

TABLE	OF	CONTENTS
EDK	II	Flash	Description	(FDF)	File	Specification

1	Introduction

1.1	Overview

1.2	Terms

1.3	Related	Information

1.4	Target	Audience

1.5	Conventions	Used	in	this	Document

2	FDF	Design	Discussion

2.1	Processing	Overview

2.2	Flash	Description	File	Format

2.3	[Defines]	Section

2.4	[FD]	Sections

2.5	[FV]	Sections

2.6	[Capsule]	Sections

2.7	[VTF]	Sections

2.8	[Rule]	Sections

2.9	[OptionRom]	Sections

3	EDK	II	FDF	File	Format

3.1	General	Rules

3.2	FDF	Definition

3.3	Header	Section

3.4	[Defines]	Section

3.5	[FD]	Sections

3.6	[FV]	Sections

3.7	[Capsule]	Sections

3.8	[FmpPayload]	Sections

3.9	[Rule]	Sections

3.10	[VTF]	Section

3.11	PCI	OptionRom	Section

Appendix	A	Nt32Pkg	Flash	Description	File

Appendix	B	Common	Error	Messages

B.1	[FD]	Syntax	Errors:

B.2	[FV]	Syntax	Errors:

B.3	[CAPSULE]	Syntax	Errors:

B.4	[Rule]	Syntax	Errors:

Appendix	C	Reports

Tables

Table	1	EDK	Build	Infrastructure	Support	Matrix

Table	2	Well-known	Macro	Statements

EDK	II	Flash	Description	(FDF)	File	Specification

2Revision	1.28.01

Table	3	Using	System	Environment	Variable

Table	4	Reserved	[Rule]	Section	Macro	Strings

Table	5	Operator	Precedence	and	Supported	Operands

Figures

Figure	1	EDK	II	Build	Data	Flow

Figure	2	EDK	II	Create	Image	Flow

Examples

Example	(EDK	II	FDF)

EDK	II	Flash	Description	(FDF)	File	Specification

3Revision	1.28.01

EDK	II	Flash	Description	(FDF)	File	Specification
Revision	1.28.01

12/01/2020	05:19:01

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2006-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. December
2007

1.1 Updated	based	on	errata August
2008

1.2 Updated	based	on	enhancement	requests June	2009

1.21 Updated	based	on	enhancement	requests	and	errata March
2010

Added	support	for	SMM_CORE

Added	support	for	CAPSULE_FLAGS_INITIATE_RESET

Added	Block	Statements	to	all	Capsule	sections

Added	"Auto"	keyword	to	FFS	alignment

Rule	processing	for	file	type	lists	is	alphabetical,	i.e.,	files	are	added	in
alphabetical	order

HSD	203863	Macro	Definitions	in	DSC	file	are	now	global	to	both	DSC
and	FDF	files

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

4Revision	1.28.01

PCD	Values	may	be	constructed	using	C-style	expressions	provided	the
result	of	the	expression	matches	the	datum	type	of	the	PCD

FeatureFlagExpression	is	now	defined	as	a	C-style	expression	using	C
relational,	equality	and	logical	numeric	and	bitwise	operators	and/or
arithmetic

and	bitwise	operators	that	evaluate	to	a	value	that	matches	the	Datum
Type	of	the	PCD.	Precedence	and	associativity	follow	C	standards

1.22 Grammatical	and	formatting	editing May	2010

1.22	w/ Updated	to	match	the	implementation	at	the	time	of	the	UDK2010	SR1
release:

December
2011

Errata	A Updated	to	support	UEFI	version	2.3.1	and	updated	spec	release	dates
in	Introduction

Clarify	UEFI's	PI	Distribution	Package	Specification

Standardize	Common	data	definitions	for	all	specifications

Added	NOTE	in	3.2	saying	the	sections	must	appear	in	the	order	listed
above.

Spelling	and	punctuation	fixes

Do	not	require	the	FDF_SPECIFICATION	to	be	updated	if	that	is	the	only
thing	that	changes.

Removed	duplicate	content	and	added	the	scoping	rules	for	Macros,
clarified	MACRO	Summary

Added	statement	to	allow	specifying	an	FD	in	a	Capsule	as	well	as	to
allow	any	file	in	a	Capsule

Removed	references	to	system	environment	variables	in	the	Macros
section

Clarify	that	C	data	arrays	must	be	byte	arrays	for	PCD	value	fields;
allowing	C	format	GUID	structures	as	well.

Updated	conditional	rules	in	2.2.8	for	how	to	use	macro	and	PCDs;
updated	PCD	usage	in	conditional	statements

Add	clarification	to	require	a	comparison	operator	for	string	tokens	(no
atomic	string)	in	expressions	for	conditional	directives

Updated	expression	descriptions

Allow	a	PCD's	value	to	be	used	in	other	sections,	not	just	the	section	it
was	defined	in

Added	table	of	valid	environment	variables	that	can	be	used	in	this	file;
put	in	table	of	System	Environment	variables	and	the	EDK	II	Global
macro	values.

Updated	how	macros	can	be	used	in	2.2.6;	updated	where	macros	are
evaluated

Provide	rules	for	how	macros	can	be	used	in	different	BuildOptions
sections

Make	sure	that	macros	are	not	restricted	to	only	directories

Prohibit	macros	in	the	filename	specified	in	!include	statements

Updated	2.3.3	and	2.4.3	to	allow	macro	and	expression	for	value	in	a
set	statement

Added		<Filename>		to	Macro	values.

Clarify	that	only	a	limited	number	of	system	environment	variables,	not

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

5Revision	1.28.01

macros	can	be	used	in	the	!include	statement

Clarify	the	rules	for	finding	the	!include	files

Clarify	how	macros	can	be	shared	between	sections

Add	statement	about	not	expanding	macros	that	are	in	a	double
quoted	string.

Update	macro	usages	in	conditional	directive	statements

Put	in	rules	for	combining	sections	and	where	macros	can	be	inherited

1.22	w/ Updates: December
2011

Errata	A Updated	OptionROM	section	for	COMPRESS	to	PCI_COMPRESS,	matching
the	INF	spec.

(Cont.) Removed	CREATE_FILE	from	all	FDF	sections	that	had	it

Add	FvBaseAddress	attribute	in	[FV]	section

Added	BCD	Hex	choice	for	COMP_VER	in	VTF	section

Changed	#elif	to	#elseif	in	3.2.3	to	match	implementation

Removed	duplicate	definition	of	true	in	3.2.3

Added	EBNF	for		<Extension>	

Allow	DATA	section	to	contain	a	GUID	value

Add	reserved	keyword,	BINARY	as	Rule	name,	updated	rule	override
information	for	binary	modules

Clarify	that	the	VTF	COMP_VER	value	is	stored	in	BCD	using	1	byte	for
major	and	one	byte	for	the	minor	number,	yielding	a	maximum	value
99.99

Removed	support	for	variable	block	size	in	the	[FD]	section	-	not
currently	supported	by	build	tools

Removed	paragraph	about	build	options	in	section	2.2.6

Updated	priority	list;	described	precedence	of	the	SET	statements
overriding	previous	definitions;	removing	set	scoping	statements

Update	EBNF	for	conditionals	and	removed

	<SectionStatements>		in	EBNF

Remove	the	word	"should"	and	replace	it	with	other	text	that	means
"recommended,	but	not	required",	replaced	remaining	instances	of
should	with	either	must	or	will

Updated	2.2.8	to	include	text	to	describe	examples

Added	2.2.9	section	which	includes	expression	table	and	text

Updated	2.2.10	to	state	that	macros	are	evaluated	when	used,	not
when	entered

Added	the	"IN"	operator	as	an	Equality	Operator	-	added	description
and	restriction	of	it's	usage	using

	<MemberExpression>	

Define	how	EDK_GLOBAL	values	can	be	used,	but	not	defined	in	the	FDF
file

Add	text	regarding	the	FvForceRebase	flag

Removed	PART_NAME	from	[Defines]	section,	as	it	is	not	supported	by

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

6Revision	1.28.01

current	tools	and	none	of	the	FDF	files	have	the	[Defines]	section

Removed	the	GuidCName	from		<NamedGuid>		as	this	is	not	supported	by
tools	at	this	time

1.22	w/ Updates: June	2012

Errata	B Section	1.3,	Updated	UEFI	and	PI	specifications	to	reflect	Errata

Section	2.2.6,	Provide	clarification	on	MACRO	values

Section	3.8,	Remove	undocumented	tags	that	begin	with	"SEC_"	that
are	used	internally	by	tools

Sections	2.4.6.2,	3.6,	3.7	and	3.8,	Provide	explanation	of
SUBTYPE_GUID	in	Parameters	section

Sections	3.6,	3.7	and	3.8,	Modify	the	EBNF	entries	for	section
SUBTYPE_GUID	to	allow	specifying	the	GUID	value

3.6,	3.7	and	3.8,	Clarify	User	Interface	entries	in	parameters	section

Section	3.2.1,	Remove	invalid	reference	to	ExtendedLine

Section	3.2.1,	Fix	the	DOS	EOL	character	sequence

The	FDF	Specification	Version	will	not	change	in	the		[Defines]		section

1.22	w/ Updates August
2013

Errata	C Section	1.3,	Updated	UEFI	and	PI	specifications	with	Errata

Section	2.3,4.3,	2.4.5,	3.5,	3.6,	3.7,	3.8	and	3.10	Allow	binary	files	to	be
located	outside	of	the	WORKSPACE

Section	2.4.6	and	2.4.6.1,	added	type	DISPOSABLE	to	encapsulation	file
types

Sections	3.6,	3.7	and	3.8	Clarify	that	the	plain	text	file	for	the	User
Interface	is	plain	ASCII	text

Section	2.1	Updated	the	figure	to	remove	top-level	Makefile

Section	2.1	Update	location	of	the	FDF	file

Section	2.2.8,and	3.2.3	Clarify	PCD	usage	in	conditional	directive
statements

Included	new	section	PCD	RULES

Added	reference	to	the	EDK	II	Build	Specification	for	PCD	Processing
Rules

Added		<Afile>		Definition	to	the	Capsule	section	EBNF	for	appending
the	contents	of	a	binary	file	to	a	section;	appends	are	listed	in	order
first	in	list	first	append,

second	in	list	is	appended	after	the	first.	These	are	strictly	data	files
which	can	only	be	used	by	a	driver	that	has	a	prior	knowledge	of	the
content

1.24 Updates: December
2014

Changed	specification	version	to	1.24

Updated	FDF_SPECIFICATION	to	0x00010018	and	updated	EBNF	to
specify	this	value	as	1.24

Updated	UEFI	specification	and	EDK	II	meta	data	specifications	in
section	1.2;	added	the	EDK	II	UNI	Unicode	File	Specification	and	EDK	II
Expression	Syntax	Specification

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

7Revision	1.28.01

1.24	w/ Updates: March
2015

Errata	A Update	link	to	the	EDK	II	Specifications,	fixed	the	name	of	the	Multi-
String	.UNI	File	Format	Specification

When	FvNameGuid	is	present	in	an	FV	section,	the	EDK	II	build	tools	will
generate	an	FvName	string	in	the	FV	EXT	Header

Removed	[UserExtensions]	sections	2.9	and	3.11	as	these	sections
should	be	used	in	DSC	files,	not	the	FDF	file.

1.25 Updates: June	2015

Updated	to	support	UEFI	2.5	and	PI	1.4

Added	clarificaiton	regarding	use	of	..	and	.	in	path	names

Add	support	to	generate	an	FMP	Capsule	in	section	3.7	and	added	new
section	for	FMP	Payload	data.

Since	the	above	adds	a	new	feature,	update	minor	revision	of	FDF
SPECIFICATION	to	0x00010019	Only	FDF	files	that	use	new	feature	need
to	use	0x0010019,

older	FDF	files	that	do	not	use	the	functionality	do	not	need	to	modify
the	FDF_SPECIFICATION	values

Added	clarification	on	when	the	FDF_SPECIFICATION	value	must	be
updated	to	0x00010019

1.24	w/ Updates: July	2015

Errata	A
-	Require	a	boolean	flag,	FvNameString	to	an	FV	section	in	order	for	the
tools	to	generate	the	the	FvNameString	entry	in	an	extended	FV
header.

1.26 Updates: January
2016

Specification	revision	to	1.26

Revised	WORKSPACE	wording	for	updated	build	system	that	can	handle
packages	located	outside	of	the

WORKSPACE	directory	tree	(refer	to	the	TianoCore.org/	EDKII	website	for
additional	instructions	on	setting	up	a	development	environment).

Added	new	system	environment	variables,

PACKAGES_PATH	and	EDK_TOOLS_BIN,	used	by	the	build	system.

Allow	INF	statements	in	FD	regions.

Clarified	[UserExtensions]	content	in	chapter	2	(to	match
implementation)

1.27 Convert	to	GitBooks June	2017

#426	IMAGE_TYPE_ID	must	be	provided	with	value,	FDF	should	mark	it
as	required	section

#373	Conditional	statement	examples	incorrect

#461	FDF	Spec:	add	a	super	script	number	for	the

#249	FDF	spec	miss	''	definition

#350	[FDF	Spec]	Extend	the	macro	usage	in	the	!include	statement

Changed	the	FDF_SPECIFICATION	value	from	0x0001001A	to
0x0001001B	or	1.27

Extended	the	FV	and	Capsule,	FILE	RAW	statement	formats	to	support

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

8Revision	1.28.01

https://bugzilla.tianocore.org/show_bug.cgi?id=426
https://bugzilla.tianocore.org/show_bug.cgi?id=373
https://bugzilla.tianocore.org/show_bug.cgi?id=461
https://bugzilla.tianocore.org/show_bug.cgi?id=249
https://bugzilla.tianocore.org/show_bug.cgi?id=350

multiple	binary	files.

Changed	section	3.8	[FmpPayload]	to	add	definitions	for
MONOTONIC_COUNT	and	CERTIFICATE_GUID,	plus	some	notes	about	how
these	are	used.

#142	Update	EDK	II	FDF	Specification	to	allow	sections	in	any	order

#478	FDF	spec:	extend	the	to	support	and

#353	Build	spec:	Allow	nested	includes	in	DSC	and	FDF	files

#520	FDF	spec:	Update	Precedence	of	PCD	Values

#585	FDF	Spec:	Update	the	FDF_SPECIFICATION	version	to	0x0001001B
or	1.27

1.28 Update	version	to	1.28 March
2018

Per	PI	1.6	to	extend	FFS	alignment	to	16M

Per	PI	1.6	to	support	FV	extended	header	entry	contain	the	used	size
of	FV

EDK	II	Flash	Description	(FDF)	File	SpecificationEDK	II	Flash	Description	(FDF)	File	Specification

9Revision	1.28.01

https://bugzilla.tianocore.org/show_bug.cgi?id=142
https://bugzilla.tianocore.org/show_bug.cgi?id=478
https://bugzilla.tianocore.org/show_bug.cgi?id=353
https://bugzilla.tianocore.org/show_bug.cgi?id=520
https://bugzilla.tianocore.org/show_bug.cgi?id=585

1	INTRODUCTION
This	document	describes	the	EDK	II	Flash	Description	(FDF)	file	format.	This	format	was	designed	to
support	new	build	requirements	of	building	EDK	and	EDK	II	modules	within	the	EDK	II	build	infrastructure.

The	EDK	II	Build	Infrastructure	supports	generation	of	current	Unified	EFI,	Inc.	(UEFI	2.5	and	PI	1.4)
compliant	binary	images.

The	FDF	file	is	used	to	describe	the	content	and	layout	of	binary	images.	Binary	images	described	in	this
file	may	be	any	combination	of	boot	images,	capsule	images	or	PCI	Options	ROMs.

Note:	EDK	II	FDF	file	formats	have	no	similarity	to	EDK	FDF	file	formats.	New	utilities	and	functionality
have	been	provided	to	process	these	files.

1	IntroductionEDK	II	Flash	Description	(FDF)	File	Specification

10Revision	1.28.01

1.1	Overview
EDK	II	tools	use	INI-style	text-based	files	to	describe	components,	platforms	and	firmware	volumes.	The
EDK	II	Build	Infrastructure	supports	generation	of	binary	images	compliant	with	Unified	EFI	Forum	(UEFI)
specifications	UEFI	and	Platform	Initialization	(PI).

The	EDK	II	build	processes,	defined	in	the	EDK	II	Build	Specification,	use	separate	steps	to	create	EFI
images.	EDK	Build	Tools	are	included	as	part	of	the	EDK	II	compatibility	package.	In	order	to	use	EDK	II
Modules	or	the	EDK	II	Build	Tools,	EDK	II	DSC	and	FDF	files	must	be	used.

The	EDK	II	FDF	file	is	used	in	conjunction	with	an	EDK	II	DSC	file	to	generate	bootable	images,	option
ROM	images,	and	update	capsules	for	bootable	images	that	comply	with	the	UEFI	specifications	listed
above.

The	FDF	file	describes	the	content	and	layout	of	binary	images	that	are	either	a	boot	image	or	PCI
Option	ROMs.

This	document	describes	the	format	of	EDK	II	FDF	files	that	are	required	for	building	binary	images	for	an
EDK	II	platform.	The	goals	are:

Compatibility	-	No	compatibility	with	EDK	FDF	files	exists	in	format	or	tools.

Simplified	platform	build	and	configuration	-	The	FDF	files	simplify	the	process	of	adding	EDK
components	and	EDK	II	modules	to	a	firmware	volume	on	any	given	platform.

The	EDK	build	tools	are	provided	as	part	of	the	EdkCompatibilityPkg	which	is	included	in	EDK	II.

Table	1	shows	the	FDF	compatibility	between	platform,	module	and	component	builds.

Table	1	EDK	Build	Infrastructure	Support	Matrix

EDK	FDF EDK	II	FDF EDK	DSC EDK	II	DSC

EDK	Build	Tools YES NO YES NO

EDK	II	Build	Tools NO YES NO YES

1.1	OverviewEDK	II	Flash	Description	(FDF)	File	Specification

11Revision	1.28.01

1.2	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

BaseTools

The	BaseTools	are	the	tools	required	for	an	EDK	II	build.

BDS

Framework	Boot	Device	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form."	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DEC

EDK	II	meta-data	package	declaration	file.	This	file	declares	all	public	elements	of	a	package	containing
similar	content.

DEPEX

Module	dependency	expressions	that	describe	runtime	process	restrictions.

Dist

This	refers	to	a	distribution	package	that	conforms	to	the	UEFI	Platform	Initialization	Distribution
Package	Specification.

DSC

EDK	II	meta-data	platform	description	file.	This	file	describes	what	gets	built	and	makes	statements	that
affect	how	it	is	built.

DXE

Framework	Driver	Execution	Environment	phase.

DXE	SAL

A	special	class	of	DXE	module	that	produces	SAL	Runtime	Services.	DXE	SAL	modules	differ	from	DXE
Runtime	modules	in	that	the	DXE	Runtime	modules	support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE
SAL	modules	support	intermixing	Virtual	or	Physical	mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	module	that	is	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

Special	class	of	DXE	module	that	provides	Runtime	Services

EBNF

1.2	TermsEDK	II	Flash	Description	(FDF)	File	Specification

12Revision	1.28.01

Extended	"Backus-Naur	Form"	meta-syntax	notation	with	the	following	additional	constructs:	square
brackets	"[...]"	surround	optional	items,	suffix	"*"	for	a	sequence	of	zero	or	more	of	an	item,	suffix	"+"	for
one	or	more	of	an	item,	suffix	"?"	for	zero	or	one	of	an	item,	curly	braces	"{...}"	enclosing	a	list	of
alternatives	and	super/subscripts	indicating	between	n	and	m	occurrences.

EDK

Extensible	Firmware	Interface	Development	Kit,	the	original	implementation	of	the	Intel(R)	Platform
Innovation	Framework	for	EFI	Specifications	developed	in	2007.

EDK	II

EFI	Development	Kit,	version	II	that	provides	updated	firmware	module	layouts	and	custom	tools,
superseding	the	original	EDK.

EDK	Compatibility	Package	(ECP)

The	EDK	Compatibility	Package	(ECP)	provides	libraries	that	will	permit	using	most	existing	EDK	drivers
with	the	EDK	II	build	environment	and	EDK	II	platforms.

EFI

Generic	term	that	refers	to	one	of	the	versions	of	the	EFI	specification:	EFI	1.02,	EFI	1.10or	any	of	the
UEFI	specifications.

FDF

EDK	II	Flash	definition	file.	This	file	is	used	to	define	the	content	and	binary	image	layouts	for	firmware
images,	update	capsules	and	PCI	option	ROMs.

FLASH

This	term	is	used	throughout	this	document	to	describe	one	of	the	following:

An	image	that	is	loaded	into	a	hardware	device	on	a	platform	-	traditional	ROM	image

An	image	that	is	loaded	into	an	Option	ROM	device	on	an	add-in	card

A	bootable	image	that	is	installed	on	removable,	bootable	media,	such	as	a	Floppy,	CD-ROM	or	USB
storage	device.

An	image	that	is	contains	update	information	that	will	be	processed	by	OS	Runtime	services	to
interact	with	EFI	Runtime	services	to	update	a	traditional	ROM	image.

A	UEFI	application	that	can	be	accessed	during	boot	(at	an	EFI	Shell	Prompt),	prior	to	hand-off	to
the	OS	Loader.

Foundation

The	set	of	code	and	interfaces	that	glue	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consists	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	Tiano	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	A	unique	GUID	can	be
generated	by	an	individual	without	the	help	of	a	centralized	authority.	This	allows	the	generation	of
names	that	will	never	conflict,	even	among	multiple,	unrelated	parties.	GUID	values	can	be	registry
format	(8-4-4-4-12)	or	C	data	structure	format.

GUID	also	refers	to	an	API	named	by	a	GUID.

1.2	TermsEDK	II	Flash	Description	(FDF)	File	Specification

13Revision	1.28.01

HII

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font,	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

HOB

Hand-off	blocks	are	key	architectural	mechanisms	that	are	used	to	hand	off	system	information	in	the
early	pre-boot	stages.

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

INF

EDK	II	Module	Information	File.	This	file	describes	how	the	module	is	coded.	For	EDK,	this	file	describes
how	the	component	or	library	is	coded	as	well	as	providing	some	basic	build	information.

Source	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	a	[Sources]	section	and	it
does	not	contain	a	[Binaries]	section.	If	the	[Binaries]	section	is	empty	or	the	only	entries	in	the
[Binaries]	section	are	of	type	DISPOSABLE,	then	the	[Binaries]	section	is	ignored.

Binary	INF	-	An	EDK	II	Module	Information	file	that	has	a	[Binaries]	section	and	does	not	contain	a
[Sources]	section	or	the	[Sources]	section	is	empty.

Mixed	INF	-	An	EDK	II	Module	Information	file	that	contains	content	in	both	[Sources]	and	[Binaries]
sections	and	there	are	entries	in	the	[Binaries]	section	are	not	of	type	DISPOSABLE

AsBuilt	INF	-	An	EDK	II	Module	Information	file	generated	by	the	EDK	II	build	system	when	building
source	content	(listed	in	a	[Sources]	section).

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is	coded	to	the
library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file	that	is	published	by	a
package.

Library	Instance

An	implementation	of	one	or	more	library	classes.

Module

A	module	is	either	an	executable	image	or	a	library	instance.	For	a	list	of	module	types	supported	by
this	package,	see	module	type.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	SMM_CORE	,		DXE_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER	,	or		UEFI_APPLICATION	.
These	definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module
that	is	of	module	type	BASE,	depends	only	on	headers	and	libraries	provided	in	the	MDE,	while	a	module
that	is	of	module	type	DXE_DRIVER	depends	on	common	DXE	components.	For	a	definition	of	the	various
module	types,	see	module	type.	The	EDK	II	build	system	also	permits	modules	of	type	USER_DEFINED.
These	modules	will	not	be	processed	by	the	EDK	II	Build	system.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	one	of	the	following	types	of	modules:

source	modules,	containing	all	source	files	and	descriptions	of	a	module

1.2	TermsEDK	II	Flash	Description	(FDF)	File	Specification

14Revision	1.28.01

binary	modules,	containing	EFI	Sections	or	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD,)

mixed	modules,	with	both	binary	and	source	modules

Multiple	modules	can	be	combined	into	a	package,	and	multiple	packages	can	be	combined	into	a
single	package.

PCD

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase.

PEIM

An	API	named	by	a	GUID.

PPI

A	PEIM-to-PEIM	Interface	that	is	named	by	a	GUID.

Protocol

An	API	named	by	a	GUID.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.	These	services	become	active	during	the	boot	process	but
also	persist	after	the	OS	loader	terminates	boot	services.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

SKU

Stock	Keeping	Unit.

SMM

System	Management	Mode.	A	generic	term	for	the	execution	mode	entered	when	a	CPU	detects	an	SMI.
The	firmware,	in	response	to	the	interrupt	type,	will	gain	control	in	physical	mode.	For	this	document,
"SMM"	describes	the	operational	regime	for	IA32	and	x64	processors	that	share	the	OS-transparent
characteristics.

UEFI	Application

An	application	that	follows	the	UEFI	specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	specification.

1.2	TermsEDK	II	Flash	Description	(FDF)	File	Specification

15Revision	1.28.01

UEFI	Specification	Version	2.5

Current	UEFI	version.

UEFI	Platform	Initialization	Distribution	Package	Specification	1.0

The	current	version	of	this	specification	includes	Errata	B.

UEFI	Platform	Initialization	Specification	1.4

Current	version	of	the	UEFI	PI	specification.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	http://www.uefi.org.

VFR

Visual	Forms	Representation.

VPD

Vital	Product	Data	that	is	read-only	binary	configuration	data,	typically	located	within	a	region	of	a	flash
part.	This	data	would	typically	be	updated	as	part	of	the	firmware	build,	post	firmware	build	(via	patching
tools),	through	automation	on	a	manufacturing	line	as	the	'FLASH'	parts	are	programmed	or	through
special	tools.

1.2	TermsEDK	II	Flash	Description	(FDF)	File	Specification

16Revision	1.28.01

http://www.uefi.org

1.3	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification:

Unified	Extensible	Firmware	Interface	Specification,	Version	2.5,	Unified	EFI,	Inc,	2015,
http://www.uefi.org.

UEFI	Platform	Initialization	Specification,	Version	1.4,	Unified	EFI,	Inc.,	2015,	http://www.uefi.org.

UEFI	Platform	Initialization	Distribution	Package	Specification,	Version	1.0	with	Errata	B,	Unified	EFI,
Inc.,	2014,	http://www.uefi.org.

Intel(R)	Platform	Innovation	Framework	for	EFI	Specifications,	Intel,	2007,
http://www.intel.com/technology/framework.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

EDK	II	Module	Writers	Guide,	Intel,	2010.
EDK	II	User	Manual,	Intel,	2010.
EDK	II	C	Coding	Standard,	Intel,	2015.
EDK	II	Build	Specification,	Intel,	2016.
EDK	II	DEC	File	Specification,	Intel,	2016.
EDK	II	DSC	Specification,	Intel,	2016.
EDK	II	INF	Specification,	Intel,	2016.
Multi-String	UNI	File	Format	Specification,	Intel,	2016.
EDK	II	Expression	Syntax	Specification,	Intel,	2015.
VFR	Programming	Language,	Intel,	2015.
UEFI	Packaging	Tool	(UEFIPT)	Quick	Start,	Intel,	2015.
EDK	II	Platform	Configuration	Database	Infrastructure	Description,	Intel,	2009.

INI	file,	Wikipedia,	http://en.wikipedia.org/wiki/INI_file.

C	Now	-	C	Programming	Information,	Langston	University,	Tulsa	Oklahoma,	J.H.	Young,	1999-2011,
http://c.comsci.us/syntax/expression/ebnf.html.

1.3	Related	InformationEDK	II	Flash	Description	(FDF)	File	Specification

17Revision	1.28.01

http://www.uefi.org
http://www.uefi.org
http://www.uefi.org
http://www.intel.com/technology/framework
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications
http://en.wikipedia.org/wiki/INI_file
http://c.comsci.us/syntax/expression/ebnf.html

1.4	Target	Audience
This	document	is	intended	for	persons	performing	UEFI	or	PI	compliant	platform	development	and
support	for	different	platforms.

1.4	Target	AudienceEDK	II	Flash	Description	(FDF)	File	Specification

18Revision	1.28.01

1.5	Conventions	Used	in	this	Document
This	document	uses	typographic	and	illustrative	conventions	described	below.

1.5.1	Data	Structure	Descriptions
Intel(R)	processors	based	on	32	bit	Intel(R)	architecture	(IA	32)	are	"little	endian"	machines.	This
distinction	means	that	the	low-order	byte	of	a	multi	byte	data	item	in	memory	is	at	the	lowest	address,
while	the	high-order	byte	is	at	the	highest	address.	Processors	of	the	Intel(R)	Itanium(R)	processor
family	may	be	configured	for	both	"little	endian"	and	"big	endian"	operation.	All	implementations
designed	to	conform	to	this	specification	will	use	"little	endian"	operation.

In	some	memory	layout	descriptions,	certain	fields	are	marked	reserved.	Software	must	initialize	such
fields	to	zero	and	ignore	them	when	read.	On	an	update	operation,	software	must	preserve	any
reserved	field.

The	data	structures	described	in	this	document	generally	have	the	following	format:

Summary
A	brief	description	of	the	data	structure.

Prototype
An	EBNF-type	declaration	for	the	data	structure.

Parameters
Explanation	of	some	terms	used	in	the	prototype.

Example
Sample	data	structure	using	the	prototype.

1.5.2	Pseudo-Code	Conventions
Pseudo	code	is	presented	to	describe	algorithms	in	a	more	concise	form.	None	of	the	algorithms	in	this
document	are	intended	to	be	compiled	directly.	The	code	is	presented	at	a	level	corresponding	to	the
surrounding	text.

In	describing	variables,	a	list	is	an	unordered	collection	of	homogeneous	objects.	A	queue	is	an	ordered
list	of	homogeneous	objects.	Unless	otherwise	noted,	the	ordering	is	assumed	to	be	FIFO.

Pseudo	code	is	presented	in	a	C-like	format,	using	C	conventions	where	appropriate.	The	coding	style,
particularly	the	indentation	style,	is	used	for	readability	and	does	not	necessarily	comply	with	an
implementation	of	the	Extensible	Firmware	Specification.

1.5.3	Typographic	Conventions
This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

1.5	Conventions	Used	in	this	DocumentEDK	II	Flash	Description	(FDF)	File	Specification

19Revision	1.28.01

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

Bold In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,
a	Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		Bold	Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyper	link.

$(VAR) This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non-underlined	BOLD	Monospace	typeface.	Find	the	first	instance
of	the	name	(in	the	underlined	BOLD	Monospace	typeface)	on	the	page	and	click	on	the	word	to	jump
to	the	function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a	given
line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

	(range-

range)	

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)	indicates	a
single	digit.

	"item"	
Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must
appear	in	the	output	text	file.

	?	 The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

	*	 The	star	character	denotes	zero	or	more	occurrences	of	an	item.

	+	 The	plus	character	denotes	one	or	more	occurrences	of	an	item.

	item{n}	

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be	used.
Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so	01234567	is	valid,
while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	braces,	preceded	by	a	comma	","indicates	a
maximum	number	of	occurrences	of	the	item.

	item{n,m}	
A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates	that	the
number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,	inclusive.

1.5	Conventions	Used	in	this	DocumentEDK	II	Flash	Description	(FDF)	File	Specification

20Revision	1.28.01

1.5	Conventions	Used	in	this	DocumentEDK	II	Flash	Description	(FDF)	File	Specification

21Revision	1.28.01

2	FDF	DESIGN	DISCUSSION
This	section	of	the	document	provides	an	overview	to	processing	Flash	Description	File	(FDF)	used	to
create	firmware	images,	Option	ROM	images	or	bootable	images	for	removable	media.	For	the	purposes
of	this	design	discussion,	the	FDF	file	will	be	referred	to	as	FlashMap.fdf.	By	convention,	the	name
"FlashMap.fdf"	has	been	used	for	the	flash	description	file.	This	is	only	a	convention	and	developers	can
maintain	different	flash	description	files	using	different	file	names,	for	example	a	given	size	or	model	of
flash	part.	The	file	can	have	any	name,	however	it	is	recommended	that	developers	use	the	FDF
extension	for	all	flash	description	files.

The	flash	description	file	is	normally	in	the	same	directory	as	the	platform	description	(DSC)	file.

The	remainder	of	this	document	uses	"FDF"	instead	of	"Flash	Description	File."

The	EDK	II	Build	generates	UEFI	and	PI	specification	compliant	binary	images.	The	tools	provided	in	the
EDK	and	the	EdkCompatibilityPkg	module	support	earlier	versions	of	the	specifications.

This	revision	of	the	specification	adds	support	for	multiple	binary	files	in	an	FV	FILE	RAW	statement.	FDF
files	that	use	this	feature	must	use	the	new		FDF_SPECIFICATION	=	0x0001001C		in	the		[Defines]		section.	Older
FDF	files	do	not	need	to	update	the		FDF_SPECIFICATION		value.

The	EDK	II	build	system	has	been	updated	to	allow	the	setting	of	multiple	paths	that	will	be	searched
when	attempting	to	resolve	the	location	of	EDK	II	packages.	This	new	feature	allows	for	more	flexibility
when	designing	a	tree	layout	or	combining	sources	from	different	sources.	The	new	functionality	is
enabled	through	the	addition	of	a	new	environment	variable	(PACKAGES_PATH).

The	PACKAGES_PATH	variable	is	an	ordered	list	of	additional	search	paths	using	the	default	path
separator	of	the	host	OS	between	each	entry	(";"	on	Windows,	":"	on	Linux	and	OS/X).	The	path
specified	by	the	WORKSPACE	variable	always	has	the	highest	search	priority	over	any	PACKAGE_PATH
entries.	The	first	path	(left	to	right)	in	the	PACKAGES_PATH	list	has	the	highest	priority	and	the	last	path
has	the	lowest	priority.

Build	tools	will	stop	searching	when	the	first	location	is	resolved.

For	the	remainder	of	this	document,	unless	otherwise	specified	(using	"system	environment	variable,
WORKSPACE"),	references	to	the		WORKSPACE		and		$(WORKSPACE)		refer	to	the	ordered	list	of	directories
specified	by	the	combination	of		WORKSPACE	+	PACKAGES_PATH	.	The	build	system	will	automatically	join	the
directories	and	search	these	paths	to	locate	content,	with	the	first	match	terminating	the	search.	For
example	given	the	following	set	of	environment	variables,	and	the	MdeModulePkg	is	located	in	both	the
edk2	and	edk2Copy	directories,	the	build	system	would	use	the	C:\work\edk2\MdeModulePkg	when
attempting	to	locate	the	MdeModulePkg.dec	file.

set	WORKSPACE=c:\work

set	PACKAGES_PATH=c:\work\edk2;c:\work\edk2Copy

Build	tools	will	stop	searching	when	the	first	location	is	resolved.

Refer	to	the	TianoCore.org	web-site	for	more	information	on	the	EDK	II	build	system.

Note:	Path	and	Filename	elements	within	the	FDF	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Names	that	are	used	in	C	code	are	case	sensitive	as	well	as	MACRO
names	used	as	short-cuts	within	the	FDF	file.	Use	of	"/../"	in	a	path	and	"./"	or	"../"	at	the	start	of	a	path
is	prohibited.

