/SUBSYSTEM:CONSOLE

3.6	[BuildOptions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

89DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.7	[SkuIds]	Section
The		[SkuIds]		section	is	optional	in	all	EDK	II	DSC	files.

Summary
Entries	may	appear	in	any	order.	This	section	lists	numeric	mappings	to	the	SKU	ID	User	Interface	Name,
only	valid	values	from	this	list	can	be	specified	in	the	defines	section.	If	one	SKU	inherits	from	none
DEFAULT	SKU,	it	can	specify	its	parent	SKU	User	Name	after	its	definition.	Use	of	the		!include		statement
is	supported;	it	is	recommended	that	a	".txt"	extension	be	used.

If	this	section	is	not	specified,	the	parsing	tools	will	assume	a	SkuId	of	0,	with	a		UiName		of	"DEFAULT".	The
default	entry	must	not	be	re-defined.

The		!include		file	can	only	contain	an	ASCII	(not	Unicode)	list	of	"Number|UiSkuName"	statements.

Prototype

<SkuId>					::=	"[SkuIds]"	<EOL>

																{<Statement>*}	{<IncludeStatement>}

<Statement>	::=	<TS>	<Number>	<FS>	<CName>	[<FS>	<CName>]	<EOL>

Example

[SkuIds]

		0|DEFAULT	#	The	entry:	0|DEFAULT	is	reserved	and	always	required.

		1|SkuOne

		2|SkuTwo|SkuOne	#	SkuTwo	setting	inherits	from	SkuOne

3.7	[SkuIds]	SectionEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

90DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.8	[LibraryClasses]	Sections
The		[LibraryClasses]		sections	are	optional	if	no	library	classes	are	defined	for	any	of	the	components,	or
if	only	EDK	modules	are	used.

Summary
This	section	defines	the		[LibraryClasses]		tag	required	for	EDK	II	module	INF	files,	and	is	new	for	EDK	II
extended	DSC	files.	This	is	a	mapping	of	library	class	names	to	the	EDK	II	module	instances	that	provide
the	library	class.

The	one	or	more		!include		statements	may	be	used	within	the	library	class	section.

The	!include	files	may	contain		LibraryClass|Library	Instance		statements	as	well	as	complete	Library	Class
sections.

The	library	class	entry	is	a	formatted	string	with	two	fields,	separated	by	the	pipe	"|"	character.

When	parsing	the	DSC	file,	the	precedence	rules	must	be	followed.

1.	 If	a	Library	Class	Instance	(INF)	is	specified	in	the	EDK	II		[Components]		section	(INF	file's		<LibraryClasses>	
sub-section,)	then	it	will	be	used.

2.	 If	not	specified	in	the		[Components]		section,	then	the	Library	Class	Instance	that	is	defined	in	the
	[LibraryClasses.$(ARCH).$(MODULE_TYPE)]		section	will	be	used.

3.	 If	not	specified	in	the		[LibraryClasses.$(ARCH).$(MODULE_TYPE)]		section,	then	the	Library	Class	Instance	that
is	defined	in	the		[LibraryClasses.Common.$(MODULE_TYPE)]		section	will	be	used.

4.	 If	not	specified	in	the		[LibraryClasses.Common.$(MODULE_TYPE)]		section,	then	the	Library	Class	Instance	that
is	defined	in	the		[LibraryClasses.$(ARCH)]		section	will	be	used.

5.	 If	not	specified	in	the		[LibraryClasses.$(ARCH)]		section,	then	the	Library	Class	Instance	that	is	defined	in
the		[LibraryClasses]		Section	or		[LibraryClasses.Common]		section	will	be	used.

6.	 It	is	an	error	if	it	has	not	been	specified	in	one	of	the	above	sections.

Prototype

<LibraryClasses>			::=	"[LibraryClasses"	[<attribs>]	"]"	<EOL>	<LcStatements>*

<attribs>										::=	<attrs>	[","	"LibraryClasses"	<attrs>]*

<attrs>												::=	"."	<arch>	["."	<ModuleType>]

<LcStatements>					::=	{<MacroDefinition>}	{<IncludeStatment>}

																							{<TS>	<LcEntry>}

<LcEntry>										::=	<LibraryClassName>	<FS>	<LibraryInstance>	<EOL>

<LibraryClassName>	::=	(A-Z)(a-zA-Z0-9)*

<LibraryInstance>		::=	<InfFileName>	<EOL>

<InfFileName>						::=	<PATH>	<Word>	".inf"

Example

[LibraryClasses.common]

		BaseLib|MdePkg/Library/BaseLib.inf

		BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

		DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf	PcdLib|MdePkg/Library/BasePcdLib/BasePcdLibNull.inf

[LibraryClasses.common.PEI_CORE,	LibraryClasses.common.PEIM]

		DEFINE	MDIR	=	MdePkg/Library

		DebugLib|$(MDIR)/PeiReportStatusCode/PeiReportStatusCodeLib.inf

3.8	[LibraryClasses]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

91DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

[LibraryClasses.common.UEFI_DRIVER,

		LibraryClasses.common.UEFI_APPLICATION]

		DebugLib|MdePkg/Library/UefiDebugLibStdErr/UefiDebugLibStdErr.inf

3.8	[LibraryClasses]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

92DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.9	PCD	Sections
The	PCD	sections	are	optional.

PCD	Values	listed	in	the	DSC	file	must	be	absolute	values,	macro	names	or	expressions	which	may
include	other	PCD	names	and/or	macro	names	that	have	been	previously	defined.While	each	PCD	type
has	its	own	section	definition,	it	is	possible	for	PCDs	accessed	using	either	the		FixedAtBuild		or
	PatchableInModule		methods	to	have	different	values	for	different	modules.

It	is	not	permitted	to	list	a	PCD	in	different	access	method	sections.	A	PCD	can	only	be	listed	under	one
access	method.	All	PCDs	listed	in	these	sections	must	be	declared	in	a	DEC	file	if	the	PCD	is	used	in	any
modules	listed	in	the	DSC	or	FDF	file.

If	a	PCD	is	listed	in	multiple	PCD	access	method	sections	in	the	DEC	file,	the	platform	integrator	can
decide	which	access	method	to	use.	If	not	listed	in	the	DSC	file,	the	tools	are	allowed	to	select	a	type,
with	the		FixedAtBuild		access	method	being	preferred.

It	is	not	permissible	to	mix	DynamicDefault	with	DynamicVpd	or	DynamicHii,	nor	is	it	permissible	to	mix
DynamicVpd	with	Dynamic*Hii	-	only	one	storage	method	for	a	PCD	is	permitted.

Note:	The	format	for	listing	PCDs	under	Default,	Vpd	and	HII	sections	differ	significantly.

Only	FeatureFlag	PCDs	can	be	listed	in		[PcdsFeatureFlag]		sections.

PCD	Values	specified	in	the	DSC	file	override	any	values	specified	in	INF	files	or	DEC	files.

If	no	value	is	provided	in	the	DSC	file,	then	the	value	will	come	from	INF	files,	provided	all	INF	files	define
the	same	preferred	value.

If	the	INF	values	differ	(or	are	not	listed),	and	the	method	for	the	PCD	in	all	of	the	INF	files	is		FixedAtBuild	,
then	each	module	will	use	the	value	specified	in	the	INF	file	or	the	default	value	listed	in	the	DEC	file	(for
modules	that	do	not	list	a	preferred	value	in	the	INF).	Likewise,	if	the	method	is		PatchableInModule		in	all	INF
files,	then	each	module	will	also	use	the	value	specified	in	the	INF	file	or	the	default	value	listed	in	the
DEC	file	(for	modules	that	do	not	list	a	preferred	value).	This	same	rule	applies	to		FeatureFlag		PCDs.

If	the	Source	INF	values	differ	(or	are	not	listed)	and	the	access	methods	are	different,	then	the	build
must	break.	All	source	modules	in	a	platform	must	use	the	same	PCD	same	access	method.

Binary	modules	included	in	a	platform	build	are	permitted	to	use	the	PatchableInModule	or	DynamicEx
access	methods	(the	Binary	module	must	specify	which	of	these	two	methods	were	used	to	create	the
binary	module)	regardless	of	the	method	used	for	a	given	PCD	in	modules	built	from	source.	The	build
supports	binary	modules	that	use	the	same	or	different	PCD	access	method	than	the	source	modules
or	other	binary	modules.	The	build	parser	must	break	with	an	error	if	a	PCD	is	listed	as	FixedAtBuild	or
Dynamic	(not	DynamicEx)	in	the	Binary	INF.

If	no	value	is	entered	in	the	DSC	file,	and	no	INF	files	provide	a	preferred	value,	then	the	DEC	file's
default	value	must	be	used.

It	is	possible	to	have	different	default	values	based	on	architecture,	and	it	is	permissible	to	list	multiple
architectures	in	a	single	method	section	as	in:

	[PcdsFixedAtBuild.IA32,	PcdsFixedAtBuild.X64]	

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

93DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

It	is	permissible	to	list	a	PCD	in	a	common	architecture	section	and	also	list	it	in	an	architecturally
modified	section.	In	this	case,	the	value	in	the	architectural	section	overrides	the	value	specified	in	the
common	section.

The	PCD	values	must	match	the	datum	type	declared	for	a	given	PCD	in	the	DEC	file.

PCDs	with	a	data	type	of		VOID	*	can	optionally	provide	the	maximum	size	of	the	value.	If	not	provided,	the
maximum	length	will	be	calculated	as	the	largest	of	the	size	of	the	data	in	the	DSC	file,	the	size	of	the
data	in	the	INF	file	or	the	size	of	the	data	in	the	DEC	file	that	declares	the	PCD.

PCDs	with	a	C	strucutre	type	is	also	a	VOID	PCD.	Its	value	can	be	specified	like	normal	VOID	PCD,	and
also	be	specified	by	its	structure	field.

Refer	to	the	EDK	II	Build	Specification	for	the	description	of	the	PCD	processing	rules.

3.9.1	[PcdsFeatureFlag]	Sections
These	are	optional	sections	for	EDK	II	DSC	Files.

Summary
Defines	the		[PcdsFeatureFlag]		section	tag	that	may	be	required	for	platform	DSC	files	that	will	use	EDK	II
module	INF	files.

The		!include		statement	is	permitted	in	the		[PcdsFeatureFlag]		sections,	although	not	recommended.

The		PcdsFeatureFlag		entry	is	a	formatted	string	with	two	fields,	separated	by	the	pipe	character,	"|".	PCDs
listed	in	this	section	must	not	be	listed	in		PcdsPatchableInModule	,		PcdsDynamic		or		PcdsDynamicEx		sections	of	the
DSC	file.

Prototype

<Pcds>									::=	"[PcdsFeatureFlag"	[<attribs>]	"]"	<EOL>	

																			<FFStatments>*

<FFStatements>	::=	{<MacroDefinition>}	{<IncludeStatement>}	{<PcdEntry>}

<attribs>						::=	<attrs>	[","	<TS>	"PcdsFeatureFlag"	<attrs>]*

<attrs>								::=	"."	<arch>	["."	<SkuIds>]

<SkuIdS>							::=	<Keyword>	[<FS>	<Keyword>]*

<Keyword>						::=	<CName>

<PcdEntry>					::=	<TS>	<PcdName>	<FS>	<PcdValue>	<EOL>

<PcdValue>					::=	{<BoolType>}	{<MACROVAL>}	{<Expression>}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

SkuIds

SkuIds	in	the	DSC	file	can	be	used	in	two	different	ways.	They	can	be	used	to	as	conditional	modifiers	to
exclude	some	content	from	a	build,	or	they	can	be	used	to	identify	and	group	content	during	a	build.	If
no		SkuId		option	(-x)	is	present	on	the	command-line,	or	defined	in	the		[Defines]		section,	then	the	build
system	must	group	content	by		SkuId	.	If	a		SkuId		option	is	present	on	the	command-line,	or	one	or	more
	SkuId	s	are	listed	in	the		[Defines]		section,	then	the		SkuId		values	are	used	to	include	specific	content,
while	excluding	content	for	sections	where	the		SkuId		is	not	present	in	the	list	of	SkuIds	from	either	the
command-line	or	from	the		SKUID_IDENTIFIER		element	in	the		[Defines]		section.	Use	of	the		SkuId		modifier	for
the		[PcdsFeatureFlag]		section	tag	can	only	be	used	as	a	conditional	modifier.

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

94DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Example

[PcdsFeatureFlag]

		gEfiMdePkgTokenSpaceGuid.PcdComponentNameDisable|FALSE

		gEfiMdeModulePkgTokenSpaceGuid.PcdDxePcdDatabaseTraverseEnabled|TRUE

[PcdsFeatureFlag.IA32]

		gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|FALSE

[PcdsFeatureFlag.X64]

		gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|TRUE

#	SkuId	1	platform	supports	serial	output

[PcdsFeatureFlag.common.P440FX_WithSerialConnectors]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseSerial|TRUE

#	SkuId	2	platform	has	no	serial	output	capability

[PcdsFeatureFlag.common.440FX_NoSerialConnectors]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseSerial|FALSE

Note:	If	the	DSC	file	contains		[PcdsFeatureFlag]		sections	with		SkuId		_modifiers	in	the	section	tags	and
neither	command-line	or		SKUID_IDENTIFER		element	exists	in	the		[Defines]		section,	the	build	must	break,
stating	that	this	platform	requires	separate	builds	for	individual		SkuId	s.

