

TABLE	OF	CONTENTS
EDK	II	Meta-Data	Expression	Syntax	Specification

1	Introduction

1.1	Overview

1.2	Related	Information

1.3	Terms

1.4	Target	Audience

1.5	Conventions	Used	in	this	Document

2	Expression	Overview

2.1	Constraints	and	Semantics

3	Expression	Format

3.1	Data	Field	Expression

3.2	Conditional	Directive	Expressions

Appendix	A	ABNF	Syntax

A.1	Data	Field	Expression	ABNF

A.2	Conditional	Directive	Expression	ABNF

Tables

Table	1	Font	Conventions

Table	2	EBNF	Conventions

EDK	II	Meta-Data	Expression	Syntax	Specification

2Revision	1.3

EDK	II	Meta-Data	Expression	Syntax	Specification
Revision	1.3

12/01/2020	05:47:37

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2014-2018,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	Release September	2014

1.1 September	2014

1.2 Convert	to	Gitbook April	2017

1.3 Flexible	Pcd	format Mar	2018

EDK	II	Meta-Data	Expression	Syntax	SpecificationEDK	II	Meta-Data	Expression	Syntax	Specification

3Revision	1.3

1	INTRODUCTION
This	document	describes	the	syntax	of	expression	statements	for	EDK	II	Meta-data	files	used	in	data
fields,	feature	flag	expressions	and	conditional	directive	statements.

1	IntroductionEDK	II	Meta-Data	Expression	Syntax	Specification

4Revision	1.3

1.1	Overview
This	document	describes,	using	EBNF,	the	syntax	of	expressions	used	in	EDK	II	meta-data	documents.
This	syntax	can	be	used	to	create	a	parser	for	expression	evaluations.	Whether	a	value	derived	from	an
expression,	is	valid	for	any	given	field	in	the	EDK	II	meta-data	document	is	outside	the	scope	of	this
document.

1.1	OverviewEDK	II	Meta-Data	Expression	Syntax	Specification

5Revision	1.3

1.2	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification.

ANSI	C99	Specification,	ISO/IEC	9899:TC2

Unified	Extensible	Firmware	Interface	Specification,	Version	2.3.1,	Unified	EFI,	Inc,	2011,
http://www.uefi.org

UEFI	Platform	Initialization	Specification,	Version	1.2,	Unified	EFI,	Inc.,	2010,	http://www.uefi.org

UEFI	Platform	Initialization	Distribution	Package	Specification,	Version	1.0	with	Errata	B,	Unified	EFI,
Inc.,	2014,	http://www.uefi.org

The	following	specifications	are	available	from	http://www.tianocore.org

EDK	II	User	Manual,	Intel,	2010.
UEFI	Driver	Writer	Guide,	Version	1.00,	Intel,	2012.
EDK	II	C	Coding	Standard,	Intel,	2014.
EDK	II	DSC	Specification,	Intel,	2014.
EDK	II	INF	File	Specification,	Intel,	2014.
EDK	II	FDF	Specification,	Intel,	2014.
EDK	II	Build	Specification,	Intel,	2014.
EDK	II	UNI	Unicode	File	Specification,	Intel,	2014.
VFR	Programming	Language,	Intel,	2012.

INI	file,	Wikipedia,	http://en.wikipedia.org/wiki/INI_file

Augmented	BNF	for	Syntax	Specifications:	ABNF,	RFC5234,	Network	Working	Group,	2008,
http://tools.ietf.org/html/rfc5234

1.2	Related	InformationEDK	II	Meta-Data	Expression	Syntax	Specification

6Revision	1.3

http://www.uefi.org
http://www.uefi.org
http://www.uefi.org
http://www.tianocore.org
http://en.wikipedia.org/wiki/INI_file
http://tools.ietf.org/html/rfc5234

1.3	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

BaseTools

The	BaseTools	are	the	tools	required	for	an	EDK	II	build.

BDS

Boot	Devices	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form".	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DEC

EDK	II	Package	Declaration	File.	This	file	declares	information	about	what	is	provided	in	the	package.	An
EDK	II	package	is	a	collection	of	like	content.

DEPEX

Module	dependency	expressions	that	describe	runtime	process	restrictions.

Dist

This	refers	to	a	distribution	package	that	conforms	to	the	UEFI	Platform	Initialization	Distribution
Package	Specification.

DSC

EDK	II	Platform	Description	File.	This	file	describes	what	and	how	modules,	libraries	and	components	are
to	be	built,	as	well	as	defining	library	instances	which	will	be	used	when	linking	EDK	II	modules.

DXE

Driver	Execution	Environment.

DXE	SAL

A	special	class	of	DXE	modules	that	provides	SAL	Runtime	Services.	DXE	SAL	modules	differ	from	DXE
Runtime	modules	in	that	the	DXE	Runtime	modules	support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE
SAL	modules	support	intermixing	Virtual	or	Physical	mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	modules	that	are	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

A	special	class	of	DXE	modules	that	provide	Runtime	Services.

EBNF

1.3	TermsEDK	II	Meta-Data	Expression	Syntax	Specification

7Revision	1.3

Extended	"Backus	Naur	Form"	meta-syntax	notation	with	the	following	additional	constructs:	square
brackets	"[...]"	surround	optional	items,	suffix	"*"	for	a	sequence	of	zero	or	more	of	an	item,	suffix	"+"	for
one	or	more	of	an	items,	suffix	"?"	for	zero	or	one	of	an	item,	curly	braches	"{...}"	enclosing	a	choice	of
a	list	of	alternatives	and	superscripts	indicating	between	n	and	m	occurrences.