2	FDF	Design	DiscussionEDK	II	Flash	Description	(FDF)	File	Specification

22Revision	1.28.01

Note:	GUID	values	are	used	during	runtime	to	uniquely	map	the	C	names	of	PROTOCOLS,	PPIS,	PCDS
and	other	variable	names.

Note:	This	document	uses	"\"	to	indicate	that	a	line	that	cannot	be	displayed	in	this	document	on	a
single	line.	Within	the	DSC	specification,	each	entry	must	appear	on	a	single	line.

Note:	The	total	path	and	file	name	length	is	limited	by	the	operating	system	and	third	party	tools.	It	is
recommended	that	for	EDK	II	builds	that	the	project	directories	under	a	subst	drive	in	Windows	(s:/build
as	an	example)	or	be	located	in	either	the	/opt	directory	or	in	the	user's	/home/username	directory	for
Linux	and	OS/X.	This	will	minimize	the	path	lengths	of	filenames	for	the	command-line	tools.

2	FDF	Design	DiscussionEDK	II	Flash	Description	(FDF)	File	Specification

23Revision	1.28.01

2.1	Processing	Overview
The	EDK	II	FDF	file	describes	information	about	flash	parts	as	well	as	rules	for	combining	binaries
(Firmware	Image)	built	from	a	DSC	file.	Additionally,	if	a	DSC	file	specifies	a		FLASH_DEFINITION		file,	then	the
EDK	II	tools	will	locate	the	FDF	file	(looking	in	the	same	directory	as	the	DSC	file,	then	the	parsing
utilities	will	scan	the	FDF	file	to	gather	PCD	information	that	can	be	used	by	AutoGen	utilities	for	building
components	or	modules.	The	output	of	the	first	phase	of	an	EDK	II	build	(as	defined	in	the	EDK	II	Build
Specification)	generates	valid	PE32/PE32+/Coff	image	files.	The	second	phase	of	the	build	process
consumes	the	images	generated	during	the	first	phase,	using	statements	and	rules	defined	in	the	FDF
file	to	process	the	PE32/PE32+/Coff	images	files	into	one	or	more	EFI	sections.	The	EFI	sections	may	get
combined	with	other	optional	sections	(version,	depex,	user	interface)	sections,	into	EFI	Firmware	File
system	(FFS)	Sections.	FFS	images	are	put	into	Firmware	Volumes	(FVs,)	and	finally,	the	FV	sections	are
combined	into	one	or	more	Flash	Device	binary	image	(FD).

The	following	diagrams	illustrate	the	process	flow	for	generating	the	PE/PE32+/Coff	files	that	will	be
used	for	Flash	Image	files.

Figure	1	EDK	II	Build	Data	Flow

The	following	diagram	shows	the	overview	of	the	process	used	to	create	final	image	files.

2.1	Processing	OverviewEDK	II	Flash	Description	(FDF)	File	Specification

24Revision	1.28.01

Figure	2	EDK	II	Create	Image	Flow

It	should	be	noted	that	some		SEC	,		PEI_CORE		and/or		PEIM		modules	are	coded	XIP	(eXecute	In	Place)
running	directly	from	ROM,	rather	than	from	memory.	For	modules	that	always	execute	from	ROM,	the
relocation	(.reloc)	section	of	the	PE32	image	can	be	removed	(after	running	a	fix	up	tool)	as	a	space
saving	technique.	Some	PEIM	modules	may	run	from	either	ROM	or	from	memory.	There	are	several
methods	that	can	be	used	to	retain	this	information	(as	well	as	the	.reloc	sections	of	stripped	images).
Due	to	this	possibility,	the		SEC	,		PEI_CORE		and		PEIM		descriptions	are	different	from	the	remaining	module
types.	The	default	for	all		SEC	,		PEI_CORE		and		PEIM		modules	is	to	strip	the		.reloc		section.	The	modules
coded	to	use		REGISTER_FOR_SHADOW		must	not	have	the		.reloc		section	stripped.

Also	of	note,	not	all	of	the	INF	files	listed	in	the	FDF	file	need	to	be	listed	in	the	DSC	file.	Since	the	DSC
file	is	primarily	used	to	generate	Makefiles	for	a	build,	binary	only	modules	do	not	need	to	be	listed	in	a
DSC	file,	and	can	be	listed	in	the	FDF	file.

2.1.1	Platform	Configuration	Database	(PCD)	Settings
The	FD,	FV	and	Capsule	sections	(and	nested	sections)	permit	setting	PCD	default	values.	All	PCDs	must
be	declared	in	a	DEC	file	in	order	to	be	used.	It	is	recommended	that	the	PCDs	set	in	the	FDF	file	be	for
Addresses,	Sizes,	and/or	other	"fixed"	information	needed	to	define	or	create	the	flash	image.	Use	of
PCDs	is	permitted	in	the	FDF	file.	The		Dynamic		and		DynamicEx		PCDs	can	be	accessed	or	modified	during
execution,	as	result,	they	cannot	be	set	within	the	FDF	file.

Note:	The	PCD	values	set	in	this	file	are	assumed	to	be	correct	on	all	conditions	that	the	reset	vector
in	SEC	is	executed,	such	as	power-on,	reset	and	ACPI	S3	resume.	Use	of	the	PatchableInModule	PCD
access	method	for	base	addresses	is	permitted,	but	when	this	PCD	access	method	is	used,	module
implementations	must	always	access	the	values	through	the	PcdGet()	and	PcdSet()	operations	to
guarantee	that	stale	base	address	values	are	never	used.

2.1	Processing	OverviewEDK	II	Flash	Description	(FDF)	File	Specification

25Revision	1.28.01

All	FLASH	related	PCD	settings	MUST	be	set	in	the	FDF	file,	not	in	the	platform	description	(DSC)	file.	The
FDF	file	has	the	final	values	for	Flash	Related	PCDs.	If	a	DSC	file	contains	a	duplicate	PCD	setting,	the
FDF	file's	PCD	setting	takes	precedence	and	it	is	recommended	that	the	build	tools	throw	a	warning
message	on	the	PCD	defined	in	the	DSC	file.	Default	values	from	DEC	files	are	not	permitted	in	the	EDK	II
build	system	for	PCDs	specified	in	the	FDF	file.

The	PCDs	used	in	the	FDF	file	must	be	specified	as:

	PcdTokenSpaceGuidCName.PcdCName	

2.1.2	Precedence	of	PCD	Values
The	values	that	are	assigned	to	individual	PCDs	required	by	a	build	may	come	from	different	locations
and	different	meta-data	files.	The	following	provides	the	precedence	(high	to	low)	to	assign	a	value	to	a
PCD.

Command-line,		--pcd		flags	(left	most	has	higher	priority)
DSC	file,	Component	INF		<Pcd*>		section	statements
FDF	file,	grammar	describing	automatic	assignment	of	PCD	values
FDF	file,	SET	statements	within	a	section
FDF	file,	SET	statement	in	the	[Defines]	section
DSC	file,	global	[Pcd*]	sections
INF	file,	PCD	sections,	Default	Values
DEC	file,	PCD	sections,	Default	Values

In	addition	to	the	above	precedence	rules,	PCDs	set	in	sections	with	architectural	modifiers	take
precedence	over	PCD	sections	that	are	common	to	all	architectures.

If	a	PCD	is	listed	in	the	same	section	multiple	times,	the	last	one	is	used.

PCD	RULES
There	are	no	PCD	sections	defined	for	the	FDF	file.	PCD	values	are	assigned	in	the	FDF	file	using	two
methods.	They	may	automatically	be	assigned	based	on	a	specific	position	(as	defined	in	the	FDF
specification)	or	by	using	a	SET	statement.

Within	the		[FD]		sections,	PCDs	that	appear	immediately	following	the	line	containing	address|size	or
offset|size	values	will	have	their	values	automatically	assigned	to	the	address|size	or	offset|size
using	the	same	ordering.	Additionally,	some	tokens,	such	as		BaseAddress	,	which	use	a	format	of	token
=	value,	can	have	a	PCD's	value	set	at	the	same	time.	The	PCD	must	be	on	the	same	line,	and	be
separated	from	the	value	by	field	separator	character.If	there	are	two	values	on	the	line,	separated
by	a	field	separator	character,	the	PCD	names	that	will	be	assigned	the	values	must	appear	on	the
next	line,	and	must	also	be	separated	by	the	field	separator	character.

Specific	tokens	assigned	to	values	within	the	FD	sections	can	have	a	PCD	automatically	assign	the
same	value	by	placing	a	field	separator	character	between	the	value	and	PCD	name.	The	PCD	name
must	always	follow	the	value	field	separator	character	sequence.

Other	PCDs	may	be	assigned	using	the		SET		statement	in	the	FDF	file.

PCD	Values	assigned	in	this	file	(using		SET	PcdName	=	value)	override	values	assigned	in	the	DSC	file,	or,
if	a	value	is	not	specified	in	the	DSC,	then	they	will	override	values	assigned	in	an	INF	file,	or	if	a
value	is	not	specified	in	the	DSC	or	the	INF,	then	they	will	override	values	assigned	in	the	DEC	file.

Dynamic	and	DynamicEx	PCDs	cannot	be	set	in	the	FDF	file.

2.1	Processing	OverviewEDK	II	Flash	Description	(FDF)	File	Specification

26Revision	1.28.01

2.1	Processing	OverviewEDK	II	Flash	Description	(FDF)	File	Specification

27Revision	1.28.01

2.2	Flash	Description	File	Format
The	EDK	II	FDF	file	describes	the	layout	of	UEFI/PI	compliant	binary	images	located	within	hardware,
removable	media	or	update	capsules.	The	binary	files	must	already	exist	in	order	for	the	build	tools	to
create	the	final	images.	Some	content,	such	as	PCD	definitions,	may	be	used	during	the	creation	of
binary	files.

2.2.1	Section	Entries
To	simplify	parsing,	the	EDK	II	meta-data	files	continue	using	the	INI	format.	This	style	was	introduced	for
EDK	meta-data	files,	when	only	the	Windows	tool	chains	were	supported.	It	was	decided	that	for
compatibility	purposes,	that	INI	format	would	continue	to	be	used.	EDK	II	formats	differ	from	the	defacto
format	in	that	the	semicolon	";"	character	cannot	be	used	to	indicate	a	comment.

Leading	and	trailing	space/tab	characters	must	be	ignored.

It	is	recommended	that	duplicate	section	names	be	merged	by	tools.

This	description	file	consists	of	sections	delineated	by	section	names	enclosed	within	square	"[]"
brackets.	Section	names	are	case-insensitive.	The	different	sections	and	their	usage	are	described
below.	The	text	of	a	given	section	can	be	used	for	multiple	section	names	by	separating	the	section
names	with	a	comma.	For	example:

	[Rule.IA32.SEC,	Rule.X64.SEC]	

The	content	below	each	section	heading	is	processed	by	the	parsing	utilities	in	the	order	that	they
occur	in	the	file.	The	precedence	for	processing	these	architecture	section	tags	is	from	right	to	left,
with	sections	defining	an	architecture	having	a	higher	precedence	than	a	section	which	uses	"common"
(or	no	architecture	extension)	as	the	architecture	modifier.

Note:	Content	such	as	filenames,	directory	names,	MACROs	and	C	variable	names	within	a	section	IS
case	sensitive.	IA32,	Ia32	and	ia32	within	a	section	in	a	directory	or	file	name	are	processed	as
separate	items.	(Refer	to	Naming	Conventions	below	for	more	information	on	directory	and/or	file
naming.)

Sections	are	terminated	by	the	start	of	another	section	or	the	end	of	the	file.

Comments	are	not	permitted	between	square	brackets	of	a	section	specifier.

Duplicate	sections	(two	sections	with	identical	section	tags)	will	be	merged	by	tools,	with	the	second
section	appended	to	the	first.

The	EDK	II	Reference	build	system	will	ignore	[UserExtensions]	sections	in	the	FDF	file.

The		[Rules]		and		[VTF]		sections	allow	the	use	of	architectural	modifiers,	however	the	content	must
specific	to	an	individual	architecture	or	common	to	all	architectures.

Therefore,	the	architectural	sections	take	priority	over	common	section	content.	The	cannot	be
combined	with	a	'common'	architecture.

The		[FD]	,		[FV]	,		[Capsule]		and		[OptionRom]		sections	cannot	specify	architectural	modifiers.

2.2.2	Comments

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

28Revision	1.28.01

The	hash	"#"	character	indicates	comments	in	the	FDF	file.	In	line	comments	terminate	the	processing
of	a	line.	In	line	comments	must	be	placed	at	the	end	of	the	line.

Only		BsBaseAddress	=	0x0000C1000		in	the	following	example	is	processed	by	tools;	the	remainder	of	the	line	is
ignored:

	BsBaseAddress	=	0x0000C100	#	set	boot	driver	base	address	

Note:	Blank	lines	and	lines	that	start	with	the	hash	#	character	must	be	ignored	by	tools.

Hash	characters	appearing	within	a	quoted	string	are	permitted,	with	the	string	being	processed	as	a
single	entity.	The	following	example	must	handle	the	quoted	string	as	single	element	by	tools.

	UI	=	"	#	Copyright	2007,	NoSuch,	LTD.	All	rights	reserved."	

Comments	are	terminated	by	the	end	of	line.

If	a	hash	"#"	character	is	required	in	a	value	field,	the	value	field	must	be	encapsulated	by	double
quotation	marks.

2.2.3	Valid	Entries
Processing	of	a	line	is	terminated	by	the	end	of	the	line.

Processing	of	the	line	is	also	terminated	if	a	comment	is	encountered.

Items	in	quotation	marks	are	treated	as	a	single	token	and	have	the	highest	precedence.	Items
encapsulated	in	parenthesis	are	also	treated	as	tokens,	with	embedded	tokens	being	processed	first.
All	other	processing	occurs	from	left	to	right.

In	the	following	example,	B	-	C	is	processed	first,	then	result	is	added	to	A	followed	by	adding	2;	finally	3
is	added	to	the	result.

	(A	+	(B	-	C)	+	2)	+	3	

In	the	next	example,	A	+	B	is	processed	first,	then	C	+	D	is	processed	and	finally	the	two	results	are
added.

	(A	+	B)	+	(C	+	D)	

Space	and	tab	characters	are	permitted	around	field	separators.

2.2.4	Naming	Conventions
The	EDK	II	build	infrastructure	is	supported	under	Microsoft	Windows,	Linux*	and	MAC	OS/X	operating
systems.	As	a	result	of	multiple	environment	support,	all	directory	and	file	names	are	case	sensitive.

The	use	of	special	characters	in	directory	names	and	file	names	is	restricted	to	the	dash,
underscore,	and	period	characters,	respectively	"-",	"_",	and	".".

Period	characters	may	not	be	followed	by	another	period	character.	File	and	Directory	names	must
not	start	with	"./",	"."	or	"..".

Directory	names	and	file	names	must	not	contain	space	or	tab	characters.

Directory	Names	must	only	contain	alphanumeric	characters,	underscore	or	dash	characters	and	it
is	recommended	that	they	start	with	an	alpha	character.

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

29Revision	1.28.01

Additionally,	all	EDK	II	directories	that	are	architecturally	dependent	must	use	a	name	with	only	the
first	character	capitalized.	Ia32,	Ipf,	X64	and	Ebc	are	valid	architectural	directory	names.	IA32,	IPF
and	EBC	are	not	acceptable	directory	names,	and	may	cause	build	breaks.	From	a	build	tools
perspective,	an	IA32	directory	name	is	not	equivalent	to	Ia32	or	ia32	An	architecture	used	in	a
directory	name	must	be	listed	in	a	section	that	uses	the	architecture	modifier.	If	a	common	section
contains	filenames	that	have	directories	with	architecture	modifiers,	the	file	will	be	processed	for	all
architectures,	not	just	the	architecture	specified	in	the	directory	name.

Space	Characters	in	filenames:	The	build	tools	must	be	able	to	process	the	tool	definitions	file:
tools_def.txt	(describing	the	location	and	flags	for	compiler	and	user	defined	tools),	which	may	contain
space	characters	in	paths	on	Windows*	systems.	The	tools_def.txt	file	is	the	only	file	the	permits	the	use
of	space	characters	in	the	directory	name.

The	EDK	II	Coding	Style	specification	covers	naming	conventions	for	use	within	C	Code	files,	and	as	well
as	specifying	the	rules	for	directory	and	file	names.	This	section	is	meant	to	highlight	those	rules	as
they	apply	to	the	content	of	the	FDF	files.

Architecture	keywords	(IA32	,		IPF	,		X64		and		EBC)	are	used	by	build	tools	and	in	metadata	files	for
describing	alternate	threads	for	processing	of	files.	These	keywords	must	not	be	used	for	describing
directory	paths.	Additionally,	directory	names	with	architectural	names	(Ia32,	Ipf,	X64	and	Ebc)	do	not
automatically	cause	the	build	tools	or	meta-data	files	to	follow	these	alternate	paths.	Directories	and
Architectural	Keywords	are	similar	in	name	only.

For	clarity,	this	specification	will	use	all	upper	case	letters	when	describing	architectural	keywords,	and
the	directory	names	with	only	the	first	letter	in	upper	case.

All	directory	paths	within	EDK	II	FDF	files	must	use	the	"/"	forward	slash	character	to	separate	directories
as	well	as	directories	from	filenames.	Example:

	C:/Work/Edk2/edksetup.bat	

File	names	must	also	follow	the	same	naming	convention	required	for	directories.	No	white	space
characters	are	permitted.	The	special	characters	permitted	in	directory	names	are	the	only	special
characters	permitted	in	file	names.

The	relative	path	is	relative	to	the	directory	the	FDF	file	must	be	used,	unless	otherwise	noted.	Use	of
"..",	"./"	and	"../"	in	the	path	of	the	file	is	strictly	prohibited.	All	files	listed	in	this	section	must	reside	in
the	directory	this	INF	file	is	in	or	in	sub-directories	of	this	directory.

2.2.5	!include	Statements
The		!include		statement	may	appear	within	an	EDK	II	FDF	file.	The	included	file	content	must	match	the
content	type	of	the	current	section	definition,	contain	complete	sections,	or	combination	of	both.

The	argument	of	this	statement	is	a	filename.	The	file	is	relative	to	the	directory	that	contains	this	DSC
file,	and	if	not	found	the	tool	must	attempt	to	find	the	file	relative	to	paths	listed	in	the	system
environment	variables,		$(WORKSPACE)	,		$(PACKAGES_PATH)	,		$(EFI_SOURCE)	,		$(EDK_SOURCE)	,	and		$(ECP_SOURCE)	.	If	the	file
is	not	found	after	testing	for	the	possible	combinations,	the	parsing	tools	must	terminate	with	an	error.

Macros,	defined	in	this	FDF	file	or	in	the	DSC	file,	are	permitted	in	the	path	or	file	name	of	the	!include
statement,	as	these	files	are	included	prior	to	processing	the	file	for	macros.	The	system	environment
variables,		$(WORKSPACE)	,		$(EDK_SOURCE)	,		$(EFI_SOURCE)	,	and		$(ECP_SOURCE)		may	also	be	used;	only	these	system
environment	variables	are	permitted	to	start	the	path	of	the	included	file.

Statements	in	!include	files	must	not	break	the	integrity	of	the	FDF	file,	the	included	file	is	read	in	by
tools	in	the	exact	position	of	the	file,	and	is	functionally	equivalent	of	copying	the	contents	of	the
included	file	and	inserting	(paste)	the	content	into	the	DSC	file.

2.2.6	Macro	Statements

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

30Revision	1.28.01

Variables	(or	macros)	used	within	the	FDF	file	are	typically	used	for	path	generation	for	locating	files,
used	in	conditional	statements	or	values	for	PCDs.

Token	names	(reserved	words	defined	in	the	EDK	II	meta-data	file	specifications)	cannot	be	used	as
macro	names.	As	an	example,	using	PLATFORM_NAME	as	a	macro	name	is	not	permitted,	as	it	is	a	token
defined	in	the	DSC	file's		[Defines]		section.

MACROS	cannot	be	used	to	define	keywords,	statements,	nor	any	other	tokens	defined	in	this	spec.

All	elements	of	a	macro	definition	must	appear	on	a	single	line;	the	meta-data	file	formats	do	not	permit
entries	to	span	multiple	lines.

Escape	character	sequences	are	only	permitted	within	a	quoted	string.	Quoted	strings	are	treated	as
literals,	escape	character	sequences	within	quoted	strings	will	not	be	expanded	by	the	tools.

Macros	that	appear	in	a	double	quoted	string	will	not	be	expanded	by	parsing	tools.	The	expectation	is
that	these	macros	will	be	expanded	by	scripting	tools	such	as	make	or	nmake.

The	format	and	usage	for	the	macro	statements	is:

	DEFINE	MACRO	=	Path	

Any	portion	on	a	path	or	path	and	filename	can	be	defined	by	a	macro.

When	assigning	a	string	value	to	a	macro,	the	string	must	follow	the	C	format	for	specifying	a	string,	as
shown	below:

DEFINE	MACRO1	=	"SETUP"

DEFINE	MACRO2	=	L"SETUP"

When	assigning	a	numeric	value	to	a	macro,	the	number	may	be	a	decimal,	integer	or	hex	value,	as
shown	below:

DEFINE	MACRO1	=	0xFFFFFFFF

DEFINE	MACRO2	=	2.3

DEFINE	MACRO3	=	10

The	format	for	usage	of	a	Macro	varies.	When	used	as	a	value,	the	Macro	name	must	be	encapsulated
by	"$("	and	")"	as	shown	below:

	$(MACRO)/filename.foo	

When	a	macro	is	tested	in	a	conditional	directive	statement,	determining	whether	it	has	been	defined
or	undefined	uses	the	following	format:

	!ifdef	MACRO	

Note:	For	backward	compatibility,	tools	may	allow	$(MACRO)	in	the	!ifdef	and	!ifndef	statements.	This
functionality	may	disappear	in	future	releases,	therefore,	it	is	recommended	that	platform	integrators
update	their	DSC	files	if	they	also	alter	other	content.

When	using	string	comparisons	of	Macro	elements	to	string	literals,	the	format	of	the	conditional
directive	must	be:

	!if	$(MACRO)	==	"Literal	String"	

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

31Revision	1.28.01

Note:	For	backward	compatibility,	tools	may	allow	testing	literal	strings	that	are	not	encapsulated	by
double	quotation	marks.	This	functionality	may	disappear	in	future	releases,	therefore,	it	is
recommended	that	platform	integrators	update	their	DSC	files	if	they	also	alter	other	content.

When	testing	Macro	against	another	Macro:

	!if	$(MACROALPHA)	==	$(MACROBETA)	

When	testing	a	Macro	against	a	value:

	!if	$(MACRONUM)	==	2	

or

	!if	$(MACROBOOL)	==	TRUE	

When	used	in	either	the		!if		or		!elseif		statements	or	in	an	expression	used	in	a	value	field,	a	macro
that	has	not	been	defined	has	a	value	of	0.

Macro	Definition	statements	that	appear	within	a	section	of	the	file	(other	than	the		[Defines]		section)
are	scoped	to	the	section	they	are	defined	in.	If	the	Macro	statement	is	within	the		[Defines]		section,
then	the	Macro	is	common	to	the	entire	file,	with	local	definitions	taking	precedence	(if	the	same	MACRO
name	is	redefined	in	subsequent	sections,	then	that	MACRO	value	is	local	to	only	that	section.)

Macros	are	evaluated	where	they	are	used	in	conditional	directives	or	other	statements,	not	where	they
are	defined.	It	is	recommended	that	tools	break	the	build	and	report	an	error	if	an	expression	cannot
be	evaluated.

Any	defined	MACRO	definitions	will	be	expanded	by	tools	when	they	encounter	the	entry	in	the	section
except	when	the	macro	is	within	double	quotation	marks	in	build	options	sections.	The	expectation	is
that	macros	in	the	quoted	values	will	be	expanded	by	external	build	scripting	tools,	such	as	nmake	or
gmake;	they	will	not	be	expanded	by	the	build	tools.	If	a	macro	that	is	not	defined	is	used	in	locations
that	are	not	expressions	(where	the	tools	would	just	do	macro	expansion	as	in	path	names	in	an	INF
statement	in	the		[FV]		section),	nothing	will	be	emitted.	If	the	macro,	MACRO1,	has	not	been	defined,
then:

	INF	$(MACRO1)GraphicsDriver.inf	

After	macro	expansion,	the	logical	result	would	be	equal	to:

	INF	GraphicsDriver.inf	

It	is	recommended	that	tools	remove	any	excess	space	characters	when	processing	these	types	of
lines.

Additionally,	pre-defined	global	variables	may	be	used	in	the	body	of	the	FDF	file.	The	following	is	an
example	of	using	pre-defined	variables:

	FILE	=	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/Microcode.bin	

The	following	table	lists	the	global	variables	permitted	in	generating	a	path	statement	as	well	as
variables	that	can	be	passed	as	an	argument	for	a	rule.

Macro	statements	defined	the	FDF	file	are	local	to	the	file.	Macro	names	used	in	values,	$(Macro),	must
be	defined	in	either	the	DSC	file	or	the	FDF	file,	and	must	be	defined	before	they	can	be	used.	Macro
values	specified	on	the	command-line	over	ride	all	definitions	of	that	Macro.

The		EDK_GLOBAL		macros	can	only	be	defined	in	the	DSC	file,	however	they	are	considered	global	during
the	processing	of	the	DSC,	FDF	and	EDK	INF	files.

Global	variables	that	may	be	used	in	this	file	are	listed	in	the	Well-known	Macro	Statements	table	while
the	format	of	the	System	Environment	variables	that	may	be	used	in	EDK	II	DSC	and	FDF	files	are	in	the
next	table.

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

32Revision	1.28.01

Table	2	Well-known	Macro	Statements

Exact	Notation Derivation

	$(WORKSPACE)	 System	Environment	Variable.

	PACKAGES_PATH	

System	Environment	Variable	that	cannot	be	used	in	EDK	II	meta-data	Files.
The	build	system	will	automatically	detect	if	this	variable	is	present	and	use
directories	listed	in	this	variable	as	if	they	were	listed	in	$(WORKSPACE)

	$(EDK_SOURCE)	 System	Environment	Variable.

	$(EFI_SOURCE)	 System	Environment	Variable.

	$(EDK_TOOLS_PATH)	 System	Environment	Variable

	EDK_TOOLS_BIN	 System	Environment	Variable	that	cannot	be	used	in	EDK	II	meta-data	Files.

	$(ECP_SOURCE)	 System	Environment	Variable

	$(OUTPUT_DIRECTORY)	

Tool	parsing	from	either	the	DSC	file	or	via	a	command	line	option.	This	is
typically	the	Build/Platform	name	directory	created	by	the	build	system	in	the
EDK	II	WORKSPACE

	$(BUILD_NUMBER)	

Tool	parsing	from	either	an	EDK	INF	file	or	the	EDK	II	DSC	file's		BUILD_NUMBER	
statement.	The	EDK	II	DSC	file's		BUILD_NUMBER		takes	precedence	over	an	EDK	INF
file's

	BUILD_NUMBER		if	and	only	if	the	EDK	II	DSC	specifies	a

	BUILD_NUMBER	.

Future	implementation	may	allow	for	setting	the

	BUILD_NUMBER		variable	on	the	build	tool's	command	line.

	$(NAMED_GUID)	 Tool	parsing		FILE_GUID		statement	in	the	INF	file.

	$(MODULE_NAME)	 Tool	parsing	the		BASE_NAME		statement	in	the	INF	file.

	$(INF_VERSION)	 Tool	parsing	the		VERSION_STRING		statement	in	the	INF	file.

	$(INF_OUTPUT)	 The	OUTPUT	directory	created	by	the	build	system	for	each	EDK	II	module.

	$(TARGET)	
Valid	values	are	derived	from	INF,	DSC,	target.txt	and	tools_def.txt.	FDF	parsing
tools	may	obtain	these	values	from	command-line	options.

	$(TOOL_CHAIN_TAG)	
Valid	values	are	derived	from	INF,	DSC,	target.txt	and	tools_def.txt.	FDF	parsing
tools	may	obtain	these	values	from	command-line	options.

	$(ARCH)	
Valid	values	are	derived	from	INF,	DSC,	target.txt	and	tools_def.txt.	FDF	parsing
tools	may	obtain	these	values	from	command-line	options.

Note:	System	environment	variables	may	be	referenced,	however	their	values	must	not	be	altered.

Table	3	Using	System	Environment	Variable

Macro	Style	Used	in	Meta-
Data	files

Windows	Environment
Variable

Linux	&	OS/X	Environment
Variable

	$(WORKSPACE)	 	%WORKSPACE%	 	$WORKSPACE	

	$(EFI_SOURCE)	 	%EFI_SOURCE%	 	$EFI_SOURCE	

	$(EDK_SOURCE)	 	%EDK_SOURCE%	 	$EDK_SOURCE	

	$(EDK_TOOLS_PATH)	 	%EDK_TOOLS_PATH%	 	$EDK_TOOLS_PATH	

	$(ECP_SOURCE)	 	%ECP_SOURCE%	 	$ECP_SOURCE	

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

33Revision	1.28.01

The	system	environment	variables,		PACKAGES_PATH		and		EDK_TOOLS_BIN	,	are	not	permitted	in	EDK	II	meta-data
files.

Macros	defined	in	the	FDF	file	are	local	to	the	FDF	file.	They	are	also	positional	in	nature,	with	later
definitions	overriding	previous	definitions	for	the	remainder	of	the	file.

Macros	may	be	used	in	other	macros	or	in	conditional	directive	statements.	Macros	can	be	defined	or
used	in	the		[Defines]	,		[FD]	,		[FV]	,		[Capsule]		and		[OptionROM]		sections.

Macros	defined	in	common	sections	may	be	used	in	the	architecturally	modified	sections	of	the	same
section	type.	Macros	defined	in	architectural	sections	cannot	be	used	in	other	architectural	sections,
nor	can	they	be	used	in	the	common	section.	Section	modifiers	in	addition	to	the	architectural	modifier
follow	the	same	rules	as	architectural	modifiers.	Macros	must	be	defined	before	they	can	be	used.

Macro	evaluation	is	done	at	the	time	the	macro	is	used	in	an	expression,	conditional	directive	or	value
field,	not	when	a	macro	is	defined.	Macros	in	quoted	strings	will	not	be	expanded	by	parsing	tools;	all
other	macro	values	will	be	expanded,	without	evaluation,	as	other	elements	of	the	build	system	will
perform	any	needed	tests.

Example

[FV.common]

		FILE	FV_IMAGE	=	EF41A0E1-40B1-481f-958E-6FB4D9B12E76	{

				FvAlignment											=	512K

				WRITE_POLICY_RELIABLE	=	TRUE

				SECTION	GUIDED	3EA022A4-1439-4ff2-B4E4-A6F65A13A9AB	{

						SECTION	FV_IMAGE	=	Dxe	{

								APRIORI	DXE	{

										INF	$(WORKSPACE)/a/a.inf

										INF	$(EDK_SOURCE/a/c/c.inf

										INF	$(WORKSPACE)/a/b/b.inf

								}

								INF	a/d/d.inf

								...

						}

				}

		}

The		[Rule]		section	of	the	FDF	file	allows	for	using	macros	that	are	also	defined	for	the	EDK	II
build_rule.txt	file.	The	following	table	provides	the	list	of	these	pre-defined	macro	statements.	These
macros	should	never	be	expanded	during	the	initial	parsing	phase,	as	other	tools	use	these	macros	to
generate	the	UEFI	and	PI	compliant	images.	Additionally,	the	macro	names	should	never	be	set	by	the
user,	as	these	values	are	filled	in	by	the	build	tools	based	other	file	and	base	names.

Table	4	Reserved		[Rule]		Section	Macro	Strings

Variable	String Description

"${src}" Source	file(s)	to	be	built	(full	path)

"${s_path}" Source	file	directory	(absolute	path)

"${s_dir}" Source	file	relative	directory	within	a	module.

Note:	${s_dir}	is	always	equals	to	"."	if	source	file	is	given	in	absolute	path.

"${s_name}" Source	file	name	without	path.

"${s_base}" Source	file	name	without	extension	and	path.

"${s_ext}" Source	file	extension.

"${dst}" Destination	file(s)	built	from	${src}	(full	path)

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

34Revision	1.28.01

"${d_path}" Destination	file	directory	(absolute	path)

"${d_name}" Destination	file	name	without	path.

"${d_base}" Destination	file	name	without	extension	and	path

"${d_ext}" Destination	file	extension

The		SET		and		DEFINE		statements	are	not	permitted	in	the		[Rule]		section.

2.2.7	PCD	Names
Unique	PCDs	are	identified	using	the	format	to	identify	the	named	PCD:

	PcdTokenSpaceGuidCName.PcdCName	

The	PCD's	Name	(PcdName)	is	defined	as	PCD	Token	Space	Guid	C	name	and	the	PCD	C	name	-	separated
by	a	period	"."	character.	PCD	C	names	are	used	in	C	code	and	must	follow	the	C	variable	name	rules.

A	PCD's	values	are	positional	with	in	the	FDF	file,	and	may	be	set	by	either	the	automatic	setting
grammar	defined	in	this	specification,	or	through		SET		statements.	Once	the	PCD's	value	has	been
defined,	it	may	be	used	anywhere	within	the	FDF	file;	they	are	not	limited	to	sections	that	they	are
defined	in.	PCD	values	may	be	absolute,	values	defined	by	macros,	or	expressions.

Refer	to	the	EDK	II	Build	Specification,	Pre-Build	AutoGen	Stage	chapter	for	PCD	processing	rules.

2.2.8	Conditional	Statements	(!if...)
Conditional	statements	are	used	by	the	build	tools	preprocessor	function	to	include	or	exclude
statements	in	the	FDF	file.

Most	section	definitions	in	the	EDK	II	meta-data	files	have	architecture	modifiers	in	the	section	tags.	Use
of	architectural	modifiers	in	the	section	tag	is	the	recommended	method	for	specifying	architectural
differences.	Some	sections	do	not	have	architectural	modifiers	and	there	are	some	unique	cases	where
having	a	method	for	specifying	architectural	specific	items	would	be	valuable,	hence	the	ability	to	use
these	values.

Statements	are	prefixed	by	the	exclamation	"!"	character.	Conditional	statements	may	appear	anywhere
within	the	FDF	file.

Note:	A	limited	number	of	statements	are	supported.	This	specification	does	not	support	every
conditional	statement	that	C	programmers	are	familiar	with.

Supported	statements	are:

	!ifdef,	!ifndef,	!if,	!elseif,	!else	and	!endif	

Refer	to	the	Macro	Statement	section	for	information	on	using	Macros	in	conditional	directives.

When	using	the		!ifdef		or		!ifndef	,	the	macro	name	must	be	used;	the	macro	name	must	not	be
encapsulated	between		$(and)	.	(For	backward	compatibility,	macro	names	encapsulated	between
	$(and)		are	allowed	in	FDF	files	that	have		FDF_SPECIFICATION		versions	less	that		0x00010016	.)

When	using	a	marco	in	the		!if		or		!elseif		conditionals,	the	macro	name	must	be	encapsulated
between		$(and)	.

A	macro	that	is	not	defined	has	a	default	value	of	0	(FALSE)	when	used	in	a	conditional	comparison
statement.

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

35Revision	1.28.01

It	is	recommended	you	not	use	PCDs	in	the		!ifdef		or		!ifndef		statements.	Using	a	PCD	in	an		!ifdef		or
	!ifndef		statement	will	cause	the	build	to	break	with	an	error	message.