3.9.2	[PcdsFixedAtBuild]	Section
These	are	optional	sections	for	EDK	II	DSC	Files.

Summary
This	section	defines	the		[PcdsFixedAtBuild]		section	tag	that	may	be	required	for	EDK	II	DSC	files	that	will
use	EDK	II	module	INF	files.	The	values	listed	below	must	match	the	datum	type	specified	in	the	DEC	file
that	declares	this	PCD.	If	a	PCD's	datum	type	is		VOID	*	the		MaximumDatumSize		field	is	required.

The		!include		statement	is	permitted	in		[PcdsFixedAtBuild]		sections,	although	not	recommended.

The	PcdsFixedAtBuild	entry	is	a	formatted	string	consisting	of	two	to	four	fields	that	are	separated	by
the	pipe	character,	"|".

Prototype

<Pcds>										::=	"[PcdsFixedAtBuild"	[<attribs>]	"]"	<EOL>

																				<FabStatements>*

<attribs>							::=	<attrs>	[","	<TS>	"PcdsFixedAtBuild"	<attrs>]*

<attrs>									::=	"."	<arch>	["."	<SkuIds>]

<SkuIdS>								::=	<Keyword>	[<FS>	<Keyword>]*

<Keyword>							::=	<CName>

<FabStatements>	::=	{<MacroDefinition>}	{<IncludeStatement>}	{<PcdEntry>}

																				{<PcdFieldEntry>}

<PcdEntry>						::=	<TS>	<PcdName>	[<FS>	<PcdValue>]	<EOL>

<PcdValue>						::=	if	(pcddatumtype	==	"BOOLEAN"):

																						{<BoolType>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT8"):

																						{<NumValUint8>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT16"):

																						{<NumValUint16>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT32"):

																						{<NumValUint32>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT64"):

																						{<NumValUint64>}	{<Expression>}

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

95DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

																				else:

																						<StringValue>	[<MaxSize>]

<MaxSize>							::=	<FS>	"VOID*"	<FS>	{<IntNum>}	{<UINT16>}

<StringValue>			::=	{<StringVal>}	{<MACROVAL>}	{<Expression>}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

SkuIds

	SkuId	s	in	the	DSC	file	can	be	used	in	two	different	ways.	They	can	be	used	to	as	conditional	modifiers	to
exclude	some	content	from	a	build,	or	they	can	be	used	to	identify	and	group	content	during	a	build.	If
no		SkuId		option	(-x)	is	present	on	the	command-line,	or	defined	in	the		[Defines]		section,	then	the	build
system	must	group	content	by		SkuId	.	If	a		SkuId		option	is	present	on	the	command-line,	or	one	or	more
	SkuId	s	are	listed	in	the		[Defines]		section,	then	the		SkuId		values	are	used	to	include	specific	content,
while	excluding	content	for	sections	where	the		SkuId		is	not	present	in	the	list	of		SkuId	s	from	either	the
command-line	or	from	the		SKUID_IDENTIFIER		element	in	the		[Defines]		section.	Use	of	the		SkuId		modifier	for
the		[PcdsFixedAtBuild]		section	tag	can	only	be	used	as	a	conditional	modifier.

PcdValues

PCD	values	are	optional	for		[PcdsFixedAtBuild]		sections.	If	the	value	is	not	listed,	the	tools	must	obtain	the
values	from	either	the	INF	file	or,	if	a	value	is	not	listed	in	the	INF	file,	then	the	default	value	from	the
DEC	file	must	be	used.

Example

[PcdsFixedAtBuild.IA32]

		gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength

		gEfiEdkNt32PkgTokenSpaceGuid.PcdWinNtMemorySizeForSecMain|L"64!64"|VOID*|0x10

[PcdsFixedAtBuild.ARM]

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuMemorySize|32

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuIoSize|0

[PcdsFixedAtBuild.IA32]

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuMemorySize|36

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuIoSize|16

[PcdsFixedAtBuild.common.P440FXS1]

		gEfiMdePkgTokenSpaceGuid.PcdFSBClock|100000000

[PcdsFixedAtBuild.common.P440FXS2]

		gEfiMdePkgTokenSpaceGuid.PcdFSBClock|200000000

[PcdsFixedAtBuild.X64]

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuMemorySize|52

		gEmbeddedTokenSpaceGuid.PcdPrePiCpuIoSize|16

Note:	If	the	DSC	file	contains		[PcdsFixedAtBuild]		sections	with		SkuId		modifiers	in	the	section	tags	and
neither	command-line	or		SKUID_IDENTIFER		element	exists	in	the		[Defines]		section,	the	build	must	break,
stating	that	this	platform	requires	separate	builds	for	individual		SkuId	s.

3.9.3	[PcdsPatchableInModule]	Sections

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

96DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

These	are	optional	sections.

Summary
Defines	the		[PcdsPatchableInModule]		section	tag	that	may	be	required	for	EDK	II	DSC	files	that	will	use	EDK	II
module	INF	files.	The	values	listed	below	must	match	the	datum	type	specified	in	the	DEC	file	that
declares	this	PCD.	If	a	PCD's	datum	type	is		VOID	*	the		MaximumDatumSize		field	is	required.

The		!include		statement	is	permitted	in		[PcdsPatchableInModule]		sections,	although	not	recommended.

The		PcdsPatchableInModule		entry	is	a	formatted	string	with	two	to	four	fields,	separated	by	the	pipe
"|"character.	PCDs	listed	in	this	section	must	not	be	listed	in		PcdsFixedAtBuild	,		PcdsDynamic		or		PcdsDynamicEx	
sections	of	the	DSC	file.

Prototype

<Pcds>										::=	"[PcdsPatchableInModule"	[<attribs>]	"]"	<EOL>

																				<PimStatements>*

<attribs>							::=	<attrs>	[","	<TS>	"PcdsPatchableInModule"

																				<attrs>]*

<attrs>									::=	"."	<arch>	["."	<SkuIds>]

<SkuIdS>								::=	<Keyword>	[<FS>	<Keyword>]*

<Keyword>							::=	<CName>

<PimStatements>	::=	{<MacroDefinition>}	{<IncludeStatement>}	{<PcdEntry>}

																				{<PcdFieldEntry>}

<PcdEntry>						::=	<TS>	<PcdName>	[<FS>	<PcdValue>]	<EOL>

<PcdValue>						::=	if	(pcddatumtype	==	"BOOLEAN"):

																						{<BoolType>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT8"):

																						{<NumValUint8>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT16"):

																						{<NumValUint16>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT32"):

																						{<NumValUint32>}	{<Expression>}

																				elif	(pcddatumtype	==	"UINT64"):

																						{<NumValUint64>}	{<Expression>}

																				else:

																						<StringValue>	[<MaxSize>]

<MaxSize>							::=	<FS>	"VOID*"	<FS>	{<IntNum>}	{<UINT16>}

<StringValue>			::=	{<StringVal>}	{<MACROVAL>}	{<Expression>}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

SkuIds

	SkuId	s	in	the	DSC	file	can	be	used	in	two	different	ways.	They	can	be	used	to	as	conditional	modifiers	to
exclude	some	content	from	a	build,	or	they	can	be	used	to	identify	and	group	content	during	a	build.	If
no		SkuId		option	(-x)	is	present	on	the	command-line,	or	defined	in	the		[Defines]		section,	then	the	build
system	must	group	content	by		SkuId	.	If	a		SkuId		option	is	present	on	the	command-line,	or	one	or	more
	SkuId	s	are	listed	in	the		[Defines]		section,	then	the		SkuId		values	are	used	to	include	specific	content,
while	excluding	content	for	sections	where	the		SkuId		is	not	present	in	the	list	of		SkuId	s	from	either	the
command-line	or	from	the		SKUID_IDENTIFIER		element	in	the		[Defines]		section.	Use	of	the		SkuId		modifier	for
the		[PcdsPatchableInModule]		section	tag	can	only	be	used	as	a	conditional	modifier.

PcdValues

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

97DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

PCD	values	are	optional	for		[PcdsPatchableInModule]		sections.	If	the	value	is	not	listed,	the	tools	must	obtain
the	values	from	either	the	INF	file	or,	if	a	value	is	not	listed	in	the	INF	file,	then	the	default	value	from	the
DEC	file	must	be	used.

Example

[PcdsPatchableInModule]

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000

[PcdsPatchableInModule.IA32]

		gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x0f

		gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x1f

[PcdsPatchableInModule.common.P440FXS1]

		gEfiUnixPkgTokenSpaceGuid.PcdUnixFirmwareFdSize|0x002a0000

[PcdsPatchableInModule.common.P440FXS2]

		gEfiUnixPkgTokenSpaceGuid.PcdUnixFirmwareFdSize|0x00400000

[PcdsPatchableInModule.X64]

		gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x0f

		gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x1f

Note:	If	the	DSC	file	contains		[PcdsPatchableInModule]		sections	with		SkuId		modifiers	in	the	section	tags	and
neither	command-line	or		SKUID_IDENTIFER		element	exists	in	the		[Defines]		section,	the	build	must	break,
stating	that	this	platform	requires	separate	builds	for	individual		SkuId	s.

3.9.4	[PcdsDynamic]	Sections
These	are	optional	sections.

Summary
Defines	the		[PcdsDynamic]		section	tag	that	may	be	required	for	platform	DSC	files	that	will	use	EDK	II
module	INF	files.	The	values	listed	below	must	match	the	datum	type	specified	in	the	DEC	file	that
declares	this	PCD.	If	a	PCD's	datum	type	is		VOID	*	the		MaximumDatumSize		field	is	required.	Specifying	different
	<DataStore>		values(Default	,		HII	,	or		VPD)	in	one	section	header	is	not	permitted.	It	is	permissible	to
specify	different	Architectures	using	an	identical		<DataStore>		value.	The	following	line	is	permissible:

	[PcdsDynamicDefault.X64.Default,	PcdsDynamicDefault.EBC.Default]	

The	following	line	is	incorrect,	and	must	cause	a	build	break	during	parsing	of	the	file:

	[PcdsDynamicDefault.X64.Default,	PcdsDynamicVpd.EBC.Default]	

The		!include		statement	is	permitted	in		[PcdsDynamic]		sections,	although	not	recommended.

The		Offset	,		MaximumDatumSize		and	Value	fields	are	optional	for	the	VPD	PCD	entries,	and	a	wildcard
character	may	be	used	for	the		Offset	.	The	wildcard	character	can	only	be	used	if	a		VPD_TOOL_GUID		is
specified	in	the		[Defines]		section	and	the	tool	supports	automatic	calculation	of	the		Offset	.	For	VPD
PCDs	of	type		VOID	,	if	the	VPD's	value	is	present,	the		MaximumDatumSize		must	be	given.	For		VOID		PCDs,	the
size	is	the	larger	of	the	length	of	the	specified	value,	the	length	of	default	values	in	INF	files	that	use
PCD	and	the	length	of	the	default	value	in	the	DEC	file.	If	there	are	no	values	specified	in	any	of	the
files,	the	build	tools	must	break.	If	no	value	is	specified	in	the	DSC	file,	and	multiple	INF	files	exist	that
define	default	values,	then	the	build	must	break,	since	only	one	value	can	be	used.

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

98DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The		PcdsDynamic		entry	is	a	formatted	string	consisting	of	three	to	six	fields	that	are	separated	by	the	pipe
character,	"|".	PCDs	listed	in	this	section	must	not	be	listed	in		PcdsFixedAtBuild	,		PcdsPatchableInModule		or
	PcdsDynamicEx		sections	of	the	DSC	file.