EDK

Extensible	Firmware	Interface	Development	Kit,	the	original	implementation	of	the	Intel(R)	Platform
Innovation	Framework	for	EFI	Specifications	developed	in	2007.

EDK	II

EFI	Development	Kit,	version	II	that	provides	updated	firmware	module	layouts	and	custom	tools,
superseding	the	original	EDK.

EDK	Compatibility	Package	(ECP)

The	EDK	Compatibility	Package	(ECP)	provides	libraries	that	will	permit	using	most	existing	EDK	drivers
with	the	EDK	II	build	environment	and	EDK	II	platforms.

EFI

Generic	term	that	refers	to	one	of	the	version	of	the	EFI	or	UEFI	specifications.

FDF

EDK	II	Flash	Definition	File.	This	file	is	used	to	define	the	content	and	binary	image	layouts	for	firmware
images,	update	capsules	and	PCI	option	ROMs.

FLASH

This	term	is	used	throughout	this	document	to	describe	one	of	the	following:

An	image	that	is	loaded	into	a	hardware	device	on	a	platform	-	traditional	ROM	image.

An	image	that	is	loaded	into	an	Option	ROM	device	on	an	add-in	ard

A	bootable	image	that	is	installed	on	removable,	bootable	media,	such	as	a	Floppy,	CD-ROM	or	USB
storage	device.

A	UEFI	application	that	can	be	accessed	during	but	(at	an	EFI	Shell	prompt),	prior	to	hand-off	to	the
OS	loader.

Foundation

The	set	of	code	and	interfaces	that	holds	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consist	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	Tiano	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	A	unique	GUID	can	be
generated	by	an	individual	without	the	help	of	a	centralized	authority.	This	allows	the	generation	of
names	that	will	never	conflict,	even	among	multiple,	unrelated	parties.	GUID	values	can	be	registry
format,	8-4-4-4-12,	or	C	data	structure	format.

GUID	also	refers	to	an	API	named	by	a	GUID.

HII

1.3	TermsEDK	II	Meta-Data	Expression	Syntax	Specification

8Revision	1.3

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

HOB

Hand-off	blocks	are	key	architectural	mechanisms	that	are	used	to	hand	off	system	information	in	the
early	pre-boot	phase.

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

INF

EDK	II	Module	Information	File.	This	file	describes	how	the	module	is	coded.

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is
coded	to	the	library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file
that	is	published	by	a	package.

Library	Instance

An	implementation	of	one	or	more	library	classes.

Module

A	module	is	either	an	executable	image	or	a	library	instance.	For	a	list	of	module	types	supported	by	a
package,	see	Module	Type.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	DXE_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER		or		UEFI_APPLICATION	.	These
definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module	that	is	of
type	module	type		BASE	,	depends	only	on	header	and	libraries	provided	in	the	MdePkg,	while	a	module
that	is	of	module	type		DXE_DRIVER		depends	on	common	DXE	components.	An	additional	module	type,
	USER_DEFINED	,	is	allowed	for	extensibility.	The	EDK	II	build	system	also	permits	modules	of	type		USER_DEFINED	.
These	modules	will	not	be	processed	by	the	EDK	II	Build	system.

Numeric	Values

Numeric	values	in	the	EDK	II	meta-data	file	expressions	are	either	unsigned	integer	values	(base	10)	or
hexadecimal	values	(base	16).	No	other	numeric	data	types	are	permitted.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	containing	zero	or	more	of	any	of	the	following:

Source	modules,	containing	all	source	files	and	descriptions	of	a	module.

Binary	modules,	containing	EFI	sections	for	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD).

Mixed	modules,	with	both	binary	and	source	modules.

Multiple	modules	can	be	combined	into	a	package	and	multiple	packages	can	be	combined	into	a	single
package.

PCD

1.3	TermsEDK	II	Meta-Data	Expression	Syntax	Specification

9Revision	1.3

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase

PEIM

An	API	named	by	GUID.

PI

UEFI	Platform	Initialization	Specification.

PPI

A	PEIM-to-PEIM	interface	that	is	named	by	a	GUID.

Protocol

An	API	named	by	GUID.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.

These	services	become	active	during	the	boot	process	but	also	persist	after	the	OS	loader	terminates
boot	services.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

SKU

Stock	Keeping	Unit.

SMM

System	Management	Mode.	A	generic	term	for	the	execution	mode	entered	when	a	CPU	detect	an	SMI.
The	firmware,	in	response	to	the	interrupt	type,	will	gain	control	in	physical	mode.	For	this	document,
"SMM"	describes	the	operational	regime	for	IA32	and	x64	processors	that	share	the	OS-transparent
characteristics.

UEFI

Unified	Extensible	Firmware	Interface

UEFI	Application

An	application	that	follows	the	UEFI	Specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	Specification.

UEFI	Driver

1.3	TermsEDK	II	Meta-Data	Expression	Syntax	Specification

10Revision	1.3

A	driver	that	follows	the	UEFI	specification.

UEFI	Specification	Version	2.4

Current	UEFI	version.

UEFI	Platform	Initialization	Distribution	Package	Specification	1.0

The	current	version	of	this	specification	includes	Errata	B.

UEFI	Platform	Initialization	Specification	1.3

Current	version	of	the	UEFI	PI	Specification.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	http://www.uefi.org

VFR

Visual	Forms	Representation.