When	using	a	PCD	in	the		!if		or		!elseif		conditionals,	the	PCD	name		(TokenSpaceGuidCName.PcdCname)		must	be
used;	the	PCD	name	must	not	be	encapsulated	between	"$("	and	")".	Do	not	encapsulate	the	PCD	name
in	the	"$("	and	")"	required	for	macro	values	or	in	the	"PCD("	and	")"	used	in		[FV]		or		[Capsule]		sections
as	shown	in	the	example	below.

!if	(gTokenSpaceGuid.PcdCname	==	1)	AND	($(MY_MACRO)	==	TRUE)

DEFINE	FOO=TRUE

!endif

If	the	PCD	is	a	string,	only	the	string	needs	to	be	encapsulated	by	double	quotation	marks,	while	a
Unicode	string	can	have	the	double	quoted	string	prefixed	by	"L",	as	in	the	following	example:

!if	gTokenSpaceGuid.PcdCname	==	L"Setup"

DEFINE	FOO=TRUE

!endif

When	used	in		!if		and		!elseif		conditional	comparison	statements,	it	is	the	value	of	the	Macro	or	the
PCD	that	is	used	for	testing,	not	the	name	of	the	macro	or	PCD.

Strings	can	only	be	compared	to	strings	of	a	like	type	(testing	an	ASCII	string	against	a	Unicode	format
string	must	fail),	numbers	can	only	be	compared	against	numbers	and	boolean	objects	can	only
evaluate	to		TRUE		or		FALSE	.	See	the	Operator	Precedence	table,	in	the	Expressions	section	below	for	a
list	of	restrictions	on	comparisons.

Using	macros	in	conditional	directives	that	contain	flags	for	use	in	the		[BuildOptions]		sections	of	DSC	files
is	not	recommended.

If	a	PCD	is	used	in	a	conditional	statement,	the	value	must	first	come	from	the	FDF	file,	then	from	the
DSC	file.	If	the	value	cannot	be	determined	from	these	two	locations,	the	build	system	should	break	with
an	error	message.

Note:	PCDs,	used	in	conditional	directives,	must	be	defined	and	the	value	set	in	either	the	FDF	or	DSC
file	in	order	to	be	used	in	a	conditional	statement;	values	from	INF	or	DEC	files	are	not	permitted.

The	following	is	an	example	of	conditional	statements.

!if	("MSFT"	in	$(FAMILY))	or	("INTEL"	in	$(FAMILY))

...	statements

!elseif	$(FAMILY)	==	"GCC"

...	statements

!endif

!ifdef	FOO

		!ifndef	BAR

				#	FOO	defined,	BAR	not	defined

		!else

				#	FOO	defined,	BAR	is	defined

		!endif

!elseif	$(BARFOO)

		#	FOO	is	not	defined,	BARFOO	is	defined	as	TRUE

!elseif	$(BARFOO)	==	"FOOBAR"

		#	FOO	is	not	defined,	BARFOO	is	defined	as	FOOBAR

!else

		#	FOO	is	not	defined	while	BARFOO	is	either	NOT	defined	or	does	not

		#	equal	"FOOBAR"

!endif

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

36Revision	1.28.01

2.2.9	Expressions
Expressions	can	be	used	in	conditional	directive	comparison	statements	and	in	value	fields	for	Macros
and	PCDs	in	the	DSC	and	FDF	files.

Expressions	follow	C	relation,	equality,	logical	and	bitwise	precedence	and	associativity.	Not	all	C
operators	are	supported,	only	operators	in	the	following	list	can	be	used.

Note:	Due	to	the	flexibility	of	the	build	system,	a	new	operator,	"IN"	has	been	added	that	can	be	used
to	test	whether	an	element	is	in	a	list.	The	format	for	this	is		<Value>	IN	<MACRO_LIST>	,	where		MACRO_LIST		can
only	be	one	of		$(ARCH)	,		$(FAMILY)	,		$(TOOL_CHAIN_TAG)		and		$(TARGET)	.

Use	of	parenthesis	is	encouraged	to	remove	ambiguity.

When	comparing	a	string	to	a	number	or	boolean	value,	a	warning	message	will	be	emitted.	In	this	case,
the	tools	will	always	evaluate	the	expression	using	the	"=="	and	"EQ"	operators	to		FALSE	,	using	the	"!="
and	"NE"	operators	to		TRUE	;	other	operator	comparisons	are	not	supported,	and	will	cause	the	build
system	to	terminate	with	an	error	message.	Comparing	a	number	to	a	boolean	value	(no	warning
message	will	be	emitted)	will	be	evaluated	normally,	however,	only	the	numeric	value	of	1	will	be
considered	a	match	to	the	"=="	and	"EQ"	operators	against	a	boolean	value	of		TRUE	.

Additional	scripting	style	operators	may	be	used	in	place	of	C	operators	as	shown	in	the	table	below.

Table	5	Operator	Precedence	and	Supported	Operands

Operator
Use
with
Data
Types

Notes Priority

	or	,		OR	,
	||	

Number,
Boolean Lowest

	and	,		AND	,
	&&	

Number,
Boolean

	|	
Number,
Boolean

	̂ 	,		xor	,
	XOR	

Number,
Boolean Exclusive	OR

	&	
Number,
Boolean Bitwise	AND

	==	,		!=	,
	EQ	,		NE	,
	IN	

All	types The	IN	operator	can	only	be	used	to	test	a	unary	object	for
membership	in	a	list

Space	characters	must	be	used	before	and	after	the	letter
operators	Strings	compared	to	boolean	or	numeric	values
using	"=="	or	"EQ"	will	always	return	FALSE,	while	using	the
"!="	or	"NE"	operators	will	always	return	TRUE

	<=	,		>=	,
	<	,		>	,
	LE	,		GE	,
	LT	,		GT	

All Space	characters	must	be	used	before	and	after	the	letter
operators

Number,
Cannot	be	used	with	strings	-	the	system	does	not
automatically	do	concatenation.	Tools	should	report	a

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

37Revision	1.28.01

Boolean warning	message	if	these	operators	are	used	with	both	a
boolean	and	number	value

	!	,		not	,
	NOT	

Number,
Boolean Highest

The		IN		operator	can	only	be	used	to	test	a	literal	string	against	elements	in	the	following	global
variables:

$(FAMILY)

	$(FAMILY)		is	considered	a	list	of	families	that	different		TOOL_CHAIN_TAG		values	belong	to.	The		TOOL_CHAIN_TAG		is
defined	in	the		Conf/target.txt		or	on	the	command-line.	The		FAMILY		is	associated	with	the		TOOL_CHAIN_TAG		in
the		Conf/	tools_def.txt		file	(or	the		TOOLS_DEF_CONF		file	specified	in	the		Conf/target.txt		file)	file.	While	different
family	names	can	be	defined,		ARMGCC	,		GCC	,		INTEL	,		MSFT	,		RVCT	,		RVCTCYGWIN		and		XCODE		have	been
predefined	in	the		tools_def.txt		file.

$(ARCH)

	$(ARCH)		is	considered	the	list	of	architectures	that	are	to	be	built,	that	were	specified	on	the	command
line	or	come	from	the		Conf/target.txt		file.

$(TOOL_CHAIN_TAG)

	$(TOOL_CHAIN_TAG)		is	considered	the	list	of	tool	chain	tag	names	specified	on	the	command	line

$(TARGET)

	$(TARGET)		is	considered	the	list	of	target	(such	as		DEBUG	,		RELEASE		and		NOOPT)	names	specified	on	the
command	line	or	come	from	the		Conf/target.txt		file.

For	logical	expressions,	any	non-zero	value	must	be	considered		TRUE	.

Invalid	expressions	must	cause	a	build	break	with	an	appropriate	error	message.

2.2	Flash	Description	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

38Revision	1.28.01

2.3	[Defines]	Section
This	is	an	optional	section.

The	[Defines]	section	may	be	used	for	version	tracking	of	FDF	files	as	well	as	the	location	for	global
DEFINE	statements.

	[Defines]	

The	format	for	the	non-Macro	entries	in	this	section	is:

	Name	=	Value	

2.3	[Defines]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

39Revision	1.28.01

2.4	[FD]	Sections
The		[FD]		sections	are	made	up	of	the	definition	statements	and	a	description	of	what	goes	into	the
Flash	Device	Image.	Each	FD	section	defines	one	flash	"device"	image.	A	flash	device	image	may	be	one
of	the	following:	Removable	media	bootable	image	(like	a	boot	floppy	image,)	a	System	"Flash"	image
(that	would	be	burned	into	a	system's	flash)	or	an	Update	("Capsule")	image	that	will	be	used	to	update
and	existing	system	flash.

Multiple	FD	sections	can	be	defined	in	a	FDF	file.

The	section	header	format	is		[FD.FdUiName]		where	the		FdUiName		can	be	any	value	defined	by	the	user.	If
only	a	single	FD	is	constructed	for	a	platform	then		FdUiName		is	optional,	and	the	processing	tools	will	use
the	DSC	file		[Defines]		section's		PLATFORM_NAME		value	for	creating	the	FD	file.

An	FD	section	is	terminated	by	any	other	section	header	section	or	the	end	of	the	file.

This	section	is	required	for	platform	images,	and	not	required	for	OptionROM	images.

2.4.1	FD	TOKEN	Statements
The	Token	statements	are	used	to	define	the	physical	part.	These	include	the	base	address	of	the
image,	the	size	of	the	image,	the	erase	polarity	and	block	information.	Only	one	of	each	of	the	valid
token	names	can	be	defined	in	any	one	FD	section,	except	as	noted	below.

	Token	=	VALUE	[|	PcdName]	

Only	one	token	statement	can	appear	on	a	single	line,	and	each	token	statement	must	be	on	a	single
line.	Multi-line	token	statements	are	not	permitted.

There	are	five	valid	Token	names	defined	by	this	specification.

BaseAddress

The	base	address	of	the	FLASH	Device.

Size

The	size	in	bytes	of	the	FLASH	Device

ErasePolarity

Either	0	or	1,	depending	on	the	erase	polarity	of	the	Flash	Device.

BlockSize

One	or	More	-	Size	of	a	block,	optionally	followed	by	number	of	blocks.	Multiple		BlockSize		statements	are
legal,	and	the	first	statement	represents	block	0	(the	first	block)	and	subsequent		BlockSize		statements
represent	blocks	1	-	N.

NumBlocks

Zero	or	one	-	The	number	of	continuous	blocks	of	size,		BlockSize	.	If		NumBlocks		is	not	present,	the	number
of	blocks	defaults	to	1.

An	optional		PcdName		may	follow	the	Token	statement	and	is	separated	from	the	statement	using	a	pipe
"|"	character.	The		PcdName		is	assigned		$(VALUE)	.	Only	one		PcdName		can	be	assigned	a	Token's	Value.

2.4.2	FD	DEFINE	statements

2.4	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

40Revision	1.28.01

	DEFINE		statements	are	used	to	define		MACRO		definitions	that	are	scoped	to	the	individual	FD	sections.
	DEFINE		statements	are	processed	in	order,	so	a	later		DEFINE		statement	for	a	given		MACRO		over-writes	the
previous	definition.	The		DEFINE		statements	are	typically	used	for	creating	short-cut	names	for	directory
path	names	but	may	be	used	for	identifying	other	items	or	values	that	will	be	used	in	later	statements.

	DEFINE	MACRO	=	PATH	

The	following	are	examples	of	the	DEFINE	statement.

DEFINE	FV_DIR											=	$(OUT_DIR)/$(TARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)

DEFINE	MDE_MOD_TSPG					=	gEfiMdeModulePkgTokenSpaceGuid

DEFINE	NV_STOR_VAR_SIZE	=	PcdFlashNvStorageVariableSize

DEFINE	FV_HDR_SIZE						=	0x48

DEFINE	VAR_STORE_SIZE			=	$(MDE_MOD_TSPG).$(NV_STOR_VAR_SIZE)	-	$(FV_HDR_SIZE)

The		$(MACRO)		can	be	used	to	create	a	shorthand	notation	that	can	be	used	elsewhere	within	the	FDF
file.	Macro	values	may	be	scoped	to	subsections	of	the	FDF	file.	Macros	are	also	positional,	with	later
values	replacing	values	for	macros	at	the	same	level.	When	tools	process	this	file,	the		$(MACRO)		name	will
be	expanded	in	commands	or	files	emitted	from	the	tools.	In	the	following	example,		$(OUTPUT_DIRECTORY)		is
a	variable,	whose	value	is	found	in	the	platform's	DSC	file,	and	this	file	assigns		OUT_DIR		as	the	variable
name	to	use,	with	the	same	value	as		$(OUTPUT_DIRECTORY)	:

DEFINE	OUT_DIR	=	$(OUTPUT_DIRECTORY)

DEFINE	FV_DIR	=	$(OUT_DIR)/$(TARGET)_$(TOOL_CHAIN_TAG)/$(ARCH)/FV

If	the	DSC	file	declares		OUTPUT_DIRECTORY	=	$(WORKSPACE)/Build/Nt32	,		TARGET	=	DEBUG	,	target.txt	uses		MYTOOLS		for	the
tool	chain,	and	the	platform	is		IA32	,	then	a	statement	later	in	the	section	that	references		$(FV_DIR)		is
interpreted	by	the	tools	as	being:

	$(WORKSPACE)/Build/Nt32/DEBUG_MYTOOLS/IA32/FV	

2.4.3	FD	SET	statements
	SET		statements	are	used	to	define	the	values	of	PCD	statements.	The	current	PCD	maps	for	regions
include	extra	PCD	entries	that	define	properties	of	the	region,	so	the		SET		statement	can	occur
anywhere	within	an	FD	section.

	SET		statements	are	positional	within	the	FDF	file.

	SET	PcdName	=	VALUE	

Additionally,	a	PCD	Name	is	made	up	of	two	parts,	separated	by	a	period	"."	character.	The	format	for	a
	PcdName		is:

	PcdTokenSpaceGuidCName.PcdCName	

The	following	is	an	example	of	the		SET		statement:

	SET	gFlashDevicePkgTokenSpaceGuid.PcdEfiMemoryMapped	=	TRUE	

The		VALUE		specified	must	match	the	PCD's	datum	type	and	must	be	the	content	data.

For	a	PCD	that	has	a	datum	type	of		VOID	*,	the	data	can	be	a	Unicode	string,	as	in		L"text"	,	a	valid	C
data	array	(it	must	be	either	a	C	format	GUID	or	a	hex	byte	array),	as	in		{0x20,	0x01,	0x50,	0x00,	0x32,	0xFF,
0x00,	0xAA,	{0xFF,	0xF0,	0x00,	0x00,	0x00}}.		For	other	PCD	datum	types,	the	value	may	be	a	boolean	or	a	hex
value,	as	in		0x0000000F,		with	a	value	that	is	consistent	with	the	PCD's	datum	type.

The	value	may	also	be	a	macro	or	it	may	be	computed,	using	arithmetic	operations,	arithmetic
expressions	and	or	logical	expressions.	The	value	portion	of	the		SET		statement,	when	using	any	of
these	computations	are	in-fix	expressions	that	are	evaluated	left	to	right,	with	items	within	parenthesis
evaluated	before	the	outer	expressions	are	evaluated.	Use	of	parenthesis	is	encouraged	to	remove
ambiguity.

2.4	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

41Revision	1.28.01

2.4.4	FD	Region	Layout
Following	the	FD	defines	section	are	lists	of		Regions		which	correspond	to	the	locations	of	different
images	within	the	flash	device.	Currently	most	flash	devices	have	a	variable	number	of	blocks,	all	of
identical	size.	When	"burning"	an	image	into	one	of	these	devices,	only	whole	blocks	can	be	burned	into
the	device	at	any	one	time.	This	puts	a	constraint	that	all	layout	regions	of	the	FD	image	must	start	on
a	block	boundary.	To	accommodate	future	flash	parts	that	have	variable	block	sizes,	the	layout	is
described	by	the	offset	from	the		BaseAddress		and	the	size	of	the	section	that	is	being	described.	Since
completely	filling	a	block	is	not	probable,	part	of	the	last	block	of	a	region	can	be	left	empty.	To	ensure
that	no	extraneous	information	is	left	in	a	partial	block,	it	is	recommended	that	the	block	be	erased
prior	to	burning	it	into	the	device.

Regions	must	be	defined	in	ascending	order	and	may	not	overlap.

A	layout	region	start	with	an	eight	digit	hex	offset	(leading	"0x"	required)	followed	by	the	pipe	"|"
character,	followed	by	the	size	of	the	region,	also	in	hex	with	the	leading	"0x"	characters.

The	typical	layout	region	is	terminated	by	the	start	of	another	region	or	an	FV	Section	header.

The	format	for	an	FD	Layout	Region	is:

Offset|Size

[TokenSpaceGuidCName.PcdOffsetCName	|	TokenSpaceGuidCName.PcdSizeCName]	?

		[RegionType]	?

Setting	the	optional	PCD	names	in	this	fashion	is	a	shortcut.	The	two	regions	listed	below	are	identical,
with	the	first	example	using	the	shortcut,	and	the	second	using	the	long	method:

0x000000|0x0C0000

gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress	|	gEfiMyTokenSpaceGuid.PcdFlashFvMainSize

FV	=	FvMain

0x000000|0x0C0000

SET	gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress	=	0x000000

SET	gEfiMyTokenSpaceGuid.PcdFlashFvMainSize								=	0x0C0000

FV	=	FvMain

The	shortcut	method	is	preferred,	as	the	user	does	not	need	to	maintain	the	values	in	two	different
locations.

The		RegionType	,	if	specified,	must	be	one	of	the	following		FV	,		DATA	,		FILE	,		INF		or		CAPSULE	.	Not	specifying
the		RegionType		implies	that	the	region	starting	at	the	"Offset",	of	length	"Size"	must	not	be	touched
(unless	the	region	will	be	used	for	VPD	data).	This	type	of	region	is	typically	used	for	event	logs	that	are
persistent	between	system	resets,	and	modified	via	some	other	mechanism	(and	Each	FD	region	has	a
	UiName		modifier,	then	the	output	image	files	uses	the		UiName		modifier	for	the	file	name.

Note:	Although	sub-regions	existed	in	EDK	FDF	files,	EDK	II	FDF	does	not	use	the	concept	of	subregions.

2.4.4.1	FV	RegionType
The		FV	RegionType		is	a	pointer	to	either	one	of	the	unique	FV	names	that	are	defined	in	the		[FV]		section.
Both	of	these	are	files	that	contains	a	binary	FV	as	defined	by	the	PI	1.0	specification.	The	format	for
the		FV	RegionType		is	the	following:

	FV	=	UiFvName	

The	following	is	an	example	of	FV	region	type:

2.4	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

42Revision	1.28.01

0x000000|0x0C0000

gEfiMyTokenSpaceGuid.PcdFlashFvMainBaseAddress	|	gEfiMyTokenSpaceGuid.PcdFlashFvMainSize

FV	=	FvMain

2.4.4.2	DATA	RegionType
The		DATA	RegionType		is	a	region	that	contains	is	a	hex	byte	value	or	an	array	of	hex	byte	values.	This	data
that	will	be	loaded	into	the	flash	device,	starting	at	the	first	location	pointed	to	by	the	Offset	value.	The
format	of	the		DATA	RegionType		is:

DATA	=	{	}

The	following	is	an	example	of	a	DATA	region	type.

0x0CA000	|	0x002000

gEfiMyTokenSpaceGuid.PcdFlashNvStorageBase	|	gEfiMyTokenSpaceGuid.PcdFlashNvStorageSize

DATA	=	{

		0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

		0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C

}

The		!include		statement	is	valid	for	hex	array	portion	of	the		DATA	RegionType	.	The	following	is	a	valid	usage
for	the		!include		statement.

0x0CA000	|	0x002000

gEfiMyTokenSpaceGuid.PcdFlashNvStorageBase	|	gEfiMyTokenSpaceGuid.PcdFlashNvStorageSize

DATA	=	{

		!include	NvStoreInit.txt

}

2.4.4.3	FILE	RegionType
The		FILE	RegionType		is	a	pointer	to	a	binary	file	that	will	be	loaded	into	the	flash	device,	starting	at	the
first	location	pointed	to	by	the		Offset		value.	It	should	be	noted	that	a	file	can	be	fully	qualified	path	and
filename	that	is	outside	of	the	current	WORKSPACE	(or	the	directories	listed	in	PACKAGES_PATH	system
environment	variable).	The	file	must	be	a	binary	(.efi)	or	a	raw	binary	file.	The	format	of	the		FILE
RegionType		is:

	FILE	=	$(FILE_DIR)/Filename.bin	

Caution:	If	a	fully	qualified	path	and	filename	is	specified,	the	platform	integrator	must	ensure	that	all
developers	using	the	DSC	and	FDF	file	are	aware	of	the	requirements	for	this	path.

The	following	is	an	example	of	the		FILE	RegionType	.

0x0CC000|0x002000

gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchAddress	|	gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchSize

FILE	=	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/X64/Microcode.bin

#	VPD	Data	Region

0x0026D000|0x00001000

gEfiMdeModulePkgTokenSpaceGuid.PcdVpdBaseAddress

FILE	=	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/8C3D856A-9BE6468E-850A-24F7A8D38E08.bin

2.4.4.4	Capsule	RegionType

2.4	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

43Revision	1.28.01

The		CAPSULE	RegionType		is	a	pointer	to	a	capsule	section		UiName		that	will	be	loaded	into	the	flash	device,
starting	at	the	first	location	pointed	to	by	the		Offset		value.	The	format	of	the		FILE	RegionType		is:

	CAPSULE	=	UiCapsuleName	

The	following	is	an	example	of	the		CAPSULE	RegionType	.

0x0CC000|0x002000

gEfiTokenSpaceGuid.PcdCapsuleOffset	|	gEfiTokenSpaceGuid.PcdCapsuleSize

CAPSULE	=	MyCapsule

2.4.4.5	INF	Region	Type
The	INF	statements	point	to	EDK	component	and	EDK	II	module	INF	files.	Parsing	tools	will	scan	the	INF
file	to	determine	the	type	of	component	or	module.	The	component	or	module	type	is	used	to	reference
the	standard	rules	defined	elsewhere	in	the	FDF	file.

The	format	for	INF	statements	is:

	INF	[Options]	PathAndInfFileName	

The	PathAndInfFileName	is	the	WORKSPACE	(or	PACKAGES_PATH)	relative	path	and	filename.

2.4.4.6	No	RegionType	Specified
It	is	permissible	to	define	a	region	with	no	data	pre-loaded.	For	example,	event	logging	needs	a	data
region	to	store	events.	This	region	is	filled	with	data	that	matches	the		ErasePolarity		bit	during	the	initial
installation	of	the	firmware	or	through	UEFI	or	operating	system	commands	and	services.

An	example	of	no	region	type	specified	is:

0x0CE000|0x002000

gEfiMyTokenSpaceGuid.PcdFlashNvStorageEventLogBase	|	gEfiMyTokenSpaceGuid.PcdFlashNvStorageEventLogBase

2.4	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

44Revision	1.28.01

2.5	[FV]	Sections
The		[FV]		sections	are	required	for	platform	images,	are	optional	for	Capsule	images,	and	are	not
required	for	Option	ROM	only	images.	The		[FV]		section	defines	what	components	or	modules	are	placed
within	a	flash	device	file.	These	sections	define	the	order	the	components	and	modules	are	positioned
within	the	image.	The		[FV]		section	consists	of	define	statements,	set	statements	and	module
statements.	A	single		[FV]		section	is	terminated	by	the	start	of	another	section	header	or	the	end	of
the	file.	The		[FV]		section	has	one	required	modifier,	a	user	defined	section	name.	The	format	for		[FV]	
section	header	is:

	[FV.UiFvName]	

The	FV		UiFvName		must	be	unique	for	every	declared	user	defined	name	within	the	file.	The		UiFvName		is
used	for	specifying	the	file	that	will	be	used	in	and		[FD]		section.

Nesting	of		[FV]		sections	is	permitted,	making	it	possible	to	create	a	tree	structure	containing	multiple
FV	sections	within	a	single		[FV]		section.	Nested	sections	are	specified	using	either	the	syntax	"FILE
FV_IMAGE	=	Name"	or	"SECTION	FV_IMAGE	=	Name"	within	the	top		[FV]		Section.

Use	of	the		UiFvName		modifier	permits	the	user	to	include,	by		UiFvName	,	previously	defined	sections	within
another	FV	section.	This	eliminates	the	need	to	re-specify	components	or	modules	in	multiple	places.
When	the		FvNameString		entry	is	present	and	set	to	TRUE	in	an		[FV]		section,	the	tools	will	generate	an
	FvNameString		entry	in	FV	EXT	header	using	the		UiFvName	.

This	section	also	specifies	how	to	define	content	for	PI	FV	Extensions	which	provides	a	mapping	for	a
GUID,	an	OEM	file	type	and	FV	used	size.	The	size	of		EFI_FIRMWARE_VOLUME_EXT_HEADER		and
	EFI_FIRMWARE_VOLUME_EXT_ENTRY		sizes	will	be	calculated	based	on	content,	while	the		EFI_FIRMWARE_VOLUME_EXT_ENTRY	
type	must	be	defined	by	the	platform	integrator	based	on	the	PI	specification,	volume	3	The	content	is
limited	to	the	contents	of	a	binary	file	specified	by	a	FILE	statement	or	a	data	array	specified	by	a		DATA	
statement.

The		EFI_FIRMWARE_VOLUME_EXT_ENTRY_OEM_TYPE		(using		TYPE=0x0001)	is	only	support	by	including	a	file	or	data
structure	that	completes	the	remainder	of	the	OEM	type	entry,	where	the	first	entry	would	have	to	be	a
	UINT32		representing	the	TypeMask.	Additional	types	defined	by	the	PI	spec	will	be	supported	in	this
manner	as	well.

The	build	system	permits	a	recovery	feature	that	allows	placing	two	copies	of	a		PEI.fv		in	the	flash	top.	If
the	top	one	is	corrupt,	backup	one	will	be	swapped	to	the	top	and	work.

The	backup	must	be	the	same	as	the	top	PEI.fv	although	it	is	placed	into	another	place.	Therefore,	the
backup	FV	must	be	rebased	to	run	at	another	address.	The		FvBaseAddress		and	the	optional		FvForceRebase	
attributes	must	be	above		FvAlignment		attribute.

2.5.1	DEFINE	Statements
	DEFINE		statements	are	used	to	define	Macro	definitions	that	are	scoped	to	the	individual		[FV]		sections.
	DEFINE		statements	are	processed	in	order,	so	a	later		DEFINE		statement	for	a	given		MACRO		over-writes	the
previous	definition	for	the	remainder	of	the	section	or	sub-section.	The		DEFINE		statements	are	typically
used	for	creating	short-cut	names	for	directory	path	names,	but	may	be	used	for	identifying	other	items
or	values	that	will	be	used	in	later	statements.

	DEFINE	MACRO	=	VALUE	

The	following	are	examples	of	the		DEFINE		statement.

DEFINE	EDKMOD											=	$(WORKSPACE)/EdkModulePkg/

DEFINE	MDE_MOD_TSPG					=	gEfiMdeModulePkgTokenSpaceGuid

DEFINE	NV_STOR_VAR_SIZE	=	PcdFlashNvStorageVariableSize

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

45Revision	1.28.01

DEFINE	FV_HDR_SIZE						=	0x48

DEFINE	VAR_STORE_SIZE			=	$(MDE_MOD_TSPG).$(NV_STOR_VAR_SIZE)	-	$(FV_HDR_SIZE)

2.5.2	Block	Statements
	BLOCK		statements	are	used	to	define	block	size	and	the	number	of	blocks	that	are	needed	for	FV
images	that	do	NOT	get	put	into	a	physical	flash	part,	such	as	the	recovery	image	that	gets	put	on	a
floppy	or	USB	key.

BLOCK_SIZE	=	VALUE

NUM_BLOCKS	=	VALUE

The	following	is	an	example	of	the	BLOCK	statement:

	BLOCK_SIZE	=	512	

2.5.3	FV	SET	Statements
	SET		statements	are	used	to	define	the	values	of	PCDs.	These	statements	are	positional	within	the	FDF
file.		SET		statements	set	a		PcdName		to	a		VALUE		for	this	FV.

	SET	<PcdName>	=	VALUE	

The	following	is	an	example	of	the		SET		statement:

	SET	gEfiMyTokenSpaceGuid.PcdDisableOnboardVideo	=	TRUE	

The		VALUE		specified	must	match	the	Pcd's	datum	type	and	must	be	the	content	data.

For	a	PCD	that	has	a	datum	type	of		VOID	*,	the	data	can	be	a	Unicode	string,	as	in		L"text"	,	a	valid	C
data	array	(it	must	be	either	a	C	format	GUID	or	a	hex	byte	array),	as	in		{0x20,	0x00,	0x20,	0x00,	0x32,	0xFF,
0x00,	0xAA,	{0xFF,	0xF0,	0x00,	0x00,	0x00}}.		Other	PCD	datum	types	are	either	boolean	values	or	a	hex	value,	as
in		0x0000000F	,	with	a	value	that	is	consistent	with	the	PCD's	datum	type

The	value	may	also	be	a	macro	or	it	may	be	computed,	using	arithmetic	operations,	arithmetic
expressions	and	or	logical	expressions.	The	value	portion	of	the		SET		statement,	when	using	any	of
these	computations	are	in-fix	expressions	that	are	evaluated	left	to	right,	with	items	within	parenthesis
evaluated	before	the	outer	expressions	are	evaluated.	Use	of	parenthesis	is	encouraged	to	remove
ambiguity.

2.5.4	APRIORI	Scoping
Within	some	firmware	volumes,	an		APRIORI		file	can	be	created	which	is	a	GUID	named	list	of	modules	in
the	firmware	volume.	The	modules	will	be	invoked	or	dispatched	in	the	order	they	appear	in	the		APRIORI	
file.	Within	a	Firmware	Volume,	only	one	PEI	and	one	DXE	Apriori	file	are	permitted.	Since	nested
Firmware	Volumes	are	permitted,	Apriori	files	are	limited	to	specifying	the	files,	not	FVs	that	are	within
the	scope	of	the	FV	image	in	which	it	is	located.	(It	is	permissible	for	nested	FV	images	to	have	one	PEI
and	one	DXE	Apriori	file	per	FV.)	Scoping	is	accomplished	using	the	curly	"{}"	braces.

The	following	example	demonstrates	an	example	of	multiple	APRIORI	files.

[Fv.Root]

		DEFINE	NT32					=	$(WORKSPACE)/EdkNt32Pkg

		DEFINE	BuildDir	=	$(OUTPUT_DIRECTORY)/$(PLATFORM_NAME)/$(TARGET)_$(TOOL_CHAIN_TAG)

		APRIORI	DXE	{

				FILE	DXE_CORE	=	B5596C75-37A2-4b69-B40B-72ABD6DD8708	{

						SECTION	COMPRESS	{

								SECTION	PE32	=	$(BuildDir)/X/Y/Z/B5596C75-37A2-4b69-B40B-72ABD6DD8708-DxeCore.efi

								SECTION	VERSION	"1.2.3"

						}

				}

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

46Revision	1.28.01

				INF	VERSION	=	"1"	${NT32)/Dxe/WinNtThunk/Cpu/Cpu.inf

		}

		FILE	FV_IMAGE	=	EF41A0E1-40B1-481f-958E-6FB4D9B12E76	{

				SECTION	GUIDED	3EA022A4-1439-4ff2-B4E4-A6F65A13A9AB	{

						SECTION	FV_IMAGE	=	Dxe	{

								APRIORI	DXE	{

										INF	a/a/a.inf

										INF	a/c/c.inf

										INF	a/b/b.inf

								}

								INF	a/d/d.inf

								...

						}

				}

		}

In	the	example	above,	There	are	three	FFS	files	in	the		Fv.Root		and	one	Encapsulated	FV	image,	with	the
build	tools	creating	an		APRIORI		file	that	will	dispatch	the		DXE_CORE		first,	then	the	CPU	module	second.	In
the	FV	image,	named	Dxe,	there	will	be	at	least	five	FFS	files,	the		APRIORI		file,	listing	the	GUID	names	of
	a.inf	,		c.inf		and		b.inf	,	which	will	be	dispatched	in	this	order.	Once	complete,	the		d.inf		module	will	be
dispatched.

2.5.5	INF	Statements
The	INF	statements	point	to	EDK	component	and	EDK	II	module	INF	files.	Parsing	tools	will	scan	the	INF
file	to	determine	the	type	of	component	or	module.	The	component	or	module	type	is	used	to	reference
the	standard	rules	defined	elsewhere	in	the	FDF	file.

The	format	for	INF	statements	is:

	INF	[Options]	PathAndInfFileName	

The		PathAndInfFileName		is	the		WORKSPACE		(or		PACKAGES_PATH)relative	path	and	filename.

Using	an	INF	statement	will	cause	the	build	tools	to	implicitly	build	an	FFS	file	with	the		EFI_FV_FILETYPE	
based	on	the	INF	module's		MODULE_TYPE		and	content.	For	example,	specifying	the	following	lines	in	an	FV
section	will	generate	an	FFS	file	with	an		EFI_FV_FILETYPE_DRIVER		with	three	sections,	the		EFI_SECTION_PE32	,	an
	EFI_SECTION_VERSION	,	and	an		EFI_SECTION_DXE_DEPEX	.	While	there	is	no	version	file	defined	in	the	INF	-	it	has
been	specified	by	the		VERSION		option;	and	there	is	a	dependency	file	specified	in	the	INF	file's	source	file
list.

DEFINE	MMP_U_MT	=	MdeModulePkg/Universal/MemoryTest

INF	VERSION	=	"1.1"	$(MMP_U_MT)/NullMemoryTestDxe/NullMemoryTestDxe.inf

Valid	options	for	the	INF	file	line	are:

RuleOverride	=	RuleName

This	permits	the	platform	integrator	with	a	method	to	override	the	default	rules	built	into	tools,	specified
in	the	EDK	II	Build	Specification	which	follows	the	UEFI	and	PI	specifications	for	EFI	FileType	construction.
If	the	module	is	a	binary	module,	the	default	rules	are	implied	by	the	processor,	module	type	and		BINARY	
rule	name.	Using	the	explicit	named	rule	here	may	compromise	the	platform's	PI	specification
compliance.	The	RuleName	is	either	the	reserved	word,		BINARY		(that	only	applies	to	INF	files	that	contain
only	binary	content),	or	the	RuleUiName	of	a		[Rule]		section	in	this	FDF	file.

USE	=	ARCH

The		USE	=	ARCH		option	is	used	to	differentiate	if	a	single	INF	file	is	built	different	ways,	for	example	a
single	INF	file	is	called	out	multiple	times	in	the	DSC	file	when	building	the	same	module	for	more	than
one	processor	architecture.

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

47Revision	1.28.01

VERSION	=	"String"

The		VERSION		option	is	used	to	create	an		EFI_SECTION_VERSION		section	with	the	FFS	file.

UI	=	"String"

The	UI	option	is	used	to	create	an		EFI_SECTION_USER_INTERFACE		section	for	an	INF	that	may	not	have	specified
one.

When		RuleOverride		is	not	specified	for	binary	module	INF,	GenFds	tool	will	find	the	FFS	rule	with		BINARY	
rule	name.	If		RuleOverride		is	specified,	GenFds	tool	will	still	find	FFS	rule	with	the	specified	rule	name.