Prototype

<Pcds>											::=	{<PcdsDefault>}	{<PcdsVpd>}	{<PcdsHii>}

<PcdsDefault>				::=	"[PcdsDynamicDefault"	[<PddAttribs>]	"]"	<EOL>

																					<PddEntries>*

<PddEntries>					::=	{<MacroDefinition>}	{<IncludeStatement>}

																					{<TS>	<MinEntry>}	{<TS>	<PcdFieldEntry>}

<PddAttribs>					::=	<attrs>	[","	<TS>	"PcdsDynamicDefault"	<attrs>]*

<PcdsVpd>								::=	"[PcdsDynamicVpd"	[<PdvAttribs>]	"]"	<EOL>

																					<PdvEntries>*

<PdvAttribs>					::=	<attrs>	[","	<TS>	"PcdsDynamicVpd"	<attrs>]*

<PdvEntries>					::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>	<VpdEntry>}

																					{<TS>	<PcdFieldEntry>}

<PcdsHii>								::=	"[PcdsDynamicHii"	[<PdhAttribs>]	"]"	<EOL>

																					<PcdHiiEntries>*

<PdhAttribs>					::=	<phattrs>	[","	<TS>	"PcdsDynamicHii	<phattrs>]*	<PdvEntries>*

<PcdHiiEntries>		::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>	<HiiEntry>}

																					{<TS>	<PcdFieldEntry>}

<attrs>										::=	"."	<arch>	["."	<SkuIds>]

<phattrs>								::=	"."	<arch>	["."	<SkuIds>]["."	<DefaultStore>]

<SkuIdS>									::=	<Keyword>	[<FS>	<Keyword>]*

<DefaultStore>			::=	<Keyword>

<Keyword>								::=	<CName>

<MinEntry>							::=	<PcdName>	[<FS>	<PcdValue>]	<EOL>

<PcdValue>							::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT16"):

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<StringValue>	[<MaxSize>]

<MaxSize>								::=	<FS>	"VOID*"	[<FS>	<SizeValue>]

<SizeValue>						::=	{<IntNum>}	{<UINT16>}

<StringValue>				::=	{<StringVal>}	{<MACROVAL>}	{<Expression>}

<VpdEntry>							::=	<PcdName>	<FS>	<VpdOffset>	[<FS>	<VpdData>]	<EOL>

<VpdOffset>						::=	{<Number>}	{"*"}

<VpdData>								::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT16"):

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<VpdMaxSize>

<VpdMaxSize>					::=	{<IntNum>}	{<UINT16>}	[<FS>	<StringValue>]

<HiiEntry>							::=	<PcdName>	<FS>	<HiiString>	<Field2>	<EOL>

<HiiString>						::=	{<CArray>}	{<UnicodeString>}

<Field2>									::=	<FS>	<VariableGuid>	<FS>	<VariableOffset>	[<ValueField>]

<VariableGuid>			::=	<CName>

<ValueField>					::=	<FS>	[<DefaultValue>]	[<FS>	<HiiAttrs>]

<VariableOffset>	::=	<Number>

<DefaultValue>			::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT16"):

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

99DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<StringValue>

<HiiAttrs>							::=	<HiiAttr>	[<CS>	<HiiAttr>]*

<HiiAttr>								::=	{"NV"}	{"BS"}	{"RT"}	{"RO"}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

VpdOffset

A	non-negative	numeric	value	that	is	the	number	of	bytes	from	the	start	of	the	Vpd	Region	specified	in
the	FDF	file.	The	star	"*"	character	may	be	used	in	this	field	in	order	to	permit	an	external	tool	to
automatically	calculate	the	offset	values	for	optimizing	data	size.	This	character	can	only	be	used	if	a
	VPD_TOOL_GUID		has	been	specified,	and	the	tool	supports	automatic	calculation	of	the	offset.

VariableOffset

A	non-negative	numeric	value	that	is	the	number	of	bytes	from	the	start	to	the	start	of	this	variable.	The
offset	value	must	not	exceed	the	maximum	value	of	0xFFFF	(UINT16).

HiiString	The	HiiString	field	in	the	HII	format	PCD	entry	must	not	be	an	empty	string.

SkuIds

	SkuId	s	in	the	DSC	file	can	be	used	in	two	different	ways.	They	can	be	used	to	as	conditional	modifiers	to
exclude	some	content	from	a	build,	or	they	can	be	used	to	identify	and	group	content	during	a	build.	If
no		SkuId		option	(-x)	is	present	on	the	command-line,	or	defined	in	the		[Defines]		section,	then	the	build
system	must	group	content	by		SkuId	.	If	a		SkuId		option	is	present	on	the	command-line,	or	one	or	more
	SkuId	s	are	listed	in	the		[Defines]		section,	then	the		SkuId		values	are	used	to	include	specific	content,
while	excluding	content	for	sections	where	the		SkuId		is	not	present	in	the	list	of		SkuId	s	from	either	the
command-line	or	from	the		SKUID_IDENTIFIER		element	in	the		[Defines]		section.	Use	of	the		SkuId		modifier	for
the		[PcdsDynamic*]		section	tag	can	be	used	as	a	conditional	modifier	or	to	groups	sets	of	PCDs	according
to	the		SkuId		identifier.

DefaultStore

	DefaultStore		in	the	DSC	file	is	used	to	specify	DynamicHii/DynamicExHii	PCD	value	as	the	default	EFI
variable	for	which	default	store.	It	is	only	valid	in	DynamicHii/DynamicExHii	section.	If	it	is	not	specified,
DynamicHii/DynamicExHii	PCD	value	will	be	used	as	the	standard	default	EFI	variable.	For	the	different
combination	of	SKU	and	DefaultStore,	their	inheritance	is	described	as	the	below.

SKU	will	inherit	its	parent	SKU	setting.	DEFAULT	SKU	is	the	default	parent	SKU.	DefaultStore	is	the
subsection	of	SKU.	It	will	first	inherit	from	the	same	DefaultStore	in	its	parent	SKU,	then	inherit	other
DefaultStore	in	the	same	SKU.	DefaultStore	with	the	big	default	store	ID	will	inherit	the	setting	from	one
with	the	small	default	store	ID.	If	there	are	more	than	one	small	default	store	ID,	it	will	use	the	biggest
one	to	be	inherit.	Here	is	the	example.	Four	PcdsDynamicHii	sections	are	defined.

#	Four	PcdsDynamicHii	section

[PcdsDynamicHii.common.Default.Standard]

[PcdsDynamicHii.common.Default.Manufacturing]

[PcdsDynamicHii.common.Sku1.Standard]

[PcdsDynamicHii.common.Sku1.Manufacturing]

#	DEFAULT	Manufacturing	setting	based	on	two	sections

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

100DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

[PcdsDynamicHii.common.Default.Standard]

[PcdsDynamicHii.common.Default.Manufacturing]

#	SKU1	Standard	setting	based	on	two	sections

[PcdsDynamicHii.common.Default.Standard]

[PcdsDynamicHii.common.Sku1.Standard]

#	SKU1	Manufacturing	setting	based	on	four	sections

[PcdsDynamicHii.common.Default.Standard]

[PcdsDynamicHii.common.Default.Manufacturing]

[PcdsDynamicHii.common.Sku1.Standard]

[PcdsDynamicHii.common.Sku1.Manufacturing]

PcdValues

PCD	values	are	optional	for		[PcdsDynamicDefault]		sections.	The	PCD	values	for	PCDs	listed	in		[PcdsDynamicVpd]	
and		[PcdsDynamicHii]		sections	are	also	optional.	For	a	PCD	with	a	Datum	Type	of		VOID	*	and	an	access
method	implementation	of		PcdsDynamicHii	,	a	default	value	should	not	be	listed,	as	the	value	is	a	pointer.

HiiAttr

Each	HII	attribute	may	only	be	present	once	in	the	list.	Refer	to	Table	9	and	the	UEFI	Specification	for	a
description	of	these	attributes.

Examples

[PcdsDynamicDefault.IA32.Default]

		gEfiEdkNt32PkgTokenSpaceGuid.PcdWinNtMemorySizeForSecMain|"L64!64"|VOID*|10

		gPcAtChipsetPkgTokenSpaceGuid.Pcd8259LegacyModeEdgeLevel	|0x0									#	UINT16

		gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiPs2MouseEnable			|0											#	BOOLEAN

[PcdsDynamicVpd.common.Sku_Two|SkuSeven]

		gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress	|0x0001ffff|0x1		#	UINT32

		gNoSuchTokenSpaceGuid.PcdPciDevice0Name			|0x2282|64	|"None"										#	VOID*

		gNoSuchTokenSpaceGuid.PcdPciDevice50Info		|0x22C2|18	|{0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,0xFF,	0xFF

,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF}		#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionName|0x22D4|100|"	"													#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionPath|0x2338|100|"	"													#	VOID*

		gNoSuchTokenSpaceGuid.PcdEnableFastBoot			|0x239C|1		|FALSE											#	BOOLEAN

[PcdsDynamicHii.IA32,	PcdsDynamicHii.X64.Sku1.Standard]

		gEfiMyModulePkgTokenSpaceGuid.PcdChassisIntrution|L"TestVariable"|gSysConfigGuid|0x83|0x0

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|L"Timeout"|gEfiGlobalVariableGuid|0x0|10		#	Variable:	L"Tim

eout"

3.9.5	[PcdsDynamicEx]	Sections
These	are	optional	sections.

Summary
Defines	the		[PcdsDynamicEx]		section	tag	that	may	be	required	for	platform	DSC	files	that	will	use	EDK	II
module	INF	files.	The	values	listed	below	must	match	the	datum	type	specified	in	the	DEC	file	that
declares	this	PCD.	If	a	PCD's	datum	type	is		VOID	*	the		MaximumDatumSize		field	is	required.	Specifying	different
	<DataStore>		values(Default	,		HII	,	or		VPD)	in	one	section	header	is	not	permitted.	It	is	permissible	to
specify	different	Architectures	using	an	identical		<DataStore>		value.	The	following	line	is	permissible:

	[PcdsDynamicExDefault.X64.Default,	PcdsDynamicExDefault.EBC.Default]	

The	following	line	is	incorrect,	and	must	cause	a	build	break	during	parsing	of	the	file:

	[PcdsDynamicExDefault.X64.DEFAULT,	PcdsDynamicExVpd.EBC.DEFAULT]	

The		!include		statement	is	permitted	in		[PcdsDynamicEx]		sections,	although	not	recommended.

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

101DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

The		PcdsDynamicEx		entry	is	a	formatted	string	with	three	to	six	fields,	separated	by	the	pipe	"|"	character.
PCDs	listed	in	this	section	must	not	be	listed	in	the		PcdsFixedAtbuild	,		PcdsPatchableInModule		or		PcdsDynamic	
sections	of	the	DSC	file.

Prototype

<Pcds>											::=	{<PcdsExDefault>}	{<PcdsExVpd>}	{<PcdsExHii>}

<PcdsExDefault>		::=	"[PcdsDynamicExDefault"	[<PddAttribs>]	"]"	<EOL>

																					<PddEntries>*

<PddEntries>					::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>	<MinEntry>}

																					{<TS>	<PcdFieldEntry>}

<PddAttribs>					::=	<attrs>	[","	<TS>	"PcdsDynamicExDefault"	<attrs>]*

<PcdsExVpd>						::=	"[PcdsDynamicExVpd"	[<PdvAttribs>]	"]"	<EOL>

																					<PdvEntries>*

<PdvAttribs>					::=	<attrs>	[","	<TS>	"PcdsDynamicExVpd"	<attrs>]*

<PdvEntries>					::=	{<MacroDefinition>}	{<IncludeStatement>}

																					{<TS>	<VpdEntry>}	{<TS>	<PcdFieldEntry>}

<PcdsExHii>						::=	"[PcdsDynamicExHii"	[<PdhAttribs>]	"]"	<EOL>

																					<PcdHiiEntries>*

<PdhAttribs>					::=	<phattrs>	[","	<TS>	"PcdsDynamicExHii	<phattrs>]*

																					<PdvEntries>*

<PcdHiiEntries>		::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>	<HiiEntry>}

																					{<TS>	<PcdFieldEntry>}

<attrs>										::=	"."	<arch>	["."	<SkuIds>]

<phattrs>								::=	"."	<arch>	["."	<SkuIds>]["."	<DefaultStore>]

<SkuIdS>									::=	<Keyword>	[<FS>	<Keyword>]*

<DefaultStore>			::=	<Keyword>

<Keyword>								::=	<CName>

<MinEntry>							::=	<PcdName>	[<FS>	<PcdValue>]	<EOL>

<PcdValue>							::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT16"):

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<StringValue>	[<MaxSize>]

<MaxSize>								::=	<FS>	"VOID*"	[<FS>	<SizeValue>]

<SizeValue>						::=	{<Number>}	{<Expression>}

<StringValue>				::=	{<StringVal>}	{<MACROVAL>}	{<Expression>}

<VpdEntry>							::=	<PcdName>	<FS>	<VpdOffset>	[<FS>	<VpdData>]	<EOL>

<VpdOffset>						::=	{<Number>}	{"*"}

<VpdData>								::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT16"):

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<VpdMaxSize>

<VpdMaxSize>					::=	{<LongNum>}	{<UINT32>}	[<FS>	<StringValue>]

<HiiEntry>							::=	<PcdName>	<FS>	<HiiString>	<Field2>	<EOL>

<HiiString>						::=	{<CArray>}	{<UnicodeString>}

<Field2>									::=	<FS>	<VariableGuid>	<FS>	<VariableOffset>	[<ValueField>]

<VariableGuid>			::=	<CName>

<ValueField>					::=	<FS>	[<DefaultValue>]	[<FS>	<HiiAttrs>]

<VariableOffset>	::=	<Number>

<DefaultValue>			::=	if	(pcddatumtype	==	"BOOLEAN"):

																							{<BoolType>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT8"):

																							{<NumValUint8>}	{<Expression>}

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

102DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

																					elif	(pcddatumtype	==	"UINT16"):

																							{<NumValUint16>}	{<Expression>}

																					elif	(pcddatumtype	==	"UINT32"):

																							{<NumValUint32>}	{<Expression>}

																					elif(pcddatumtype	==	"UINT64"):

																							{<NumValUint64>}	{<Expression>}

																					else:

																							<StringValue>

<HiiAttrs>							::=	<HiiAttr>	[<CS>	<HiiAttr>]*

<HiiAttr>								::=	{"NV"}	{"BS"}	{"RT"}	{"RO"}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	additional	information.

VpdOffset

A	non-negative	numeric	value	that	is	the	number	of	bytes	from	the	start	of	the	Vpd	Region	specified	in
the	FDF	file.	The	star	"*"	character	may	be	used	in	this	field	in	order	to	permit	an	external	tool	to
automatically	calculate	the	offset	values	for	optimizing	data	size.	This	character	can	only	be	used	if	a
	VPD_TOOL_GUID		has	been	specified,	and	the	tool	supports	automatic	calculation	of	the	offset.