VPD

Vital	Product	Data	that	is	read-only	binary	configuration	data,	typically	located	within	a	region	of	a	flash
part.	This	data	would	typically	be	updated	as	part	of	a	firmware	build,	post	firmware	build	(via	patching
tools),	through	automation	on	a	manufacturing	line	as	the	'FLASH'	parts	are	programmed	or	through
special	tools.

1.3	TermsEDK	II	Meta-Data	Expression	Syntax	Specification

11Revision	1.3

http://www.uefi.org

1.4	Target	Audience
Those	performing	UEFI	development	and	support	for	platforms,	distributable	modules	and	tool
development.

1.4	Target	AudienceEDK	II	Meta-Data	Expression	Syntax	Specification

12Revision	1.3

1.5	Conventions	Used	in	this	Document
This	document	uses	typographic	and	illustrative	conventions	described	below.

Table	1	Font	Conventions

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

Bold In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,
a	Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		Bold	Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyper	link.

	$(VAR)	 This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non-underlined		BOLD	Monospace		typeface.	Find	the	first	instance	of	the
name	(in	the	underlined		Bold	Monospace		typeface)	on	the	page	and	click	on	the	word	to	jump	to	the
function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

Table	2	EBNF	Conventions

Typographic
Convention Typographic	convention	description

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a
given	line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

	(range-range)	

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)
indicates	a	single	digit.

Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must

1.5	Conventions	Used	in	this	DocumentEDK	II	Meta-Data	Expression	Syntax	Specification

13Revision	1.3

appear	in	the	output	text	file.

	?	 The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

	*	 The	star	character	denotes	zero	or	more	occurrences	of	an	item.

	+	 The	plus	character	denotes	one	or	more	occurrences	of	an	item.

	item{n}	

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be
used.	Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so
01234567	is	valid,	while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	brackets,	preceded	by	a	comma	","indicates
a	maximum	number	of	occurrences	of	the	item.

	item{n,m}	

A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates
that	the	number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,
inclusive.

1.5	Conventions	Used	in	this	DocumentEDK	II	Meta-Data	Expression	Syntax	Specification

14Revision	1.3

2	EXPRESSION	OVERVIEW
The	expression	syntax	follows	closely,	the	expression	syntax	and	precedence	of	C	as	defined	in	the
ISO/IEC	9899:TC2	document.	Since	the	EDK	II	meta-data	files	are	not	parsed	as	C	code,	but	rather	as
script	files,	some	of	the	items	listed	in	the	C	expression	section	(6.5)	do	not	apply.	Also,	some	of	the
items	have	been	extended	to	use	scripting	syntax	for	logical	comparison	operators	such	as	"EQ"	as	a
synonym	for	"==".

The	Conditional	directive	section	is	loosely	based	on	section	6.10,	Preprocessing	directives.	Again,
some	of	the	items	listed	in	the	Preprocessing	directives	section	do	not	apply.

2.1	Constraints	and	Semantics
1.	 Prior	to	evaluation,	all	macro	values,	PCD	values	and	defined	literals	(such	as	TRUE	or	FALSE)	used
in	the	expression	must	be	resolved.	The	only	exception	to	this	rule	is	when	a	macro	value
assignment	contains	an	expression.	In	this	case,	an	expression	on	the	right	side	of	the	assignment
operator	("=")	must	have	all	values	resolved	in	the	expression's	operands	prior	to	evaluation	and
subsequent	assignment.	In	this	instance,	in	order	to	have	the	operand	values	resolved,	the	tools
may	be	required	to	perform	more	than	one	pass	over	a	file	to	obtain	values	for	the	operands.

2.	 Floating	point	values	are	not	supported	under	PCD	datum	types.

3.	 When	used	in	an	expression,	a	PCD's	value	is	used	during	evaluation.

4.	 An	expression	is	a	sequence	of	operators	and	operands	that	specifies	computation	of	a	value.

5.	 Between	the	previous	and	next	sequence,	an	object	shall	have	its	stored	value	modified	at	most
once	by	the	evaluation	of	an	expression.

6.	 Some	operators	(the	unary	operator,	~,	and	the	binary	operators,		<<,	>>	,	&,	|	and	^	collectively
described	as	bitwise	operators)	are	required	to	have	operands	that	are	integer	(base10)	or
hexadecimal	(base16)	types.

7.	 The	unary	arithmetic	operators,	+,	-	and	~	must	have	an	operand	that	is	an	integer	(base10)	or
hexadecimal	(base16)	type,	while	the	scalar	unary	operators,	!	and	NOT,	must	have	operands	that
are	of	type	scalar.

8.	 The	Boolean	values,	False,	FALSE	and	false	have	a	numerical	value	of	zero.	The	Boolean	values,	True,
TRUE	and	true	have	a	numerical	value	of	one.

9.	 Tools	may	be	required	to	translate	the	expression	sequence	into	an	expression	format	that	is
comprehended	by	the	tool's	native	language.	For	example,	a	tool	written	in	Python	may	require
changing	the	exact	syntax	of	an	expression	to	a	syntax	that	can	be	processed	by	Python's	eval()
function.

10.	 Multiplicative	and	additive	operators	require	both	operands	to	be	arithmetic	in	type.

11.	 Relational	and	equality	operators	require	both	operands	to	be	of	the	same	type.	Relational
comparison	on	string	literals	and	byte	arrays	must	be	performed	comparing	the	byte	values,	left	to
right.	The	first	pair	of	bytes	(or	a	single	extra	byte)	that	is	not	equal	will	determine	the	result	of	the
comparison.	The	following	are	examples	of	string	comparisons:

Foo	=	"zero",	Bar	=	"three";

	Foo	<	Bar		will	evaluate	to	zero	(AKA,	FALSE),	as	"z"	is	greater	than	"t".