The	following	are	examples	of	INF	statements:

DEFINE	IFMP	=	IntelFrameworkModulePkg

INF	USE	=	IA32	$(EDK_SOURCE)/Sample/Universal/Network/Ip4/Dxe/Ip4.inf

INF	$(EDK_SOURCE)/Sample/Universal/Network/Ip4Config/Dxe/Ip4Config.inf

INF	RULE_OVERRIDE	=	MyCompress	$(IFMP)/Bus/Pci/IdeBusDxe/IdeBusDxe.inf

2.5.6	FILE	Statements
	FILE		statements	are	provided	so	that	a	platform	integrator	can	include	complete	EFI	FFS	files,	as	well
as	a	method	for	constructing	FFS	files	using	curly	"{}"	brace	scoping.

FFS	file	specification	syntax	is	one	of	the	following:

	FILE	Type	$(NAMED_GUID)	[Options]	FileName	

OR

FILE	Type	$(NAMED_GUID)	[Options]	{

		SECTION	SECTION_TYPE	=	FileName

		SECTION	SECTION_TYPE	=	FileName

}

The	first	statement	is	commonly	used	with		EFI_FV_FILETYPE_RAW		files,	while	the	second	type	is	used	for	most
other	file	types.	The	FileName	is	typically	a	binary	file,	and	the	consumer	of	this	type	of	file	must	have	an
a	priori	knowledge	of	the	format.

The	following	describes	the	information	that	can	be	specified	a	File:

Type

EFI	FV	File	Types	-	one	and	only	one	of	the	following:

	RAW		-	Binary	data

	FREEFORM		-	Sectioned	binary	data

	SEC		-	Sectioned	data	consisting	of	an	optional	pad	section,	a	terse	section	and	an	optional	raw
section.

	PEI_CORE		-	Sectioned	data	consisting	of	one	PE32,	one	user	interface	and	one	version	section.

	DXE_CORE		-	Sectioned	data	containing	one	or	more	other	sections.

	PEIM		-	Dispatched	by	PEI	Core

	DRIVER		-	Dispatched	by	DXE	core

	COMBO_PEIM_DRIVER		-	Combined	PEIM/DXE	driver	containing	PEI	and	DXE	depex	sections	as	well	as	PE32
and	version	sections.

	SMM_CORE		-	Sectioned	data	containing	one	or	more	other	sections.

1

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

48Revision	1.28.01

	DXE_SMM_DRIVER		-	Dispatched	by	the	SMM	Core

	APPLICATION		-	Application,	so	will	not	be	dispatched

	FV_IMAGE		-	File	contains	an	FV	image

	DISPOSABLE		-	This	section	type	is	not	supported	by	the	EDK	II	build	system

	0x00	-	0xFF		-	Hex	values	are	legal	too.	See	PI	specification	Volume	3	for	details

NAMED_GUID

The		$(NAMED_GUID)		is	usually	constructed	from	an	INF	file's		[Defines]		section		FILE_GUID		element.

Options

The		Fixed		and		Checksum		attributes	are	boolean	flags,	both	default	to		FALSE,		specifying	"Fixed"	enables
the	flag	to		TRUE	.

The	Alignment	attribute	requires	the	"=	value".

	Fixed		-	File	can	not	be	moved,	default	(not	specified)	is	relocate-able.

	Alignment		-	Data	(value	is	one	of:	1,	2,	4,	8,	16,	32,	64,	128,	512,	1K,	2K,	4K,	8K,	16K,	32K,	64K,	128K,
256K,	512K,	1M,	2M,	4M,	8M,	16M)	byte	aligned

	Checksum		-	It	is	recommended	that	this	be	controlled	on	an	entire	FV	basis	not	at	the	file	level,
however,	we	are	including	this	attribute	for	completeness.

UEFI	and	PI	Specifications	have	rules	for	file	type	construction	that,	by	default,	will	be	used	by	the	tools.

In	addition	to	the	arguments	on	the		FILE		line,	for	EFI	FV	File	types	that	are	not		RAW	,	additional	EFI
section	information	must	be	specified.

To	specify	additional	section	information	for	a	file,	the	EFI	Encapsulation	Sections	must	be	contained
within	curly	"{}"	braces	that	follow	the		FILE		line,	while	leaf	sections	are	denoted	by	an		EFI_SECTION		type
keyword.	Encapsulation	and	leaf	section	types	are	described	below.

Caution:	If	a	fully	qualified	path	and	filename	are	specified,	the	platform	integrator	must	ensure	that	all
developers	using	the	DSC	and	FDF	file	are	aware	of	the	requirements	for	this	path.

The	following	is	an	example	for	using	additional	sections:

#Encapsulation	-	Compress

FILE	FOO	=	12345678-0000-AAAA-FFFF-0123ABCD12BD	{

		SECTION	COMPRESS	{

				SECTION	PE32	=	$(WORKSPACE)/EdkModulePkg/Core/Dxe/DxeMain.inf

				SECTION	VERSION	=	"1.2.3"

		}

}

#	Encapsulation	-	GUIDED

FILE	FV_IMAGE	=	87654321-FFFF-BBBB-2222-9874561230AB	{

		SECTION	GUIDED	gEfiTianoCompressionScheme	{

				SECTION	PE32	=	$(WORKSPACE)/EdkModulePkg/Core/Dxe/DxeMain.inf

		}

}

#	LEAF	Section

FILE	DXE_CORE	=	B5596C75-37A2-4b69-B40B-72ABD6DD8708	{

		SECTION	VERSION	$(BUILD_DIR)/$(ARCH)/D6A2CB7F-6A18-4E2F-B43B-9920A733700A-DxeMain.ver

}

1

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

49Revision	1.28.01

.	The	EDK	II	build	system	does	not	support	creation	of		COMBO_PEIM_DRIVER		FV	type.	↩

2.5.6.1	EFI	Encapsulation	Sections
There	are	two	types	of	encapsulation	sections,	a		COMPRESSION		section	and	the		GUIDED		section.	The
	DISPOSABLE		encapsulation	section	is	not	supported	by	the	EDK	II	build	system.

The		COMPRESS		encapsulation	section	uses	the	following	format.

SECTION	COMPRESS	[type]	{

		SECTION	EFI_SECTION_TYPE	=	FILENAME

		SECTION	EFI_SECTION_TYPE	=	"string"

}

The		[type]		argument	is	optional,	only		EFI_STANDARD_COMPRESSION		is	supported	by	the	PI	specification.	The
current	EDK	enumerations	for	compression	are	a	violation	of	the	PI	specification,	and		SECTION	GUIDED		must
be	used	instead.

The		EFI_SECTION_TYPE		and		FILENAME		are	required	sub-elements	within	the	compression	encapsulation
section.	for	most	sections.	However	both	the		VERSION		(EFI_SECTION_VERSION)	and		UI		(EFI_SECTION_USER_INTEFACE)
may	specify	a	string,	that	will	be	used	to	create	an	EFI	section.

The		GUIDED		encapsulation	section	uses	one	of	the	following	formats.

SECTION	GUIDED	$(GUID_CNAME)	[auth]	{

		SECTION	EFI_SECTION_TYPE	=	FILENAME

		SECTION	EFI_SECTION_TYPE	=	"string"

}

SECTION	GUIDED	$(GUID_CNAME)	[auth]	FILENAME

The	required	argument	is	the		GUIDED		name	followed	by	an	optional	"auth"	flag.	If	the	argument	"auth"
flag	is	specified,	then	the	attribute		EFI_GUIDED_SECTION_AUTH_STATUS_VALID		must	be	set.

For	non-scoped	statements	(the	second		SECTION		statement	of	the	two	listed	above,)	if	filename	exists
the	Attribute		EFI_GUIDED_SECTION_PROCESSING_REQUIRED		must	be	set	to		TRUE	.	The	file	pointed	to	by	filename	is	the
data.	If	filename	does	not	exist		EFI_GUIDED_SECTION_PROCESSING_REQUIRED		is	cleared	and	normal	leaf	sections
must	be	used.

2.5.6.2	EFI	Leaf	Sections
Leaf	sections	are	identified	using	the		EFI_SECTION		Type,	as	specified	in	the	UEFI	specification.	Arguments
to	the		EFI_SECTION		Type	include	information	that	will	be	used	to	build	a	leaf	section.	Nesting	of	leaf
sections	within	leaf	sections	is	not	permitted,	as	a	leaf	section	is	defined	as	UEFI's	smallest	entity.

The	LEAF	section	is	specified	using	the	following	format.

	SECTION	LEAF_SECTION	[build	#]	[Align=X]	[Unicode	String][Filename]	

The	following	keywords	are	used	for	valid		LEAF_SECTION		types.

	PE32	

	PIC	

	TE	

	DXE_DEPEX	

	SMM_DEPEX	

	PEI_DEPEX	

	VERSION		--	Contains	either	a	16-bit	build	number	or	a	Unicode	string
	UI		--	Unicode	String

1

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

50Revision	1.28.01

	COMPAT16	

	FV_IMAGE	

	SUBTYPE_GUID		--	A	GUID	value	with	content	defined	by	the	GUID	to	be	used	with	the	section	type	of
	EFI_SECTION_FREEFORM_SUBTYPE_GUID	.

The	argument,		build	#	,	is	only	valid	for		VERSION		leaf	section.	The	number	may	be	specified	in	the	platform
description	(DSC)	file's		[Defines]		section,		BUILD_NUMBER		element.	EDK	INF	files	may	specify	a		BUILD_NUMBER		in
the	defines	section.	However,	this	value	is	only	used	if	the	EDK	II	DSC	file	does	not	contain	a		BUILD_NUMBER	
statement.

The	Filename	is	only	optional	for		VERSION		and		UI	.

A	Unicode	string	is	only	valid	for		VERSION		or		UI		if	the	Filename	is	not	present,	and	is	of	the	form
	L"string"	.

The	remaining	leaf	section	types	require	the	Filename	argument.	The	file	must	contain	the	data	for	the
section.

2.5	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

51Revision	1.28.01

2.6	[Capsule]	Sections
The	optional		[Capsule]		sections	are	used	to	define	the	components	and	modules	that	make	up
formatted,	variable-length	data	structure.	Capsules	were	designed	for	and	are	intended	to	be	the	major
vehicle	for	delivering	firmware	volume	changes	to	an	existing	implementation.	An	update	capsule	is
commonly	used	to	update	the	firmware	flash	image	or	for	an	operating	system	to	have	information
persist	across	a	system	reset.	A		[Capsule]		header	section	requires	one	modifier,	the		UiCapsuleName	
modifier.	Zero	or	more		[Capsule]		sections	can	be	present	in	a	FDF	file.

The	following	is	the	format	for	the		[Capsule]		section	header:

	[Capsule.UiCapsuleName]	

The	first	elements	of	a		[Capsule]		section	are	required	Token	elements,	using	the	following	format.

	Token	=	VALUE	

2.6.1	UEFI	Implementation
The	UEFI	specification	defines	the		EFI_CAPSULE_HEADER		structure	in	the	runtime	services	chapter.	The
header	consists	of	the	following	elements.	The	following	tokens	are	required	in	a	capsule	conforming	to
the	UEFI	specification.

EFI_CAPSULE_GUID

The	GUID	that	defines	the	contents	of	a	capsule,	used	by	the	EFI	system	table,	which	must	point	to	one
or	more	capsules	that	have	the	same		EFI_CAPSULE_GUID		value.

EFI_CAPSULE_HEADER_SIZE

Size	in	bytes	of	the	capsule	header.	If	the	size	specified	here	is	larger	than	the	size	of	the
	EFI_CAPSULE_HEADER	,	then	the	capsule		GUID		value	implies	extended	header	entries.

EFI_CAPSULE_FLAGS

Currently,	three	bit	flags	have	been	defined:

PersistAcrossReset		=	CAPSULE_FLAGS_PERSIST_ACROSS_RESET

InitiateReset							=	CAPSULE_FLAGS_INITIATE_RESET	and

PopulateSystemTable	=	CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

The	value	of	the		EFI_CAPSULE_IMAGE_SIZE	,	which	is	the	size	in	bytes	of	the	capsule,	is	determined	by	the
tools.

In	order	to	use	the		InitiateReset		flag,	the		PersistAcrossReset		flag	must	also	be	set.

2.6.2	Capsule	SET	Statements
	SET		statements	are	used	to	define	the	values	of	PCD	statements.	These	statements	are	positional	in
the	FDF	file.		SET		statements	are	set	for	the		[Capsule]		section,	those	set	under	the		[Capsule]		section
header	are	global	for	all	sub-sections	within	the		[Capsule]		section.

	SET	PcdName	=	VALUE	

The	following	is	an	example	of	the		SET		statement.

	SET	gEfiMyTokenSpaceGuid.PcdSecStartLocalApicTimer	=	TRUE	

The		VALUE		specified	must	match	the	PCD's	datum	type	and	must	be	the	content	data.

2.6	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

52Revision	1.28.01

For	a	PCD	that	has	a	datum	type	of		VOID	*,	the	data	can	be	a	Unicode	string,	as	in		L"text"	,	a	valid	C
data	array	(it	must	be	either	a	C	format	GUID	or	a	hex	Byte	array),	as	in		{0x20002000,	0x32FF,	0x00AA,	{0xFF,
0xF0,	0x00,	0x00,	0x00,	0xF0,	0x00,	0x00,	0x00,	0xEF,	0x1A,	0x55}}.		Other	PCD	datum	types	are	either	boolean	values
or	a	hex	value,	as	in		0x0000000F	,	with	a	value	that	is	consistent	with	the	PCD's	datum	type.

2.6.3	Capsule	Data
	EFI_CAPSULE_DATA		follows	the		EFI_CAPSULE_HEADER		token	definitions	in	the		[Capsule]		section	or	sub-sections.	The
content	consists	of	one	or	more	files,	FD	UiName,	FV	UiName	or	the	following.

2.6.3.1	INF	Statements
The	INF	statement	syntax	is	common	to	the	syntax	used	for		[FV]		sections.	Refer	to	section	2.4.4	above.

2.6.3.2	FILE	Statements
FILE	statement	syntax	is	common	to	the	syntax	used	for		[FV]		sections.	Refer	to	Section	2.5.5.

2.6	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

53Revision	1.28.01

2.7	[VTF]	Sections
The	optional		[VTF]		sections	specify	information	regarding	the	IPF	Boot	Strap	File	(BSF)	or	the	IA32
Volume	Top	File	(VTF).	Both	the		ARCH		and	the		UiName		modifier	fields	are	required.	The		[VTF]		section
terminates	with	either	the	start	of	another	section,	or	the	end	of	the	file.

The		[VTF]		section	modifier	usage	is	shown	below.

	[VTF.ARCH.UiName]	

Underneath	the		[VTF]		section	are	specific	statements	defining	information	about	the	VTF	file.	EDK
Bsf.inf	files	use	two	different	sections,	an		[OPTIONS]		section	and	a		[COMPONENTS]		section.	For	EDK	II,	the
grammar	of	the		[VTF]		section	statements	defines	these	sections,	rather	than	having	separate	sub-
sections	within	the		[VTF]		section.

The	format	for	statements	within	the	section	is	illustrated	below.

	STATEMENT_NAME	=	Value	

The	component	version	number	(COMP_VER)	values	are	binary	coded	decimal	(1	byte	for	the	major	number
and	1	byte	for	the	minor	number).	As	a	result,	the	maximum	value	is	"99.99".

2.7.1	Options	Statement
One	and	only	one	options	statement,	"IA32_RST_BIN",	is	permitted	within	any	one		[VTF]		section.	This
value	is	a	path	and	name	of		IA32_BIOS		reset	vector	binary	(16	byte)	file.	If	needed,	this	binary	can	be	put
into	the	VTF	file.

2.7.2	Component	Statements
Within	the	section,	a	components	sub-section	starts	with	the	"COMP_NAME"	statement,	and	terminates
with	either	the	start	of	another	sub-section,	major	section	or	the	end	of	the	file.	Certain	values	for
component	statements	are	enumerated	values	or	values	that	are	within	a	given,	specification	defined,
range.

Each	of	the	component	sections	is	used	to	complete	a	data	structure,	using	the	following	sequence.

Name	=	Region,

							Type,

							Version,

							Checksum	Flag,

							Path	of	Binary	File,

							Path	of	the	Symbol	File,

							Preferred	Size;

2.7	[VTF]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

54Revision	1.28.01

2.8	[Rule]	Sections
The	optional		[Rule]		sections	in	the	FDF	file	are	used	for	combining	binary	images,	not	for	compiling
code.	Rules	are	use	with	the		[FV]		section's	module	INF	type	to	define	how	an	FFS	file	is	created	for	a
given	INF	file.	The	EDK	II	Build	Specification	defines	the	default	rules	that	are	implicitly	used	for	creating
FFS	files.	The	implicit	rules	follow	the	PI	Specification	and	UEFI	Specification.

The		[Rule]		section	of	the	FDF	file	is	used	to	define	custom	rules,	which	may	be	applied	to	a	given	INF	file
listed	in	an		[FV]		section.	This	section	is	also	used	to	define	rules	for	module	types	that	permit	the	user
to	define	the	content	of	the	FFS	file	-	when	an	FFS	type	is	not	specified	by	either	PI	or	UEFI
specifications.

The	Rules	can	have	multiple	modifiers	as	shown	below.

	[Rule.ARCH.MODULE_TYPE.TEMPLATE_NAME]	

If	no		TEMPLATE_NAME		is	given	then	the	match	is	based	on		ARCH		and		MODULE_TYPE		modifiers.		BINARY		is	a
reserved		TEMPLATE_NAME		as	a	default	rule	name	for	binary	modules.	The		TEMPLATE_NAME		must	be	unique	to	the
	ARCH		and		MODULE_TYPE	.	It	is	permissible	to	use	the	same		TEMPLATE_NAME		for	two	or	more		[Rule]		sections	if	the
	ARCH		or	the		MODULE_TYPE		listed	are	different	for	each	of	the	sections.

A		[Rule]		section	is	terminated	by	another	section	header	or	the	end	of	file.

The	content	of	the		[Rule]		section	is	based	on	the		FILE		and	section	grammar	of	the	FV	section.	The
difference	is	the		FILE		referenced	in	the		[RULE]		is	a		MACRO	.	The	section	grammar	is	extended	to	include
an	optional	argument,		Optional	.	The		Optional		argument	is	used	to	say	a	section	is	optional.	That	is	to
say,	if	it	does	not	exist,	then	it	is	O.K.

Note:	The		!include		statement	is	valid	for	any	part	of	the		[Rule]		section,	including	an	entire		[Rule]	
section.

The	generic	form	of	the	entries	for	leaf	sections	is:

	<SectionType>	<FileType>	[Options]	[{<Filename>}	{<Extension>}]	

When	processing	the	FDF	file,	the	following	rules	apply	(in	order):

1.	 If		<SectionType>		not	defined	or	not	a	legal	name,	then	error
2.	 If		<FileType>		not	defined	or	not	a	legal	name,	then	error
3.	 If		[FilePath/FileName]	,	then:	Add	one	section	to	FFS	with	a	section	type	of		<SectionType>	
4.	 Else:	Find	all	files	defined	by	the	INF	file	whose	file	type	is		<FileType>		and	add	each	one	to	the	FFS
with	a	section	type	of		<SectionType>		in	alphabetical	order.	Add	files	defined	in		[Sources]		followed	by
files	defined	in		[Binaries]	

5.	 If	>	1		UI		section	in	final	FFS,	then	error

6.	 If	>	1		VER		section	in	final	FFS,	then	error
7.	 If	>	1		PEI_DEPEX		section	in	final	FFS,	then	error
8.	 If	>	1		DXE_DEPEX		section	in	final	FFS,	then	error
9.	 If	>	1		SMM_DEPEX		section	in	final	FFS,	then	error

If	a	rule	specifies	a	file	type,	instead	of	specifying	specific	file	names,	the	files	that	match	the	extension
must	be	processed	in	alphabetical	order.

Example

2.8	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

55Revision	1.28.01

[Rule.Common.ACPITABLE]

		FILE	FREEFORM	=	$(NAMED_GUID)	{

				RAW	ACPI	Optional	|.acpi

				RAW	ASL		Optional	|.aml

		}

Tools	must	add	the	processed	.acpi	files	alphabetically,	followed	by	the	.aml	files	which	must	also	be
added	alphabetically.

The	file	would	contain:

	<SOF>a1.acpi,	a2.acpi,	b1.acpi,	b2.acpi,	a.aml,	b.aml<EOF>	

where,	start	of	file	is		<SOF>		and	end	of	file	is		<EOF>	

Refer	to	the	EDK	II	INF	File	Specification	for	a	description	of	the		FileType		for	binary	files.

2.8	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

56Revision	1.28.01

2.9	[OptionRom]	Sections
The	EDK	II		[OptionRom]		sections	allow	for	extending	the	FDF	for	processing	of	standalone	legacy	PCI
Option	ROM	images	or	stand-alone	UEFI	PCI	Option	ROM	images.	A	required	modifier,	DriverName,	will
specify	where	in	the	build's	FV	directory,	the	OptionROM	file	will	be	placed.

If	the	user	is	only	creating	PCI	Option	ROM	images,	then	the		[FV]		and		[FD]		sections	are	not	required.	If
an	FD	and	FV	sections	exist,	then	the	tools	will	create	the	FD	image	as	well	as	the	Option	ROM	image.	If
they	are	not	in	the	FDF	file,	then	they	will	only	generate	the	Option	ROM	image.

Each		[OptionRom]		section	terminates	with	either	the	start	of	another	section,	or	the	end	of	the	file.	The
	[OptionRom]		section	header	usage	is	shown	below.

	[OptionRom.ROMName]	

If	more	than	architecture	(for	example,	IA32	and	EBC)	for	the	driver	is	to	be	bundled	in	an	option	rom
file,	then	more	than	one	INF	entry	(specified	by	the	USE	option)	can	be	used	to	include	the	other
architecture.

Having	different	sections	for	the	same	option	rom	driver	for	different	architectures	is	not	permitted.

This	is	an	optional	section	for	platform	images.

2.9	[OptionRom]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

57Revision	1.28.01

3	EDK	II	FDF	FILE	FORMAT
This	section	of	the	document	describes	the	content	of	the	EDK	II	FDF	sections	using	an	Extended
Backus-Naur	Form.	Binary	Only	modules	not	listed	in	the	platform	DSC	file,	can	be	specified	in	the	FDF
file.	There	may	also	be	modules	listed	in	the	DSC	file	that	are	not	required	in	the	FDF	file.	When	a
module	listed	in	the	DSC	and	is	excluded	from	FDF	file,	then	a	UEFI-compliant	binary	will	be	generated,
but	the	binary	will	not	be	put	into	any	firmware	volume.

3	EDK	II	FDF	File	FormatEDK	II	Flash	Description	(FDF)	File	Specification

58Revision	1.28.01

3.1	General	Rules
The	general	rules	for	all	EDK	II	INI	style	documents	follow.

Note:	Path	and	Filename	elements	within	the	FDF	are	case-sensitive	in	order	to	support	building	on
UNIX	style	operating	systems.	Additionally,	names	that	are	C	variables	or	used	as	a	macro	are	case
sensitive.	Other	elements	such	as	section	tags	or	hex	digits,	in	the	FDF	file	are	not	casesensitive.	The
use	of	"..",	"../"	and	"./"	in	paths	and	filenames	is	strictly	prohibited.

Multiple	FDF	files	may	exist	in	a	directory.

Text	in	section	tags	is	case	in-sensitive.

A	section	terminates	with	either	another	section	definition	or	the	end	of	the	file.

Token	statements	terminate	with	the	start	of	a	new	token	statement,	such	as	the	start	of	a	new
section	or	the	end	of	the	file.

To	append	comment	information	to	any	item,	the	comment	must	start	with	a	hash	"#"	character.

All	comments	terminate	with	the	end	of	line	character.

Field	separators	for	lines	that	contain	more	than	one	field	are	pipe	"	|	"	characters.	This	character
was	selected	to	reduce	the	possibility	of	having	the	field	separator	character	appear	in	a	string,
such	as	a	filename	or	text	string.

Note:	The	only	notable	exception	is	the	PcdName	which	is	a	combination	of	the

PcdTokenSpaceGuidCName	and	the	PcdCName	that	are	separated	by	the	period	"."	character.	This
notation	for	a	PCD	name	is	used	to	uniquely	identify	the	PCD.

A	line	terminates	with	either	an	end	of	line	character	sequence	or	a	comment.

When	processing	numeric	values,	either	integer	or	hex,	leading	zeros	specified	in	the	entry	may	be
ignored.	For	example,	0x00000000000000000000001	can	be	a	valid	value	for	a		UINT8		data	type,	as
the	actual	value	is	1.

3.1.1	Line-Extension	Backslash
The	backslash	"\"	character	in	this	document	is	only	for	lines	that	cannot	be	displayed	within	the
margins	of	this	document.	The	backslash	character	must	not	be	used	to	extend	a	line	over	multiple
lines	in	the	FDF	file.

3.1.2	Whitespace	characters
Whitespace	(space	and	tab)	characters	are	permitted	between	token	and	field	separator	elements	for
all	entries.

Whitespace	characters	are	not	permitted	between	the		PcdTokenSpaceGuidCName		and	the	dot,	nor	are	they
permitted	between	the	dot	and	the		PcdCName	.

3.1	General	RulesEDK	II	Flash	Description	(FDF)	File	Specification

59Revision	1.28.01

3.1.3	Paths	for	filenames
Note	that	for	specifying	the	path	for	a	file	name,	if	the	path	value	starts	with	a	dollar	sign	"	$	"
character,	either	a	local	MACRO	or	system	environment	variable	is	being	specified.	If	the	path	value
starts	with	one	of	"letter:\",	"/",	"\"	or	"\"	the	path	must	be	a	fully	qualified	URI	location.	If	it	does	not,	the
specified	path	is	relative	to	the		WORKSPACE		(or		PACKAGES_PATH)	environment	variable.

Caution:	The	use	of	"..",	"./"	and	"../"	in	a	path	element	is	prohibited.

For	all	FDF	files,	the	specified	directory	path	must	use	the	forward	slash	character	for	separating
directories.	For	example,	MdePkg/Include/	is	Valid.

Note:	If	the	platform	integrator	is	working	on	a	Microsoft	Windows*	environment	and	will	not	be	working
on	a	non-windows	platform,	then	the	DOS-style	directory	separator	can	be	used.	The	forward	slash	Unix-
style	directory	separator	is	mandatory	for	distributions	where	the	build	environment	is	unknown.

Unless	otherwise	noted,	all	file	names	and	paths	are	relative	the	system	environment	variable,
	WORKSPACE	(or	relative	to	a	directory	listed	in	the		PACKAGES_PATH		system	environment	variable).	A	directory
name	that	starts	with	a	word	is	assumed	by	the	build	tools	to	be	located	in	the		WORKSPACE		directory	(or	a
directory	listed	in	the		PACKAGES_PATH		system	environment	variable).	Search	paths	for	locating	the	files	are
	WORKSPACE		then	the	ordered	list	(left	to	right)	of	directories	listed	in	the	optional		PACKAGES_PATH		environment
variable.

Each	module	may	have	one	or	more	INF	files	that	can	be	used	by	tools	to	generate	images.	Specifically,
the	EDK	Compatibility	Package	may	contain	two	INF	files	for	any	module	that	contains	assembly	code.
Since	the	ECP	can	be	used	with	existing	EDK	tools	(which	is	only	supported	by	Microsoft	and	Intel
Windows	based	tools,)	a	separate	INF	file	to	support	the	multiple	tool	chain	capability	of	the	EDK	II	build
system	must	be	provided	for	the	modules	that	contain	assembly	code.	The	EDK	II	ECP	will	use	the
basename_edk2.inf	for	the	filename	of	the	EDK	II	build	system	compatible	INF	files	for	non-Windows
based	tool	chains,	and	use	just	the	basename.inf	for	the	filename	of	EDK	only	INF	files	used	by	the	EDK
build	system.

3.1	General	RulesEDK	II	Flash	Description	(FDF)	File	Specification

60Revision	1.28.01

3.2	FDF	Definition
The	FDF	definitions	define	the	final	properties	for	a	flash	image	-	PCD	settings	in	this	file	override	any
other	PCD	settings	that	may	have	been	set	in	the	platform	description	(DSC)	file.	The		[Defines]		section,
when	specified,	must	appear	before	any	other	section	except	the	header.	(The	header,	when	specified,
is	always	the	first	section	of	an	FDF	file.)	The	remaining	sections	may	be	specified	in	any	order	within	the
FDF	file.

Summary
The	EDK	II	Flash	Description	(FDF)	file	has	the	following	format	(using	the	EBNF).

<EDK_II_FDF>	::=	[<Header>]

																	[<Defines>]

																	<FD>*

																	<FV>*

																	<Capsule>*

																	<FmpPayload>*

																	<VTF>*

																	<Rules>*

																	<OptionRom>*

																	<UserExtensions>*

Note:	Assignments	set	as	command-line	arguments	to	the	parsing	tools	take	precedence	over	all
assignments	defined	in	the	FDF	file.	If	a	variable/value	assignment	is	specified	on	the	build	tool's
command-line,	that	value	will	override	any	variable/value	assignment	defined	in	the	FDF	file.

Note:	Conditional	statements	may	be	used	anywhere	within	the	FDF	file,	with	the	ability	to	group	any
item	within	a	section	as	well	as	entire	sections.

3.2.1	Common	Definitions

Summary
The	following	are	common	definitions	used	by	multiple	section	types.

Prototype

<Word>																	::=	(a-zA-Z0-9_)(a-zA-Z0-9_-.)*	Alphanumeric	characters

																											with	optional	period	".",	dash	"-"	and/or	underscore

																											"_"	characters.	A	period	character	may	not	be

																											followed	by	another	period	character.

																											No	white	space	characters	are	permitted.

<SimpleWord>											::=	(a-zA-Z0-9)(a-zA-Z0-9_-)*	A	word	that	cannot	contain

																											a	period	character.

<ToolWord>													::=	(A-Z)(a-zA-Z0-9)*	Alphanumeric	characters.	white

																											space	characters	are	not	permitted.

<FileSep>														::=	"/"

<Extension>												::=	(a-zA-Z0-9_-)+	One	or	more	alphanumeric	characters.

<File>																	::=	<Word>	["."	<Extension>]

<PATH>																	::=	[<MACROVAL>	<FileSep>]	<RelativePath>

<RelativePath>									::=	<DirName>	[<FileSep>	<DirName>]*

<DirName>														::=	{<Word>}	{<MACROVAL>}

<FullFilename>									::=	<PATH>	<FileSep>	<File>

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

61Revision	1.28.01

<Filename>													::=	[<PATH>	<FileSep>]	<File>

<Chars>																::=	(a-zA-Z0-9_)

<Digit>																::=	(0-9)

<NonDigit>													::=	(a-zA-Z_)

<Identifier>											::=	<NonDigit>	<Chars>*

<CName>																::=	<Identifier>	#	A	valid	C	variable	name.

<AsciiChars>											::=	(0x21	-	0x7E)

<CChars>															::=	[{0x21}	{(0x23	-	0x5B)}	{(0x5D	-	0x7E)}

																											{<EscapeSequence>}]*

<DblQuote>													::=	0x22

<EscapeSequence>							::=	"\"	{"n"}	{"t"}	{"f"}	{"r"}	{"b"}	{"0"}

																											{"\"}	{<DblQuote>}

<TabSpace>													::=	{<Tab>}	{<Space>}

<TS>																			::=	<TabSpace>*

<MTS>																		::=	<TabSpace>+

<Tab>																		::=	0x09

<Space>																::=	0x20

<CR>																			::=	0x0D

<LF>																			::=	0x0A

<CRLF>																	::=	<CR>	<LF>

<WhiteSpace>											::=	{<TS>}	{<CR>}	{<LF>}	{<CRLF>}

<WS>																			::=	<WhiteSpace>*

<Eq>																			::=	<TS>	"="	<TS>

<FieldSeparator>							::=	"|"

<FS>																			::=	{<TS>}	<FieldSeparator>	<TS>

<Wildcard>													::=	"*"

<CommaSpace>											::=	","	<Space>*

<Cs>																			::=	","	<Space>*

<AsciiString>										::=	[<TS>*	<AsciiChars>*]*

<EmptyString>										::=	<DblQuote>	<DblQuote>

<CFlags>															::=	<AsciiString>

<PrintChars>											::=	{<TS>}	{<CChars>}

<QuotedString>									::=	<DblQuote>	<PrintChars>*	<DblQuote>

<CString>														::=	["L"]	<QuotedString>

<NormalizedString>					::=	<DblQuote>	[{<Word>}	{<Space>}]+	<DblQuote>

<GlobalComment>								::=	<WS>	"#"	[<AsciiString>]	<EOL>+

<Comment>														::=	"#"	<AsciiString>	<EOL>+

<UnicodeString>								::=	"L"	<QuotedString>

<HexDigit>													::=	(a-fA-F0-9)

<HexByte>														::=	{"0x"}	{"0X"}	[<HexDigit>]	<HexDigit>

<HexNumber>												::=	{"0x"}	{"0X"}	<HexDigit>+

<HexVersion>											::=	"0x"	[0]*	<Major>	<Minor>

<Major>																::=	<HexDigit>?	<HexDigit>?	<HexDigit>?

																											<HexDigit>

<Minor>																::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<DecimalVersion>							::=	{"0"}	{(1-9)	[(0-9)]*}	["."	(0-9)+]

<VersionVal>											::=	{<HexVersion>}	{(0-9)+	"."	(0-99)}

<GUID>																	::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<RegistryFormatGUID>			::=	<RHex8>	"-"	<RHex4>	"-"	<RHex4>	"-"	<RHex4>	"-"

																											<RHex12>

<RHex4>																::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

<RHex8>																::=	<RHex4>	<RHex4>

<RHex12>															::=	<RHex4>	<RHex4>	<RHex4>

<RawH2>																::=	<HexDigit>?	<HexDigit>

<RawH4>																::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>

<OptRawH4>													::=	<HexDigit>?	<HexDigit>?	<HexDigit>?	<HexDigit>?