VariableOffset

A	non-negative	numeric	value	that	is	the	number	of	bytes	from	the	start	to	the	start	of	this	variable.	The
offset	value	must	not	exceed	the	maximum	value	of	0xFFFF	(UINT16).

HiiString	The	HiiString	field	in	the	HII	format	PCD	entry	must	not	be	an	empty	string.

SkuIds

	SkuId	s	in	the	DSC	file	can	be	used	in	two	different	ways.	They	can	be	used	to	as	conditional	modifiers	to
exclude	some	content	from	a	build,	or	they	can	be	used	to	identify	and	group	content	during	a	build.	If
no		SkuId		option	(-x)	is	present	on	the	command-line,	or	defined	in	the		[Defines]		section,	then	the	build
system	must	group	content	by		SkuId	.	If	a		SkuId		option	is	present	on	the	command-line,	or	one	or	more
	SkuId	s	are	listed	in	the		[Defines]		section,	then	the		SkuId		values	are	used	to	include	specific	content,
while	excluding	content	for	sections	where	the		SkuId		is	not	present	in	the	list	of		SkuId	s	from	either	the
command-line	or	from	the		SKUID_IDENTIFIER		element	in	the		[Defines]		section.	Use	of	the		SkuId		modifier	for
the		[PcdsDynamic*]		section	tag	can	be	used	as	a	conditional	modifier	or	to	groups	sets	of	PCDs	according
to	the		SkuId		identifier.

DefaultStore

	DefaultStore		in	the	DSC	file	is	used	to	specify	DynamicHii/DynamicExHii	PCD	value	as	the	default	EFI
variable	for	which	default	store.	It	is	only	valid	in	DynamicHii/DynamicExHii	section.	If	it	is	not	specified,
DynamicHii/DynamicExHii	PCD	value	will	be	used	as	the	standard	default	EFI	variable.	For	the	different
combination	of	SKU	and	DefaultStore,	their	inheritance	is	described	as	the	below.

SKU	will	inherit	its	parent	SKU	setting.	DEFAULT	SKU	is	the	default	parent	SKU.	DefaultStore	is	the
subsection	of	SKU.	It	will	first	inherit	from	the	same	DefaultStore	in	its	parent	SKU,	then	inherit	other
DefaultStore	in	the	same	SKU.	DefaultStore	with	the	big	default	store	ID	will	inherit	the	setting	from	one
with	the	small	default	store	ID.	If	there	are	more	than	one	small	default	store	ID,	it	will	use	the	biggest
one	to	be	inherit.	Here	is	the	example.	Four	PcdsDynamicExHii	sections	are	defined.

#	Four	PcdsDynamicExHii	section

[PcdsDynamicExHii.common.Default.Standard]

[PcdsDynamicExHii.common.Default.Manufacturing]

[PcdsDynamicExHii.common.Sku1.Standard]

[PcdsDynamicExHii.common.Sku1.Manufacturing]

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

103DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

#	DEFAULT	Manufacturing	setting	based	on	two	sections

[PcdsDynamicExHii.common.Default.Standard]

[PcdsDynamicExHii.common.Default.Manufacturing]

#	SKU1	Standard	setting	based	on	two	sections

[PcdsDynamicExHii.common.Default.Standard]

[PcdsDynamicExHii.common.Sku1.Standard]

#	SKU1	Manufacturing	setting	based	on	four	sections

[PcdsDynamicExHii.common.Default.Standard]

[PcdsDynamicExHii.common.Default.Manufacturing]

[PcdsDynamicExHii.common.Sku1.Standard]

[PcdsDynamicExHii.common.Sku1.Manufacturing]

PcdValues

PCD	values	are	optional	for		[PcdsDynamicExDefault]		sections.	The	PCD	values	for	PCDs	listed	in
	[PcdsDynamicExVpd]		and		[PcdsDynamicExHii]		sections	are	also	optional.	For	a	PCD	with	a	Datum	Type	of		VOID	*
and	an	access	method	implementation	of		PcdsDynamicExHii	,	a	default	value	should	not	be	listed,	as	the
value	is	a	pointer.

HiiAttr

Each	HII	attribute	may	only	be	present	once	in	the	list.Refer	to	Table	9	and	the	UEFI	Specification	for	a
description	of	these	attributes.

Examples

[PcdsDynamicExDefault.IA32.Default]

		gEfiEdkNt32PkgTokenSpaceGuid.PcdWinNtMemorySizeForSecMain|L"64!64"|VOID*|10

		gPcAtChipsetPkgTokenSpaceGuid.Pcd8259LegacyModeEdgeLevel|0x0

		gPcAtChipsetPkgTokenSpaceGuid.PcdIsaAcpiPs2MouseEnable|0															#	BOOLEAN

[PcdsDynamicExVpd.common.Sku_Two|SkuSeven]

		gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress|0x0001ffff	|	0x1		#	UINT32

		gNoSuchTokenSpaceGuid.PcdPciDevice0Name			|0x2282|64	|"None"											#	VOID*

		gNoSuchTokenSpaceGuid.PcdPciDevice0Info			|0x22C2|18	|{0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,0xFF,	0xFF

,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF}		#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionName|0x22D4|100|"	"														#	VOID*

		gNoSuchTokenSpaceGuid.PcdOemBootOptionPath|0x2338|100|"	"														#	VOID*

		gNoSuchTokenSpaceGuid.PcdEnableFastBoot			|0x239C|FALSE																#	BOOLEAN

[PcdsDynamicExHii.IA32,	PcdsDynamicExHii.X64.Sku1.Standard]

		gEfiMyModulePkgTokenSpaceGuid.PcdChassisIntrution|L"TestVariable"|gSysConfigGuid|0x83|0x0

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|L"Timeout"|gEfiGlobalVariableGuid|0x0		#	Variable:	L"Timeou

t"

3.9	PCD	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

104DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.10	[Components]	Sections
The		[Components]		sections	are	required.

Summary
This	section	defines	the	modules	and	components	that	will	be	processed	by	compilation	tools	and	the
EDK	II	tools	used	to	generate	PE32/PE32+/Coff	image	files.

The		!include		statement	is	permitted	in		[Components]		sections.	however	this	method	is	NOT	recommended.

All	EDK	II	file	paths	must	be	specified	relative	to	a	directory	containing	EDK	II	Packages	(as	specified	by
the	WORKSPACE	or	a	directory	listed	in	PACKAGES_PATH	system	environment	variable).	If	the	environment
variable	is	not	specified,	the	INF	file	path	is	assumed	to	be	relative	to	the		WORKSPACE	.

The	following	is	an	example	of	specifying	a		WORKSPACE		(MdeModulePkg	is	in	the	directory	pointed	to	by	the
WORKSPACE	environment	variable)	relative	Path:

	MdeModulePkg/Universal/Disk/DiskIo/Dxe	

The	following	is	an	example	of	specifying	an	Indirect	Path:

DEFINE	FOUNDATION_LIB	=	$(WORKSPACE)/Foundation/Library

$(FOUNDATION_LIB)/EdkIIGlueLib/EntryPoints

The	permitted		DEFINE		statement	must	be	a	variable	name	assigned	to	a	path.

EDK	II	DSC	files	allow	specifying	only	one	optional	argument	on	an	INF	file	entry	line.	The	argument,		EXEC
=	filename	,	is	used	for	User	Defined	processing	of	an	INF	file.	The	EDK	II	parsing	tools	will	call	the	program
listed	by	filename	(which	must	either	be	in	the	OS		PATH		environment,	or	fully	qualified	path	and	filename)
with	the	INF	filename	(expanded)	as	the	one	and	only	argument	to	filename.

EDK	II	modules	can	have	scoped	(scoping	encapsulation	between	"{"	and	"}"	braces)	sub-elements,
	<LibraryClasses>	,		<Pcd*>		and/or		<BuildOptions>		that	allow	individual	modules	to	supersede	previous
definitions.	The	values	specified	on	the	command-line	have	the	highest	precedence	followed	by	values
specified	in	the	sub-elements.	Refer	to	Section	2.4	regarding	how	build	options	are	used	by	the	EDK	II
build	tools,	as	well	as	the	EDK	II	Build	Specification.

The	PCD	access	methods	(and	storage	methods)	are	selected	on	a	platform	basis	-	it	is	not	permitted
to	have	a	PCD	listed	in	one	of	the	Pcd	sections	and	use	it	differently	in	an	individual	module.	For
example,	if	a	PCD	is	listed	in	a		[PcdsFixedAtBuild]		section,	it	is	not	permitted	to	list	it	in	a
	<PcdsPatchableInModule>		sub-section	of	an	INF	file.

It	is	permitted	to	have	a	PatchableInModule	PCD	or	FixedAtBuild	PCD	with	different	values.	If	a	PCD	is
listed	in		[PcdsFixedAtBuild]		section	with	one	value,	while	the		<PcdsFixedAtBuild>		section	of	an	INF	use	a
different	value.

The	FeatureFlag	PCD	and	the	two	dynamic	forms	of	PCDs	are	common	to	a	platform,	with	the	dynamic
form	PCD	values	stored	in	a	"runtime	database",	read-only	memory	location	or	an	HII	data	store.
Therefore,	having	different	values	is	prohibited	for	these	access	methods.

The	format	for	items	listed	in	the	sub-elements	is	the	identical	format	for	content	under	the	section.

Within	the	context	of	an	EDK	II	module	sub-element,	the		<LibraryClasses>		entries	must	appear	before
	<Pcds*>		entries;	the		<LibraryClasses>		entries	terminate	with	the	start	of	either	the		<Pcds*>		or		<BuildOptions>	
sub-section	header	or	the	end	of	the	scope	defined	by	the	right	curly	"}"	brace.	The		<BuildOptions>		sub-
element	must	be	the	last	sub-entry	of	an	EDK	II	module's	scoped	section.	Entries	for		<LibraryClasses>	,
	<Pcds*>		and		<BuildOptions>		are	used	to	replace	the	platform	or	global	definition	entries	listed	elsewhere.

3.10	[Components]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

105DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	LibraryClass		and	PCDs	are	globally	defined	in	the	DSC	file's		[LibraryClasses]		and		[Pcds*]		sections,	while
global	BuildOptions	may	be	specified	in	either	the	DSC	file's		[BuildOptions]		section	or	in	the
	$(WORKSPACE)/Conf/tools_def.txt		file.

Components	and	modules	listed	here	will	be	processed	during	the	MAKE	phase	of	the	build.	Binary	EDK	II
only	modules	do	not	need	to	be	listed	in	this	section,	but	can	be	put	into	the	FDF	file.	If	a	Binary	INF
listed	in	the	FDF	file	has	dynamic	or	PatchableInModule	PCDs,	the	INF	should	be	listed	in	the	DSC
file.Build	tools	will	use	the	order	of	files	specified	in	this	section	for	performing	a	build	(Library	Class
Instances	will	be	built	prior	to	the	module's	sources,)	however	the	ordering	in	this	file	has	no	effect	on
the	ordering	of	modules	in	a	binary	image	(the	FDF	file	describes	that	ordering).

Prototype

<Components>							::=	"[Components"	[<attribs>]	"]"	<EOL>

																							<ModuleStatements>*

<attribs>										::=	<attrs>	[","	<TS>	"Components"	<attrs>]*

<attrs>												::=	"."	<arch>

<ModuleStatements>	::=	{<MacroDefinition>}

																							{<IncludeStatement>}	{<TS>	<InfFiles>}

<InfFiles>									::=	<InfFilename>	[<MTS>	<Options>]	<EOL>

<Options>										::=	{<Exec>}	{<Edk2Struct>}

<InfFilename>						::=	<PATH>	<Word>	".inf"

<Exec>													::=	"EXEC"	<Eq>	<ExecFilename>

<ExecFilename>					::=	<PATH>	<Word>	["."	<ExecExtension>]

<ExecExtension>				::=	<Word>	#	An	OS	recognisable	extension	that	will	#

																							automatically	be	run.