2	Expression	OverviewEDK	II	Meta-Data	Expression	Syntax	Specification

15Revision	1.3

Foo	=	"thirty",	Bar	=	"thirty1";`

	Foo	<	Bar		will	evaluate	to	one	(AKA,	TRUE),	as	Bar	has	an	extra	character.	```

12.	 Logical	operators	require	operands	that	are	type	scalar.

13.	 For	the	Conditional	Operator,	the	first	operand	must	be	scalar,	while	the	second	and	third	operands
must	have	the	same	type	(i.e.,	both	being	scalar,	both	being	integers,	or	both	being	string	literals).

14.	 Array	format	like	"{0x10,	0x20}"	can't	be	a	operand	of	any	operator	except	Relational	and	equality
operators.

2	Expression	OverviewEDK	II	Meta-Data	Expression	Syntax	Specification

16Revision	1.3

3	EXPRESSION	FORMAT
The	following	EBNF	describes	the	syntax	and	precedence	of	EDK	II	meta-data	expression	notation.

1.	 An	Expression	is	a	sequence	of	operators	and	operands	that	specifies	a	computational	value,	or
that	designates	an	object	(or	a	function),	or	that	performs	a	combination	thereof.

2.	 Statements	in	nested	parenthesis	are	evaluated	inside	to	outside.

3.	 Statements	in	parenthesis	are	evaluated	prior	to	evaluating	statements	outside	of	parenthesis.

4.	 Operators	within	a	grouping	(as	designated	by	the	name	preceding	the	"::="	character	sequence)
are	evaluated	left	to	right.

5.	 The	syntax	is	listed	in	precedence	order	(high	to	low).

6.	 The	syntax	does	not	define	acceptable	values	of	a	data	field;	those	are	defined	in	the	EDK	II	meta-
data	documents	that	define	the	data	fields.

3.1	Data	Field	Expression
The	following	expression	syntax	may	be	used	in	a	data	field	in	EDK	II	Meta-data	documents.	All	text
inclusive	of	a	semi-colon	character	through	the	end	of	the	line	must	be	viewed	as	a	comment	to	the
content	preceding	the	semi-colon	character.	The	use	of	a	semi-colon	character	as	a	comment	delimiter
is	for	this	specification	only;	other	specifications	may	use	different	characters	as	comment	delimiters.

Restrictions
	<Function>	

FUNCTIONS	SHOULD	ONLY	BE	USED	IF	ALL	TOOLS	THAT	PROCESS	THE	ENTRY	IN	THE	META-DATA	FILE
COMPREHEND	THE	FUNCTION	SYNTAX	AND	THE	FUNCTION	ELEMENT	HAS	BEEN	DEFINED	IN	A	HIGH	LEVEL
DESIGN	DOCUMENT	OR	SOFTWARE	ARCHITECTURE	SPECIFICATION.

IF	A	TOOL	DOES	NOT	COMPREHEND	THE	FUNCTION	FORMAT,	THE	TOOL	SHOULD	FAIL	GRACEFULLY.

Prototype

<PrimaryExpression>					::=	{<Identifier>}	{<Constant>}	{<StringLiteral>}	{<Function>}

																												{"("	<Expression>	")"}	{<Expression>}

<Identifier>												::=	{<CName>}	{<MACROVAL>}

<MACROVAL>														::=	"$("	<MACRO>	")"

<MACRO>																	::=	(A-Z)	[(A-Z0-9_)]*

<Function>														::=	<CName>	"("	<Argument>	[<CSP>	<Argument>]*	")"

<Argument>														::=	<PrimaryExpression>

<CName>																	::=	(a-zA-Z_)	[(a-zA-Z0-9_)]*

<Constant>														::=	{<TrueFalse>}	{<Number>}	{<GuidValue>}	{<Array>}

<TrueFalse>													::=	{<True>}	{<False>}

<True>																		::=	{"TRUE"}	{"True"}	{"true"}

<False>																	::=	{"FALSE"}	{"False"}	{"false"}

<Number>																::=	{<Integer>}	{<HexNumber>}

<Integer>															::=	<Base10>

<Base10>																::=	{(0-9)}	{(1-9)	[(0-9)]*}

<HexNumber>													::=	<Base16>

<Base16>																::=	<HexPrefix>	[<HexDigit>]+

<HexDigit>														::=	(a-fA-F0-9)

<HexPrefix>													::=	{"0x"}	{"0X"}

<GuidValue>													::=	{<RformatGuid>}	{<CformatGuid>}

<UINT8>																	::=	<HexPrefix>	(\x0	-	\xFF)

<UINT16>																::=	<HexPrefix>	(\x0	-	\xFFFF)

3	Expression	FormatEDK	II	Meta-Data	Expression	Syntax	Specification

17Revision	1.3

<UINT32>																::=	<HexPrefix>	(\x0	-	\xFFFFFFFF)

<UINT64>																::=	<HexPrefix>	(\x0	-	\xFFFFFFFFFFFFFFFF)

<ShortNum>														::=	(0-255)

<IntNum>																::=	(0-65535)

<LongNum>															::=	(0-4294967295)

<LongLongNum>											::=	(0-18446744073709551615)