<Hex2>																	::=	{"0x"}	{"0X"}	<RawH2>

<Hex4>																	::=	{"0x"}	{"0X"}	<RawH4>

<Hex8>																	::=	{"0x"}	{"0X"}	<OptRawH4>	<RawH4>

<Hex12>																::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>	<RawH4>

<Hex16>																::=	{"0x"}	{"0X"}	<OptRawH4>	<OptRawH4>

																											<OptRawH4>	<RawH4>

<CFormatGUID>										::=	"{"	<Hex8>	<CommaSpace>	<Hex4>	<CommaSpace>	<Hex4>

																											<CommaSpace>	"{"

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	<CommaSpace>

																											<Hex2>	<CommaSpace>	<Hex2>	"}"	"}"

<CArray>															::=	"{"	{<NList>}	{<CArray>}	"}"

<NList>																::=	<HexByte>	[<CommaSpace>	<HexByte>]*

<RawData>														::=	<TS>	<HexByte>

																											[<Cs>	<HexByte>	[<EOL>	<TS>]]*

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

62Revision	1.28.01

<Integer>														::=	{(0-9)}	{(1-9)(0-9)+}

<Number>															::=	{<Integer>}	{<HexNumber>}

<HexNz>																::=	(\x1	-	\xFFFFFFFFFFFFFFFF)

<NumNz>																::=	(1-18446744073709551615)

<GZ>																			::=	{<NumNz>}	{<HexNz>}

<TRUE>																	::=	{"TRUE"}	{"true"}	{"True"}	{"0x1"}

																											{"0x01"}	{"1"}

<FALSE>																::=	{"FALSE"}	{"false"}	{"False"}	{"0x0"}	{"0x00"}	{"0"}

<BoolType>													::=	{<TRUE>}	{<FALSE>}

<MACRO>																::=	(A-Z)(A-Z0-9_)*

<MACROVAL>													::=	"$("	<MACRO>	")"

<PcdName>														::=	<TokenSpaceGuidCName>	"."	<PcdCName>

<PcdCName>													::=	<CName>

<TokenSpaceGuidCName>		::=	<CName>

<PCDVAL>															::=	"PCD("	<PcdName>	")"

<UINT8>																::=	{"0x"}	{"0X"}	(\x0	-	\xFF)

<UINT16>															::=	"0x"}	{"0X"}	(\x0	-	\xFFFF)

<UINT32>															::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFF)

<UINT64>															::=	{"0x"}	{"0X"}	(\x0	-	\xFFFFFFFFFFFFFFFF)

<UINT8z>															::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

<UINT16z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>

<UINT32z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>

<UINT64z>														::=	{"0x"}	{"0X"}	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>

																											<HexDigit>	<HexDigit>

<ShortNum>													::=	(0-255)

<IntNum>															::=	(0-65535)

<LongNum>														::=	(0-4294967295)

<LongLongNum>										::=	(0-18446744073709551615)

<NumValUint8>										::=	{<ShortNum>}	{<UINT8>}

<NumValUint16>									::=	{<IntNum>}	{<UINT16>}

<NumValUint32>									::=	{<LongNum>}	{<UINT32>}

<NumValUint64>									::=	{<LongLongNum>}	{<UINT64>}

<ModuleType>											::=	{"BASE"}	{"SEC"}	{"PEI_CORE"}	{"PEIM"}

																											{"DXE_CORE"}	{"DXE_DRIVER"}	{"SMM_CORE"}

																											{"DXE_RUNTIME_DRIVER"}	{"DXE_SAL_DRIVER"}

																											{"DXE_SMM_DRIVER"}	{"UEFI_DRIVER"}

																											{"UEFI_APPLICATION"}	{"USER_DEFINED"}

<ModuleTypeList>							::=	<ModuleType>	["	"	<ModuleType>]*

<IdentifierName>							::=	<TS>	{<MACROVAL>}	{<PcdName>}	<TS>

<MembershipExpression>	::=	{<TargetExpress>}	{<ArchExpress>}	{<ToolExpress>}

<NotOp>																::=	<UnaryOperator>	<MTS>

<InOp>																	::=	<MTS>	[<NotOp>]	{"IN"}	{"in"}	<MTS>

<TargetExress>									::=	(A-Z)	(A-Z0-9)*	<InOp>	"$(TARGET)"

<ArchExpress>										::=	<DblQuote>	<Arch>	<DblQuote>	<InOp>	"$(ARCH)"

<Arch>																	::=	{"IA32"}	{"X64"}	{"IPF"}	{"EBC"}	{<OA>}

<ToolExpress>										::=	(A-Z)	(a-zA-Z0-9)*	<InOp>	"$(TOOL_CHAIN_TAG)"

<Boolean>														::=	{<BoolType>}	{<Expression>}

<EOL>																		::=	<TS>	0x0D	0x0A

<OA>																			::=	(a-zA-Z)(a-zA-Z0-9)*

<arch>																	::=	{"IA32"}	{"X64"}	{"IPF"}	{"EBC"}	{<OA>}

																											{"common"}

<FvAlignmentValues>				::=	{"1"}	{"2"}	{"4"}	{"8"}	{"16"}	{"32"}

																											{"64"}	{"128"}{"256"}	{"512"}	{"1K"}	{"2K"}

																											{"4K"}	{"8K"}	{"16K"}	{"32K"}	{"64K"}

																											{"128K"}	{"256K"}	{"512K"}	{"1M"}	{"2M"}	{"4M"}

																											{"8M"}	{"16M"}	{"32M"}	{"64M"}

																											{"128M"}	{"256M"}	{"512M"}	{"1G"}	{"2G"}

<FfsAlignmentValues>			::=	{"Auto"}	{"8"}	{"16"}	{"32"}	{"64"}	{"128"}

																											{"512"}	{"1K"}	{"4K"}	{"32K"}	{"64K"}	{"128K"}

																											{"256K"}	{"512K"}	{"1M"}	{"2M"}	{"4M"}	{"8M"}

																											{"16M"}

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

63Revision	1.28.01

Note:	When	using	the	characters	"|"	or	"||"	in	an	expression,	the	expression	must	be	encapsulated	in
open	"("	and	close	")"	parenthesis.

Note:	Comments	may	appear	anywhere	within	a	FDF	file,	provided	they	follow	the	rules	that	a	comment
may	not	be	enclosed	within	Section	headers,	and	that	in	line	comments	must	appear	at	the	end	of	a
statement.

Parameter	Definitions
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	more	information.

""UnicodeString

When	the		<UnicodeString>		element	(these	characters	are	string	literals	as	defined	by	the	C99
specification:	L"string",	not	actual	Unicode	characters)	is	included	in	a	value,	the	build	tools	may	be
required	to	expand	the	ASCII	string	between	the	quotation	marks	into	a	valid	UCS-2LE	encoded	string.
The	build	tools	parser	must	treat	all	content	between	the	field	separators	(excluding	white	space
characters	around	the	field	separators)	as	ASCII	literal	content	when	generating	the	AutoGen.c	and
AutoGen.h	files.

Comments

Strings	that	appear	in	comments	may	be	ignored	by	the	build	tools.	An	ASCII	string	matching	the	format
of	the	ASCII	string	defined	by		<UnicodeString>		(L"Foo"	for	example,)	that	appears	in	a	comment	must	never
be	expanded	by	any	tool.

CFlags

CFlags	refers	to	a	string	of	valid	arguments	appended	to	the	command	line	of	any	third	party	or
provided	tool.	It	is	not	limited	to	just	a	compiler	executable	tool.	MACRO	values	that	appear	in	quoted
strings	in	CFlags	content	must	not	be	expanded	by	parsing	tools.

OA

Other	Architecture	-	One	or	more	user	defined	target	architectures,	such	as	ARM	or	PPC.	The
architectures	listed	here	must	have	a	corresponding	entry	in	the	EDK	II	meta-data	file,
Conf/tools_def.txt.	Only		IA32	,		X64	,		IPF		and		EBC		are	routinely	validated.

FileSep

FileSep	refers	to	either	the	back	slash	"\"	or	forward	slash	"/"	characters	that	are	used	to	separate
directory	names.	All	EDK	II	FDF	files	must	use	the	"/"	forward	slash	character	when	specifying	the
directory	portion	of	a	filename.	Microsoft	operating	systems,	that	normally	use	a	back	slash	character
for	separating	directory	names,	will	interpret	the	forward	slash	character	correctly.

TokenSpaceGuidCName

A	word	that	is	a	valid	C	variable	that	specifies	the	name	space	for	a	particular	PCD.

PcdCName

A	word	that	is	a	valid	C	variable	that	specifies	the	name	of	the	token	number	which	a	member	of	the
name	space	specified	by	the	TokenSpaceGuidCName.

CArray

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

64Revision	1.28.01

All	C	data	arrays	used	in	PCD	value	fields	must	be	byte	arrays.	The	C	format	GUID	style	is	a	special	case
that	is	permitted	in	some	fields	that	use	the		<CArray>		nomenclature.

EOL

The	DOS	End	Of	Line:	"0x0D	0x0A"	character	sequence	must	be	used	for	all	EDK	II	meta-data	files.	All	Nix
based	tools	can	properly	process	the	DOS	EOL	characters.	Microsoft	based	tools	cannot	process	the
Nix	style	EOL	characters.

3.2.2	MACRO	Statements
Use	of	MACRO	statements	is	optional.

Summary
Macro	statements	are	characterize	by	a		DEFINE		line	or	may	be	defined	on	a	command	line	of	a	parsing
tool.

Define	statements	are	processed	according	to	the	following	precedence.

Highest	Priority

1.	 Command-line	option	-D	MACRO=Value
2.	 Most	Recent	in	file
3.	 Macros	defined	in	the	FDF	file's		[Defines]		section
4.	 Macros	defined	in	the	DSC	file's		[Defines]		section	Lowest	Priority

If	the	Macro	statement	is	within	the		[Defines]		section,	then	the	Macro	is	common	to	the	entire	file,	with
local	definitions	taking	precedence	(if	the	same	MACRO	name	is	used	in	subsequent	sections,	then	the
MACRO	value	is	local	to	only	that	section.)	Macro	statements	may	not	be	referenced	before	they	are
defined.

Macros	may	be	inherited	from	the	DSC	file	specifying	this	FDF	file.

All	content	for	a	macro	statement	must	appear	on	a	single	line.

If	the	tools	encounter	a		MacroVal	,	as	in	$(MACRO),	that	is	not	defined,	the	build	tools	must	break.

Prototype

<MacroDefinition>	::=	<TS>	"DEFINE"	<MTS>	<MACRO>	[<Eq>	[<VALUE>]]	<EOL>

<VALUE>											::=	{<Number>}	{<BoolType>}	{<CFormatGUID>}	{<PATH>}

																						{<CString>}	{<UnicodeString>}	{<CArray>}

																						{<Expression>}	{<CFlags>}	{<Filename>}

Restrictions
System	Environment	Variables

System	environment	variable	may	not	be	re-defined	in	this	file.	System	environment	variables	cannot	be
overridden	by	the	build	system	tools.

Parameters
Expression

C-style	expression	using	C	relational,	equality	and	logical	numeric	and	bitwise	operators	and/or
arithmetic	and	bitwise	operators	that	evaluate	to	a	value	(for	PCDs,	the	value	must	match	the	Datum
Type	of	the	PCD).	Precedence	and	associativity	follow	C	standards.	Along	with	absolute	values,	macro

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

65Revision	1.28.01

names	and	PCDs	may	be	used	within	an	expression.	For	both	macro	names	and	PCDs,	the	element	must
be	previously	defined	before	it	can	be	used.

VALUE

The		<EQ>	<VALUE>		is	optional,	and	if	not	included,	uses	a	default	of	TRUE.

Note:	Some	MACRO	and	PCD	values	may	be	defined	in	the	Platform	DSC	file.

Examples:

DEFINE	SECCORE				=	MyPlatform/SecCore

DEFINE	GEN_SKU				=	MyPlatform/GenPei

DEFINE	SKU1							=	MyPlatform/Sku1/Pei

DEFINE	FLASH_SIZE	=	0x00280000

DEFINE	MY_MACRO

EDK_GLOBAL
The	macro	names	defined	using	the		EDK_GLOBAL		statement	in	the	DSC	file	may	be	used	in	paths,	value
fields	and	conditional	statements	in	this	file.	The		EDK_GLOBAL		statement	itself,	cannot	be	specified	in	this
file.

3.2.3	Conditional	Directive	Blocks
Use	of	conditional	directive	blocks	is	optional.

Summary
Conditional	statements	may	appear	anywhere	within	the	file.	Conditional	directive	blocks	can	be	nested.
Conditional	directive	processing	must	emulate	a	C	pre-processor.

All	conditional	directives	can	use	MACRO,	FixedAtBuild	or	FeatureFlag	PCD	values,	which	must
evaluate	to	either	'	True	'	or	'	False	.'

Directives	must	be	the	only	statement	on	a	line.

String	evaluations	are	permitted,	and	are	case	sensitive;	the	two	string	values	must	be	an	exact
match	to	evaluate	to	'	True	'.

The	expression	immediately	following	the	'	!if	'	statement	controls	whether	the	content	after	the
line	is	processed	or	not.		TRUE		is	any	non-zero	and/or	non-NULL	value	other	than	zero.

Each	'	!if	'	within	the	source	code	must	be	matched	with	a	closing	'	!endif	'.

Zero	or	more		!elseif		statements	are	permitted;	only	one		!else		statement	is	permitted.

Conditional	directive	blocks	may	be	nested.

Directives	can	be	used	to	encapsulate	entire	sections	or	elements	within	a	single	section,	such	that
they	do	not	break	the	integrity	of	the	section	definitions.

Directives	are	in-fix	expressions	that	are	evaluated	left	to	right;	content	within	parenthesis	is
evaluated	before	the	outer	statements	are	evaluated.	Use	of	parenthesis	is	recommended	to
remove	ambiguity.

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

66Revision	1.28.01

The	values	of	the	FixedAtBuild	and	FeatureFlag	PCDs	used	in	the	conditional	statements	must	be	set
in	the		[PcdsFixedAtBuild]		or		[PcdsFeatureFlag]		section(s)	of	the	DSC	file	or	included	in		SET		statements.

Default	values	from	the	DEC	file	are	not	permitted.	Values	used	in	directive	statement	in	the	FDF
files	must	be	define	in	either	the	DSC	file	or	the	FDF	file.

Conditional	directives	may	appear	before	a	Macro,	FixedAtBuild	or	FeatureFlag	PCD	has	been	defined.
Therefore,	the	reference	build	tools	may	be	required	to	perform	two	passes	on	this	file	to	resolve	all
directive	statements:

1.	 Obtain	the	values	of	the	Macros,	FixedAtBuild	or	FeatureFlag	PCDs	used	for	theconditional	directives

2.	 Evaluate	the	conditional	statements	for	inclusion	in	the	build.

If	the	value	of	a	FixedAtBuild	or	FeatureFlag	PCD	cannot	be	determined,	the	build	will	break.

If	the	value	of	a	FixedAtBuild	or	FeatureFlag	PCD	used	in	a	conditional	directive	cannot	be	determined
during	the	first	pass,	the	build	should	break.	Macros,	FixedAtBuild	and	FeatureFlag	PCDs	used	in
conditional	statements	in	the	first	pass	must	not	be	located	within	conditional	directives.	It	is
permissible	to	have	a	Macro	that	is	undefined	after	the	first	pass.	It	is	permissible	to	have	macros	that
are	undefined	used	in	!ifdef	and		!ifndef		statements.	FixedAtBuild	or	FeatureFlag	PCDs	in	the	first	pass
must	not	be	located	within	a	conditional	directive.

Macro	and	PCD	values	may	be	inherited	from	the	DSC	file.

Note:	PCDs,	used	in	conditional	directives,	must	be	defined	and	the	value	set	in	either	the	FDF	or	DSC
file	in	order	to	be	used	in	a	conditional	statement;	values	from	INF	or	DEC	files	are	not	permitted.

Prototype

<Conditional>									::=	<IfStatement>

																										<ElseIfConditional>*

																										[<ElseConditional>]

																										<TS>	"!endif"	<EOL>

<IfStatement>									::=	{<TS>	"!if"	<MTS>	<ExpressionStatement>}

																										{<TS>	"!ifdef"	<MTS>	<MACRO>	<EOL>}

																										{<TS>	"!ifndef"	<MTS>	<MACRO>	<EOL>}

																										<Statements>*

<Statements>										::=	{<Statements>}	{<Conditional>}

<ElseIfConditional>			::=	<TS>	"!elseif"	<MTS>	<ExpressionStatement>

																										<EOL>

																										<Statements>*

<ElseConditional>					::=	<TS>	"!else"	<EOL>	<Statements>*

<ExpressionStatement>	::=	<Expression>	<EOL>

Restrictions
MACRO	and	PCD	Values

When	a	MACRO	is	used	in	conditional	directives		!if		or		!elseif	,	the		<MACROVAL>		-	$(MACRO)	-	format	is
used.	When	a	PCD	is	used	in	a	conditional	directive	(or	in	an	expression)	the		<PCDVAL>		-	$(PcdName)	-
format	is	used.

Number	values

For	Numeric	expressions,	numbers	must	not	be	encapsulated	by	double	quotation	marks

Strings

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

67Revision	1.28.01

Strings	in		<PCDVAL>		elements	must	be		NULL		terminated.	The		NULL		character	is	not	part	of	the	string	that
is	tested.	All	other	string	comparisons	do	not	include	the	double	quotation	marks	encapsulating	the
string.	If	the	string	is	"myapple",	the	only	characters	that	would	be	tested	are	myapple.	When	using
strings	in	the	expression	statements,	there	must	be	a	comparison	operator.

Parameters
Statements

Any	valid	section,	section	statement	or	set	of	statements	defined	in	this	specification	may	be	within	the
scope	of	the	conditional	statements.	The	encapsulated	statements	must	not	break	the	integrity	of	the
file.	All	statements	within	the	encapsulation	must	end	with		<EOL>	.

MACRO	Usage	in	Expression	Statements

If	a	MACRO	is	used	in	expression	statements,	the	MACRO	must	be	encapsulated	between	"$("	and	")"
character	sets	(matching	C	format).	String	comparisons	are	case	sensitive	and	must	exactly	equal,
character	for	character	-	leading	and	trailing	white	space	characters	included.

PcdFeatureFlag

The	FeatureFlag	PCD	is	a	boolean	PCD	that	is	set	to	either		True		(1)	or		False		(0).	The	PCD	datum	type
for	a	FeatureFlag	PCD	is	always		BOOLEAN	.	It	may	be	used	in	a	logical	expression.

FixedPcdName

A	FixedAtBuild	PCD	will	have	a	set	value	at	build	time,	and	that	cannot	be	modified	in	the	binary	image,
nor	modified	at	runtime.	For	directives,	the	PCD	datum	type	is	limited	to		UINT8	,		UINT16	,		UINT32	,		UINT64	,
	UINTN		and		BOOLEAN	.	Using	a	FixedAtBuild	PCD	that	has	a	datum	type	of		VOID	*	is	limited	to	text-based
comparisons	in	directives.	Using	a	PCD	that	has	a	value	of	a	byte	array	is	not	permitted.	FixedAtBuild
PCDs	may	be	used	in	a	logical	expression.

Numeric	Expression

This	is	a	test	of	numbers,	using	relational	or	equality	operators,	that	evaluates	to		TRUE		or		FALSE	

Logical	Expression

This	is	a	test	where	the	expression,	MACRO	value	or	PCD	value	(include		<MACROVAL>		or		<PCDVAL>		used	in	an
expression)	must	evaluate	to	either		TRUE		(1)	or		FALSE		(0),	no	operators	are	required,	however	logical
operators,	as	well	full	expressions	can	be	used.	(expressions	that	do	not	evaluate	to		TRUE		or		FALSE	
must	break	the	build).

String	Expressions

The	strings	must	be	exactly	identical	in	order	to	match.	Literal	strings	must	be	encapsulated	by	double
quotation	marks.	There	must	be	a	comparison	operator	between	two	strings	(using	a	string	without	an
operator	is	not	permitted).	Also	permitted	are	the	membership	expressions,	for	architectures,	targets
and	tool	chain	tag	names.

All	Expression

C-style	expression	using	C	relational,	equality	and	logical	numeric	and	bitwise	operators	that	evaluate	to
either		TRUE		(1)	or		FALSE		(0).	Values	other	than	zero	or	one	are	invalid.	Precedence	and	associativity
follow	C	standards.	Along	with	absolute	values,	macro	names	and	PCDs	may	be	used	within	an
expression.	For	both	macro	names	and	PCDs,	the	element	must	be	previously	defined	before	it	can	be
used.	A	new	operator,	"in"	is	also	permitted	for	testing	membership	of	an	item	in	a	list	of	one	or	more
items.

Example

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

68Revision	1.28.01

!if	$(MyPlatformTspGuid.IPF_VERSION_1)	&&	NOT	$(MyPlatformTspGuid.IPF_VERSION_2)

		[VTF.IPF.MyBsf]

				!ifdef	IA32RESET

						#	IPF_VERSION	is	1	and	IA32RESET	defined

						IA32_RST_BIN											=	IA32_RST.BIN

				!endif

				COMP_NAME	=	PAL_A

				COMP_LOC		=	MyVtfVF	|	F

				COMP_TYPE	=	0xF

				COMP_VER		=	7.01

				COMP_CS			=	1

				!if	($(PROCESSOR_NAME)	==	"M1")

						COMP_BIN	=	M1PalCode/PAL_A_M1.BIN

						COMP_SYM	=	M1PalCode/PAL_A_M1.SYM

				!elseif	($(PROCESSOR_NAME)	==	"M2")

						COMP_BIN	=	M2PalCode/PAL_A_M2.BIN

						COMP_SYM	=	M2PalCode/PAL_A_M2.SYM

				!else

						COMP_BIN	=	GenPal/PAL_A_GEN.bin

						COMP_SYM	=	GenPal/PAL_A_GEN.sym

				!endif

				COMP_SIZE	=	-

!elseif	$(MyPlatformTspGuid.IPF_VERSION_2)

		[VTF.IPF.MyBsf]

				!ifdef	IA32RESET

						IA32_RST_BIN	=	IA32_RST.BIN

				!endif

				COMP_NAME	=	PAL_A

				COMP_LOC		=	MyVtfFv	|	F

				COMP_TYPE	=	0xF

				COMP_VER		=	7.01

				COMP_CS			=	1

				COMP_BIN		=	GenPal/PAL_A_GEN.bin

				COMP_SYM		=	GenPal/PAL_A_GEN.sym

				COMP_SIZE	=	-

				COMP_NAME	=	PAL_B

				COMP_LOC		=	MyVtfFv	|	S

				COMP_TYPE	=	0x01

				COMP_VER		=	-

				COMP_CS			=	1

				COMP_BIN		=	GenPal/PAL_B_GEN.bin

				COMP_SYM		=	GenPal/PAL_B_GEN.sym

				COMP_SIZE	=	-

!else

		[VTF.X64.MyVtf]

						IA32_RST_BIN	=	IA32_RST.BIN

!endif

!ifndef	MY_MACRO

DEFINE	MY_MACRO

!endif

3.2.4	!include	Statements
Use	of	this	statement	is	optional.

Summary
Defines	the		!include		statement	in	FDF	files.	This	statement	is	used	to	include,	at	the	statement's	line,	a
file	which	is	processed	at	that	point,	as	though	the	text	of	the	included	file	was	actually	in	the	FDF	file.
Statements	in	the		!include		file(s)	are	additions	to	the	FDF	file,	and	do	not	replace	information	in	the	FDF
file.	The	included	file's	content	must	match	the	content	of	the	section	that	the		!include		statement
resides,	or	it	may	contain	completely	new	sections	of	the	same	section	type.	If	the	included	file	contains
new	sections,	then	the	section	being	processed	in	the	Platform	FDF	file	is	considered	to	have	been
terminated.

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

69Revision	1.28.01

If	the		<Filename>		contains	"$"	characters,	then	macros	defined	in	the	DSC	file,	FDF	file,	and	the	system
environment	variables,		$(WORKSPACE)	,		$(EDK_SOURCE)	,		$(EFI_SOURCE)	,	and		$(ECP_SOURCE)		are	substituted	into
	<Filename>	.

The	tools	look	for		<Filename>		relative	to	the	directory	the	FDF	file	resides.	If	the	file	is	not	found,	and	the
directory	containing	this	FDF	file	is	not	the	same	directory	as	the	directory	containing	the	DSC	file,	the
tools	must	attempt	to	locate	the	file	relaitive	to	the	directory	that	contains	the	DSC	file.

If	none	of	these	methods	find	the	file,	and	a	directory	separator	is	in		<Filename>	,	the	tools	attempt	to
find	the	file	in	a	WORKSPACE	(or	a	directory	listed	in	the	PACKAGES_PATH)	relative	path.	If	the	file	cannot
be	found,	the	build	system	must	exit	with	an	appropriate	error	message.

Prototype
	<IncludeStatement>	::=	<TS>	"!include"	<MTS>	<Filename>	<EOL>	

Example	(EDK	II	FDF)

!include	myPlatform/NvRamDefs.txt

!include	myFeatures.mak

!include	$(WORKSPACE)/PackageDir/Features.dsc

!include	$(MACRO1)/AnotherDir/$(MACRO2)/Features.dsc

3.2	FDF	DefinitionEDK	II	Flash	Description	(FDF)	File	Specification

70Revision	1.28.01

3.3	Header	Section
This	is	an	optional	section.

Summary
This	section	contains	Copyright	and	License	notices	for	the	INF	file	in	comments	that	start	the	file.

This	section	is	optional	using	a	format	of:

##	@file	Nt32.fdf

#	Abstract

#

#	Description

#

#	Copyright

#

#	License

#

##

Prototype

<Header>						::	=	<Comment>*

																			"##"	<Space>	[<Space>]	@file"	<EOL>

																			[<Abstract>]

																			[<Description>]

																			<Copyright>+

																			"#"	<EOL>

																			<License>+

																			"##"	<EOL>

<Filename>				::	=	<Word>	"."	<Extension>

<Abstract>				::	=	"#"	<MTS>	<AsciiString>	<EOL>

																			["#"	<EOL>]

<Description>	::	=	["#"	<MTS>	<AsciiString>	<EOL>]+

																			["#"	<EOL>]

<Copyright>			::=	"#"	<MTS>	<CopyName>	<Date>	","	<CompInfo>	<EOL>

<CopyName>				::=	["Portions"	<MTS>]	"Copyright	(c)"	<MTS>

<Date>								::=	<Year>	[<TS>	{<DateList>}	{<DateRange>}]

<Year>								::=	"2"	(0-9)(0-9)(0-9)

<DateList>				::=	<CommaSpace>	<Year>	[<CommaSpace>	<Year>]*

<DateRange>			::=	"-"	<TS>	<Year>

<CompInfo>				::=	(0x20	-	0x7e)*	<MTS>	"All	rights	reserved."

																		[<TS>	"
"]

<License>					::=	["#"	<MTS>	<AsciiString>	<EOL>]+

																		["#"	<EOL>]

Example

##	@file

#	Emulation	Platform	Pseudo	Flash	Part

#

#	The	Emulation	Platform	can	be	used	to	debug	individual	modules,

#	prior	to	creating	a	real	platform.	This	also	provides	an	example	for

#	how	to	create	an	FDF	file.

#

#	Copyright	(c)	2006	-	2008,	NoSuch	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.	The	full	text	of	the	license	may	be

#	found	at:

3.3	Header	SectionEDK	II	Flash	Description	(FDF)	File	Specification

71Revision	1.28.01

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS

#	OR	IMPLIED.

#

##

3.3	Header	SectionEDK	II	Flash	Description	(FDF)	File	Specification

72Revision	1.28.01

3.4	[Defines]	Section
This	is	an	optional	section.	This	section,	if	present,	must	be	the	first	section	following	comment	blocks
at	the	beginning	of	the	file.

Summary
This	section	describes	the	defines	section	content	in	the	FDF	files.	This	file	can	be	created	by	a
developer	and	is	an	input	to	the	EDK	II	build	tool	parsing	utilities.	Elements	may	appear	in	any	order
within	this	section.

The	code	for	this	version	of	the	FDF	specification	is	"0x0001001C".	New	versions	of	this	specification
must	increment	the	minor	(001C)	portion	of	the	specification	code	for	backward-compatible	changes,
and	increment	the	major	specification	number	for	non-backward-compatible	changes.

This	revision	of	the	specification	adds	new	features.	Any	FDF	file	that	uses	these	new	features	must	use
the	value		0x0001001C		in	the		FDF_SPECIFICATION		statement.	Older	FDF	files	that	do	not	use	these	new	feature
do	not	need	to	update	the	value.

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<Defines>				::=	"[Defines]"	<EOL>

																	[<TS>	"FDF_SPECIFICATION"	<Eq>	<SpecVer>	<EOL>]

																	[<TS>	"FDF_VERSION"	<Eq>	<DecimalVersion>	<EOL>]	<DefStmts>*

<DefStmts>			::=	{<MacroDefinition>}	{<SetStmts>}	{<IncludeStatement>}

<UiNameType>	::=	<AsciiString>

<SpecVer>				::=	{<HexVersion>}	{(0-9)+	"."	(0-9)+}

<SetStmts>			::=	<TS>	"SET"	<MTS>	<PcdName>	<Eq>	[<VALUE>]	<EOL>

<VALUE>						::=	{<Number>}	{<Boolean>}	{<GUID>}	{<CArray>}

																	{<CString>}	{<UnicodeString>}	{<Expression>}

Parameters
Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	more	information.

FDF_VERSION

The	version	number	for	this	flash	definition;	the	value	is	not	used	by	build	tools,	but	the	version	element
is	provided	for	user	tracking	capabilities	that	may	be	used	by	other	user	interface	tools.

FDF_SPECIFICATION

For	this	specification,	the	version	value	is	0x0001001C.	Tools	that	process	this	version	of	the	FDF	file
can	successfully	process	earlier	versions	of	the	FDF	files	(this	is	a	backward	compatible	update).	If	an
FDF	file	with	an	earlier	version	of	the		FDF_SPECIFICATION		is	modified	to	use	a	feature	added	in	the	1.28
version	of	this	specification	must	be	updated	to	0x0001001C.	There	is	no	requirement	to	change
existing	entries	if	no	other	content	changes.	This	value	may	also	be	specified	as	decimal	value,	such	as
1.28.

PcdNames

PCDs	defined	in	this	section	take	precedence	over	PCD	values	specified	in	other	meta-data	files.	Note
that	PCDs	defined	via	the	SET	statements	in	sub-sections	of	the	document	can	override	the	values	set
here	as	well	as	in	other	EDK	II	meta-data	files.

3.4	[Defines]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

73Revision	1.28.01

Example

[Defines]

		FDF_SPECIFICATION																										=	0x0001001C

		DEFINE	BIG_STUFF																											=	False

		SET	gEfiMyPlatformTokenSpaceGuid.MyUsbFlag	=	True

3.4	[Defines]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

74Revision	1.28.01

3.5	[FD]	Sections
This	is	a	required	section	for	platform	flash	parts,	and	is	not	required	for	simple	Option	ROM	creation.

Summary
This	describes	the		[FD]		section	tag,	which	is	required	in	all	FDF	files.	This	file	is	created	by	the	platform
integrator	and,	along	with	the	platform	DSC	file,	is	an	input	to	the	parsing	utilities.

All	FD	files	will	be	created	in	the		$(OUTPUT_DIRECTORY)/$(TARGET)_$(TAGNAME)/FV		directory	using	the	values	from	the
individual	instance	of	the	build	tools.	(Build	tools	get	these	values	after	parsing	DSC,	INF,		target.txt	,
	tools_def.txt		files	and	command	line	options).

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<FD>															::=	"[FD"	[<FdUiName>]	"]"	<EOL>

																							<TokenStatements>

																							<FdStatements>*

<FdStatements>					::=	{<GlobalStmts>}	{<SetStatements>}

																							{<RegionLayout>}

<GlobalStmts>						::=	{<MacroDefinition>}	{<IncludeStatement>}

<FdUiName>									::=	"."	(a-zA-Z)(a-zA-Z0-9_)*

<TokenStatements>		::=	<TS>	"BaseAddress"	<Eq>	<UINT64>	[<SetPcd>]

																							<EOL>

																							<TS>	"Size"	<Eq>	<UINT64>	[<SetPcd>]	<EOL>

																							<TS>	"ErasePolarity"	<Eq>	{"0"}	{"1"}	<EOL>

																							<BlockStatements>+

<SetPcd>											::=	<FS>	<PcdName>

<BlockStatements>		::=	<TS>	"BlockSize"	<Eq>	<UINT32>	[<SetPcd>]

																							<EOL>

																							[<TS>	"NumBlocks"	<Eq>	<UINT32>	<EOL>]

<SetStatements>				::=	<TS>	"SET"	<PcdName>	<Eq>	<VALUE>	<EOL>

<VALUE>												::=	{<Number>}	{<Boolean>}	{<GUID>}	{<CArray>}

																							{<CString>}	{<UnicodeString>}	{<Expression>}

<RegionLayout>					::=	<TS>	<Offset>	<FS>	<Size>	<EOL>

																							[<TS>	<PcdOffset>	[<FS>	<PcdSize>]	<EOL>]

																							[<RegionType>]

<Offset>											::=	{<HexNumber>}	{<Expression>}

<Size>													::=	{<HexNumber>}	{<Expression>}

<RegionType>							::=	{<FvType>}	{<FileType>}	{<CapsuleRegion>}

																							{<DataType>}	{<InfRegion>}

<InfRegion>								::=	<TS>	"INF"	<MTS>	[<InfOptions>]	<InfFile>	<EOL>

<InfOptions>							::=	[<Use>]	[<Rule>]	[<SetVer>]	[<SetUi>]

<Use>														::=	"USE"	<Eq>	<TargetArch>	<MTS>

<TargetArch>							::=	<arch>

<Rule>													::=	"RuleOverride"	<Eq>	{<Word>}	{"BINARY"}	<MTS>

<SetVer>											::=	"VERSION"	<Eq>	<CString>	<MTS>

<SetUi>												::=	"UI"	<Eq>	<CString>	<MTS>

<InfFile>										::=	<PATH>	<Word>	".inf"	[<FS>	<RelocFlags>]

<RelocFlags>							::=	{"RELOCS_STRIPPED"}	{"RELOCS_RETAINED"}

<CapsuleRegion>				::=	<TS>	"CAPSULE"	<Eq>	UiCapsuleName	<EOL>

<PcdOffset>								::=	<PcdName>

<PcdSize>										::=	<PcdName>

<FvType>											::=	<TS>	"FV"	<Eq>	<FvNameOrFilename>	<EOL>

<FileType>									::=	<TS>	"FILE"	<Eq>	<BinaryFile>	<EOL>

<DataType>									::=	<TS>	"DATA"	<Eq>

																							"{"	[<EOL>]

																							[<DataContent>]

																							<TS>	"}"	<EOL>

<DataContent>						::=	<TS>	{<RawData>}	{<CFormatGUID>}	{<UINT8z>}	[<EOL>]

<BinaryFile>							::=	[<Location>]	<File>

<Location>									::=	{<BuildId>}	{<PATH>}

<BuildId>										::=	<VarLoc>	{"FV"}	{<arch>}	"/"

3.5	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

75Revision	1.28.01

<VarLoc>											::=	"$(OUTPUT_DIRECTORY)/$(TARGET)_($TOOL_CHAIN_TAG)/"

<FvNameOrFilename>	::=	{<FvUiName>}	{<FvFilename>}

<FvUiName>									::=	{<Word>}	{"common"}

<FvFilename>							::=	[<PATH>]	<Word>	"."	{"fv"}	{"Fv"}	{"FV"}

Restrictions
For	the		FvFilename	,	the	PATH	is	relative	to	the	EDK	II	environment	variable		$(WORKSPACE)	or	relative	to	a	path
listed	in	the		PACKAGES_PATH		environment	variable.	If	the	path	is	not	specified,	the		PATH		defaults	to	the
following	location,	where		$(OUTPUT_DIRECTORY)		is	specified	in	the	EDK	II	Platform	DSC	file's		[Defines]		section.
If	a	path	is	not	present,	or	the	".fv"	file	extensions	do	not	appear	in	the	value,	the	build	system	will	use	a
filename	based	on	the	UiFvFilename	specified	in	the	FDF	file:

	$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV	

For	the	Binary	File,	the		PATH		must	be	relative	to	the	EDK	II	environment	variable:	$(WORKSPACE)	or	relative	to
a	path	listed	in	the		PACKAGES_PATH		environment	variable.	If	not	specified,	the		PATH		defaults	to	the	directory
location	of	the	EDK	II	Platform	DSC	file.	If	not	found,	the	tools	must	test	the	directory	location	of	this	FDF
file,	if	different	from	the	directory	containing	the	Platform's	DSC	file.