<Edk2Struct>							::=	"{"	<EOL>

																							[<TS>	<DefSec>]

																							[<TS>	<LibraryClasses>]

																							[<TS>	<PcdsFeatureFlag>]

																							[<TS>	<PcdsFixed>]

																							[<TS>	<PcdsPatchable>]

																							[<TS>	<BuildOptions>]	"}"

<DefSec>											::=	"<Defines>"	<EOL>

																							<TS>	"FILE_GUID"	<EQ>	<RegistryFormatGuid>	<EOL>

<LibraryClasses>			::=	"<LibraryClasses>"	<EOL>	<LcEntries>*

<LcEntries>								::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>

																							<LibraryInstances>}

<LibraryInstances>	::=	{<ClassInstanceMap>}	{<NullLibInstances>}

<ClassInstanceMap>	::=	<ClassName>	<FS>	<InfFilename>	<EOL>

<ClassName>								::=	(A-Z)(a-zA-Z0-9)*

<NullLibInstances>	::=	"NULL"	<FS>	<InfFilename>	<EOL>

<PcdsFeatureFlag>		::=	"<PcdsFeatureFlag>"	<EOL>	

																								<PcdsFFEntries>*

<PcdsFFEntries>				::=	{<MacroDefinition>}	{<IncludeStatement>}	{<TS>

																							<PcdFeatureEntry>}

<PcdFeatureEntry>		::=	<PcdName>	<FS>	<PcdFeatureValue>	<EOL>

<PcdFeatureValue>		::=	{<BoolType>}	{<MACROVAL>}	{<Expression>}

<PcdsFixed>								::=	"<PcdsFixedAtBuild>"	<EOL>

																								<PcdEntries>*

<PcdEntries>							::=	{<MacroDefinition>}	{<IncludeStatement>}

																							{<TS>	<PcdEntry>}

<PcdsPatchable>				::=	"<PcdsPatchableInModule>"	<EOL>

																							<PcdEntries>*

<PcdEntry>									::=	<PcdName>	[<FS>	<PcdValue>]	<EOL>

<PcdValue>									::=	if	(pcddatumtype	==	"BOOLEAN"):

																									{<BoolType>}	{<Expression>}

																							elif	(pcddatumtype	==	"UINT8"):

																									{<NumValUint8>}	{<Expression>}

																							elif	(pcddatumtype	==	"UINT16"):	

																									{<NumValUint16>}	{<Expression>}

																							elif	(pcddatumtype	==	"UINT32"):

																									{<NumValUint32>}	{<Expression>}

																							elif	(pcddatumtype	==	"UINT64"):

																									{<NumValUint64>}	{<Expression>}

																							else:

																									<StringValue>	[<MaxSize>]

<MaxSize>										::=	<FS>	"VOID*"	[<FS>	<SizeValue>]

3.10	[Components]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

106DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

<SizeValue>								::=	{<Number>}	{<Expression>}

<StringValue>						::=	{<StringVal>}	{<MACROVAL>}	{<Expression>}

<BuildOptions>					::=	"<BuildOptions>"	<EOL>

																							[<DefineStatements>]*

																							[<TS>	<ToolFlags>]+

																							[<TS>	<ToolPath>]*

																							[<TS>	<ToolCmd>]*

																							[<TS>	<Other>]*

<ToolFlags>								::=	[<Family>	":"]	<FlagSpec>	<Equal>	<Flags>	<EOL>

<ToolSpec>									::=	<Target>	"_"	<TagName>	"_"	<Tarch>	"_"	<ToolCode>

<FlagSpec>									::=	<ToolSpec>	"_FLAGS"

<ToolPath>									::=	[<Family>	":"]	<PathSpec>	<Equal>	<PATH>	<EOL>

<PathSpec>									::=	<ToolSpec>	"_DPATH"

<ToolCmd>										::=	[<Family>	":"]	<CmdSpec>	<ReplaceEq>	<PathCmd>	<EOL>

<CmdSpec>										::=	<ToolSpec>	"_PATH"

<PathCmd>										::=	<PATH>	<Word>	["."	<Extension>]

<Extension>								::=	(a-zA-Z)(a-zA-Z0-9_-)*

<Other>												::=	[<Family>	":"]	<OtherSpec>

<OtherSpec>								::=	<ToolSpec>	"_"	<Attribute>	<Equal>	<String>

<Equal>												::=	{<AppendEq>}	{<ReplaceEq>}

<AppendEq>									::=	<Eq>

<ReplaceEq>								::=	<TS>	"=="	<TS>

<Tarch>												::=	{"IA32"}	{"X64"}	{"EBC"}	{*}	{<OA>}

<OA>															::=	(A-Z)	(A-Z0-9)*

<Family>											::=	_Family_

<Attribute>								::=	_Attribute_

<Target>											::=	_Target_

<TagName>										::=	_TagName_

<ToolCode>									::=	_ToolCode_

<Flags>												::=	_FlagString_

Parameters
Target

Must	match	a	target	identifier	in	the	EDK	II		tools_def.txt		file	-	the	first	field,	where	fields	are	separated	by
the	underscore	character.	The	"*"	character	is	a	valid	wildcard.

TagName

Must	match	a	tag	name	field	in	the	EDK	II		tools_def.txt		file	-	second	field.	The	"*"	character	is	a	valid	wild-
card.

TargetArch

Must	match	the	architecture	field	in	the	EDK	II		tools_def.txt		file	-	third	field.	The	"*"	character	is	a	valid
wild-card.

ToolCode

Must	match	a	tool	code	field	in	the	EDK	II		tools_def.txt		file	-	fourth	field.	Use	of	a	wild-card	character	is
not	permitted.

AttributeName

Must	match	a	tool	attribute	field	in	the	EDK	II		tools_def.txt		file	-	fifth	field.	Use	of	a	wild-card	character	is
not	permitted.	The	attributes,		_Flag	,		_PATH		and		_DPATH		are	defined	elsewhere	and	cannot	be	used	with
the		<OtherSpec>		definition.

FlagString

Must	be	a	valid	string	for	the	tool	specified.	The	string	will	be	appended	to	the	end	of	the	tool's	flags
(from	the		tools_def.txt).	Both	Microsoft	and	GCC	evaluate	options	from	left	to	right	on	the	command	line.
This	allows	disabling	some	flags	that	may	have	been	specified	in	the		tools_def.txt		by	providing	an
alternate	flag,	i.e.,	if	the		tools_def.txt			CC_FLAGS		defines	/O2	and	an	/O1	options	is	specified	for	this
module,	the	module	will	compile	with	/O1	(size)	not	with		/O2		(speed).	Use	of	the	quote	characters

3.10	[Components]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

107DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

around	options	is	required	when	specifying	string	values	with	spaces,	path	names	with	spaces	or	values
containing	the	hash	"#"	character	not	within	a	string.	Note	that	a	macro	named		MDEPKG_NDEBUG		is	reserved
for	size	reduction	purposes.	The	user	must	not	use	this	keyword	to	define	new	macro.

Pcd	Values

PCD	elements	follow	the	exact	format	defined	for		<PcdEntry>		elements	in	the	PCD	Sections.	Since	the
Dynamic	and	DynamicEx	access	method	PCDs	are	common	values	to	all	modules	in	the	platform,	the
values	cannot	be	overridden	for	individual	modules.

ClassName

A	Library	Class	Keyword	defined	in	DEC	files.	The	Keyword	must	also	be	present	in	the	defines	section
	LIBRARY_CLASS		entry	of	the	INF	file

3.10	[Components]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

108DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.11	[UserExtensions]	Sections
The		[UserExtensions]		sections	are	optional.

Summary
There	can	be	multiple		[UserExtension]		sections,	depending	on	the		UserID		and		Identifier		attributes	of	the
DSC	file.	An	example	section	is	listed	below.		[UserExtensions]		sections	are	for	processing	by	tools	outside
of	the	standard	tools	provided	by	EDK	II.

The	EDK	II	build	tools	will	ignore	these	sections.

Each	UserExtensions	section	must	have	a	unique	set	of		UserId	,		IdString		and		Arch		values.

The	"common"	architecture	modifier	in	a	section	tag	must	not	be	combined	with	other	architecture	type;
doing	so	will	result	in	a	build	break.

This	means	that	the	same		UserId		can	be	used	in	more	than	one	section,	provided	the		IdString		or		Arch	
values	are	different.	The	same		IdString		values	can	be	used	if	the		UserId		or		Arch		values	are	different.
The	same		UserId		and	the	same		IdString		can	be	used	if	the		Arch		values	are	different.

Prototype

<UserExtensions>			::=	"[UserExtensions"	<attrs>	"]""	<EOL>	[<statements>]

<attrs>												::=	<UserId>	<IdentifierString>	[<attr>]

<attr>													::=	"."	<arch>

<UserId>											::=	"."	<Word>

<IdentifierString>	::=	"."	{<Word>}	{<QuotedString>}

<statements>							::=	Content	is	build	tool	chain	specific.

Parameters
UserId

Words	that	contain	period	"."	must	be	encapsulated	in	double	quotation	marks.

IdString

Normalized	strings	that	contain	period	"."	or	space	characters	must	be	encapsulated	in	double
quotation	marks.	The		IdString		must	start	with	a	letter.

Example

[UserExtensions.MyOrgDotCom."1.0"]

This	content	is	processed	by	my	NoSuch	applications.

3.11	[UserExtensions]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

109DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

3.12	[DefaultStores]	Section
The		[DefaultStores]		section	is	optional	in	all	EDK	II	DSC	files.

Summary
Entries	may	appear	in	any	order.	This	section	lists	numeric	mappings	to	the	Default	Store	User	Interface
Name,	only	valid	values	from	this	list	can	be	specified	in	the	PcdsDynamicHii/PcdsDynamicExHii	section.

If	this	section	is	not	specified,	the	parsing	tools	will	assume	standard	default	be	applied	in
PcdsDynamicHii/PcdsDynamicExHii	section.

Prototype

<DefaultStore>					::=	"[DefaultStores]"	<EOL>

																{<Statement>*}

<Statement>	::=	<TS>	<Number>	<FS>	<CName>	<EOL>

Example

[DefaultStores]

		0	|	Standard								#	UEFI	Standard	default

		1	|	Manufacturing			#	UEFI	Manufacturing	default

3.12	[DefaultStores]	SectionsEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

110DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

APPENDIX	A	VARIABLES
One	of	the	core	concepts	of	this	utility	is	the	notion	of	symbols.	Use	of	symbols	follows	the	makefile
convention	of	enclosing	within	$(),	for	example		$(EDK_SOURCE)	.	As	the	parsing	utility	processes	files,	it	will
often	perform	parsing	of	variable	assignments.	These	variables	can	then	be	referenced	in	other
sections	of	the	DSC	file.	Variable	assignments	will	be	saved	internally	in	either	a	local	or	global	symbol
table.	The	local	symbol	table	is	purged	following	processing	of	individual	Platform	(DSC)	files.	Global
symbol	values	persist	throughout	execution	of	the	utility.	Local	symbol	values	take	precedent	over	global
symbols.	The	following	table	describes	the	symbols	generated	internally	by	the	utility.	They	can	be
overridden	either	on	the	command	line,	in	the	DSC	file,	or	in	individual	INF	files.	The	symbols	in	the	table
below	are	typically	global.

For	a	pure	EDK	II	build,	two	environment	variables	are	required	to	be	set	prior	to	executing	any	build,
	WORKSPACE		and	EDK_TOOLS_PATH	must	be	set.	point	to	the	Location	of	the	BaseTools	directory	tree.	When
EDK	II	Packages	are	in	directories	that	are	not	under	a	single	directory,	then	the	PACKAGES_PATH	and
EDK_TOOLS_BIN	(Windows	builds	only)	directories	must	also	be	set.

For	a	build	using	EDK	components	in	the	EDK	II	DSC	file,	the		EDK_SOURCE		directory	must	point	to	the	root	of
the	EDK	(either	a	directory	containing	an	EDK	tree	or	the	location	of	the	EdkCompatibilityPkg	directory)
tree.

Table	10	Standard	Variables

Variable
Name Description

	WORKSPACE	

Defines	the	root	directory	of	the	local	development	tree,	for	example	C:\work.	If	not
defined	as	an	environmental	variable	when	an	EDK	II	tool	is	invoked,	the	utility	will
give	an	error	message	and	exit.	If	the	development	tree	contains	sub-directories
that	contain	EDK	II	Packages,	then	this	variable	must	be	set	prior	to	running
edksetup.bat.

	EDK_TOOLS_PATH	 Defines	the	root	directory	of	the	local	EDK	II	BaseTools	directory.

	PACKAGES_PATH	 This	variable	is	not	permitted	in	EDK	II	meta-data	files.

This	variable	contains	an	ordered	list	of	directories	that	contain	EDK

II	Package	directories.	This	is	NOT	required	if	the	development	tree	(defined	by	the
WORKSPACE)	contains	all	EDK	II	Packages	used	for	development.	If	the
development	tree	contains	sub-directories	that	contain	EDK	II	Packages	(i.e.,
C:\work\edk2\MdePkg,

C:\work\edk2\MdeModulePkg,	C:\work\myplatform\MyPlatformPkg)	then	this	variable
must	list	all	directories	that	contain	EDK	II	Packages	(i.e.,
PACKAGES_PATH=C:\work\edk2;C:\work\myplatform);	this	variable	must	be	set	prior
to	running	edksetup.bat

	EDK_TOOLS_BIN	

This	variable	is	not	permitted	in	EDK	II	meta-data	files.	This	a	Windows	only	variable
that	points	to	the	EDK	II	BaseTools	binary	directory.	If	the	WORKSPACE	directory
contains	a

BaseTools\Bin\Win32	directory	and	the	directory	is	populated	with	the	build	tools,
then	this	variable	is	not	required.	If	the	binaries	are	located	in	a	different
directory,	i.e.,	C:\work\edk2-BaseTools-win32,	then	this	variable	must	be	set	prior
to	running	edksetup.bat

	EDK_SOURCE	

Defines	the	directory	of	an	original	EDK	directory	tree,	for	example
C:\EFI2.0\EdkCompatibilityPkg.	If	not	defined	as	an	environmental	variable	when	an
EDK	II	tool	is	invoked,	the	utility	will	give	an	error	message	and	exit.

	EFI_SOURCE	
Defines	the	root	directory	of	a	local	original	EDK	source	tree,	for	example
C:\EFI2.0\MyEdkDriver.

Appendix	A	VariablesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

111DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	EFI_TOOLS_PATH	 Defines	the	root	directory	containing	the	original	EDK	Tools	directory	tree,	for
example	C:\Tools.