<GuidStr>															::=	"GUID("	<GuidVal>	")"

<GuidVal>															::=	{<DblQuote>	<RformatGuid>	<DblQuote>}

																												{<CformatGuid>}	{<CName>}

Rhex2																			::=	[<HexDigit>]	<HexDigit>

Rhex4																			::=	[<HexDigit>]	[<HexDigit>]	Rhex2

Rhex8																			::=	[<HexDigit>]	[<HexDigit>]	[<HexDigit>]	[<HexDigit>]	Rhex4

<RformatGuid>											::=	Rghex8	"-"	Rghex4	"-"	Rghex4	"-"	Rghex4	"-"	Rghex12

Rghex2																		::=	<HexDigit>	<HexDigit>

Rghex4																		::=	<HexDigit>	<HexDigit>	Rghex2

Rghex8																		::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>	Rghex4

Rghex12																	::=	<HexDigit>	<HexDigit>	<HexDigit>	<HexDigit>	Rghex8

<Byte>																		::=	<HexPrefix>	Rhex2

<Hex16>																	::=	<HexPrefix>	Rhex4

<Hex32>																	::=	<HexPrefix>	Rhex8

<CSP>																			::=	0x2c	[<TSP>]*

<TSP>																			::=	{0x20}	{0x09}

<CformatGuid>											::=	"{"	[<TSP>]*	<Hex32>	<CSP>	<Hex16>	<CSP>	<Part2>

<Part2>																	::=	<Hex16>	<CSP>	"{"	[<TSP>]*	<Byte>	<CSP>	<Part3>

<Part3>																	::=	<Byte>	<CSP>	<Byte>	<CSP>	<Byte>	<CSP>	<Part4>

<Part4>																	::=	<Byte>	<CSP>	<Byte>	<CSP>	<Byte>	<CSP>	<Part5>

<Part5>																	::=	<Byte>	[<TSP>]*	"}"	[<TSP>]*	"}"

<Array>																	::=	{<EmptyArray>}	{<NonEmptyArray>}

<EmptyArray>												::=	"{"	<TSP>*	"}"

<NonEmptyArray>									::=	"{"	<TSP>*	[<Lable>]	<ArrayVal>	

																													[<CSP>	[<Lable>]	<ArrayVal>]*	"}"

<ArrayVal>														::=	{<Num8Array>}	{<GuidStr>}	{<DevicePath>}

<DevicePath>												::=	"DEVICE_PATH("	<DevicePathStr>	")"

<DevicePathStr>									::=	A	double	quoted	string	that	follow	the	device	path

																												as	string	format	defined	in	UEFI	Specification	2.6

																												Section	9.6

<Lable>																	::=	"LABEL("	<CName>	")"

<Offset>																::=	"OFFSET_OF("	<CName>	")"

<StringLiteral>									::=	{<QuotedString>}	{"L"	<QuotedString>}

																												{<SglQuotedString>}	{"L"	<SglQuotedString>}

<DblQuote>														::=	0x22

<SglQuote>														::=	0x27

<QuotedString>										::=	<DblQuote>	[<CCHAR>]*	<DblQuote>

<SglQuotedString>							::=	<SglQuote>	[<CCHAR>]*	<SglQuote>

<CCHAR>																	::=	{<SingleChars>}	{<EscapeCharSeq>}

<SingleChars>											::=	{0x21}	{(0x23	-	0x26)}	{(0x28	-	0x5B)}

																												{(0x5D	-	0x7E)}	{<EscapeSequence>}

<EscapeCharSeq>									::=	"\"	{"n"}	{"r"}	{"t"}	{"f"}	{"b"}	{"0"}	{"\"}

																												{<DblQuote>}	{<SglQuote>}

<NonNumType>												::=	{<TrueFalse>}	{<StringLiteral>}	{<Offset>}	{<UintMac>}

<Num8Array>													::=	{<NonNumType>}	{<ShortNum>}	{<UINT8>}

<Num16Array>												::=	{<NonNumType>}	{<IntNum>}	{<UINT16>}

<Num32Array>												::=	{<NonNumType>}	{<LongNum>}	{<UINT32>}

<Num64Array>												::=	{<NonNumType>}	{<LongLongNum>}	{<UINT64>}

<UintMac>															::=	{<Uint8Mac>}	{<Uint16Mac>}	{<Uint32Mac>}	{<Uint64Mac>}

<Uint8Mac>														::=	"UINT8("	<Num8Array>	")"

<Uint16Mac>													::=	"UINT16("	<Num16Array>	")"

<Uint32Mac>													::=	"UINT32("	<Num32Array>	")"

<Uint64Mac>													::=	"UINT64("	<Num64Array>	")"