If	a	GUID	is	used	(either	the	C	format	or	Registry	Format)	in	the	data	content,	tools	will	be	required	to
process	the	GUID	into	a	byte	array.

Raw	Data	arrays	in	FDF	files	are	always	listed	as	byte	arrays,	using	little-endian	format.	Numbers	listed
in	the	DataContent	section	must	be	zero	filled,	in	order	to	determine	the	size	of	the	element.	For
example,	a		UINT16		value	of	1	must	be	specified	as		0x0001	.

Parameters
FdUiName

This	name	is	used	by	the		GenFds		tool	to	generate	FD	image	files.	If	not	present,	only	one	FD	section	is
allowed	and	the		GenFds		tool	will	use	the	name	of	the	active	platform	as	the	name	of	the	FD	image.

UiCapsuleName

The		UiCapsuleName		must	be	specified	in	a		[Capsule]		section	header	defined	in	this	the	file.

FvUiName

The		FvUiName		must	be	specified	in	a		[FV]		section	header	defined	in	this	the	file.

PcdValue

The	PCD	Value	may	be	a	specific	numeric	value,	an	array	of	numeric	bytes,	a	GUID,	a	quoted	string,	an	L
quoted	string	(representing	a	unicode	string),	an	arithmetic	expression,	a	logic	expression	or	a	macro
from	a	previously	defined	macro	statement.

Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	more	information.

Location

For	BINARY	ONLY	files,	the	location	specified	in	the	FILE	element	of	this	section	must	be	relative	to	the
directory	identified	by	the	WORKSPACE	or	relative	to	a	path	listed	in	the	PACKAGES_PATH	system
environment	variable.

Example

[FD.FdMain]

BaseAddress			=	0xFFF00000	|gEfiMyPlatformTokenSpaceGuid.PcdFlashAreaBaseAddress

3.5	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

76Revision	1.28.01

Size										=	0x102000

ErasePolarity	=	1

BlockSize					=	0x10000

NumBlocks					=	16

BlockSize					=	0x1000

NumBlocks					=	2

#	Offset:Size

0x000000|0x0C0000

gEfiMyPlatformTokenSpaceGuid.PcdFlashFvMainBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashFvMainSize

FV			=	FvMain

0x0C0000|0x00A000

gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageSize

Data	=	{	#	Variable	Store

0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C,

0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50,

0x00,	0x00,	0x02,	0x00,	0x00,	0x00,	0x00,	0x00,

0x5F,	0x46,	0x56,	0x48,	0xFF,	0x8E,	0xFF,	0xFF,

0x5A,	0xFE,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00

}

0x0CA000	|	0x002000

gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchAddress|gEfiCpuTokenSpaceGuid.PcdCpuMicrocodePatchSize

FILE	=	FV/Microcode.bin

0x0CC000	|	0x002000	#	Event	Log

gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageEventLogBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageEventLogSize

0x0CE000	|	0x002000	#	FTW	Working	Area

gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageFtwWorkingSize

Data	=	{

0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C,

0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50,

0x85,	0xAE,	0x2D,	0xBF,	0xFE,	0xFF,	0xFF,	0xFF,

0xE4,	0x1F,	0x00,	0x00,	0xFF,	0xFF,	0xFF,	0xFF

}

0x0D0000	|	0x010000	#	FTW	Spare	Block

gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize

0x0E0000	|	0x020000

gEfiMyPlatformTokenSpaceGuid.PcdFlashFvRecoveryBase|gEfiMyPlatformTokenSpaceGuid.PcdFlashFvRecoverySize

FV	=	FV/FvRecovery.fv

3.5	[FD]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

77Revision	1.28.01

3.6	[FV]	Sections
One	or	more	of	theses	sections	is	required	for	platform	images,	and	not	required	for	simple	Option	ROM
generation.

Summary
This	describes	the		[FV]		section	tag,	which	is	required	in	all	platform	FDF	files.	This	file	is	created	by	the
platform	integrator	and	is	an	input	to	the	one	or	more	parsing	utilities.

Note	that		FvAttributes	,	listed	below,	may	be	set	via	PCD	settings.	Setting	the	attribute	via	PCD	takes
precedence	over	the		FvAttributes		settings	in	this	FDF	file.	If	the		FvAttribute		is	not	set	by	either	a	PCD	or
an		FvAttribute		line	in	the	FDF	file,	then	the	default	value	is		FALSE		-	the	corresponding	bit	in	the
	EFI_FV_ATTRIBUTE		of	the		EFI_FIRMWARE_VOLUME_PROTOCOL.GetVolumeAttributes()		is	set	per	the		FvAttributesSet		or
	FvAttributesClear	;	items	specified	in		FvAttributesSet		are	default	"TRUE",	while	items	in		FvAttributesClear		are
default	"FALSE".

If	FV	files	are	created,	they	will	be	created	in	the		$(OUTPUT_DIRECTORY)/$(TARGET)_$(TAGNAME)/FV		directory	using	the
values	from	the	individual	instance	of	the	build	tools.	(Build	tools	get	these	values	after	parsing	DSC,
INF,		target.txt	,		tools_def.txt		files	and	command	line	options).

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<FV>																::=	"[FV"	<FvUiName>	"]"	<FvStmts>*

<FvStmts>											::=	{<ExtendedFvEntry>}	{<FvStatements>}	{<GlobalStmts>}

<FvUiName>										::=	"."	(a-zA-Z)(a-zA-Z0-9_)*

<ExtendedFvEntry>			::=	<TS>	"FV_EXT_ENTRY_TYPE"	<MTS>	"TYPE"	<Eq>

																								<Hex4>

																								"{"	[<EOL>]

																								{<TS>	"FILE"	<Eq>	<BinaryFile>	[<EOL>]}

																								{<TS>	"DATA"	<Eq>	"{"	<DataContent>	"}"	}

																								"}"	<EOL>

<DataContent>							::=	<TS>	{<RawData>}	{<CFormatGUID>}	{<UINT8z>}

																								{<UINT16z>}	{<UINT32z>}	{<UINT64z>}	[<EOL>]

<BinaryFile>								::=	<PATH>	<File>	[<EOL>]

<FvStatements>						::=	[<BlockStatements>]

																								[<FvAlignment>]

																								[<FvAttributes>]

																								[<FileSystemGuid>]

																								[<FvNameGuid>]

																								[<FvUsedSize>]

																								[<FvNameString>]

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<InfStatements>*

																								<FileStatements>*

<GlobalStmts>							::=	{<MacroDefinition>}	{<IncludeStatement>}

<BlockStatements>			::=	<FixedBlocks>

<FixedBlocks>							::=	[<TS>	"BlockSize"	<Eq>	<UINT32>	<EOL>]

																								[<TS>	"NumBlocks"	<Eq>	<UINT32>	<EOL>]

<SetStatements>					::=	<TS>	"SET"	<MTS>	<PcdName>	<Eq>	<VALUE>	<EOL>

<VALUE>													::=	{<Number>}	{<Boolean>}	{<GUID>}	{<CArray>}

																								{<CString>}	{<UnicodeString>}	{<Expression>}

<FvAlignment>							::=	[<TS>	"FvBaseAddress"	<Eq>	<UINT64>	<EOL>]

																								[<TS>	"FvForceRebase"	<Eq>	<TrueFalse>	<EOL>]

																								<TS>	"FvAlignment"	<Eq>

																								<FvAlignmentValues>	<EOL>

<FvAttributes>						::=	[<TS>	"MEMORY_MAPPED"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

78Revision	1.28.01

																								[<TS>	"WRITE_LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_ENABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_DISABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"STICKY_WRITE"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_POLICY_RELIABLE"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_ENABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_DISABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"ERASE_POLARITY"	<Eq>	{"0"}	{"1"}	<EOL>]

<FileSystemGuid>				::=	<TS>	"FileSystemGuid"	<Eq>	<NamedGuid>	<EOL>

<FvNameGuid>								::=	<TS>	"FvNameGuid"	<Eq>	<NamedGuid>	<EOL>

<FvUsedSize>								::=	<TS>	"FvUsedSizeEnable"	<Eq>	<TrueFalse>	<EOL>

<FvNameString>						::=	<TS>	"FvNameString"	<Eq>	<TrueFalse>	<EOL>

<PeiAprioriSection>	::=	<TS>	"APRIORI"	<MTS>	"PEI"	<MTS>

																								"{"	<EOL>

																								<MacroDefinition>*

																								<InfStatements>*

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<DxeAprioriSection>	::=	<TS>	"APRIORI"	<MTS>	"DXE"	<MTS>

																								"{"	<EOL>

																								<MacroDefinition>*

																								<InfStatements>*

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<InfStatements>					::=	<TS>	"INF"	<MTS>	[<InfOptions>]	<InfFile>

<InfOptions>								::=	[<Use>]	[<Rule>]	[<SetVer>]	[<SetUi>]

<Use>															::=	"USE"	<Eq>	<TargetArch>	<MTS>

<TargetArch>								::=	<arch>

<Rule>														::=	"RuleOverride"	<Eq>	{<RuleUiName>}	{"BINARY"}

																								<MTS>

<SetVer>												::=	"VERSION"	<Eq>	<CString>	<MTS>

<SetUi>													::=	"UI"	<Eq>	<CString>	<MTS>

<InfFile>											::=	if	(MODULE_TYPE	==	"SEC"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"PEIM"):

																								<PATH>	<Word>	".inf"	[<FS>	<RelocFlags>]	<EOL>	else:

																								<PATH>	<Word>	".inf"	<EOL>

<RelocFlags>								::=	{"RELOCS_STRIPPED"}	{"RELOCS_RETAINED"}

<FileStatements>				::=	{<type1>}	{<type2>}	{<type3>}	{<type4>}

																								{<type5>}	<EOL>

<type1>													::=	<TS>	"FILE"	<MTS>	<FvType1>	<Eq>	<NamedGuid>	<Options1>

<type2>													::=	<TS>	"FILE"	<MTS>	<FvType2>	<Eq>	<NamedGuid>	<Options2>

<type3>													::=	<TS>	"FILE"	<MTS>	"RAW"	<Eq>	<NamedGuidOrPcd>

																								<Options2>

<type4>													::=	<TS>	"FILE"	<MTS>	"NON_FFS_FILE"	<Eq>	[<NamedGuid>]

																								<Options2>

<type5>													::=	<TS>	"FILE"	<MTS>	"FV_IMAGE"	<Eq>

																								<NamedGuidOrPcd>	<Options2>

<FvType1>											::=	{"SEC"}	{"PEI_CORE"}	{"PEIM"}

<FvType2>											::=	{"FREEFORM"}	{"PEI_DXE_COMBO"}	{"DRIVER"}

																								{"DXE_CORE"}	{"APPLICATION"}	{"SMM_CORE"}	{"SMM"}

<NamedGuidOrPcd>				::=	{<NamedGuid>}	{"PCD("	<PcdName>	")"}

<NamedGuid>									::=	{<RegistryFormatGUID>}	{"$(NAMED_GUID)"}	{<GuidCName>}

<Options1>										::=	[<Use>]	[<FileOpts>]	<RelocFlags>	<MTS>

																								"{"	[<EOL>]

																								{<Filename>}	{<SectionData>}	<TS>	<TS>	"}"	[<EOL>]

<Options2>										::=	[<Use>]	[<FileOpts>]	<MTS>

																								"{"	[<EOL>]

																								<TS>	{<Filename>}	{<FileList>+}	{<SectionData>	<EOL>}

																								"}"	<EOL>

<FileList>										::=	<TS>	[<FfsAlignment>]	<NormalFile>	<EOL>

<FileOpts>										::=	["FIXED"	<MTS>]	["CHECKSUM"	<MTS>]

																								[<FfsAlignment>]

<FfsAlignment>						::=	"Align"	<Eq>	<FfsAlignmentValues>	<MTS>

<Filename>										::=	<TS>	{<FvImage>}	{<FdImage>}	{<NormalFile>}	<EOL>

<FvImage>											::=	<TS>	"FV"	<Eq>	<FvUiName>	<EOL>

<FdImage>											::=	<TS>	"FD"	<Eq>	<FdUiName>	<EOL>

<FdUiName>										::=	{<Word>}	{"common"}

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

79Revision	1.28.01

<NormalFile>								::=	<PATH>	<Word>	"."	<Word>	<EOL>

<SectionData>							::=	<MacroDefinition>*

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<EncapSec>*

																								<LeafSections>*

<LeafSections>						::=	{<VerSection>}	{<UiSec>}	{<FvImgSection>}

																								{<DataSection>}	{<DepexExpSection>}

<VerSection>								::=	<TS>	"SECTION"	<MTS>	[<VerArgs>]	"VERSION"	<VerUniArg>

<UiSec>													::=	<TS>	"SECTION"	<MST>	[<FfsAlignment>]	"UI"	<VerUniArg>

<FvImgSection>						::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	"FV_IMAGE"

																								<FvImgArgs>

<VerArgs>											::=	[<FfsAlignment>]	[<Build>]

<Build>													::=	"BUILD_NUM"	<Eq>	<BuildVal>	<MTS>

<BuildVal>										::=	{<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>}

																								{"$(BUILD_NUMBER)"}

<VerUniArg>									::=	<Eq>	{<StringData>}	{<NormalFile>}	<EOL>

<StringData>								::=	{<UnicodeString>}	{<QuotedString>}

<FvImgArgs>									::=	<Eq>	<FvUiName>	<MTS>

																								"{"	<EOL>

																								<MacroDefinition>*

																								<ExtendedFvEntry>*

																								[<FvAlignment>]

																								[<FvAttributes>]

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<InfStatements>*

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<DataSection>							::=	{<KnownSection>}	{<SubTypeGuid>}

<KnownSection>						::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	<SecData>

<SecData>											::=	<LeafSecType>	<MTS>	[<ChkReloc>	<MTS>]

																								<SectionOrFile>

<LeafSecType>							::=	{"COMPAT16"}	{"PE32"}	{"PIC"}	{"TE"}	{"RAW"}

																								{"FV_IMAGE"}	{"DXE_DEPEX"}	{"SMM_DEPEX"}

																								{"UI"}	{"PEI_DEPEX"}	{"VERSION"}

<SubTypeGuid>							::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	<STG_Data>

<STG_Data>										::=	"SUBTYPE_GUID"	<MTS>	<GuidValue>	<Eq>

																								<NormalFile>	<EOL>

<ChkReloc>										::=	if	((LeafSectionType	==	"PE32"

																								||	LeafSectionType	==	"TE")

																								&&	(MODULE_TYPE	==	"SEC"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"PEIM")):	[<RelocFlags>]

<SectionOrFile>					::=	{<Eq>	<NormalFile>	<EOL>}	{<EncapSec>}

<EncapSec>										::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	<EncapSection>

																								<EOL>

<EncapSection>						::=	{<CompressSection>}	{<GuidedSection>}

<CompressSection>			::=	<TS>	"COMPRESS"	<MTS>	[<CompType>]

																								"{"	<EOL>

																								<EncapSec>*

																								<LeafSections>*

																								<TS>	"}"	[<EOL>]

<CompType>										::=	{"PI_STD"}	{"PI_NONE"}	<MTS>

<GuidedSection>					::=	"GUIDED"	<MTS>	<NamedGuid>	<MTS>

																								[<GuidedOptions>]

																								"{"	<EOL>

																								<EncapSec>*

																								<LeafSections>*

																								<TS>	"}"	[<EOL>]

<GuidedOptions>					::=	[<GuidAttrPr>]	[<GuidAttrASV>]

																								[<GuidHeaderSize>]

<GuidAttrPr>								::=	"PROCESSING_REQUIRED"	<Eq>	<TrueFalse>	<MTS>

<GuidAttrASV>							::=	"AUTH_STATUS_VALID"	<Eq>	<TrueFalse>	<MTS>

<GuidHeaderSize>				::=	"EXTRA_HEADER_SIZE"	<Eq>	<Number>	<MTS>

<DepexExpSection>			::=	if	(COMPONENT_TYPE	==	"LIBRARY"

																								||	LIBRARY_CLASS	is	declared	in	defines	section	of	the

																								INF

																								||	MODULE_TYPE	==	"USER_DEFINED"):

																								[<Depex>]

																								else	if	(MODULE_TYPE	==	"PEIM"

																								||	MODULE_TYPE	==	"DXE_DRIVER"

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

80Revision	1.28.01

																								||	MODULE_TYPE	==	"DXE_RUNTIME_DRIVER"

																								||	MODULE_TYPE	==	"DXE_SAL_DRIVER"	||	MODULE_TYPE	==

																								"DXE_SMM_DRIVER"):

																								<Depex>

																								else	if	(MODULE_TYPE	==	"UEFI_APPLICATION"

																								&&	MODULE_TYPE	==	"UEFI_DRIVER"

																								&&	MODULE_TYPE	==	"PEI_CORE"

																								&&	MODULE_TYPE	==	"DXE_CORE"

																								&&	MODULE_TYPE	==	"SMM_CORE"

																								&&	MODULE_TYPE	==	"SEC"):

																								No	DEPEX	section	is	permitted

<Depex>													::=	if	(MODULE_TYPE	==	"PEIM"):

																								<PeiDepexExp>	else	if	(MODULE_TYPE	==

																								"DXE_SMM_DRIVER"):

																								<SmmDepexExp>	[<DxeDepexExp>]	else:

																								<DxeDepexExp>

<PeiDepexExp>							::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	"PEI_DEPEX_EXP"

																								<Eq>	"{"	[<EOL>]	<PeiDepex>	"}"	<EOL>

<PeiDepex>										::=	[<TS>	<BoolStmt>	{<EOL>}	{<MTS>}]

																								[<TS>	<DepInstruct>	{<EOL>}	{<MTS>}]

																								[<TS>	"end"	{<EOL>}	{<MTS>}]

<BoolStmt>										::=	{<Bool>}	{<BoolExpress>}

																								{<GuidCName>}	{<EOL>}	{<MTS>}

<Bool>														::=	{"TRUE"}	{"FALSE"}	{<GuidCName>}

<GuidCName>									::=	<CName>	#	A	Guid	C	Name

<BoolExpress>							::=	[<Not>]	<GuidCName>	[<OP>	[<Not>]	<GuidCName>]*

<Not>															::=	"NOT"	<MTS>

<OP>																::=	<MTS>	{"AND"}	{"OR"}	<MTS>

<DepInstruct>							::=	"push"	<MTS>	<Filename>

<DxeDepexExp>							::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	"DXE_DEPEX_EXP"

																								<Eq>	"{"	[<EOL>]	<DxeDepex>	"}"	<EOL>

<DxeDepex>										::=	[<TS>	<SorStmt>	{<EOL>}	{<MTS>}]

																								[<TS>	<GuidStmt>	{<EOL>}	{<MTS>}]

																								[<TS>	<BoolStmt>	{<EOL>}	{<MTS>}]

																								[<TS>	<DepInstruct>	{<EOL>}	{<MTS>}]

																								[<TS>	"END"	{<EOL>}	{<MTS>}]

<SorStmt>											::=	"SOR"	<BoolStmt>

<GuidStmt>										::=	{"before"}	{"after"}	<MTS>	<Filename>

<SmmDepexExp>							::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	"SMM_DEPEX_EXP"

																								<Eq>	"{"	[<EOL>]	<DxeDepex>	"}"	<EOL>

Restrictions
Filename

For	BINARY	ONLY	content	(UEFI_DRIVER		and		UEFI_APPLICATION		.efi	files)	the	file	names	specified	in	the
elements	(FILE		and		SECTION)	of	this	section	must	be	relative	to	the	directory	identified	by	the		WORKSPACE	
or	relative	to	a	path	listed	in	the		PACKAGES_PATH		system	environment	variable.

TargetArch

Only	specific	architectures	are	permitted	-	use	of	"common"	is	prohibited.

FvBaseAddress

The		FvBaseAddress	,	if	present,	must	be	listed	before	the		FvAlignment		element.	If	present,	the		FvForceRebase	
must	immediately	follow	the		FvBaseAddress	.

Parameters
FvBaseAddress

A		UINT64		value	that	will	be	used	to	rebase	the	code	to	run	at	a	different	address	than	the	address
specified	by	the	location	of	the	FV	in	the	FD	section.

SUBTYPE_GUID

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

81Revision	1.28.01

This	is	short	hand	notation	refering	to	content	that	will	be	placed	in	a	Section	of	type:
EFI_SECTION_FREEFORM_SUBTYPE_GUID.	A	single

	EFI_SECTION_FREEFORM_SUBTYPE_GUID		section	is	permitted	in	an	FFS	File	of	type		EFI_FV_FILETYPE_FREEFORM	

GuidCName

A	word	that	is	a	valid	C	variable	for	a	GUID.

Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	more	information.

COMPRESS

Compression	sections	that	use		PI_STD		compression	do	not	have		PROCESSING_REQUIRED	=	TRUE		flag,	it	is	only
required	for		GUIDED		sections.

User	Interface	(UI)	entries

There	are	three	possible	methods	for	specifying	a	User	Interface	string.	1)	Specify	the	string	value	in
the	FDF	file,	2)	specify	a	ASCII	plain	text	file	that	has	an	extension	of	".ui"	or	3)	specify	a	Unicode	file	with
an	extension	of	".uni"	that	contains	a	single	Unicode	string.

Paths

Unless	otherwise	noted,	all	file	paths	are	relative	to	the	WORKSPACE	directory	or	relative	to	a	directory
listed	in	the	PACKAGESPATH.	In	some	cases,	the	tools	will	search	well	known	paths	for	some	files,	for
example,	for	FD	filenames,	the	output	will	typically	be	located	in	the
`$(OUTPUT_DIRECTORY)/$(TARGET)$(TAGNAME)/FV`	directory.

Related	Definitions
Note	that	no	space	characters	are	permitted	on	the	left	side	of	the	expression	(before	the	equal	sign).

Target

This	value	must	match	a	target	identifier	in	the	EDK	II	tools_def.txt	file	-	the	first	field,	where	fields	are
separated	by	the	underscore	character.	Wildcard	characters	are	not	permitted.

TagName

This	must	match	a	tag	name	field	in	the	EDK	II		tools_def.txt		file	-	second	field.	Wildcard	characters	are
not	permitted.

Example

[Fv.Root]

		FvAlignment								=	64

		ERASE_POLARITY					=	1

		MEMORY_MAPPED						=	TRUE

		STICKY_WRITE							=	TRUE

		LOCK_CAP											=	TRUE

		LOCK_STATUS								=	TRUE

		WRITE_DISABLED_CAP	=	TRUE

		WRITE_ENABLED_CAP		=	TRUE

		WRITE_STATUS							=	TRUE

		WRITE_LOCK_CAP					=	TRUE

		WRITE_LOCK_STATUS		=	TRUE

		READ_DISABLED_CAP		=	TRUE

		READ_ENABLED_CAP			=	TRUE

		READ_STATUS								=	TRUE

		READ_LOCK_CAP						=	TRUE

		READ_LOCK_STATUS			=	TRUE

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

82Revision	1.28.01

		INF	VERSION	=	"1"	$(WORKSPACE)/EdkNt32Pkg/Dxe/WinNtThunk/Cpu/Cpu.inf

		FILE	DXE_CORE	=	B5596C75-37A2-4b69-B40B-72ABD6DD8708	{

				SECTION	COMPRESS	{

						DEFINE	DC				=	$(WORKSPACE)/Build/Nt32/DEBUG_IA32

						SECTION	PE32	=	$(DC)/B5596C75-37A2-4b69-B40B-72ABD6DD8708-DxeCore.efi

				}

		}

		FILE	FREEFORM	=	85C3EBE1-F58F-4820-8AD3-F2FB62DC3A23	{

				FvAlignment	=	512K

				SECTION	SUBTYPE_GUID	AFC13561-9A65-4754-9C93-E133B3B8767C	=	$(WORKSPACE)/MyPackage/MyNewType/Binary/newform.bin

		}

		FILE	FV_IMAGE	=	EF41A0E1	-	40B1	-	481f	-	958E-6FB4D9B12E76	{

				FvAlignment	=	512K

				WRITE_POLICY_RELIABLE	=	TRUE

				SECTION	GUIDED	3EA022A4-1439-4ff2-B4E4-A6F65A13A9AB	{

						SECTION	FV_IMAGE	=	Dxe	{

								APRIORI	DXE	{

										INF	$(WORKSPACE)/a/a.inf

										INF	$(EDK_SOURCE/a/c/c.inf

										INF	$(WORKSPACE)/a/b/b.inf

								}

								INF	a/d/d.inf

								...

						}

				}

		}

DEFINE	SAMPLE	=	$(EDK_SOURCE)/Sample

INF	$(SAMPLE)/Universal/Network/Ip4/Dxe/Ip4.inf

INF	$(SAMPLE)/Universal/Network/Ip4Config/Dxe/Ip4Config.inf

INF	$(SAMPLE)/Universal/Network/Udp4/Dxe/Udp4.inf

INF	$(SAMPLE)/Universal/Network/Tcp4/Dxe/Tcp4.inf

INF	$(SAMPLE)/Universal/Network/Dhcp4/Dxe/Dhcp4.inf

INF	$(SAMPLE)/Universal/Network/Mtftp4/Dxe/Mtftp4.inf

INF	$(SAMPLE)/Universal/Network/SnpNt32/Dxe/SnpNt32.inf

FILE	RAW	=	197DB236-F856-4924-90F8-CDF12FB975F3	{

		$(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/$PLATFORM_ARCH)/File.bin

}

FILE	RAW	=	197DB236-F856-4924-90F8-CDF12FB975F3	{

		Align=16	$(PLATFORM_PACKAGE)/Binaries/File1.pdb

		Align=16	$(PLATFORM_PACKAGE)/Binaries/File2.pdb

		Align=16	$(PLATFORM_PACKAGE)/Binaries/File3.pdb

}

3.6	[FV]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

83Revision	1.28.01

3.7	[Capsule]	Sections
These	sections	are	optional.

Summary
If	capsule	files	are	created,	they	will	be	created	in	the		$(OUTPUT_DIRECTORY)/$(TARGET)_$(TAGNAME)/FV		directory
using	the	values	from	the	individual	instance	of	the	build	tools.	(Build	tools	get	these	values	after
parsing	DSC,	INF,		target.txt	,		tools_def.txt		files	and	command	line	options.)

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<Capsule>											::=	"[Capsule"	<UiCapsuleName>	"]"	<EOL>

																								<UefiTokens>

																								<CapsuleStmts>*

<UiCapsuleName>					::=	"."	<Word>

<SetStatements>					::=	<TS>	"SET"	<MTS>	<PcdName>	<Eq>	<VALUE>	<EOL>

<VALUE>													::=	{<Number>}	{<Boolean>}	{<GUID>}	{<CArray>}

																								{<CString>}	{<UnicodeString>}	{<Expression>}

<UefiTokens>								::=	<TS>	"CAPSULE_GUID"	<Eq>	<GuidValue>	<EOL>

																								[<TS>	"CAPSULE_HEADER_SIZE"	<Eq>	<Bytes>	<EOL>]	[<TS>

																								"CAPSULE_FLAGS"	<Eq>	<Flags>	<EOL>]

																								[<TS>	"CAPSULE_HEADER_INIT_VERSION"	<Eq>	<Hex2>	<EOL>]

<CapsuleStmts>						::=	{<MacroDefinition>}	{<SetStatements>}

																								{<CapsuleData>}

<GuidValue>									::=	{<GuidCName>}	{<GuidStructure>}

<GuidCName>									::=	<CName>

<GuidStructure>					::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<Flags>													::=	<FlagName>

<FlagName>										::=	{"PersistAcrossReset"}

																								{"PersistAcrossReset"	","	"InitiateReset"}

																								{"PersistAcrossReset"	","	"PopulateSystemTable"}

																								{"PersistAcrossReset"	","	"PopulateSystemTable"

																								","	"InitiateReset"}

																								{"PersistAcrossReset"	","	InitiateReset"

																								","	"PopulateSystemTable"}

																								{"PopulateSystemTable"}

																								{"PopulateSystemTable"	","	"PersistAcrossReset"}

																								{"PopulateSystemTable"	","	"PersistAcrossReset"

																								","	"InitiateReset"}

																								{"PopulateSystemTable"	","	"InitiateReset"	","

																								"PersistAcrossReset"}

																								{"InitiateReset"	","	"PersistAcrossReset"}

																								{"InitiateReset"	","	"PersistAcrossReset"

																								","	"PopulateSystemTable"}

																								{"InitiateReset"	","	"PopulateSystemTable"	","

																								"PersistAcrossReset"}

<CapsuleData>							::=	<InfStatements>*

																								<FileStatements>*

																								<FvStatements>*

																								<FdStatenents>*

																								<FmpFileStatement>*

																								<FmpPayload>*	<Afile>*

<InfStatements>					::=	<TS>	"INF"	<MTS>	[<InfOptions>]	<InfFile>	<EOL>

<InfOptions>								::=	[<Use>]	[<Rule>]	[<SetVer>]	[<SetUi>]

<Use>															::=	"USE"	<Eq>	<TargetArch>	<MTS>

<TargetArch>								::=	<arch>

<Rule>														::=	"RuleOverride"	<Eq>	{<RuleUiName>}	{"BINARY"}	<MTS>

<SetVer>												::=	"VERSION"	<Eq>	<CString>	<MTS>

<SetUi>													::=	"UI"	<Eq>	<CString>	<MTS>

<InfFile>											::=	if	(MODULE_TYPE	==	SEC

																								||	MODULE_TYPE	==	PEI_CORE

																								||	MODULE_TYPE	==	PEIM):

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

84Revision	1.28.01

																								<PATH>	<Word>	".inf"	[<FS>	<RelocFlags>]	else:

																								<PATH>	<Word>	".inf"

<RelocFlags>								::=	{"RELOCS_STRIPPED"}	{"RELOCS_RETAINED"}

<KeyString>									::=	<Target>	"_"	<TagName>	"_"	<TargetArch>

<Target>												::=	{Target}	{"$(TARGET)"}

<TagName>											::=	{TagName}	{"$(TOOL_CHAIN_TAG)"}

<FileStatements>				::=	<TS>	{<type1>}	{<type2>}	{<type3>}	{<type4>}

<type1>													::=	"FILE"	<FvType1>	<Eq>	<NamedGuid>	<Options1>

<type2>													::=	"FILE"	<FvType2>	<Eq>	<NamedGuid>	<Options2>

<type3>													::=	"FILE"	"RAW"	<Eq>	<NamedGuidOrPcd>

																								<Options2>

<type4>													::=	"FILE"	"NON_FFS_FILE"	<Eq>	[<NamedGuid>]	<Options2>

<type5>													::=	"FILE"	"FV_IMAGE"	<Eq>	<NamedGuidOrPcd>

																								<Options2>

<FvType1>											::=	{"SEC"}	{"PEI_CORE"}	{"PEIM"}

<FvType2>											::=	{"FREEFORM"}	{"PEI_DXE_COMBO"}	{"DRIVER"}

																								{"DXE_CORE"}	{"APPLICATION"}	{"SMM_CORE"}	{"SMM"}

<NamedGuid>									::=	{<RegistryFormatGUID>}	{"$(NAMED_GUID)"}

<NamedGuidOrPcd>				::=	{<NamedGuid>}	{"PCD("	<PcdName>	")"}

<Options1>										::=	[<Use>]	[<FileOpts>]	[<RelocFlags>]

																								"{"	[<EOL>]

																								<TS>	{<Filename>}	{<SectionData>}	[<EOL>]	<TS>	"}"

																								<EOL>

<Options2>										::=	[<Use>]	[<FileOpts>]

																								"{"	[<EOL>]

																								{<Filename>}	{<FileList>+}	{<SectionData>	<EOL>}

																								<TS>	"}"	<EOL>

<FileList>										::=	<TS>	[<FfsAlignment>]	<NormalFile>	<EOL>

<FileOpts>										::=	["FIXED"	<MTS>]	["CHECKSUM"	<MTS>]

																								[<FfsAlignment>]

<FfsAlignment>						::=	"Align"	<Eq>	<FfsAlignmentValues>

<FvAlignment>							::=	[<TS>	"FvBaseAddress"	<Eq>	<UINT64>	<EOL>]

																								[<TS>	"FvForceRebase"	<Eq>	<TrueFalse>	<EOL>]

																								"FvAlignment"	<Eq>	<FvAlignmentValues>	<EOL>

<Filename>										::=	<TS>	{<FvImage>}	{<FdImage>}	{<NormalFile>}	<EOL>

<FvImage>											::=	"FV"	<Eq>	<FvUiName>	<EOL>

<FdImage>											::=	"FD"	<Eq>	<FdUiName>	<EOL>

<FdUiName>										::=	{<Word>}	{"common"}

<NormalFile>								::=	<PATH>	<Word>	"."	<Word>	<EOL>

<SectionData>							::=	<MacroDefinition>*

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<EncapSec>*

																								<LeafSections>*

<PeiAprioriSection>	::=	"APRIORI	PEI"	<MTS>

																								"{"	<EOL>

																								[<DefineStatements>]

																								<InfStatements>*

																								<FileStatements>*	<TS>	"}"	<EOL>

<DxeAprioriSection>	::=	"APRIORI	DXE"	<MTS>

																								"{"	<EOL>

																								[<DefineStatements>]

																								<InfStatements>*

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<LeafSections>						::=	{<VerSection>}	{<UiSec>}	{<FvImgSection>}

																								{<DataSection>}	{<DepexExpSec>}

<VerSection>								::=	"SECTION"	<MTS>	[<VerArgs>]	"VERSION"	<MTS>	<UniArg>

<UiSection>									::=	"SECTION"	<MTS>	[<FfsAlignment>]	"UI"	<MTS>	<UniArg>

<FvImgSection>						::=	"SECTION"	<MTS>	[<FfsAlignment>]	"FV_IMAGE"	<MTS>

																								<FvImgArgs>

<VerArgs>											::=	[<FfsAlignment>]	[<Build>]

<Build>													::=	"BUILD_NUM"	<Eq>	<BuildVal>	<MTS>

<BuildVal>										::=	{[a-fA-F0-9]{4}}	{"$(BUILD_NUMBER)"}

<UniArg>												::=	<Eq>	{<StringData>}	{<NormalFile>}	<EOL>

<StringData>								::=	{<UnicodeString>}	{<QuotedString>}

																								{<NamedMacro>}

<NamedMacro>								::=	if	(VerSection):	"$(INF_VERSION)"	else	if	(UiSection):

																								{"$(INF_VERSION)"}	{"$(MODULE_NAME)"}

<FvImgArgs>									::=	<Eq>	<FvUiName>

																								"{"	<EOL>

																								<MacroDefinition>*

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

85Revision	1.28.01

																								<ExtendedFvEntry>*

																								[<FvAlignment>]

																								<FvAttributes>*

																								[<FileSystemGuid>]

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<InfStatements>*

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<ExtendedFvEntry>			::=	<TS>	"FV_EXT_ENTRY_TYPE"	<MTS>	<TypeValue>

																								"{"	[<EOL>]

																								<TS>

																								{"FILE"	<Eq>	<BinaryFile>}

																								{"DATA"	<Eq>	"{"	<DataContent>	"}"}

																								[<EOL>]

																								<TS>	"}"	<EOL>

<DataContent>							::=	{<RawData>}	{<CFormatGUID>}	{<UINT8z>}	{<UINT16z>}

																								{<UINT32z>}	{<UINT64z>}

<TypeValue>									::=	"TYPE"	<Eq>	<Hex4>	<MTS>

<Afile>													::=	"APPEND"	<Eq>	<BinaryFile>	<EOL>

<BinaryFile>								::=	[<PATH>]	<Word>	["."	{<bin>}	{<dat>}]	[<EOL>]