	EFI_TOOLS_BIN	
Defines	the	directory	containing	the	original	EDK	Tools	executable	files.	Default:
	$(EFI_TOOLS_PATH)/Bin	

	PROCESSOR	
Defines	the	EDK	target	processor	for	which	the	code	is	to	be	built.	This	symbol	will
typically	be	used	only	in	EDK	INF	files,	and	is	ignored	for	pure	EDK	II	builds.

	TARGET_ARCH	
This	defines	which	of	the	supported	architectures	will	be	built	-	this	value	is	set	in
the	file:		$(WORKSPACE)/Conf/target.txt		or	it	may	be	specified	on	a	command-line.

	BUILD_DIR	
Defines	the	build	tip	directory	for	the	current	platform.	For	example,	this	may	be
	$(OUTPUT_DIR)\Platform\Nt32	.

	SOURCE_DIR	 For	a	component,	defines	the	directory	of	the	component	source	files.

	DEST_DIR	
For	a	component,	defines	the	directory	(typically	under	BUILD_DIR)	where	the
component	object	files	are	to	be	built.

	LIB_DIR	
Specifies	the	directory	where	EFI	libraries	are	deposited	after	building.	Default:
	$(BUILD_DIR)\$(TARGET)_$(TAGNAME)\$(ARCH)\LIB	

	BIN_DIR	
Specifies	the	directory	where	final	component	binaries	(.efi)	are	deposited	during
build.	Default:		$(BUILD_DIR)\$(TARGET)_$(TAGNAME)\$(ARCH)	

	FV_DIR	

Specifies	a	WORKSPACE	relative	or	absolute	directory	where	the	final	image	files
will	be	placed	at	the	conclusion	of	a	successful	build.	If	the	directory	does	not
exist,	the	tools	must	create	this	directory.	If	not	defined,	tools	must	create	an	FV
directory	underneath	the	BIN_DIR.

	DSC_FILENAME	
Name	of	the	DSC	file	as	specified	on	the	command	line.	Can	be	used	for
dependencies	in	the	makefiles.

	INF_FILENAME	
Name	of	the	INF	file	for	a	given	EDK	component	or	EDK	II	Module.	Can	be	used	for
dependencies	in	the	makefiles.

	MAKEFILE_NAME	

Name	of	the	output	makefile	for	the	platform.	Default	is	"makefile".	The	default
value	can	be	overridden	to	support	keeping	multiple	variations	of	a	makefile	in	the
same	DEST_DIR	directory.

Appendix	A	VariablesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

112DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

APPENDIX	B	SAMPLE	EDK	II	DSC	FILE
The	following	EDK	II	DSC	file	is	an	example	of	the	Nt32.dsc	showing	a	typical	"user"	maintained	version,
which	simplifies	the	structure	over	the	previous	example.

Note:	In	the	following	example,	the	backslash	"\"	character	is	used	to	show	a	line	continuation	for
readability.	Use	of	a	backslash	character	in	the	actual	DSC	file	is	not	permitted.

##	@file

#	EFI/Framework	Emulation	Platform	with	UEFI	HII	interface	supported.

#

#	The	Emulation	Platform	can	be	used	to	debug	individual	modules,	prior

#	to	creating	a	real	platform.	This	also	provides	an	example	for	how

#	an	DSC	is	created.

#

#	Copyright	(c)	2006	-	2012,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.

#	The	full	text	of	the	license	may	be	found	at:

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"

#	BASIS,	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER

#	EXPRESS	OR	IMPLIED.

#

##

##

#

#	Defines	Section	-	statements	that	will	be	processed	to	create	a

#	Makefile.

#

##

[Defines]

		PLATFORM_NAME											=	NT32

		PLATFORM_GUID											=	EB216561-961F-47EE-9EF9-CA426EF547C2

		PLATFORM_VERSION								=	0.5

		DSC_SPECIFICATION							=	0x0001001C

		OUTPUT_DIRECTORY								=	Build/NT32

		SUPPORTED_ARCHITECTURES	=	IA32

		BUILD_TARGETS											=	DEBUG|RELEASE

		SKUID_IDENTIFIER								=	DEFAULT

		FLASH_DEFINITION								=	Nt32Pkg/Nt32Pkg.fdf

		#

		#	Defines	for	default	states.	These	can	be	changed	on	the	command

		#	line.

		#	-D	FLAG=VALUE

		#

		DEFINE	SECURE_BOOT_ENABLE	=	FALSE

##

#

#	SKU	Identification	section	-	list	of	all	SKU	IDs	supported	by	this

#	Platform.

#

##

[SkuIds]

		0|DEFAULT	#	The	entry:	0|DEFAULT	is	reserved	and	always	required.

##

#

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

113DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

#	Library	Class	section	-	list	of	all	Library	Classes	needed	by	this

#	Platform.

#

##

[LibraryClasses]

		#

		#	Entry	point

		#

		PeiCoreEntryPoint|MdePkg/Library/PeiCoreEntryPoint/PeiCoreEntryPoint.inf

		PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf

		DxeCoreEntryPoint|MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf

		UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf

		UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf

		#

		#	Basic

		#

		BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

		SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationLib.inf

		PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf

		CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf

		IoLib|MdePkg/Library/BaseIoLibIntrinsic/BaseIoLibIntrinsic.inf

		PciLib|MdePkg/Library/BasePciLibCf8/BasePciLibCf8.inf

		PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf

		PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf

		CacheMaintenanceLib|MdePkg/Library/BaseCacheMaintenanceLib/BaseCacheMaintenanceLib.inf

		PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf

		PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf

		#

		#	UEFI	&	PI

		#

		UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf

		UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf

		UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf

		UefiLib|MdePkg/Library/UefiLib/UefiLib.inf

		UefiHiiServicesLib|MdeModulePkg/Library/UefiHiiServicesLib/UefiHiiServicesLib.inf

		HiiLib|MdeModulePkg/Library/UefiHiiLib/UefiHiiLib.inf

		DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

		UefiDecompressLib|IntelFrameworkModulePkg/Library/BaseUefiTianoCustomDecompressLib/BaseUefiTianoCustomDecompressLib.inf

		PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLib/PeiServicesTablePointerLib.inf

		PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf

		DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf

		DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLib.inf

		#

		#	Generic	Modules

		#

		UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf

		UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf

		NetLib|MdeModulePkg/Library/DxeNetLib/DxeNetLib.inf

		IpIoLib|MdeModulePkg/Library/DxeIpIoLib/DxeIpIoLib.inf

		UdpIoLib|MdeModulePkg/Library/DxeUdpIoLib/DxeUdpIoLib.inf

		DpcLib|MdeModulePkg/Library/DxeDpcLib/DxeDpcLib.inf

		OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookStatusCodeLibNull.inf

		GenericBdsLib|IntelFrameworkModulePkg/Library/GenericBdsLib/GenericBdsLib.inf

		SecurityManagementLib|MdeModulePkg/Library/DxeSecurityManagementLib/DxeSecurityManagementLib.inf

		TimerLib|MdePkg/Library/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf

		SerialPortLib|MdePkg/Library/BaseSerialPortLibNull/BaseSerialPortLibNull.inf

		CapsuleLib|MdeModulePkg/Library/DxeCapsuleLibNull/DxeCapsuleLibNull.inf

		#

		#	Platform

		#

		PlatformBdsLib|Nt32Pkg/Library/Nt32BdsLib/Nt32BdsLib.inf

		#

		#	Misc

		#

		DebugLib|IntelFrameworkModulePkg/Library/PeiDxeDebugLibReportStatusCode/PeiDxeDebugLibReportStatusCode.inf

		DebugPrintErrorLevelLib|MdeModulePkg/Library/DxeDebugPrintErrorLevelLib/DxeDebugPrintErrorLevelLib.inf

		PerformanceLib|MdePkg/Library/BasePerformanceLibNull/BasePerformanceLibNull.inf

		DebugAgentLib|MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf

		CpuExceptionHandlerLib|MdeModulePkg/Library/CpuExceptionHandlerLibNull/CpuExceptionHandlerLibNull.inf

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		PlatformSecureLib|Nt32Pkg/Library/PlatformSecureLib/PlatformSecureLib.inf

		IntrinsicLib|CryptoPkg/Library/IntrinsicLib/IntrinsicLib.inf

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

114DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		OpensslLib|CryptoPkg/Library/OpensslLib/OpensslLib.inf

!endif

[LibraryClasses.common.USER_DEFINED]

		DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

		PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffExtraActionLibNull.inf

		ReportStatusCodeLib|MdeModulePkg/Library/PeiReportStatusCodeLib/PeiReportStatusCodeLib.inf

		OemHookStatusCodeLib|Nt32Pkg/Library/PeiNt32OemHookStatusCodeLib/PeiNt32OemHookStatusCodeLib.inf

		MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

[LibraryClasses.common.PEIM,LibraryClasses.common.PEI_CORE]

		#

		#	PEI	phase	common

		#

		HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf

		MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf

		ReportStatusCodeLib|MdeModulePkg/Library/PeiReportStatusCodeLib/PeiReportStatusCodeLib.inf

		ExtractGuidedSectionLib|MdePkg/Library/PeiExtractGuidedSectionLib/PeiExtractGuidedSectionLib.inf

		BaseMemoryLib|MdePkg/Library/BaseMemoryLibOptPei/BaseMemoryLibOptPei.inf

		IoLib|MdePkg/Library/PeiIoLibCpuIo/PeiIoLibCpuIo.inf

		PeCoffGetEntryPointLib|Nt32Pkg/Library/Nt32PeiPeCoffGetEntryPointLib/Nt32PeiPeCoffGetEntryPointLib.inf

		PeCoffExtraActionLib|Nt32Pkg/Library/PeiNt32PeCoffExtraActionLib/PeiNt32PeCoffExtraActionLib.inf

		DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf

[LibraryClasses.common.PEI_CORE]

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookStatusCodeLibNull.inf

[LibraryClasses.common.PEIM]

		PcdLib|MdePkg/Library/PeiPcdLib/PeiPcdLib.inf

		OemHookStatusCodeLib|Nt32Pkg/Library/PeiNt32OemHookStatusCodeLib/PeiNt32OemHookStatusCodeLib.inf

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		BaseCryptLib|CryptoPkg/Library/BaseCryptLib/PeiCryptLib.inf

!endif

[LibraryClasses.common]

		#

		#	DXE	phase	common

		#

		BaseMemoryLib|MdePkg/Library/BaseMemoryLibOptDxe/BaseMemoryLibOptDxe.inf

		HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf

		PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf

		ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStatusCodeLib.inf

		OemHookStatusCodeLib|Nt32Pkg/Library/DxeNt32OemHookStatusCodeLib/DxeNt32OemHookStatusCodeLib.inf

		PeCoffExtraActionLib|Nt32Pkg/Library/DxeNt32PeCoffExtraActionLib/DxeNt32PeCoffExtraActionLib.inf

		ExtractGuidedSectionLib|MdePkg/Library/DxeExtractGuidedSectionLib/DxeExtractGuidedSectionLib.inf

		WinNtLib|Nt32Pkg/Library/DxeWinNtLib/DxeWinNtLib.inf

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		BaseCryptLib|CryptoPkg/Library/BaseCryptLib/BaseCryptLib.inf

!endif

[LibraryClasses.common.DXE_CORE]

		HobLib|MdePkg/Library/DxeCoreHobLib/DxeCoreHobLib.inf

		MemoryAllocationLib|MdeModulePkg/Library/DxeCoreMemoryAllocationLib/DxeCoreMemoryAllocationLib.inf

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

[LibraryClasses.common.DXE_SMM_DRIVER]

		DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

[LibraryClasses.common.UEFI_DRIVER]

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

[LibraryClasses.common.UEFI_APPLICATION]	PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		PrintLib|MdeModulePkg/Library/DxePrintLibPrint2Protocol/DxePrintLibPrint2Protocol.inf

[LibraryClasses.common.DXE_RUNTIME_DRIVER]

		#

		#	Runtime

		#

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

115DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		BaseCryptLib|CryptoPkg/Library/BaseCryptLib/RuntimeCryptLib.inf

!endif

##

#

#	Pcd	Section	-	list	of	all	EDK	II	PCD	Entries	defined	by	this	Platform

#

##

[PcdsFeatureFlag]

		gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseSerial|FALSE

		gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|FALSE

		gEfiMdeModulePkgTokenSpaceGuid.PcdPeiCoreImageLoaderSearchTeSectionFirst|FALSE

		gEfiMdeModulePkgTokenSpaceGuid.PcdVariableCollectStatistics|TRUE

[PcdsFixedAtBuild]

		gEfiMdeModulePkgTokenSpaceGuid.PcdMaxSizeNonPopulateCapsule|0x0

		gEfiMdeModulePkgTokenSpaceGuid.PcdMaxSizePopulateCapsule|0x0

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000040

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFirmwareFdSize|0x2a0000

		gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x1f

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFirmwareVolume|L"..FvNt32.fd"

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFirmwareBlockSize|0x10000

		gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x0f

		gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|	FALSE

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x2000

!endif

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		#	override	the	default	values	from	SecurityPkg	to	ensure	images	from