<PostFixExpression>					::=	{<PrimaryExpression>}	{<PcdName>}

<PcdName>															::=	<CName>	"."	<CName>

<UnaryExpression>							::=	{<PostFixExpression>}	{<UnaryOp>	<UnaryExpression>}

<UnaryOp>															::=	{<IntegerOps>}	{<ScalarOps>}

<IntegerOps>												::=	{"+"}	{"-"}	{"~"}

<ScalarOps>													::=	{"NOT"}	{"not"}	{"!"}

<MultiplicativeExpress>	::=	{<UnaryExpression>}

																												{<MultiplicativeExpress>	<TSP>*	"*"	<TSP>*	<UnaryExpression>}

																												{<MultiplicativeExpress>	<TSP>*	"/"	<TSP>*	<UnaryExpression>}

																												{<MultiplicativeExpress>	<TSP>*	"%"	<TSP>*	<UnaryExpression>}

<AdditiveExpress>							::=	{<MultiplicativeExpress>}

																												{<AdditiveExpress>	<TSP>*	"+"	<TSP>*	<MultiplicativeExpress>}

																												{<AdditiveExpress>	<TSP>*	"-"	<TSP>*	<MultiplicativeExpress>}

3	Expression	FormatEDK	II	Meta-Data	Expression	Syntax	Specification

18Revision	1.3

<ShiftExpression>							::=	{<AdditiveExpress>}

																												{<ShiftExpression>	<TSP>*	"<<"	<TSP>*	<AdditiveExpress>}

																												{<ShiftExpression>	<TSP>*	">>"	<TSP>*	<AdditiveExpress>}

<RelationalExpress>					::=	{<ShiftExpression>}

																												{<RelationalExpress>}	<TSP>*	"<"	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	"LT"	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	">"	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	"GT"	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	"<="	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	"LE"	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	">="	<TSP>*	<ShiftExpress>}

																												{<RelationalExpress>}	<TSP>*	"GE"	<TSP>*	<ShiftExpress>}

<EqualityExpression>				::=	{<RelationalExpress>}

																												{<EqualityExpression>	<TSP>*	"=="	<TSP>*	<RelationalExpress>}

																												{<EqualityExpression>	<TSP>*	"EQ"	<TSP>*	<RelationalExpress>}

																												{<EqualityExpression>	<TSP>*	"!="	<TSP>*	<RelationalExpress>}

																												{<EqualityExpression>	<TSP>*	"NE"	<TSP>*	<RelationalExpress>}

<BitwiseAndExpression>		::=	{<EqualityExpression>}

																												{<BitwiseAndExpression>	<TSP>*	"&"	<TSP>*	<EqualityExpression>}

<BitwiseXorExpress>					::=	{<BitwiseAndExpression>}

																												{<BitwiseXorExpress>	<TSP>*	"^"	<TSP>*	<BitwiseAndExpression>}

<BitwiseOrExpress>						::=	{<BitwiseXorExpress>}

																												{"("	<BitwiseOrExpress>	<TSP>*	"|"	<TSP>*	<BitwiseXorExpress>	")"}

<LogicalAndExpress>					::=	{<BitwiseOrExpress>}

																												{<LogicalAndExpress>	<TSP>*	"&&"	<TSP>*	<BitwiseOrExpress>}

																												{<LogicalAndExpress>	<TSP>*	"AND"	<TSP>*	<BitwiseOrExpress>}

																												{<LogicalAndExpress>	<TSP>*	"and"	<TSP>*	<BitwiseOrExpress>}

<LogicalXorExpress>					::=	{<LogicalAndExpress>}

																												{<LogicalAndExpress>	<TSP>*	"XOR"	<TSP>*	<LogicalXorExpress>}

																												{<LogicalAndExpress>	<TSP>*	"xor"	<TSP>*	<LogicalXorExpress>}

<LogicalOrExpress>						::=	{<LogicalXorExpress>}

																												{"("	<LogicalXorExpress>	<TSP>*	"||"	<TSP>*	<LogicalOrExpress>	")"}

																												{<LogicalXorExpress>	<TSP>*	"OR"	<TSP>*	<LogicalOrExpress>}

																												{<LogicalXorExpress>	<TSP>*	"or"	<TSP>*	<LogicalOrExpress>}

<CondExpress>											::=	{<LogicalOrExpress>}

																												{<LogicalOrExpress>	<TSP>*	"?"	<IsTrue>	":"	<TSP>*	<CondExpress>

<IsTrue>																::=	<TSP>*	<Expression>	<TSP>*

<Expression>												::=	{<CondExpress>}	{<Expression>}

Example

gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress	|	!gCrownBayTokenSpaceGuid.PcdProgrammableLocalApic

Notes
MACROVAL

This	is	the	value	of	the	MACRO	assigned	in	a	DEFINE	statement.

Expressions

If	the	"|"	or	"||"character	is	used	in	an	expression,	the	expression	must	be	encapsulated	by	parenthesis.

OFFSET_OF()

LABEL()	macro	in	byte	arrays	to	tag	the	byte	offset	of	a	location	in	a	byte	array.	OFFSET_OF()	macro	in
byte	arrays	that	returns	the	byte	offset	of	a	LABEL()	declared	in	a	byte	array.

3.2	Conditional	Directive	Expressions
Conditional	directive	statements	are	defined	in	the	EDK	II	Platform	Description	(DSC)	File	and	Flash
Definition	(FDF)	File.	The	following	EBNF	describes	the	format	for	expressions	used	in	conditional
directives.	The	format	is	based	on	section	6.10	of	the	ANSI	C-99	Specification.

3	Expression	FormatEDK	II	Meta-Data	Expression	Syntax	Specification

19Revision	1.3

Restrictions
ConstantExpression

The	ConstantExpression	in	the	!if	statement	must	evaluate	to	either	True	(1)	or	False	(0).