<bin>															::=	{"bin"}	{"BIN"}	{"Bin}

<dat>															::=	{"dat"}	{"DAT"}	{"Dat"}	{"data"}	{"DATA"}

																								{"Data"}

<DataSection>							::=	{<KnownSection>}	{<SubTypeGuid>}

<KnownSection>						::=	"SECTION"	<MTS>	[<FfsAlignment>]	<SecData>

<SecData>											::=	<LeafSecType>	[<ChkReloc>]	<SectionOrFile>

<LeafSecType>							::=	{"COMPAT16"}	{"PE32"}	{"PIC"}	{"TE"}	{"RAW"}

																								{"FV_IMAGE"}	{"DXE_DEPEX"}	{"SMM_DEPEX"}

																								{"UI"}	{"PEI_DEPEX"}	{"VERSION"}

<SubTypeGuid>							::=	<TS>	"SECTION"	<MTS>	[<FfsAlignment>]	<SgData>

<SgData>												::=	"SUBTYPE_GUID"	<MTS>	<GuidValue>	<Eq>

																								<NormalFile>	<EOL>

<GuidValue>									::=	{<GuidCName>}	{<GuidStructure>}

<GuidCName>									::=	<CName>

<GuidStructure>					::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<ChkReloc>										::=	if	((LeafSecType	==	"PE32"

																								||	LeafSecType	==	"TE")

																								&&	(MODULE_TYPE	==	"SEC"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"PEIM")):	[<RelocFlags>]

<SectionOrFile>					::=	{<Eq>	<NormalFile>	<EOL>}	{<EncapSec>}

<EncapSec>										::=	"SECTION"	<MTS>	[<FfsAlignment>]	<EncapSection>

<EncapSection>						::=	{<CompressSection>}	{<GuidedSection>}

<CompressSection>			::=	"COMPRESS"	<MTS>	[<CompType>]

																								"{"	<EOL>

																								<MacroDefinition>*

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<EncapSec>*

																								<LeafSections>*

																								<TS>	"}"	<EOL>

<CompType>										::=	{"PI_STD"}	{"PI_NONE"}	<MTS>

<GuidedSection>					::=	"GUIDED"	<NamedGuid>	[<GuidedOptions>]

																								"{"	<EOL>

																								<MacroDefinition>*

																								[<PeiAprioriSection>]

																								[<DxeAprioriSection>]

																								<EncapSec>*

																								<LeafSections>*

																								<TS>	"}"	<EOL>

<GuidedOptions>					::=	[<GuidAttrPR>]	[<GuidAttrASV>]	[<GuidHeaderSize>]

<GuidAttrPR>								::=	"PROCESSING_REQUIRED"	<Eq>	<TrueFalse>	<MTS>

<GuidAttrASV>							::=	"AUTH_STATUS_VALID"	<Eq>	<TrueFalse>	<MTS>

<GuidHeaderSize>				::=	"EXTRA_HEADER_SIZE"	<Eq>	<Number>	<MTS>

<FvUiName>										::=	{<Word>}	{"common"}

<FvStatements>						::=	"FV"	<Eq>	<FvNameOrFilename>	<EOL>

<FvNameOrFilename>		::=	{<FvUiName>}	{<FvFilename>}

<FvFilename>								::=	[<PATH>]	<Word>	"."	"fv"

<FdStatements>						::=	"FD"	<Eq>	<FdNameOrFilename>	<EOL>

<FdNameOrFilename>		::=	{<FdUiName>}	{<FdFilename>}

<FdFilename>								::=	[<PATH>]	<Word>	"."	"fd"

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

86Revision	1.28.01

<AnyFile>											::=	"FILE"	<MTS>	"DATA"	<Eq>	<NormalFile>	<EOL>

<FvAttributes>						::=	[<TS>	"MEMORY_MAPPED"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_ENABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_DISABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"STICKY_WRITE"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"WRITE_POLICY_RELIABLE"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_LOCK_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_LOCK_STATUS"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_ENABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_DISABLED_CAP"	<Eq>	<TrueFalse>	<EOL>]

																								[<TS>	"READ_STATUS"	<Eq>	<TrueFalse>	<EOL>]

<FileSystemGuid>				::=	"FileSystemGuid"	<Eq>	<NamedGuid>

<DepexExpSection>			::=	if	(COMPONENT_TYPE	==	"LIBRARY"

																								||	LIBRARY_CLASS	is	declared	in	defines	section	of	the

																								INF

																								||	MODULE_TYPE	==	"USER_DEFINED"):

																								[<Depex>]

																								else	if	(MODULE_TYPE	==	"PEIM"

																								||	MODULE_TYPE	==	"DXE_DRIVER"

																								||	MODULE_TYPE	==	"DXE_RUNTIME_DRIVER"

																								||	MODULE_TYPE	==	"DXE_SAL_DRIVER"	||	MODULE_TYPE	==

																								"DXE_SMM_DRIVER"):

																								<Depex>

																								elif	(MODULE_TYPE	==	"UEFI_APPLICATION"

																								||	MODULE_TYPE	==	"UEFI_DRIVER"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"DXE_CORE"

																								||	MODULE_TYPE	==	"SMM_CORE"

																								||	MODULE_TYPE	==	"SEC"):

																								No	DEPEX	section	is	permitted

<Depex>													::=	if	(MODULE_TYPE	==	PEIM):	<PeiDepexExp>	elif

																								(MODULE_TYPE	==	"DXE_SMM_DRIVER"):	<SmmDepexExp>

																								[<DxeDepexExp>]	else:

																								<DxeDepexExp>

<PeiDepexExp>							::=	"SECTION"	<MTS>	[<FfsAlignment>]

																								"PEI_DEPEX_EXP"

																								<Eq>	"{"	[<EOL>]	<PeiDepex>	"}"	<EOL>

<PeiDepex>										::=	[<BoolStmt>	{<EOL>}	{<MTS>}]*

																								[<DepInstruct>	{<EOL>}	{<MTS>}]*

																								["end"]	[<EOL>]

<BoolStmt>										::=	{<Boolean>}	{<BoolExpress>}

																								{<GuidCName>}	<EOL>

<Boolean>											::=	{"TRUE"}	{"FALSE"}	{<GuidCName>}

<GuidCName>									::=	<CName>	#	A	Guid	C	Name

<BoolExpress>							::=	<GuidCName>	[<OP>	["NOT"]	<GuidCName>]*

<OP>																::=	<MTS>	{"AND"}	{"OR"}	<MTS>

<DepInstruct>							::=	"push"	<Filename>

<DxeDepexExp>							::=	"SECTION"	<MTS>	[<FfsAlignment>]	<DxeExp>

<DxeExp>												::=	"DXE_DEPEX_EXP"	<Eq>	<MTS>

																								"{"	[<EOL>]	<DxeDepex>*	"}"	<EOL>

<DxeDepex>										::=	[<SorStmt>	{<EOL>}	{<MTS>}]*

																								[<GuidStmt>	{<EOL>}	{<MTS>}]*

																								[<BoolStmt>	{<EOL>}	{<MTS>}]*

																								[<DepInstruct>	{<EOL>}	{<MTS>}]*

																								["END"]	{<EOL>}	{<MTS>}]

<SorStmt>											::=	"SOR"	<MTS>	<BoolStmt>

<GuidStmt>										::=	{"before"}	{"after"}	<MTS>	<Filename>

<SmmDepexExp>							::=	"SECTION"	<MTS>	[<FfsAlignment>]	"SMM_DEPEX_EXP"

																								<Eq>	"{"	[<EOL>]	<DxeDepex>	"}"	<EOL>

<FmpPayload>								::=	<TS>	"FMP_PAYLOAD"	<Eq>	<UiFmpName>	<EOL>

<UiFmpName>									::=	<Word>

<FmpFileStatement>		::=	<TS>	"FILE"	<Space>	"DATA"	<Eq>	<Filename>	<EOL>

Restrictions

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

87Revision	1.28.01

Filename

For	BINARY	ONLY	content	(UEFI_DRIVER		and		UEFI_APPLICATION		.efi	files)	the	file	names	specified	in	the
elements	(FILE		and		SECTION)	of	this	section	must	be	relative	to	the	directory	identified	by	the		WORKSPACE	
system	environment	variable	or	relative	to	a	path	listed	in	the		PACKAGES_PATH		system	environment	variable.

TargetArch

Only	specific	architectures	are	permitted	-	use	of	"common"	is	prohibited.

GuidValue

When	specifying	the	CAPSULE_GUID	value	for	an	FMP	Capsule,	the	GUID	value	must	be	set	to	6dcbd5ed-
e82d-4c44-bda1-7194199ad92a.

Parameters
UiCapsuleName

Filename	that	will	be	used	to	create	an	FV	file.

CreateFile

Filename	to	create	instead	of	using	the		UiCapsuleName	.

FvBaseAddress

The		FvBaseAddress	,	if	present,	must	be	listed	before	the		FvAlignment		element.

The		FvForceRebase		flag,	if	present,	must	immediately	follow	the		FvBaseAddress	.

SUBTYPE_GUID

This	is	short	hand	notation	refering	to	content	that	will	be	placed	in	a	Section	of	type:
	EFI_SECTION_FREEFORM_SUBTYPE_GUID	.	A	single

	EFI_SECTION_FREEFORM_SUBTYPE_GUID		section	is	permitted	in	an	FFS	File	of	type		EFI_FV_FILETYPE_FREEFORM	

Depex

Depex	sections	are	prohibited	for	modules	with	a		MODULE_TYPE		of		UEFI_DRIVER	,		UEFI_APPLICATION	,		PEI_CORE	,
	DXE_CORE		or		SEC	.	modules	with		MODULE_TYPE		of		USER_DEFINED		and	all	Library	instances	may	or	may	not	have	a
	DEPEX		section.

Modules	that	use		DXE_RUNTIME_DRIVER		as	the		MODULE_TYPE		require	a		DEPEX		section	if	and	only	if	they	are	pure
DXE	Runtime	drivers	-	UEFI	Runtime	Drivers	that	use	the		DXE_RUNTIME_DRIVER			MODULE_TYPE		must	not	have	a
	DEPEX		section.

If	a	library	instance	is	required	by	a	module	that	prohibits	depex	sections,	the	libraries'	depex	section	is
ignored.	For	modules	that	do	require	a	depex	section,	the	depex	section	of	all	dependent	libraries	is
AND'ed	with	the	depex	section	of	the	module.

Expression

Refer	to	the	EDK	II	Expression	Syntax	Specification	for	more	information.

Paths

Unless	otherwise	specified,	all	file	specified	paths	are	relative	to	the		WORKSPACE		directory	or	relative	to	a
directory	listed	in	the		PACKAGES_PATH	.	In	some	cases,	the	tools	will	search	well	known	paths	for	some	files,
for	example,	for	FD	filenames,	the	output	will	typically	be	located	in	the		$(OUTPUT_DIRECTORY)/
$(TARGET)_$(TAGNAME)/FV		directory.

COMPRESS

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

88Revision	1.28.01

Compression	sections	that	use		PI_STD		compression	do	not	have		PROCESSING_REQUIRED	=	TRUE		flag,	it	is	only
required	for	GUIDED	sections.

User	Interface	(UI)	entries

There	are	three	possible	methods	for	specifying	a	User	Interface	string.	1)	Specify	the	string	value	in
the	FDF	file,	2)	specify	a	plain	ASCII	text	file	that	has	an	extension	of	".ui"	or	3)	specify	a	Unicode	file	with
an	extension	of	".uni"	that	contains	a	single	Unicode	string.

Append

The	APPEND	element	is	used	to	specify	a	workspace	relative	path	(or	relative	to	a	directory	listed	in	the
PACKAGES_PATH)	and	file	name	for	a	raw	binary	file.	The	order	that	files	will	be	appended	is	the	order	in
which	they	are	listed	in	the	section.	Any	driver	that	needs	to	access	these	files	must	have	a	prior
knowledge	of	the	content	-	for	example,	a	new	payload	image	-	as	these	files	are	not	processed	by	the
EDK	II	tools.	They	have	no	section	types	or	any	other	kind	of	identifier	that	has	been	defined	by	UEFI/PI
specifications.

Related	Definitions
Target

Must	match	a	target	identifier	in	the	EDK	II	tools_def.txt	file	-	the	first	field,	where	fields	are	separated	by
the	underscore	character.	Wildcard	characters	are	not	permitted.

TagName

Must	match	a	tag	name	field	in	the	EDK	II		tools_def.txt		file	-	second	field.	Wildcard	characters	are	not
permitted

Example

[Capsule.Fob]

CAPSULE_GUID								=	42857F0A-13F2-4B21-8A23-53D3F714B840

CAPSULE_HEADER_SIZE	=	32

FILE	FV_IMAGE	=	EF41A0E1-40B1-481f-958E-6FB4D9B12E76	{

		SECTION	GUIDED	3EA022A4-1439-4ff2-B4E4-A6F65A13A9AB	{

				SECTION	FV_IMAGE	=	Dxe	{

						APRIORI	DXE	{

								INF	a/a/a.inf

								INF	a/c/c.inf

								INF	a/b/b.inf

						}

						INF	a/d/d.inf

					...

				}

		}

}

[Capsule.FmpCapsuleImage]

		#	normal	header	for	FMP	capsule	content

		#	special	Guid

		CAPSULE_GUID	=	6dcbd5ed-e82d-4c44-bda1-7194199ad92a

		#	normal	header

		CAPSULE_FLAGS	=	PersistAcrossReset,	InitiateReset

		#	normal	header

		CAPSULE_HEADER_SIZE	=	0x20

		#	The	following	identifies	this	as	an	FMP	capsule	header

		CAPSULE_HEADER_INIT_VERSION	=	0x1

		FILE	DATA			=	Driver1.efi

		FILE	DATA			=	Driver2.efi		#	zero	or	more

		FMP_PAYLOAD	=	Payload1					#	zero	or	more

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

89Revision	1.28.01

3.7	[Capsule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

90Revision	1.28.01

3.8	[FmpPayload]	Sections
These	are	optional	sections	that	describes	the	FMP	payload	content	for	FMP	Capsule	files.

There	must	be	at	least	one	and	at	most	two		<FmpFileData>		statements.	The		<FmpFileData>		statements	start
with		FILE	DATA	.	The	first	statement	provides	the	information	for	UpdateImage	in	an
	EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER	.	The	second	statement,	if	present,	provides	the	information	for
VendorCode	in	an		EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER	.

Prototype

<FmpPayload>							::=	"[FmpPayload"	"."	<UiFmpName>	"]"	<EOL>

																							<FmpTokens>

																							<FmpFileData>{1,2}

<UiFmpName>								::=	<Word>

<FmpTokens>								::=	[<TS>	"IMAGE_HEADER_INIT_VERSION"	<Eq>	<Hex2>	<EOL>]

																							<TS>	"IMAGE_TYPE_ID"	<Eq>	<RegistryFormatGUID>	<EOL>

																							[<TS>	"IMAGE_INDEX"	<Eq>	<Hex2>	<EOL>]

																							[<TS>	"HARDWARE_INSTANCE"	<Eq>	<Hex2>	<EOL>]

																							[<TS>	"MONOTONIC_COUNT"<Eq>	<NumValUint64>	<EOL>]

																							[<TS>	"CERTIFICATE_GUID"<Eq>	<RegistryFormatGUID><EOL>]

<FmpFileData>						::=	<FileStatements>*

																							<FvStatements>*

																							<FdStatenents>*

<FileStatements>			::=	<TS>	"FILE"	<Space>	"DATA"	<Eq>	<Filename>	<EOL>

<FvStatements>					::=	"FV"	<Eq>	<FvNameOrFilename>	<EOL>

<FvNameOrFilename>	::=	{<FvUiName>}	{<FvFilename>}

<FvUiName>									::=	{<Word>}	{"common"}

<FvFilename>							::=	[<PATH>]	<Word>	"."	"fv"

<FdStatements>					::=	"FD"	<Eq>	<FdNameOrFilename>	<EOL>

<FdNameOrFilename>	::=	{<FdUiName>}	{<FdFilename>}

<FdUiName>									::=	{<Word>}	{"common"}

<FdFilename>							::=	[<PATH>]	<Word>	"."	"fd"

Note:	The		CERTIFICATE_GUID		and		MONOTONIC_COUNT		must	work	as	a	pair.	If		CERTIFICATE_GUID		is	provided,	the	FMP
payload	is	processed	as	UEFI	FMP	Authentication	format,	and		MONOTONIC_COUNT		MUST	be	provided.	If
	CERTIFICATE_GUID		is	not	provided,	the	FMP	payload	is	processed	as	UEFI	FMP	non-Authentication	format,
and		MONOTONIC_COUNT		MUST	NOT	be	provided.

Example

[FmpPayload.Payload1]

		#	FMP	payload	header

		IMAGE_HEADER_INIT_VERSION	=	0x02

		#	FMP	payload	header

		IMAGE_TYPE_ID					=	938A6F2E-9711-49CE-90D5-7ED68AC96501

		IMAGE_INDEX							=	0x1	#	FMP	payload	header

		HARDWARE_INSTANCE	=	0x0	#	FMP	payload	header

		FILE	DATA	=	UpdateImage.bin

		FILE	DATA	=	VendorCodeBytes.bin	#	optional

3.8	[FmpPayload]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

91Revision	1.28.01

3.9	[Rule]	Sections
These	are	optional	sections	that	describes	the		[Rule]		content	found	in	FDF	files.

Summary
This	section	is	similar	to	the		[FV]		section,	with	the	a	few	exceptions.	The	INF	statements	are	not
permitted	within	a	rules	section.

Rules	are	used	as	templates,	normally	using	variable	names	instead	of	fully	qualified	names,	while	INF
statements	are	always	are	fully	qualified	file	names.

The	following	list	specifies	the	allowed	variables	that	may	be	used	exactly	as	typed:

	$(WORKSPACE)	,		$(EDK_SOURCE)	,		$(EFI_SOURCE)	,		$(TARGET)	,		$(TOOL_CHAIN_TAG)	,		$(ARCH)	,		$(MODULE_NAME)	,
	$(OUTPUT_DIRECTORY)	,		$(BUILD_NUMBER)	,		$(INF_VERSION)	,		$(NAMED_GUID)	,		$(INF_OUTPUT)	

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<Rules>													::=	"[Rule"	<RuleArgs>	"]"	<EOL>	<FileStatements>

<RuleArgs>										::=	"."	<arch>	"."	<ModuleType>

																								[<TemplateName>]

<ModuleType>								::=	{<EdkComponentType>}	{<Edk2ModuleType>}

<Edk2ModuleType>				::=	{"SEC"}	{"PEI_CORE"}	{"PEIM"}	{"SMM_CORE"}

																								{"DXE_CORE"}	{"DXE_DRIVER"}

																								{"DXE_SAL_DRIVER"}	{"DXE_SMM_DRIVER"}

																								{"DXE_RUNTIME_DRIVER"}	{"UEFI_DRIVER"}

																								{"UEFI_APPLICATION"}	{"USER_DEFINED"}

<EdkComponentType>		::=	{"LIBRARY"}	{"APPLICATION"}	{"AcpiTable"}

																								{"BINARY"}	{"BS_DRIVER"}	{"LOGO"}

																								{"Legacy16"}	{"Microcode"}	{"PE32_PEIM"}

																								{"RAWFILE"}	{"RT_DRIVER"}	{"SAL_RT_DRIVER"}

																								{"SECURITY_CORE"}	{"COMBINED_PEIM_DRIVER"}

																								{"PIC_PEIM"}	{"RELOCATABLE_PEIM"}

																								{"PEI_CORE"}

<TemplateName>						::=	"."	<RuleUiName>

<RuleUiName>								::=	{<Word>}	{"BINARY"}

<FileStatements>				::=	if	(MODULE_TYPE	==	"SEC"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"PEIM"

																								||	COMPONENT_TYPE	==	"PEI_CORE"

																								||	COMPONENT_TYPE	==	"PIC_PEIM"

																								||	COMPONENT_TYPE	==	"RELOCATABLE_PEIM"	||

																								COMPONENT_TYPE	==	"SECURITY_CORE"

																								||	COMPONENT_TYPE	==	"PE32_PEIM"):

																								<TS>	"FILE"	<MTS>	<FvType1>	<Eq>

																								<FileStatement1>

																								elif	(MODULE_TYPE	==	"DXE_CORE"	||	MODULE_TYPE	==

																								"DXE_DRIVER"

																								||	MODULE_TYPE	==	"DXE_SAL_DRIVER"	||	MODULE_TYPE	==

																								"SMM_CORE"

																								||	MODULE_TYPE	==	"DXE_SMM_DRIVER"

																								||	MODULE_TYPE	==	"UEFI_DRIVER"

																								||	MODULE_TYPE	==	"UEFI_APPLICATION"

																								||	MODULE_TYPE	==	"USER_DEFINED"

																								||	COMPONENT_TYPE	==	"BS_DRIVER"

																								||	COMPONENT_TYPE	==

																								"COMBINED_PEIM_DRIVER"

																								||	COMPONENT_TYPE	==	"APPLICATION"):

																								{<FileStatement2>}	{<FileStatement3>}

																								elif	(MODULE_TYPE	==	"FV_IMAGE"):

																								<FileStatement4>	else:

																								<TS>	"FILE"	<MTS>	"NON_FFS_FILE"	<Eq>

3.9	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

92Revision	1.28.01

																								[<NamedGuid>]	[<Options>]	<EOL>

<FileStatement1>				::=	<NamedGuid>	[<RelocFlags>	<MTS>]	[<Options>]	<EOL>

<FileStatement2>				::=	<TS>	"FILE"	<MTS>	<FvType2>	<Eq>	<NamedGuid>

																								[<Options>]	<EOL>

<FileStatement3>				::=	<TS>	"FILE"	<MTS>	"RAW"	<Eq>	<NamedGuidOrPcd>

																								[<Options>]	<EOL>

<FileStatement4>				::=	<TS>	"FILE"	<MTS>	"FV_IMAGE"	<Eq>

																								<NamedGuidOrPcd>	[<Options>]	<EOL>

<NamedGuid>									::=	{"$(NAMED_GUID)"}	{<RegistryFormatGUID>}

																								{<Sym>}	<MTS>

<Sym>															::=	"$("	<Word>	")"

<NamedGuidOrPcd>				::=	<NamedGuid>	<MTS>

																								{"PCD("	<PcdName>	")"}	{<GuidValue>}	<MTS>

<GuidValue>									::=	{<GuidCName>}	{<GuidStructure>}

<GuidCName>									::=	<CName>

<GuidStructure>					::=	{<RegistryFormatGUID>}	{<CFormatGUID>}

<FvType1>											::=	{"SEC"}	{"PEI_CORE"}	{"PEIM"}	{"PEI_DXE_COMBO"}

<FvType2>											::=	{"FREEFORM"}	{"DRIVER"}	{"DXE_CORE"}

																								{"APPLICATION"}	{"SMM_CORE"}	{"SMM"}

<RelocFlags>								::=	{"RELOCS_STRIPPED"	<MTS>}

																								{"RELOCS_RETAINED"	<MTS>}

<Options>											::=	[<UseLocal>]	[<FileOpts>]	<FileSpec>

<UseLocal>										::=	<KeyString>	[","	<KeyString>]

<KeyString>									::=	<Target>	"_"	<TagName>	"_"	<ToolArch>

<Target>												::=	{<Word>}	{"$(TARGET)"}

<TagName>											::=	{<Word>}	{"$(TOOL_CHAIN_TAG)"}

<ToolArch>										::=	{<Arch>}	{"$(ARCH)"}

<FileOpts>										::=	["Fixed"	<MTS>]	["Checksum"	<MTS>]

																								[<FfsAlignment>]

<FfsAlignment>						::=	"Align"	<Eq>	<FfsAlignmentValues>	<MTS>

<FileSpec>										::=	{<SimpleFile>}	{<ComplexFile>}	{<SbtGuid>}

<SimpleFile>								::=	<LeafSecType>	[<FileOpts>]	<VarFile>	<EOL>

<LeafSecType>							::=	{"COMPAT16"}	{"PE32"}	{"PIC"}	{"TE"}

																								{"FV_IMAGE"}	{"RAW"}	{"DXE_DEPEX"}	{"UI"}

																								{"PEI_DEPEX"}	{"SMM_DEPEX"}	{"VERSION"}

<SbtGuid>											::=	"SUBTYPE_GUID"	<MTS>	<GuidValue>	<MTS>	<FName>	<EOL>

<VarFile>											::=	{<FilenameVariable>}	{<FName>}	{<Ext>}

<FName>													::=	[<PATH>]	<Word>	"."	<Word>

<FilenameVariable>		::=	"$(INF_OUTPUT)/$(MODULE_NAME)"	"."	<Word>

<ComplexFile>							::=	"{"	<EOL>

																								<EncapSection>*

																								<LeafSections>*

																								<TS>	"}"	<EOL>

<EncapSection>						::=	<TS>	{<CompressSection>}	{<GuidedSection>}

<CompressSection>			::=	"COMPRESS"	<MTS>	[<CompType>]

																								"{"	[<EOL>]

																								<EncapSec>*

																								<LeafSections>	<EOL>*

																								<TS>	"}"	<EOL>

<CompType>										::=	{"PI_STD"}	{"PI_NONE"}	<MTS>

<GuidedSection>					::=	"GUIDED"	<MTS>	"$(NAMED_GUID)"	<MTS>	[<GAttr>]

																								"{"	<EOL>

																								<EncapSec>*

																								<LeafSections>*

																								<TS>	"}"	<EOL>

<GAttr>													::=	[<GuidAttrPR>]	[<GuidAttrASV>]	[<GuidHeaderSize>]

<GuidAttrPR>								::=	"PROCESSING_REQUIRED"	<Eq>	<BoolType>	<MTS>

<GuidAttrASV>							::=	"AUTH_STATUS_VALID"	<Eq>	<BoolType>	<MTS>

<GuidHeaderSize>				::=	"EXTRA_HEADER_SIZE"	<Eq>	<Number>	<MTS>

<LeafSections>						::=	<TS>	{<C16Sec>}	{<PeSec>}	{<PicSec>}	{<TeSec>}

																								{<FvSec>}	{<RawSec>}	{<DxeDepSec>}

																								{<UiSec>}	{<VerSec>}	{<PeiDepSec>}

																								{<SmmDepSec>}	{<SubtypeGuidSec>}

<C16Sec>												::=	"COMPAT16"	<MTS>	<C16FileType>	[<FileOrExt>]	<EOL>

<PeSec>													::=	"PE32"	<MTS>	<Pe32FileType>	[<FileOrExt>]	<EOL>

<PicSec>												::=	"PIC"	<MTS>	<PicFileType>	[<FileOrExt>]	<EOL>

<TeSec>													::=	"TE"	<MTS>	<TeFileType>	[<FileOrExt>]	<EOL>

<RawSec>												::=	"RAW"	<MTS>	<RawFileType>	[<FileOrExtOrPcd>]	<EOL>

<DxeDepSec>									::=	"DXE_DEPEX"	<MTS>	<DdFileType>	[<FileOrExt>]	<EOL>

<SmmDepSec>									::=	"SMM_DEPEX"	<MTS>	<DdFileType>	[<FileOrExt>]	<EOL>

<UiSec>													::=	"UI"	<MTS>	<UiFileType>	[<FileOrExt>]	<EOL>

<VerSec>												::=	"VERSION"	<MTS>	<VerFileType>	[<FileOrExt>]	<EOL>

3.9	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

93Revision	1.28.01

<PeiDepSec>									::=	"PEI_DEPEX"	<MTS>	<PdFileType>

																								[<FileOrExt>]	<EOL>

<SubtypeGuidSec>				::=	"SUBTYPE_GUID"	<MTS>	<GuidValue>	<MTS>

																								<File>	<EOL>

<FileOrExt>									::=	{<VarFile>}	{<Ext>}	<MTS>

<FileOrExtOrPcd>				::=	{<VarFile>}	{<Ext>}	{"PCD("	<PcdName>	")"}

<Ext>															::=	<FS>	"."	[a-zA-Z][a-zA-Z0-9]{0,}

<C16FileType>							::=	"COMPAT16"	[<FfsAlignment>]

<Pe32FileType>						::=	"PE32"	<MTS>	[<FfsAlignment>]

																								[<ChkReloc>]

<ChkReloc>										::=	if	(MODULE_TYPE	==	"SEC"

																								||	MODULE_TYPE	==	"PEI_CORE"

																								||	MODULE_TYPE	==	"PEIM"):	[<RelocFlags>]

<PicFileType>							::=	"PIC"	<MTS>	[<FfsAlignment>]

<TeFileType>								::=	"TE"	<MTS>	[<FfsAlignment>]	[<ChkReloc>]

<RawFileType>							::=	{<BinTypes>}	{<AcpiFileTypes>}	<MTS>

																								[<FfsAlignment>]

<BinTypes>										::=	{"BIN"}	{"RAW"}

<AcpiFileTypes>					::=	{"ACPI"}	{"ASL"}	<MTS>	["Optional"	<MTS>]

<DdFileType>								::=	{"DXE_DEPEX"}	{"SMM_DEPEX"}	[<DpxAlign>]

<DpxAlign>										::=	["Optional"	<MTS>]	[<FfsAlignment>]

<UiFileType>								::=	{<UiFile>}	{<UiString>}

<UiFile>												::=	"UI"	<MTS>	[<UiOpts>]

<UiString>										::=	"STRING"	<Eq>	<StringVal>	[<FfsAlignment>]

<StringVal>									::=	{<UnicodeString>}	{<QuotedString>}

																								{<NamedMacros>}

<NamedMacros>							::=	{"$(INF_VERSION)"}	{"$(MODULE_NAME))"

<UiOpts>												::=	["Optional"	<MTS>]	[<FfsAlignment>]

<VerFileType>							::=	{<VerFile>}	{<VerString>}

<VerFile>											::=	"VERSION"	<MTS>	[<VerOpts>]

<VerOpts>											::=	["Optional"	<MTS>]	[<BuildAlign>]

<VerString>									::=	"STRING"	<Eq>	<VerStringVal>	<MTS>	[<BuildAlign>]

<VerStringVal>						::=	{<UnicodeString>}	{<QuotedString>}

																								{"$(INF_VERSION)"}

<BuildAlign>								::=	["Optional"	<MTS>]	[<BuildArg>]

																								[<FfsAlignment>]

<BuildArg>										::=	"BUILD_NUM	=	$(BUILD_NUMBER)"	<MTS>

<PdFileType>								::=	"PEI_DEPEX"	<MTS>	[<DpxAlign>]

<FvSec>													::=	"FV_IMAGE"	<MTS>	{<FvBin>}	{<FvImageSection>}

<FvBin>													::=	"FV"	<MTS>	[<FfsAlignment>]	[<FileOrExt>]	<EOL>

<FvImgSection>						::=	"FV_IMAGE"	<MTS>	<FvImgArgs>

<FvImgArgs>									::=	"{"	<EOL>

																								<MacroDefinition>*

																								[<FvAlignment>]

																								<FvAttributes>*

																								[<AprioriSection>]

																								<FileStatements>*

																								<TS>	"}"	<EOL>

<FvAlignment>							::=	[<TS>	"FvBaseAddress"	<Eq>	<UINT64>	<EOL>]

																								<TS>	"FvAlignment"	<Eq>	<FvAlignmentValues>	<EOL>

<FvAttributes>						::=	[<TS>	"MEMORY_MAPPED"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"LOCK_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"LOCK_STATUS"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_LOCK_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_LOCK_STATUS"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_ENABLED_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_DISABLED_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_STATUS"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"STICKY_WRITE"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"WRITE_POLICY_RELIABLE"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"READ_LOCK_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"READ_LOCK_STATUS"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"READ_ENABLED_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"READ_DISABLED_CAP"	<Eq>	<BoolType>	<EOL>]

																								[<TS>	"READ_STATUS"	<Eq>	<BoolType>	<EOL>]

<PeiAprioriSection>	::=	"APRIORI	PEI"	<MTS>

																								"{"	<EOL>

																								<MacroDefinition>*

																								<FileStatements>*	<TS>	"}"	<EOL>

<DxeAprioriSection>	::=	"APRIORI	DXE"	<MTS>

																								"{"	<EOL>

																								<MacroDefinition>*

3.9	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

94Revision	1.28.01

																								<FileStatements>*

																								<TS>	"}"	<EOL>

Restrictions
FName

For	BINARY	ONLY	content	(UEFI_DRIVER		and		UEFI_APPLICATION		.efi	files)	the	file	names	specified	in	the		SECTION	
element	of	this	section	must	be	relative	to	the	directory	identified	by	the		WORKSPACE		system	environment
variable	(or	relative	to	a	directory	listed	in	the		PACKAGES_PATH).

Parameters
$(INF_VERSION)

This	value	refers	to	the		VERSION_STRING		element	in	the	INF	file's		[Defines]		section,	not	the		INF_VERSION	
element,	which	is	assigned	based	on	the	INF	specification	revision.

SUBTYPE_GUID

This	is	short	hand	notation	refering	to	content	that	will	be	placed	in	a	Section	of	type:
	EFI_SECTION_FREEFORM_SUBTYPE_GUID	.	A	single

	EFI_SECTION_FREEFORM_SUBTYPE_GUID		section	is	permitted	in	an	FFS	File	of	type		EFI_FV_FILETYPE_FREEFORM	

RuleUiName

A	unique	single	word	identifier.	The	word		"BINARY"		is	reserved;	it	is	recommended	that	it	be	used	for	the
rules	that	process	INF	modules	that	only	contain	binary	content.

COMPRESS

Compression	sections	that	use		PI_STD		compression	do	not	have		PROCESSING_REQUIRED	=	TRUE		flag,	it	is	only
required	for	GUIDED	sections.

User	Interface	(UI)	entries

There	are	three	possible	methods	for	specifying	a	User	Interface	string.	1)	Specify	the	string	value	in
the	FDF	file,	2)	specify	a	plain	ASCII	text	file	that	has	an	extension	of	".ui"	or	3)	specify	a	Unicode	file	with
an	extension	of	".uni"	that	contains	a	single	Unicode	string.

Related	Definitions
Target

Must	match	a	target	identifier	in	the	EDK	II	tools_def.txt	file	-	the	first	field,	where	fields	are	separated	by
the	underscore	character.	Wildcard	characters	are	not	permitted.

TagName

Must	match	a	tag	name	field	in	the	EDK	II	tools_def.txt	file	-	second	field.	Wildcard	characters	are	not
permitted

Example

[Rule.IA32.SEC]

		FILE	SEC	=	$(NAMED_GUID)	Fixed	Align=32	|.efi

[Rule.Common.PEIM]

		FILE	PEIM	=	$(NAMED_GUID)	{

				TE	TE	|.te

				PEI_DEPEX	PEI_DEPEX	Optional	|.Depex

3.9	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

95Revision	1.28.01

				VERSION	STRING				=	"$(INF_VERSION)"	Optional	BUILD_NUM	=	$(BUILD_NUM)

				UI	UNI_UI	Optional	|	.uni

		}

[Rule.Common.PEIM.PE32]

		FILE	PEIM	=	$(NAMED_GUID)	{

				PEI_DEPEX	PEI_DEPEX	Optional	|	.dxs

				COMPRESS	{

						PE32	PE32	|.efi

						VERSION	UNI_VER	Optional	BUILD_NUM	=	$(BUILD_NUM)	|	.ver

						UI	UI	Optional	|	.ui

				}

		}

3.9	[Rule]	SectionsEDK	II	Flash	Description	(FDF)	File	Specification

96Revision	1.28.01

3.10	[VTF]	Section
This	describes	the	optional		[VTF]		section	tag	found	in	FDF	files.