		#	all	sources	are	verified	in	secure	boot

		gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x05

		gEfiSecurityPkgTokenSpaceGuid.PcdFixedMediaImageVerificationPolicy|0x05

		gEfiSecurityPkgTokenSpaceGuid.PcdRemovableMediaImageVerificationPolicy|0x05

!endif

##

#

#	Pcd	Dynamic	Section	-	list	of	all	EDK	II	PCD	Entries	defined	by	this	Platform

#

##

[PcdsDynamicDefault.common.DEFAULT]

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtSerialPort|L"COM1!COM2"|VOID*|20

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFileSystem|L".!.....EdkShellBinPkgBinIa32Apps"|VOID*|106

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtGop|L"UGA	Window	1!UGA	Window	2"|VOID*|52

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtConsole|L"Bus	Driver	Console	Window"|VOID*|52

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtVirtualDisk|L"FW;40960;512"|VOID*|26

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtMemorySize|L"64!64"|VOID*|12

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtPhysicalDisk|L"a:RW;2880;512!d:RO;307200;2048!j:RW;262144;512"|VOID*|100

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtUga|L"UGA	Window	1!UGA	Window	2"|VOID*|52

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase|0

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase|0

		gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableBase|0

[PcdsDynamicHii.common.DEFAULT]

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutColumn|L"SetupConsoleConfig"|gEfiGlobalVariableGuid|0x0|80

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdSetupConOutRow|L"SetupConsoleConfig"|gEfiGlobalVariableGuid|0x4|25

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|L"Timeout"|gEfiGlobalVariableGuid|0x0|10

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdHardwareErrorRecordLevel|L"HwErrRecSupport"|gEfiGlobalVariableGuid|0x0|1

##

#

#	Components	Section	-	list	of	the	modules	and	components	that	will	be

#	processed	by	compilation	tools	and	the	EDK	II

#	tools	to	generate	PE32/PE32+/Coff	image	files.

#

#	Note:	The	EDK	II	DSC	file	is	not	used	to	specify	how	compiled	binary

#	images	get	placed	into	firmware	volume	images.	This	section	is

#	just	a	list	of	modules	to	compile	from	source	into

#	UEFI-compliant	binaries.

#	It	is	the	FDF	file	that	contains	information	on	combining	binary

#	files	into	firmware	volume	images,	whose	concept	is	beyond	UEFI

#	and	is	described	in	PI	specification.

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

116DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

#	Binary	modules	do	not	need	to	be	listed	in	this	section,	as	they

#	should	be	specified	in	the	FDF	file.	For	example:	Shell	binary

#	(Shell_Full.efi),	FAT	binary	(Fat.efi),	Logo	(Logo.bmp),	and	etc.

#	There	may	also	be	modules	listed	in	this	section	that	are	not

#	required	in	the	FDF	file,

#	When	a	module	listed	here	is	excluded	from	FDF	file,	then

#	UEFI-compliant	binary	will	be	generated	for	it,	but	the	binary

#	will	not	be	put	into	any	firmware	volume.

#

##

[Components.IA32]

		##

		#	SEC	Phase	modules

		##

		Nt32Pkg/Sec/SecMain.inf

		##

		#	PEI	Phase	modules

		##

		MdeModulePkg/Core/Pei/PeiMain.inf

		MdeModulePkg/Universal/PCD/Pei/Pcd.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		}

		MdeModulePkg/Universal/ReportStatusCodeRouter/Pei/

		ReportStatusCodeRouterPei.inf

		MdeModulePkg/Universal/StatusCodeHandler/Pei/StatusCodeHandlerPei.inf

		Nt32Pkg/WinNtOemHookStatusCodeHandlerPei/

		WinNtOemHookStatusCodeHandlerPei.inf

		Nt32Pkg/BootModePei/BootModePei.inf

		Nt32Pkg/StallPei/StallPei.inf

		Nt32Pkg/WinNtFlashMapPei/WinNtFlashMapPei.inf

!if	$(SECURE_BOOT_ENABLE)	==	TRUE

		SecurityPkg/VariableAuthenticated/Pei/VariablePei.inf

!else

		MdeModulePkg/Universal/Variable/Pei/VariablePei.inf

!endif

		Nt32Pkg/WinNtAutoScanPei/WinNtAutoScanPei.inf

		Nt32Pkg/WinNtFirmwareVolumePei/WinNtFirmwareVolumePei.inf

		Nt32Pkg/WinNtThunkPPIToProtocolPei/WinNtThunkPPIToProtocolPei.inf

		MdeModulePkg/Core/DxeIplPeim/DxeIpl.inf

		##

		#	DXE	Phase	modules

		##

		MdeModulePkg/Core/Dxe/DxeMain.inf	{

				<LibraryClasses>

						NULL|	MdeModulePkg/Library/DxeCrc32GuidedSectionExtractLib/

						DxeCrc32GuidedSectionExtractLib.inf

				<BuildOptions>

						*_*_IA32_CC_FLAGS	=

		}

		MdeModulePkg/Universal/PCD/Dxe/Pcd.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		}

		Nt32Pkg/MetronomeDxe/MetronomeDxe.inf

		Nt32Pkg/RealTimeClockRuntimeDxe/RealTimeClockRuntimeDxe.inf

		Nt32Pkg/ResetRuntimeDxe/ResetRuntimeDxe.inf

		MdeModulePkg/Core/RuntimeDxe/RuntimeDxe.inf

		Nt32Pkg/FvbServicesRuntimeDxe/FvbServicesRuntimeDxe.inf

		MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf	{

				<LibraryClasses>

						!if	$	(SECURE_BOOT_ENABLE)	==	TRUE

								NULL|SecurityPkg/Library/DxeImageVerificationLib	/

								DxeImageVerificationLib.inf

						!endif

		}

		MdeModulePkg/Universal/SmbiosDxe/SmbiosDxe.inf

		MdeModulePkg/Universal/EbcDxe/EbcDxe.inf

		MdeModulePkg/Universal/MemoryTest/NullMemoryTestDxe/NullMemoryTestDxe.inf

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

117DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		Nt32Pkg/WinNtThunkDxe/WinNtThunkDxe.inf

		Nt32Pkg/CpuRuntimeDxe/CpuRuntimeDxe.inf

		MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteDxe.inf

		Nt32Pkg/MiscSubClassPlatformDxe/MiscSubClassPlatformDxe.inf

		Nt32Pkg/TimerDxe/TimerDxe.inf

		MdeModulePkg/Universal/ReportStatusCodeRouter/RuntimeDxe/ReportStatusCodeRouterRuntimeDxe.inf

		MdeModulePkg/Universal/StatusCodeHandler/RuntimeDxe/StatusCodeHandlerRuntimeDxe.inf

		Nt32Pkg/WinNtOemHookStatusCodeHandlerDxe/WinNtOemHookStatusCodeHandlerDxe.inf

!if	$	(SECURE_BOOT_ENABLE)	==	TRUE

		SecurityPkg/VariableAuthenticated/RuntimeDxe/VariableRuntimeDxe.inf

		SecurityPkg/VariableAuthenticated/SecureBootConfigDxe/	SecureBootConfigDxe.inf

!else

		MdeModulePkg/Universal/Variable/RuntimeDxe/VariableRuntimeDxe.inf

!endif

		MdeModulePkg/Universal/WatchdogTimerDxe/WatchdogTimer.inf

		MdeModulePkg/Universal/MonotonicCounterRuntimeDxe/MonotonicCounterRuntimeDxe.inf

		MdeModulePkg/Universal/CapsuleRuntimeDxe/CapsuleRuntimeDxe.inf

		MdeModulePkg/Universal/Console/ConPlatformDxe/ConPlatformDxe.inf

		MdeModulePkg/Universal/Console/ConSplitterDxe/ConSplitterDxe.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		}

		MdeModulePkg/Universal/Console/GraphicsConsoleDxe	/

		GraphicsConsoleDxe.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		}

		MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		}

		MdeModulePkg/Universal/DevicePathDxe/DevicePathDxe.inf

		MdeModulePkg/Universal/Disk/DiskIoDxe/DiskIoDxe.inf

		MdeModulePkg/Universal/Disk/PartitionDxe/PartitionDxe.inf

		MdeModulePkg/Universal/Disk/UnicodeCollation/EnglishDxe/EnglishDxe.inf

		MdeModulePkg/Bus/Pci/PciBusDxe/PciBusDxe.inf

		MdeModulePkg/Bus/Scsi/ScsiBusDxe/ScsiBusDxe.inf	##	This	driver	follows	UEFI

		##	specification	definition

		MdeModulePkg/Bus/Scsi/ScsiDiskDxe/ScsiDiskDxe.inf	##	This	driver	follows	UEFI

		##	specification	definition

		IntelFrameworkModulePkg/Bus/Pci/IdeBusDxe/IdeBusDxe.inf

		Nt32Pkg/WinNtBusDriverDxe/WinNtBusDriverDxe.inf	{

				<LibraryClasses>

						PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		}

		Nt32Pkg/WinNtBlockIoDxe/WinNtBlockIoDxe.inf

		Nt32Pkg/WinNtSerialIoDxe/WinNtSerialIoDxe.inf

		Nt32Pkg/WinNtGopDxe/WinNtGopDxe.inf

		Nt32Pkg/WinNtSimpleFileSystemDxe/WinNtSimpleFileSystemDxe.inf

		MdeModulePkg/Application/HelloWorld/HelloWorld.inf

		#

		#	Network	stack	drivers

		#	To	test	network	drivers,	need	network	Io	driver(SnpNt32Io.dll),	please	refer

		#	to	NETWORK-IO	Subproject.

		#

		MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

		MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf

		MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf

		MdeModulePkg/Universal/Network/Ip4ConfigDxe/Ip4ConfigDxe.inf

		MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf

		MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

		MdeModulePkg/Universal/Network/VlanConfigDxe/VlanConfigDxe.inf

		MdeModulePkg/Universal/Network/Mtftp4Dxe/Mtftp4Dxe.inf

		MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf

		MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf

		MdeModulePkg/Universal/Network/UefiPxeBcDxe/UefiPxeBcDxe.inf

		Nt32Pkg/SnpNt32Dxe/SnpNt32Dxe.inf

		MdeModulePkg/Universal/Network/IScsiDxe/IScsiDxe.inf

		IntelFrameworkModulePkg/Universal/BdsDxe/BdsDxe.inf

		MdeModulePkg/Universal/HiiDatabaseDxe/HiiDatabaseDxe.inf

		MdeModulePkg/Universal/SetupBrowserDxe/SetupBrowserDxe.inf

		MdeModulePkg/Universal/PrintDxe/PrintDxe.inf

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

118DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

		MdeModulePkg/Universal/DriverSampleDxe/DriverSampleDxe.inf	{

				<LibraryClasses>

				PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		}

		MdeModulePkg/Application/VariableInfo/VariableInfo.inf

		MdeModulePkg/Universal/PlatformDriOverrideDxe/PlatformDriOverrideDxe.inf

##	#

#	BuildOptions	Section	-	Define	the	module	specific	tool	chain	flags	that

#	should	be	used	as	the	default	flags	for	a

#	module.	These	flags	are	appended	to	any

#	standard	flags	that	are	defined	by	the	build

#	process.	They	can	be	applied	for	any	modules	or

#	only	those	modules	with	the	specific	module

#	style	(EDK	or	EDKII)	specified	in	[Components]	#	section.

#

##

[BuildOptions]

		DEBUG_*_IA32_DLINK_FLAGS	=	/BASE:0x10000	/ALIGN:4096	/FILEALIGN:4096	\

																													/EXPORT:InitializeDriver=$(IMAGE_ENTRY_POINT)	\

																													/SUBSYSTEM:CONSOLE

		RELEASE_*_IA32_DLINK_FLAGS	=	/ALIGN:4096	/FILEALIGN:4096

		*_*_IA32_CC_FLAGS	=	/D	EFI_SPECIFICATION_VERSION	=	0x0002000A	\

																						/D	TIANO_RELEASE_VERSION=0x00080006

		#

		#	NOTE:

		#	The	following	[Libraries.IA32]	section	is	for	building	EDK	module	under

		#	the	EDKII	tool	chain.

		#	If	you	want	build	EDK	module	for	Nt32	platform,	please	uncomment

		#	[Libraries.IA32]	section	and	libraries	used	by	that	EDK	module.

		#	Currently,	Nt32	platform	do	not	has	any	EDK	style	module

		#

		#[Libraries.IA32]

		#

		#	Libraries	common	to	PEI	and	DXE

		#

		#	EdkCompatibilityPkg/Foundation/Efi/Guid/EfiGuidLib.inf

		#	EdkCompatibilityPkg/Foundation/Framework/Guid/EdkFrameworkGuidLib.inf

		#	EdkCompatibilityPkg/Foundation/Guid/EdkGuidLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/EfiCommonLib/EfiCommonLib.inf

		#	EdkCompatibilityPkg/Foundation/Cpu/Pentium/CpuIA32Lib/CpuIA32Lib.inf

		#	EdkCompatibilityPkg/Foundation/Cpu/Itanium/CpuIa64Lib/CpuIA64Lib.inf

		#	EdkCompatibilityPkg/Foundation/Library/CustomizedDecompress/CustomizedDecompress.inf

		#	EdkCompatibilityPkg/Foundation/Library/CompilerStub/CompilerStubLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/Hob/HobLib.inf

		#

		#	PEI	libraries

		#

		#	EdkCompatibilityPkg/Foundation/Framework/Ppi/EdkFrameworkPpiLib.inf

		#	EdkCompatibilityPkg/Foundation/Ppi/EdkPpiLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Pei/PeiLib/PeiLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Pei/Hob/PeiHobLib.inf

		#

		#	DXE	libraries

		#

		#	EdkCompatibilityPkg/Foundation/Core/Dxe/ArchProtocol/ArchProtocolLib.inf

		#	EdkCompatibilityPkg/Foundation/Efi/Protocol/EfiProtocolLib.inf

		#	EdkCompatibilityPkg/Foundation/Framework/Protocol/EdkFrameworkProtocolLib.inf

		#	EdkCompatibilityPkg/Foundation/Protocol/EdkProtocolLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/EfiDriverLib/EfiDriverLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/RuntimeDxe/EfiRuntimeLib/	EfiRuntimeLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/Graphics/Graphics.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/EfiIfrSupportLib/EfiIfrSupportLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/Print/PrintLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/EfiScriptLib/EfiScriptLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/EfiUiLib/EfiUiLib.inf

		#

		#	Print/Graphics	Library	consume	SetupBrowser	Print	Protocol

		#

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/PrintLite/PrintLib.inf

		#	EdkCompatibilityPkg/Foundation/Library/Dxe/GraphicsLite/Graphics.inf

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

119DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

Appendix	B	Sample	EDK	II	DSC	FileEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

120DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

APPENDIX	C	MODULE	TYPES
Table	11	EDK	II	Module	Types

MODULE_TYPE
Supported
Architecture

Types
Description

BASE Any
Modules	or	Libraries	can	be	ported	to	any	execution
environment.	This	module	type	is	intended	to	be	used
by	silicon	module	developers	to	produce	source	code
that	is	not	tied	to	any	specific	execution	environment.