Prototype

<EOL>																::=	0x0D	0x0A

<TSP>																::=	{0x20}	{0x09}

<Group>														::=	{<GroupPart>}	{<Group>	<GroupPart>}

<GroupPart>										::=	{<IfSection>}	{<TextLine>}

<IfSection>										::=	<IfGroup>	[<ElifGroups>]	[<ElseGroup>]	<EndIfLine>

<IfGroup>												::=	{<TSP>*	"!if"	<TSP>+	<ConstantExpression>	<EOL>	[<Group>]

																									{<TSP>*	"!ifdef"	<TSP>+	<MACROorMACROVAL>	<EOL>	[<Group>]

																									{<TSP>*	"!ifndef"	<TSP>+	<MACROorMACROVAL>	<EOL>	[<Group>]

<MACROorMACROVAL>				::=	{<MACRO>}	{"$("	<MACRO>	")"}

<ElifGroup>										::=	{<ElifGroup>}	{<ElifGroups>	<ElifGroup>}

<ElifGroup>										::=	<TSP>*	"!elif"	<TSP>*	<ConstantExpression>	<EOL>	[<Group>]

<ElseGroup>										::=	<TSP>*	"!else"	<TSP>*	<EOL>	[<Group>]

<EndIfLine>										::=	<TSP>*	"!endif"	<EOL>

<TextLine>											::=	Content	specific	to	the	meta-data	file

<ConstantExpression>	::=	<CondExpress>	;	see	Data	Field	Expression	definitions

Example

!if	$(LOGGING)

		DebugLib|IntelFrameworkModulePkg/Library/PeiDxeDebugLibReportStatusCode/PeiDxeDebugLibReportStatusCode.inf

		DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf

!else

		DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

!endif

!if	$(LOGGING)	==	FALSE

		gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x0

		gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x3

!endif

3	Expression	FormatEDK	II	Meta-Data	Expression	Syntax	Specification

20Revision	1.3

APPENDIX	A	ABNF	SYNTAX
This	section	provides	the	Augmented	Backus	Naur	Form	of	the	Expression	Format.

A.1	Data	Field	Expression	ABNF

PrimaryExpression					::=	Identifier	/	Constant	/	StringLiteral	/	"("	Expression	")"	/	Function

Identifier												::=	CName	/	MacroValue

MacroValue												::=	"$("	MACRO	")"

MACRO																	::=	(A-Z)	*(A-Z0-9_)

Function														::=	CName	"("	Argument	*(CSP	Argument)	")"

Argument														::=	PrimaryExpression

CName																	::=	(a-zA-Z_)	*(a-zA-Z0-9_)

Constant														::=	TrueFalse	/	Number	/	GuidValue	/	Array

TrueFalse													::=	True	/	False

True																		::=	"TRUE"	/	"True"	/	"true"

False																	::=	"FALSE"	/	"False"	/	"false"

Number																::=	Integer	/	HexNumber

Integer															::=	Base10

Base10																::=	(0-9)	/	((1-9)	*(0-9))

HexNumber													::=	Base16

Base16																::=	HexPrefix	*(HexDigit)	HexDigit

HexDigit														::=	(a-fA-F0-9)

HexPrefix													::=	"0x"	/	"0X"

GuidValue													::=	RformatGuid	/	CformatGuid

Rhex2																	::=	[HexDigit]	HexDigit

Rhex4																	::=	[HexDigit]	[HexDigit]	Rhex2

Rhex8																	::=	[HexDigit]	[HexDigit]	[HexDigit]	[HexDigit]	Rhex4

Rghex2																::=	HexDigit	HexDigit

Rghex4																::=	HexDigit	HexDigit	Rghex2

Rghex8																::=	HexDigit	HexDigit	HexDigit	HexDigit	Rghex4

Rghex12															::=	HexDigit	HexDigit	HexDigit	HexDigit	Rghex8

RformatGuid											::=	Rghex8	"-"	Rghex4	"-"	Rghex4	"-"	Rghex4	"-"	Rghex12

Byte																		::=	HexPrefix	Rhex2

Hex16																	::=	HexPrefix	Rhex4

Hex32																	::=	HexPrefix	Rhex8

CSP																			::=	%x2c	*(TSP)

TSP																			::=	%x20	/	%x09

CformatGuid											::=	"{"	*(TSP)	Hex32	CSP	Hex16	CSP	Hex16	CSP	Part2

Part2																	::=	"{"	*(TSP)	Byte	CSP	Byte	CSP	Byte	CSP	Byte	CSP	Part3

Part3																	::=	Byte	CSP	Byte	CSP	Byte	CSP	Byte	*(TSP)	"}"	*(TSP)	"}"

Array																	::=	EmptyArray	/	Array

EmptyArray												::=	"{"	*(TSP)	"}"

ByteArray													::=	"{"	*(TSP)	Byte	*(CSP	Byte)	"}"

StringLiteral									::=	QuotedString	/	"L"	QuotedString

DblQuote														::=	%x22

QuotedString										::=	DblQuote	*(CCHAR)	DblQuote

CCHAR																	::=	SingleChars	/	EscapeCharSeq

SingleChars											::=	%x20	/	%x21	/	%x23-5B	/	%x5D-7E

EscapeCharSeq									::=	"\"	("n"	/	"r"	/	"t"	/	"\"	/	"f"	/	"b"	/	"0"	/	DblQuote)

PostFixExpression					::=	PrimaryExpression	/	PcdName

PcdName															::=	CName	"."	CName

UnaryExpression							::=	PostFixExpression	/	UnaryOp	UnaryExpression

UnaryOp															::=	IntegerOps	/	ScalarOps

IntegerOps												::=	"+"	/	"-"	/	"~"

ScalarOps													::=	"NOT"	/	"not"	/	"!"