Summary
If	VTF	files	will	be	created,	they	will	be	created	in	the		$(OUTPUT_DIRECTORY)/$(TARGET)_$(TAGNAME)/FV		directory	using
the	values	from	the	individual	instance	of	the	build	tools.	(Build	tools	get	these	values	after	parsing
DSC,	INF,		target.txt	,		tools_def.txt		files	and	command	line	options.)

The	following	sequence	describes	each	component:

Name	=	Region,

							Type,

							Version,

							CheckSum_Flag,

							Path_of_Binary_File,

							Path_of_SYM_File,

							Preferred_Size;

Where,

Name:

Name	of	the	component

Region:

Location	in	the	firmware.	Valid	locations	are:

PH	-	Protected	Block	region,	merged	towards	the	higher	address

PL	-	Protected	Block	region,	merged	towards	the	lower	address

H	-	Flashable	region,	merged	towards	the	higher	address

L	-	Flashable	region,	merged	towards	the	lower	address

F	-	First	VTF	File

N	-	Not	in	VTF	File

S	-	Second	VTF	File

Type:

Component	Type.	Predefined	values	are:

0x00	:	FIT	Header	entry

0x01	:	PAL_B

0x02	-	0x0E	:	Reserved

0x0F	:	PAL_A

0x10	-	0x7E	:	OEM-defined

0x7F	:	Unused

Version:

Component	Version	number	(XX.YY)

-	major	version	number	(decimal	number,	range	of	0	to	99)

-	minor	version	number	(decimal	number,	range	of	0	to	99)

Checksum_Flag:

Checksum	Flag	(equivalent	to	CV	bit)

3.10	[VTF]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

97Revision	1.28.01

0	-	Checksum	Byte	always	equals	0,	CV=0

1	-	calculate	Checksum	Byte,	CV=1

Checksum:

Byte	sum	of	component	+	Checksum	Byte	=	modulus	0x100

Path_of_Binary_File:

Path	of	the	Binary	file	of	the	component

Path_of_SYM_File:

Path	of	the	.SYM	symbol	file	of	the	component

Preferred_Size:

User	preferred	component	size,	overrides	actual	component	file	size.	Valid	is	equal	or	greater	than	the
actual	file	size.

Prototype

<VTF>																	::=	"[VTF"	<Modifiers>	"]"	<EOL>

																										[<OptionStatement>]

																										<ComponentStatements>*

<Modifiers>											::=	"."	<arch>	"."	<UiName>	[<ArchList>]

<ArchList>												::=	","	<Arch>

<Arch>																::=	{"IA32"}	{"X64"}	{"IPF"}

<UiName>														::=	<Word>

<OptionStatement>					::=	<TS>	"IA32_RST_BIN"	<Eq>	<Filename>	<EOL>

<ComponentStatements>	::=	<TS>	"COMP_NAME"	<Eq>	<WORD>	<EOL>

																										<TS>	"COMP_LOC"	<Eq>	<Location>	<EOL>

																										<TS>	"COMP_TYPE"	<Eq>	<CompType>	<EOL>

																										<TS>	"COMP_VER"	<Eq>	<Version>	<EOL>

																										<TS>	"COMP_CS"	<Eq>	{"1"}	{"0"}	<EOL>

																										<TS>	"COMP_BIN"	<Eq>	<BinFile>	<EOL>

																										<TS>	"COMP_SYM"	<Eq>	<SymFile>	<EOL>	<TS>	"COMP_SIZE"

																										<Eq>	<Size>	<EOL>

<Location>												::=	{<FvUiName>}	{"NONE"}	{"None"}	{"none"}	[<FS>

																										<Region>]

<Region>														::=	{"F"}	{"N"}	{"S"}	{"H"}	{"L"}	{"PH"}	{"PL"}

<CompType>												::=	{"FIT"}	{"PAL_B"}	{"PAL_A"}	{"OEM"}	{<Byte>}

<Byte>																::=	"0x"	<HexDigit>?	<HexDigit>

<Version>													::=	{"-"}	{<Major>	"."	<Minor>}	{<BcdHex>}

<Major>															::=	[(0-9)](0-9)

<Minor>															::=	[(0-9)](0-9)

<BcdHex>														::=	"0x"	<Major>	(0-9)	(0-9)

<BinFile>													::=	{"-"}	{[<PATH>]	<Filename>}

<SymFile>													::=	{"-"}	{[<PATH>]	<Filename>}

<Size>																::=	{"-"}	{<Integer>}	{<HexNumber>}

Restrictions
FName

All	file	specified	paths	are	relative	to	the	WORKSPACE	directory	(or	a	directory

listed	in	the	PACKAGESPATH).	In	some	cases,	the	tools	will	search	well	known	paths	for	some	files,	for
example,	for	FD	filenames,	the	output	will	typically	be	located	in	the
$(OUTPUT_DIRECTORY)/$(TARGET)$(TAGNAME)/FV	directory.

Parameters
-	Filename

3.10	[VTF]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

98Revision	1.28.01

If	a	filename	is	given,	the	file	must	have	an	extension	for	a	binary	type	file,	such	as	".bin"	or	".BIN".
Filenames	are	case	sensitive,	so	the	correct	case	must	be	used	for	all	filenames.

-	Filename

If	a	filename	is	given,	the	file	must	have	an	extension	for	a	symbol	type	file,	such	as	".sym"	or	".SYM".
Filenames	are	case	sensitive,	so	the	correct	case	must	be	used	for	all	filenames.

Example

[VTF.IPF.MyBsf]

IA32_RST_BIN	=	IA32_RST.BIN

COMP_NAME	=	PAL_A										#	Component	Name

COMP_LOC		=	FvRecovery	|	F	#	In	the	first	VTF	file

COMP_TYPE	=	0xF												#	Component	Type	(PAL_A=0x0F,	defined	in	SAL	Spec.)

COMP_VER		=	7.01											#	Version	will	come	from	header	of	PAL_A	binary

COMP_CS			=	1														#	Checksum_Validity	(CV	bit)

COMP_BIN		=	PAL_A_GEN.BIN		#	Path	of	binary

COMP_SYM		=	PAL_A_GEN.SYM		#	Path	of	SYM	symbol

COMP_SIZE	=	-														#	Preferred	component	size	in	bytes

COMP_NAME	=	PAL_B					#	Component	Name

COMP_LOC		=	F									#	In	the	first	VTF	file

COMP_TYPE	=	0x01						#	Component	Type	(PAL_A=0x0F,	defined	in	SAL	Spec.)

COMP_VER		=	-									#	Version	will	come	from	header	of	PAL_A	binary

COMP_CS			=	1									#	Checksum_Validity	(CV	bit)

COMP_BIN		=	PAL_B.BIN	#	Path	of	binary

COMP_SYM		=	PAL_B.Sym	#	Path	of	SYM	symbol

COMP_SIZE	=	-									#	Preferred	component	size	in	bytes

3.10	[VTF]	SectionEDK	II	Flash	Description	(FDF)	File	Specification

99Revision	1.28.01

3.11	PCI	OptionRom	Section
This	is	an	optional	section.

Summary
This	section	is	used	to	specify	the	content	of	a	PCI	Option	ROM	container.	A	PCI	Option	ROM	image	may
contain	zero	or	more	PCI	ROM	image	files	-	binary	only,	and	zero	or	more	UEFI	driver	images,	specified	by
either	binary	or	INF	files,	that	are	to	be	packaged	into	a	single	Option	ROM	image.	Additionally,	support
for	a	single	EFI	driver	with	both	native	(IA32,	X64,	IPF,	etc).	and	EBC	images	in	the	same	PCI	Option	ROM
container	is	provided.

Conditional	statements	may	be	used	anywhere	within	this	section.

Prototype

<OptionRom>				::=	"[OptionRom"	"."	<DriverName>	"]"	<EOL>	<Components>*

<DriverName>			::=	(a-zA-Z)(a-zA-Z0-9)*

<Components>			::=	{<InfComponent>}	{<Binary>}

<InfComponent>	::=	<TS>	"INF"	<MTS>	<UseArch>	<InfFile>

																			[<Overrides>]	<EOL>

<UseArch>						::=	"USE"	<Eq>	<TargetArch>	<MTS>

<TargetArch>			::=	<arch>

<InfFile>						::=	[<PATH>]	<Word>	".inf"

<Overrides>				::=	<MTS>	"{"	<EOL>

																			[<TS>	"PCI_VENDOR_ID"	<Eq>	<UINT16>	<EOL>]

																			[<TS>	"PCI_CLASS_CODE"	<Eq>	<UINT8>	<EOL>]

																			[<TS>	"PCI_DEVICE_ID"	<Eq>	<UINT16>	<EOL>]

																			[<TS>	"PCI_REVISION"	<Eq>	<UINT8>	<EOL>]

																			[<TS>	"PCI_COMPRESS"	<Eq>	<TrueFalse>	<EOL>]

																			<TS>	"}"	<EOL>

<Binary>							::=	{<EfiBinary>}	{<OtherBinary>}

<EfiBinary>				::=	<TS>	"FILE"	<MTS>	"EFI"	<EfiFileName>

																			[<Overrides>]	<EOL>

<EfiFileName>		::=	<MTS>	[<PATH>]	<Word>	{".efi"}	{".EFI"}	{".Efi"}

<OtherBinary>		::=	<TS>	"FILE"	<MTS>	"BIN"	<Filename>	<EOL>

Restrictions
TargetArch

Only	specific	architectures	are	permitted	-	use	of	"common"	or	the	wildcard	character	is	prohibited.

Paths

For	BINARY	ONLY	content	(UEFI_DRIVER		and		UEFI_APPLICATION		.efi	files)	the	file	names	specified	in		<EfiFileName>	
of	this	section	must	be	relative	to	the	directory	identified	by	the		WORKSPACE		system	environment	variable
(or	relative	to	a	directory	listed	in	the	PACKAGESPATH	system	environment	variable).	In	some	cases,	the
tools	will	search	well	known	paths	for	some	files,	for	example,	for	FD	filenames,	the	output	will	typically
be	located	in	the	`$(OUTPUT_DIRECTORY)/	$(TARGET)$(TAGNAME)/FV`	directory.

Related	Definitions
DriverName

Specifies	the	name	of	the	created	PCI	Option	ROM	image	that	will	be	placed	in	the	build's	FV	directory.

USE

Specifies	the	architecture	to	use	to	create	a	PCI	Option	ROM.

3.11	PCI	OptionRom	SectionEDK	II	Flash	Description	(FDF)	File	Specification

100Revision	1.28.01

Filename

Filenames	must	match	the	actual	case	of	the	file;	three	variations	are	shown	for	the	.efi	extension	in	the
ENBF	above.

Example

[OptionRom.AtapiPassThru]

		INF	USE	=	IA32	OptionRomPkg/AtapiPassThruDxe/AtapiPassThruDxe.inf	{

				PCI_REVISION	=	0x0020

		}

		INF	USE	=	EBC	OptionRomPkg/AtapiPassThruDxe/AtapiPassThruDxe.inf

3.11	PCI	OptionRom	SectionEDK	II	Flash	Description	(FDF)	File	Specification

101Revision	1.28.01

APPENDIX	A	NT32PKG	FLASH	DESCRIPTION	FILE
This	section	provides	a	sample	FDF	using	the	Nt32Pkg/Nt32Pkg.fdf	file.

Note:	This	file	must	NOT	be	used	as	is,	as	data	structures	and	definitions	do	not	exist.

##	@file

#	This	is	NT32	FDF	file	with	UEFI	HII	features	enabled

#

#	Copyright	(c)	2007	-	2010,	Intel	Corporation.	All	rights	reserved.

#

#	This	program	and	the	accompanying	materials	are	licensed	and	made

#	available	under	the	terms	and	conditions	of	the	BSD	License	which

#	accompanies	this	distribution.	The	full	text	of	the	license	may	be

#	found	at:

#	http://opensource.org/licenses/bsd-license.php

#

#	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR

#	IMPLIED.

#

##

##

#

#	FD	Section

#	The	[FD]	Section	is	made	up	of	the	definition	statements	and	a

#	description	of	what	goes	into	the	Flash	Device	Image.	Each	FD	section

#	defines	one	flash	"device"	image.	A	flash	device	image	may	be	one	of

#	the	following:	Removable	media	bootable	image	(like	a	boot	floppy

#	image,)	an	Option	ROM	image	(that	would	be	"flashed"	into	an	add-in

#	card,)	a	System	"Flash"	image	(that	would	be	burned	into	a	system's

#	flash)	or	an	Update	("Capsule")	image	that	will	be	used	to	update	and

#	existing	system	flash.

#

##

[FD.Nt32]

		#	The	base	address	of	the	FLASH	Device.

		BaseAddress	=	0x0|gEfiNt32PkgTokenSpaceGuid.PcdWinNtFdBaseAddress

		#	The	size	in	bytes	of	the	FLASH	Device

		Size						=	0x002a0000	ErasePolarity	=	1

		BlockSize	=	0x10000

		NumBlocks	=	0x2a

		#

		#

		#	Following	are	lists	of	FD	Region	layout	which	correspond	to	the

		#	locations	of	different	images	within	the	flash	device.

		#

		#	Regions	must	be	defined	in	ascending	order	and	may	not	overlap.

		#

		#	A	Layout	Region	start	with	a	eight	digit	hex	offset	(leading	"0x"

		#	required)	followed	by	the	pipe	"|"	character,	followed	by	the	size	of

		#	the	region,	also	in	hex	with	the	leading	"0x"	characters.	Like:

		#	Offset|Size

		#	PcdOffsetCName|PcdSizeCName

		#	RegionType	<FV,	DATA,	or	FILE>

		#

		##

		0x00000000|0x00280000

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashFvRecoveryBase|gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashFvRecoverySize

		FV	=	FvRecovery

		0x00280000|0x0000c000

		gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashNvStorageVariableBase|gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

102Revision	1.28.01

		#NV_VARIABLE_STORE

		DATA	=	{

		##	This	is	the	EFI_FIRMWARE_VOLUME_HEADER

		#	ZeroVector	[]

		0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

		0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

		#	FileSystemGuid:	gEfiSystemNvDataFvGuid	=

		#	{	0xFFF12B8D,	0x7696,	0x4C8B,

		#	{	0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50	}}

		0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C,

		0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50,

		#	FvLength:	0x20000

		0x00,	0x00,	0x02,	0x00,	0x00,	0x00,	0x00,	0x00,

		#Signature	"_FVH"	#Attributes

		0x5f,	0x46,	0x56,	0x48,	0xff,	0xfe,	0x04,	0x00,

		#HeaderLength	#CheckSum	#ExtHeaderOffset	#Reserved	#Revision

		0x48,	0x00,	0x36,	0x09,	0x00,	0x00,	0x00,	0x02,

		#Blockmap[0]:	2	Blocks	*	0x10000	Bytes	/	Block

		0x02,	0x00,	0x00,	0x00,	0x00,	0x00,	0x01,	0x00,

		#Blockmap[1]:	End

		0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,

		##	This	is	the	VARIABLE_STORE_HEADER`

		#Signature:	gEfiVariableGuid	=

		#	{	0xddcf3616,	0x3275,	0x4164,

		#	{	0x98,	0xb6,	0xfe,	0x85,	0x70,	0x7f,	0xfe,	0x7d	}}

		0x16,	0x36,	0xcf,	0xdd,	0x75,	0x32,	0x64,	0x41,

		0x98,	0xb6,	0xfe,	0x85,	0x70,	0x7f,	0xfe,	0x7d,

		#Size:	0xc000

		#	(gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize)	-

		#	0x48	(size	of	EFI_FIRMWARE_VOLUME_HEADER)	=	0xBFB8

		#	This	can	speed	up	the	Variable	Dispatch	a	bit.

		0xB8,	0xBF,	0x00,	0x00,

		#FORMATTED:	0x5A	#HEALTHY:	0xFE	#Reserved:	UINT16	#Reserved1:	UINT32

		0x5A,	0xFE,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00

}

0x0028c000	|	0x00002000

#NV_EVENT_LOG

gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashNvStorageEventLogBase|gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashNvStorageEventLogSize

0x0028e000	|	0x00002000

gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashNvStorageFtwWorkingBase|gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwWorkingSize

#NV_FTW_WORKING

DATA	=	{

		#	EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER->Signature	=

		#	gEfiSystemNvDataFvGuid	=	{	0xFFF12B8D,	0x7696,	0x4C8B,

		#	{	0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50	}}

		0x8D,	0x2B,	0xF1,	0xFF,	0x96,	0x76,	0x8B,	0x4C,

		0xA9,	0x85,	0x27,	0x47,	0x07,	0x5B,	0x4F,	0x50,

		#	Crc:UINT32

		#	WorkingBlockValid:1,	WorkingBlockInvalid:1,	Reserved

		#

		0x77,	0x13,	0x9B,	0xD7,	0xFE,	0xFF,	0xFF,	0xFF,

		#	WriteQueueSize:	UINT64

		0xE0,	0x1F,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00

}

0x00290000	|	0x00010000

#NV_FTW_SPARE

gEfiNt32PkgTokenSpaceGuid.PcdWinNtFlashNvStorageFtwSpareBase|gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize

##

#

#	FV	Section

#

#	[FV]	section	is	used	to	define	what	components	or	modules	are	placed

#	within	a	flash	device	file.	This	section	also	defines	order	the

#	components	and	modules	are	positioned	within	the	image.	The	[FV]	#	section	consists	of	define	statements,	set	statements	and

	module	#	statements.

#

##

[FV.FvRecovery]

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

103Revision	1.28.01

FvBaseAddress	=	0x0	#	FV	Base	Address	for	the	Backup	copy	of	FV

FvAlignment			=	16		#	FV	alignment

#FV	attributes	setting.

ERASE_POLARITY					=	1

MEMORY_MAPPED						=	TRUE

STICKY_WRITE							=	TRUE

LOCK_CAP											=	TRUE

LOCK_STATUS								=	TRUE

WRITE_DISABLED_CAP	=	TRUE

WRITE_ENABLED_CAP		=	TRUE

WRITE_STATUS							=	TRUE

WRITE_LOCK_CAP					=	TRUE

WRITE_LOCK_STATUS		=	TRUE

READ_DISABLED_CAP		=	TRUE

READ_ENABLED_CAP			=	TRUE

READ_STATUS								=	TRUE

READ_LOCK_CAP						=	TRUE

READ_LOCK_STATUS			=	TRUE

FvNameGuid									=	6D99E806-3D38-42c2-A095-5F4300BFD7DC

##

#

#	The	INF	statements	point	to	EDK	component	and	EDK	II	module	INF	files,

#	which	will	be	placed	into	this	FV	image.

#	Parsing	tools	will	scan	the	INF	file	to	determine	the	type	of	component

#	or	module.

#	The	component	or	module	type	is	used	to	reference	the	standard	rules

#	defined	elsewhere	in	the	FDF	file.

#

#	The	format	for	INF	statements	is:

#	INF	$(PathAndInfFileName)

#

##

		##

		#	PEI	Phase	modules

		##

		#	PEI	Apriori	file	example,	more	PEIM	module	added	later.

		##

DEFINE	MdeModUni	=	MdeModulePkg/Universal

DEFINE	WNOEMHOOK	=	Nt32Pkg/WinNtOemHookStatusCodeHandlerPei

DEFINE	RSCR_P				=	ReportStatusCodeRouter/Pei

APRIORI	PEI	{

		INF	$(MdeModUni)/PCD/Pei/Pcd.inf

		INF	$(MdeModUni)/$(RSCR_P)/ReportStatusCodeRouterPei.inf

		INF	$(MdeModUni)/StatusCodeHandler/Pei/StatusCodeHandlerPei.inf

		INF	$(WNOEMHOOK)/WinNtOemHookStatusCodeHandlerPei.inf

		}

APRIORI	DXE	{

		INF	MdeModulePkg/Universal/PCD/Dxe/Pcd.inf

		INF	Nt32Pkg/MetronomeDxe/MetronomeDxe.inf

		}

INF	MdeModulePkg/Core/Pei/PeiMain.inf

INF	MdeModulePkg/Universal/PCD/Pei/Pcd.inf

INF	$(MdeModUni)/$(RSCR_P)/ReportStatusCodeRouterPei.inf

INF	$(MdeModUni)/StatusCodeHandler/Pei/StatusCodeHandlerPei.inf

INF	$(WINOEMHOOK)/WinNtOemHookStatusCodeHandlerPei.inf

INF	Nt32Pkg/BootModePei/BootModePei.inf

INF	Nt32Pkg/StallPei/StallPei.inf

INF	Nt32Pkg/WinNtFlashMapPei/WinNtFlashMapPei.inf

INF	Nt32Pkg/WinNtAutoScanPei/WinNtAutoScanPei.inf

INF	Nt32Pkg/WinNtFirmwareVolumePei/WinNtFirmwareVolumePei.inf

INF	MdeModulePkg/Universal/Variable/Pei/VariablePei.inf

INF	Nt32Pkg/WinNtThunkPPIToProtocolPei/WinNtThunkPPIToProtocolPei.inf

INF	MdeModulePkg/Core/DxeIplPeim/DxeIpl.inf

		##

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

104Revision	1.28.01

		#	DXE	Phase	modules

		##

INF	MdeModulePkg/Core/Dxe/DxeMain.inf

INF	MdeModulePkg/Universal/PCD/Dxe/Pcd.inf

INF	Nt32Pkg/MetronomeDxe/MetronomeDxe.inf

INF	Nt32Pkg/RealTimeClockRuntimeDxe/RealTimeClockRuntimeDxe.inf

INF	Nt32Pkg/ResetRuntimeDxe/ResetRuntimeDxe.inf

INF	MdeModulePkg/Core/RuntimeDxe/RuntimeDxe.inf

INF	Nt32Pkg/FvbServicesRuntimeDxe/FvbServicesRuntimeDxe.inf

INF	MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf

INF	MdeModulePkg/Universal/SmbiosDxe/SmbiosDxe.inf

INF	MdeModulePkg/Universal/EbcDxe/EbcDxe.inf

INF	$(MdeModUni)/MemoryTest/NullMemoryTestDxe/NullMemoryTestDxe.inf

INF	MdeModulePkg/Universal/HiiDatabaseDxe/HiiDatabaseDxe.inf

INF	Nt32Pkg/WinNtThunkDxe/WinNtThunkDxe.inf

INF	Nt32Pkg/CpuRuntimeDxe/CpuRuntimeDxe.inf

INF	IntelFrameworkModulePkg/Universal/BdsDxe/BdsDxe.inf

INF	$(MdeModUni)/FaultTolerantWriteDxe/FaultTolerantWriteDxe.inf

INF	Nt32Pkg/MiscSubClassPlatformDxe/MiscSubClassPlatformDxe.inf

INF	Nt32Pkg/TimerDxe/TimerDxe.inf

DEFINE	RSCR_RD	=	ReportStatusCodeRouter/RuntimeDxe

INF	$(MdeModUni)/$(RSCR_RD)/ReportStatusCodeRouterRuntimeDxe.inf

DEFINE	SCH_RD	=	StatusCodeHandler/RuntimeDxe

INF	$(MdeModUni)/$(SCH_RD)/StatusCodeHandlerRuntimeDxe.inf

DEFINE	NTWINNTOEMHOOK	=	Nt32Pkg/WinNtOemHookStatusCodeHandlerDxe

INF	$(NTWINNTOEMHOOK)/WinNtOemHookStatusCodeHandlerDxe.inf

INF	MdeModulePkg/Universal/Variable/RuntimeDxe/VariableRuntimeDxe.inf

INF	MdeModulePkg/Universal/WatchdogTimerDxe/WatchdogTimer.inf

DEFINE	MCRD	=	MonotonicCounterRuntimeDxe

INF	$(MdeModUni)/$(MCRD)/MonotonicCounterRuntimeDxe.inf

INF	MdeModulePkg/Universal/CapsuleRuntimeDxe/CapsuleRuntimeDxe.inf

INF	MdeModulePkg/Universal/Console/ConPlatformDxe/ConPlatformDxe.inf

INF	MdeModulePkg/Universal/Console/ConSplitterDxe/ConSplitterDxe.inf

INF	$(MdeModUni)/Console/GraphicsConsoleDxe/GraphicsConsoleDxe.inf

INF	MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf

INF	MdeModulePkg/Universal/DevicePathDxe/DevicePathDxe.inf

INF	MdeModulePkg/Universal/Disk/DiskIoDxe/DiskIoDxe.inf

INF	MdeModulePkg/Universal/Disk/PartitionDxe/PartitionDxe.inf

INF	MdeModulePkg/Universal/SetupBrowserDxe/SetupBrowserDxe.inf

INF	MdeModulePkg/Universal/PrintDxe/PrintDxe.inf

DEFINE	DUC	=	Disk/UnicodeCollation

INF	RuleOverride	=	TIANOCOMPRESSED	$(MdeModUni)/$(DUC)/EnglishDxe/EnglishDxe.inf

INF	MdeModulePkg/Bus/Pci/PciBusDxe/PciBusDxe.inf

INF	MdeModulePkg/Bus/Scsi/ScsiBusDxe/ScsiBusDxe.inf

INF	MdeModulePkg/Bus/Scsi/ScsiDiskDxe/ScsiDiskDxe.inf

INF	IntelFrameworkModulePkg/Bus/Pci/IdeBusDxe/IdeBusDxe.inf

INF	Nt32Pkg/WinNtBusDriverDxe/WinNtBusDriverDxe.inf

INF	Nt32Pkg/WinNtBlockIoDxe/WinNtBlockIoDxe.inf

INF	Nt32Pkg/WinNtSerialIoDxe/WinNtSerialIoDxe.inf

INF	Nt32Pkg/WinNtGopDxe/WinNtGopDxe.inf

INF	Nt32Pkg/WinNtSimpleFileSystemDxe/WinNtSimpleFileSystemDxe.inf

INF	$(MdeModUni)/PlatformDriOverrideDxe/PlatformDriOverrideDxe.inf

INF	MdeModulePkg/Universal/DriverSampleDxe/DriverSampleDxe.inf

INF	MdeModulePkg/Universal/Network/DpcDxe/DpcDxe.inf

INF	MdeModulePkg/Universal/Network/ArpDxe/ArpDxe.inf

INF	MdeModulePkg/Universal/Network/Dhcp4Dxe/Dhcp4Dxe.inf

INF	MdeModulePkg/Universal/Network/Ip4ConfigDxe/Ip4ConfigDxe.inf

INF	MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Dxe.inf

INF	MdeModulePkg/Universal/Network/MnpDxe/MnpDxe.inf

INF	MdeModulePkg/Universal/Network/VlanConfigDxe/VlanConfigDxe.inf

INF	MdeModulePkg/Universal/Network/Mtftp4Dxe/Mtftp4Dxe.inf

INF	MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf

INF	MdeModulePkg/Universal/Network/Udp4Dxe/Udp4Dxe.inf

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

105Revision	1.28.01

INF	Nt32Pkg/SnpNt32Dxe/SnpNt32Dxe.inf

INF	MdeModulePkg/Universal/Network/UefiPxeBcDxe/UefiPxeBcDxe.inf

INF	MdeModulePkg/Universal/Network/IScsiDxe/IScsiDxe.inf

##

#

#	FILE	statements	are	provided	so	that	a	platform	integrator	can	include

#	complete	EFI	FFS	files,	as	well	as	a	method	for	constructing	FFS	files

#	using	curly	"{}"	brace	scoping.	The	following	three	FILEs	are

#	for	binary	shell,	binary	fat	and	logo	module.

#

##

FILE	APPLICATION	=	PCD(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdShellFile)	{

		SECTION	PE32	=	EdkShellBinPkg/FullShell/Ia32/Shell_Full.efi

		}

FILE	DRIVER	=	961578FE-B6B7-44c3-AF35-6BC705CD2B1F	{

		SECTION	PE32	=	FatBinPkg/EnhancedFatDxe/Ia32/Fat.efi

		}

FILE	FREEFORM	=	PCD(gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdLogoFile)	{

		SECTION	RAW	=	MdeModulePkg/Logo/Logo.bmp

		}

##

#

#	Rules	are	use	with	the	[FV]	section's	module	INF	type	to	define

#	how	an	FFS	file	is	created	for	a	given	INF	file.	The	following	Rule	are

#	the	default	rules	for	the	different	module	type.	User	can	add	the

#	customized	rules	to	define	the	content	of	the	FFS	file.

#

##

##

#	Example	of	a	DXE_DRIVER	FFS	file	with	a	Checksum	encapsulation	section

#

#

#

#[Rule.Common.DXE_DRIVER]

#			FILE	DRIVER	=	$(NAMED_GUID)	{

#					DXE_DEPEX	DXE_DEPEX	Optional	$(INF_OUTPUT)/$(MODULE_NAME).depex

#					COMPRESS	PI_STD	{

#							GUIDED	{

#									PE32				PE32																				$(INF_OUTPUT)/$(MODULE_NAME).efi

#									UI						STRING="$(MODULE_NAME)"	Optional

#									VERSION	STRING="$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

#							}

#					}

#			}

#

##

[Rule.Common.PEI_CORE]

		FILE	PEI_CORE	=	$(NAMED_GUID)	{

				PE32				PE32	Align=4K													$(INF_OUTPUT)/$(MODULE_NAME).efi

				UI						STRING	=	"$(MODULE_NAME)"	Optional

				VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

		}

[Rule.Common.PEIM]

		FILE	PEIM	=	$(NAMED_GUID){

				PEI_DEPEX	PEI_DEPEX																	Optional	$(INF_OUTPUT)/$(MODULE_NAME).depex

				PE32						PE32	Align=4K													$(INF_OUTPUT)/$(MODULE_NAME).efi

				UI								STRING	=	"$(MODULE_NAME)"	Optional

				VERSION			STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

		}

[Rule.Common.DXE_CORE]

		FILE	DXE_CORE	=	$(NAMED_GUID)	{

				COMPRESS	PI_STD	{

						PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

						UI						STRING	=	"$(MODULE_NAME)"	Optional

						VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

				}

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

106Revision	1.28.01

		}

[Rule.Common.UEFI_DRIVER]

		FILE	DRIVER	=	$(NAMED_GUID)	{

				DXE_DEPEX	DXE_DEPEX	Optional	$(INF_OUTPUT)/$(MODULE_NAME).depex

				COMPRESS	PI_STD	{

						GUIDED	{

								PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

								UI						STRING	=	"$(MODULE_NAME)"	Optional

								VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

						}

				}

		}

[Rule.Common.UEFI_DRIVER.TIANOCOMPRESSED]

		FILE	DRIVER	=	$(NAMED_GUID)	{

				DXE_DEPEX	DXE_DEPEX	Optional	$(INF_OUTPUT)/$(MODULE_NAME).depex

				GUIDED	A31280AD-481E-41B6-95E8-127F4C984779	PROCESSING_REQUIRED	=	TRUE	{

						PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

						UI						STRING	=	"$(MODULE_NAME)"	Optional

						VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

				}

		}

[Rule.Common.DXE_DRIVER]

		FILE	DRIVER	=	$(NAMED_GUID)	{

				DXE_DEPEX			DXE_DEPEX	Optional								$(INF_OUTPUT)/$(MODULE_NAME).depex

				COMPRESS	PI_STD	{

						GUIDED	{

								PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

								UI						STRING	=	"$(MODULE_NAME)"	Optional

								VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

						}

				}

		}

[Rule.Common.DXE_RUNTIME_DRIVER]

		FILE	DRIVER	=	$(NAMED_GUID)	{

				DXE_DEPEX			DXE_DEPEX	Optional								$(INF_OUTPUT)/$(MODULE_NAME).depex

				COMPRESS	PI_STD	{

						GUIDED	{

								PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

								UI						STRING	=	"$(MODULE_NAME)"	Optional

								VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

						}

				}

		}

[Rule.Common.UEFI_APPLICATION]

		FILE	APPLICATION	=	$(NAMED_GUID)	{

				COMPRESS	PI_STD	{

						GUIDED	{

								PE32				PE32																						$(INF_OUTPUT)/$(MODULE_NAME).efi

								UI						STRING	=	"$(MODULE_NAME)"	Optional

								VERSION	STRING	=	"$(INF_VERSION)"	Optional	BUILD_NUM=$(BUILD_NUMBER)

						}

				}

		}

Appendix	A	Nt32Pkg	Flash	Description	FileEDK	II	Flash	Description	(FDF)	File	Specification

107Revision	1.28.01

APPENDIX	B	COMMON	ERROR	MESSAGES
Standard	build	tools	must	throw	error	messages,	halting	the	build.	Warning	messages	may	be	emitted
from	build	tools,	unless	a	quiet	flag	has	been	set	on	the	command-line.

B.1	[FD]	Syntax	Errors:
Missing	required	Token	statements	-	report	line	number	and	file	name.

Size	of	the	FV	(%s)	is	larger	than	the	Region	Size	0x%X	specified.

The	named	FV	(%s)	is	not	listed	in	the	FDF	file.

Size	of	the	DATA	is	larger	than	the	region	size	specified.

Size	of	the	FILE	(%s)	is	larger	than	the	region	size	specified.

The	region	at	Offset	0x%X	cannot	fit	into	Block	array	with	BlockSize	%X.

Region:	%s	is	not	in	the	FD	address	scope.

B.2	[FV]	Syntax	Errors:
Missing	required	Token	statements	-	report	line	number	and	file	name.

Incorrect	alignment	in	the	FV.

B.3	[CAPSULE]	Syntax	Errors:
No	capsule	specific	errors,	as	all	capsule	errors	are	captured	under	other	parser	errors.

B.4	[Rule]	Syntax	Errors:
Unable	to	find	rule	for	INF	%s.

Module	built	under	different	architectures,	unable	to	determine	which	module	to	use.

Appendix	B	Common	Error	MessagesEDK	II	Flash	Description	(FDF)	File	Specification

108Revision	1.28.01

APPENDIX	C	REPORTS
The	following	reports	could	be	generated	by	either	usage	enhancement	tools	or	the	build	tools.	Refer	to
the	EDK	II	Build	Specification	for	the	description	of	reports	generated	by	the	EDK	II	build	system.

Appendix	C	ReportsEDK	II	Flash	Description	(FDF)	File	Specification

109Revision	1.28.01

	EDK II Flash Description (FDF) File Specification
	1 Introduction
	1.1 Overview
	1.2 Terms
	1.3 Related Information
	1.4 Target Audience
	1.5 Conventions Used in this Document

	2 FDF Design Discussion
	2.1 Processing Overview
	2.2 Flash Description File Format
	2.3 [Defines] Section
	2.4 [FD] Sections
	2.5 [FV] Sections
	2.6 [Capsule] Sections
	2.7 [VTF] Sections
	2.8 [Rule] Sections
	2.9 [OptionRom] Sections

	3 EDK II FDF File Format
	3.1 General Rules
	3.2 FDF Definition
	3.3 Header Section
	3.4 [Defines] Section
	3.5 [FD] Sections
	3.6 [FV] Sections
	3.7 [Capsule] Sections
	3.8 [FmpPayload] Sections
	3.9 [Rule] Sections
	3.10 [VTF] Section
	3.11 PCI OptionRom Section

	Appendix A Nt32Pkg Flash Description File
	Appendix B Common Error Messages
	Appendix C Reports