SEC Any
Modules	of	this	type	are	designed	to	start	execution	at
the	reset	vector	of	a	CPU.	They	are	responsible	for
preparing	the	platform	for	the	PEI	phase.

PEI_CORE Any This	module	type	is	used	by	PEI	Core	implementations
that	are	compliant	with	the	PI	Specification.

PEIM Any This	module	type	is	used	by	PEIMs	that	are	compliant
with	the	PI	Specification.

DXE_CORE Any This	module	type	is	used	by	DXE	Core	implementations
that	are	compliant	with	the	PI	Specification.

DXE_DRIVER Any This	module	type	is	used	by	DXE	Drivers	that	are
compliant	with	the	PI	Specification.

DXE_RUNTIME_DRIVER Any
This	module	type	is	used	by	DXE	Drivers	that	are
compliant	to	the	PI	Specification.	These	modules
execute	in	both	boot	services	and	runtime	services
environments.

DXE_SAL_DRIVER IPF

This	module	type	is	used	by	DXE	Drivers	that	can	be
called	in	physical	mode	before	SetVirtualAddressMap()
is	called	and	either	physical	mode	or	virtual	mode	after
SetVirtualAddressMap()	has	been	called.	This	module
type	is	only	available	for	IPF	processor	types.

DXE_SMM_DRIVER IA32,	X64 This	module	type	is	used	by	DXE	Drivers	that	are	loaded
into	SMRAM.

SMM_CORE Any This	is	the	SMM	core.

UEFI_DRIVER Any This	module	type	is	used	by	UEFI	Drivers	that	are
compliant	with	the	EFI	1.10	and	UEFI	2.0

specifications.	These	modules	provide	services	in	the
boot	services	execution	environment.	UEFI	Drivers	that
return	EFI_SUCCESS	are	not	unloaded	from	memory.
UEFI	Drivers	that	return	an	error	are	unloaded	from
memory.

UEFI_APPLICATION Any
This	module	type	is	used	by	UEFI	Applications	that	are
compliant	with	the	EFI	1.10	and	EFI	2.0	specifications.
UEFI	Applications	are	always	unloaded	when	they	exit.

Appendix	C	Module	TypesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

121DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

APPENDIX	D	VPD	DATA	FILES
This	chapter	provides	the	format	for	intermediate	data	files	required	for	VPD	sections	that	depend	on
external	tools.	The	notation	in	this	appendix	uses	the	"Common	Definitions"	found	in	chapter	3.2.1.

Appendix	D	Vpd	Data	FilesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

122DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

D.1	EDK	II	Build	System	Output	File	Format
The	output	file	generated	by	the	EDK	II	build	system	(if	a		VPD_TOOL_GUID		entry	appears	in	the		[Defines]	
section	of	the	DSC	file)	is	a	text	file.

Summary
The	file	is	generated	by	the	EDK	II	build	system	to	be	consumed	by	the	tool,	specified	by	GUID	in	the
	Conf/tools_def.txt		file.	The	file	is	generated	in	the	Platform	FV	directory	using	the	GUID	value	of	the
	VPD_TOOL_GUID		for	the	filename.	This	is	a	registry	format	GUID.

Prototype

<GUID.txt>							::=	<AutoGenHeading>	<PcdEntry>*

<PcdEntry>							::=	<PcdName>	<FS>	<Offset>	<FS>	<SizeValue>	<EOL>

<Offset>									::=	{<HexNumber>}	{"*"}

<SizeValue>						::=	if	(pcddatumtype	==	"BOOLEAN"):	{<one>}	{"*"}	{""}	"|"

																					{"0x0"}	{"0x1"}	elif	(pcddatumtype	==	"UINT8"):	{<one>}

																					{"*"}	{""}	"|"	<UINT8z>	elif	(pcddatumtype	==	"UINT16"):

																					{<two>}	{"*"}	{""}	"|"	{<UINT16z>	elif	(pcddatumtype	==

																					"UINT32"):	{<four>}	{"*"}	{""}	"|"	{<UINT32z>	elif

																					(pcddatumtype	==	"UINT64"):	{<eight>}	{"*"}	{""}	"|"

																					<UINT64z>	else:

																					{<NumValUint32>}	{"*"}	{""}	"|"	<CArray>

<one>												::=	{"1"}	{"0x1"}	{"0x01"}

<two>												::=	{"2"}	{"0x2"}	{"0x02"}

<four>											::=	{"4"}	{"0x4"}	{"0x04"}

<eight>										::=	{"8"}	{"0x8"}	{"0x08"}

<CArray>									::=	"{"	<Byte>	[","	[<SP>]	<Byte>]*	"}"

<Byte>											::=	"0x"	<Hex>	[<Hex>]

<Hex>												::=	{<Num>}	{"a"}	{"A"}	{"b"}	{"B"}	{"c"}	{"C"}	{"d"}

																					{"D"}	{"e"}	{"E"}	{"f"}	{"F"}

<Num>												::=	{"0"}	{"1"}	{"2"}	{"3"}	{"4"}	{"5"}	{"6"}	{"7"}	{"8"}

																					{"9"}

<SP>													::=	0x020

<AutoGenHeading>	::=	"##	@file"	<EOL>	"#"	<EOL>

																					"#	THIS	IS	AUTO-GENERATED	FILE	BY	BUILD	TOOLS"

																					"	AND	PLEASE	DO	NOT	MAKE	MODIFICATION."	<EOL>

																					"#"	<EOL>

																					"#	This	file	lists	all	VPD	informations	for	a"

																					"	platform	collected	by	build.exe."	<EOL>

																					"#"	<EOL>

																					"#	Copyright	(c)	2010,	Intel	Corporation.	All"

																					"	rights	reserved.
"

																					Vpd	Data	Files

																					"#	This	program	and	the	accompanying	materials"

																					"#	are	licensed	and	made	available	under	the"	"	terms	and

																					conditions	of	the	BSD	License"

																					"#	which	accompanies	this	distribution.	The"

																					"	full	text	of	the	license	may	be	found	at"

																					"#	"

																					"http://opensource.org/licenses/bsd-license.php"

																					<EOL>	"#"	<EOL>

																					"#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD"

																					"	LICENSE	ON	AN	\"AS	IS\"	BASIS,"

																					"#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY"

																					"	KIND,	EITHER	EXPRESS	OR	IMPLIED."

																					"#"	<EOL>

Example

##	@file

D.1	EDK	II	Build	System	Output	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

123DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

#

#	THIS	IS	AUTO-GENERATED	FILE	BY	BUILD	TOOLS	AND	PLEASE	DO	NOT	MAKE	MODIFICATION.

#

#	This	file	lists	all	VPD	informations	for	a	platform	collected	by	build.exe.

#

#	Copyright	(c)	2010,	Intel	Corporation.	All	rights	reserved.

#	This	program	and	the	accompanying	materials

#	are	licensed	and	made	available	under	the	terms	and	conditions	of	the	BSD	License

#	which	accompanies	this	distribution.	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

#

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoHorizontalResolution|*|4|800

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoVerticalResolution|*|4|600

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutRow|*|4|25

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutColumn|*|4|80

D.1	EDK	II	Build	System	Output	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

124DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

D.2	Vpd	Info	File	Format
The	Vpd	Info	file	contains	an	ordered	list	of	the	VPD	PCDs,	replacing	any	wildcard	character	values	that
may	appear	in	the	DSC	file,	with	the	actual	computed	(by	the	external	tool	-	named	by	GUID	in	the
	Conf/tools_def.txt		file)	values.	The	file	is	named	by	the	GUID	value	of	the	tool	named	by	GUID	and	uses	a
".map"	extension.	It	is	generated	in	the	platform's	FV	directory.

Summary
This	file	is	used	by	the	AutoGen	functions	in	the	EDK	II	build	system	to	generate	the	PCD	database	used
for	Dynamic	an	DynamicEx	PCDs.	Blank	lines	and	lines	that	start	with	the	hash	"#"	character	(used	for
comments)	are	skipped	when	processing	this	file.	Each	comment	must	appear	on	its	own	line	or	it	can
be	appended	after	an	entry.	Line	extensions	are	not	permitted.

Prototype

<VpdInfoFile>			::=	<PcdStatements>

<PcdStatements>	::=	<PcdName>	<FS>	<Offset>	<FS>	<SizeValue>	<EOL>

<Offset>								::=	<HexNumber>

<SizeValue>					::=	if	(pcddatumtype	==	"BOOLEAN"):	"1"	"|"	{"0x0"}	{"0x1"}

																				elif	(pcddatumtype	==	"UINT8"):

																				"1"	"|"	<UINT8z>	elif	(pcddatumtype	==	"UINT16"):

																				"2"	"|"	{<UINT16z>	elif	(pcddatumtype	==	"UINT32"):

																				"4"	"|"	{<UINT32z>	elif	(pcddatumtype	==	"UINT64"):

																				"8"	"|"	<UINT64z>	else:

																				<NumValUint32>	"|"	<CArray>

Example

##	@file

#

#	THIS	IS	AUTO-GENERATED	FILE	BY	BPDG	TOOLS	AND	PLEASE	DO	NOT	MAKE	MODIFICATION.

#

#	This	file	lists	all	VPD	informations	for	a	platform	fixed/adjusted	by	BPDG	tool.

#

#	Copyright	(c)	2010,	Intel	Corporation.	All	rights	reserved.

#	This	program	and	the	accompanying	materials

#	are	licensed	and	made	available	under	the	terms	and	conditions	of	the	BSD	License

#	which	accompanies	this	distribution.	The	full	text	of	the	license	may	be	found	at

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

#

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoHorizontalResolution|0x0|4|800

gEfiMdeModulePkgTokenSpaceGuid.PcdVideoVerticalResolution|0x4|4|600

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutRow|0x8|4|25

gEfiMdeModulePkgTokenSpaceGuid.PcdConOutColumn|0xc|4|80

D.2	Vpd	Info	File	FormatEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

125DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

TABLE	9	HII	ATTRIBUTES

Table	9	HII	AttributesEDK	II	Platform	Description	(DSC)	File	Specification[DRAFT]

126DRAFT	FOR	REVIEW	[12/01/2020	04:56:55]

	EDK II Platform Description (DSC) File Specification
	1 Introduction
	1.1 Overview
	1.2 Terms
	1.3 Related Information
	1.4 Conventions Used in this Document

	2 DSC Overview
	2.1 Processing Overview
	2.2 Build Description File Format
	2.3 [Defines] Section Processing
	2.4 [BuildOptions] Section
	2.5 [SkuIds] Section Processing
	2.6 [LibraryClasses] Section Processing
	2.7 PCD Section Processing
	2.8 PCD Sections
	2.9 PCD Database
	2.10 [Components] Section Processing
	2.11 [UserExtensions] Section
	2.12 [DefaultStores] Section

	3 EDK II DSC File Format
	3.1 Building multiple architectures
	3.2 General Rules
	3.3 Platform DSC Definition
	3.4 Header Section
	3.5 [Defines] Section
	3.6 [BuildOptions] Sections
	3.7 [SkuIds] Section
	3.8 [LibraryClasses] Sections
	3.9 PCD Sections
	3.10 [Components] Sections
	3.11 [UserExtensions] Sections
	3.12 [DefaultStores] Sections

	Appendix A Variables
	Appendix B Sample EDK II DSC File
	Appendix C Module Types
	Appendix D Vpd Data Files
	D.1 EDK II Build System Output File Format
	D.2 Vpd Info File Format
	Table 9 HII Attributes