MultiplicativeExpress	::=	UnaryExpression	/

																										(MultiplicativeExpress	*(TSP)	"*"	*(TSP)	UnaryExpression)	/

																										(MultiplicativeExpress	*(TSP)	"/"	*(TSP)	UnaryExpression)	/

																										(MultiplicativeExpress	*(TSP)	"%"	*(TSP)	UnaryExpression)

AdditiveExpress							::=	MultiplicativeExpress	/

																										(AdditiveExpress	*(TSP)	"+"	*(TSP)	MultiplicativeExpress)	/

																										(AdditiveExpress	*(TSP)	"-"	*(TSP)	MultiplicativeExpress)

ShiftExpression							::=	AdditiveExpress	/

																										(ShiftExpression	*(TSP)	"<<"	*(TSP)	AdditiveExpress)

Appendix	A	ABNF	SyntaxEDK	II	Meta-Data	Expression	Syntax	Specification

21Revision	1.3

																										(ShiftExpression	*(TSP)	">>"	*(TSP)	AdditiveExpress)

RelationalExpress					::=	ShiftExpression	/

																										(RelationalExpress	*(TSP)	"<"	*(TSP)	ShiftExpress)	/

																										(RelationalExpress	*(TSP)	">"	*(TSP)	ShiftExpress)	/

																										(RelationalExpress	*(TSP)	"<="	*(TSP)	ShiftExpress)	/

																										(RelationalExpress	*(TSP)	">="	*(TSP)	ShiftExpress)

EqualityExpression				::=	RelationalExpress	/

																										(EqualityExpression	*(TSP)	"=="	*(TSP)	RelationalExpress)	/

																										(EqualityExpression	*(TSP)	"EQ"	*(TSP)	RelationalExpress)	/

																										(EqualityExpression	*(TSP)	"!="	*(TSP)	RelationalExpress)	/

																										(EqualityExpression	*(TSP)	"NE"	*(TSP)	RelationalExpress)	/

BitwiseAndExpression		::=	EqualityExpression	/

																										(BitwiseAndExpression	*(TSP)	"&"	*(TSP)	EqualityExpression)

BitwiseXorExpress					::=	BitwiseAndExpression	/

																										(BitwiseXorExpress	*(TSP)	"^"	*(TSP)	BitwiseAndExpression)

BitwiseOrExpress						::=	BitwiseXorExpress	/

																										("("	BitwiseOrExpress	*(TSP)	"|"	*(TSP)	BitwiseXorExpress	")")

LogicalAndExpress					::=	BitwiseOrExpress	/

																										(LogicalAndExpress	*(TSP)	"&&"	*(TSP)	BitwiseOrExpress)	/

																										(LogicalAndExpress	*(TSP)	"AND"	*(TSP)	BitwiseOrExpress	/

																										(LogicalAndExpress	*(TSP)	"and"	*(TSP)	BitwiseOrExpress)

LogicalXorExpress					::=	LogicalAndExpress	/

																										(LogicalAndExpress	*(TSP)	"XOR"	*(TSP)	LogicalXorExpress)	/

																										(LogicalAndExpress	*(TSP)	"xor"	*(TSP)	LogicalXorExpress)

LogicalOrExpress						::=	LogicalXorExpress	/

																										("("	LogicalXorExpress	*(TSP)	"||"	*(TSP)	LogicalOrExpress	")")	/

																										(LogicalXorExpress	*(TSP)	"OR"	*(TSP)	LogicalOrExpress)	/

																										(LogicalXorExpress	*(TSP)	"or"	*(TSP)	LogicalOrExpress)

CondExpress											::=	LogicalOrExpress	/

																										(LogicalOrExpress	*(TSP)	"?"	IsTrue	":"	*(TSP)	CondExpress)

IsTrue																::=	*(TSP)	Expression	*(TSP)

Expression												::=	CondExpress	/	Expression

A.2	Conditional	Directive	Expression	ABNF

EOL																::=	%x0D.0A

TSP																::=	%x20	/	%x09

Group														::=	GroupPart	/	(Group	GroupPart)

GroupPart										::=	IfSection	/	TextLine

IfSection										::=	IfGroup	[ElifGroups]	[ElseGroup]	EndIfLine

IfGroup												::=	(*(TSP)	"!if"	1*(TSP)	ConstantExpression	EOL	[Group])	/

																							(*(TSP)	"!ifdef"	1*(TSP)	MACROorMACVAL	EOL	[Group])	/

																							(*(TSP)	"!ifndef"	1*(TSP)	MACROorMACVAL	EOL	[Group]

MACROorMACVAL						::=	MACRO	/	MacroValue

ElifGroups									::=	ElifGroup	/	(ElifGroups	ElifGroup)

ElifGroup										::=	*(TSP)	"!elif"	1*(TSP)	ConstantExpression	EOL	[Group]

ElseGroup										::=	*(TSP)	"!else"	*(TSP)	EOL	[Group]

EndIfLine										::=	*(TSP)	"!endif"	EOL

TextLine											::=	Content	specific	to	the	meta-data	file

ConstantExpression	::=	CondExpress	;	see	Data	Field	Expression	definitions

Appendix	A	ABNF	SyntaxEDK	II	Meta-Data	Expression	Syntax	Specification

22Revision	1.3

	EDK II Meta-Data Expression Syntax Specification
	1 Introduction
	1.1 Overview
	1.2 Related Information
	1.3 Terms
	1.4 Target Audience
	1.5 Conventions Used in this Document

	2 Expression Overview
	3 Expression Format
	Appendix A ABNF Syntax

