

 Table of Contents

 	

 EDK II Minimum Platform Specification

 	

 Tables

 	

 Figures

 	

 1 Introduction

 	

 1.1 Audience / Document scope

 	

 1.2 Document Flow

 	

 1.3 Terminology

 	

 1.4 Reference documents

 	

 2 Architecture

 	

 2.1 Staged Architecture

 	

 2.2 Modularity

 	

 2.3 Execution

 	

 2.4 Organization

 	

 2.5 Platform and Board Layer

 	

 3 Stage I: Minimal Debug

 	

 3.2 Firmware Volumes

 	

 3.3 Modules

 	

 3.4 Required Functions

 	

 3.5 Configuration

 	

 3.6 Data Flows

 	

 3.7 Additional Control Flows

 	

 3.8 Build Files

 	

 3.9 Test Point Results

 	

 3.10 Functional Exit Criteria

 	

 3.11 Stage Enabling Checklist

 	

 4 Stage II: Memory Functional

 	

 4.2 Firmware Volumes

 	

 4.3 Modules

 	

 4.4 Required Functions

 	

 4.5 Configuration

 	

 4.6 Data Flows

 	

 4.7 Additional Control Flows

 	

 4.8 Build Files

 	

 4.9 Test Point Results

 	

 4.10 Functional Exit Criteria

 	

 4.11 Stage Enabling Checklist

 	

 5 Stage III: Boot to UEFI Shell

 	

 5.2 Firmware Volumes

 	

 5.3 Modules

 	

 5.4 Required Functions

 	

 5.5 Configuration

 	

 5.6 Data Flows

 	

 5.7 Additional Control Flows

 	

 5.8 Build Files

 	

 5.9 Test Point Results

 	

 5.10 Functional Exit Criteria

 	

 5.11 Stage Enabling Checklist

 	

 6 Stage IV: Boot to OS

 	

 6.2 Firmware Volumes

 	

 6.3 Modules

 	

 6.4 Required Functions

 	

 6.5 Configuration

 	

 6.6 Data Flows

 	

 6.7 Additional Control Flows

 	

 6.8 Build Files

 	

 6.9 Test Point Results

 	

 6.10 Functional Exit Criteria

 	

 6.11 Stage Enabling Checklist

 	

 7 Stage V: Security Enable

 	

 7.2 Firmware Volumes

 	

 7.3 Modules

 	

 7.4 Required Functions

 	

 7.5 Configuration

 	

 7.6 Data Flows

 	

 7.7 Additional Control Flows

 	

 7.8 Build Files

 	

 7.9 Test Point Results

 	

 7.10 Functional Exit Criteria

 	

 7.11 Stage Enabling Checklist

 	

 8 Stage VI: Advanced Feature Selection

 	

 8.2 Firmware Volumes

 	

 8.3 Configuration

 	

 8.4 Advanced Feature Design

 	

 9 Stage VII: Tuning

 	

 Appendix A Full Maps

 	

 A.1 Firmware Volume Layout

 	

 A.2 Key Function Invocation

 	

 A.3 BDS Hook Points

 	

 Appendix B Global Configuration

 	

 B.1 Stage Configuration

 	

 B.2 Test Point Check Infrastructure

 	

 Appendix C ACPI

 	

 C.1 Layout

 	

 C.2 ACPI Table Contents

 	

 C.3 ACPI Device Categorization

 	

 C.4 Flow Diagrams

 	

 Appendix D Interface Definitions

 	

 D.1 Required Functions

 	

 D.2 BoardInit

 	

 D.3 SiliconPolicyInit

 	

 D.4 TestPoint

 EDK II Minimum Platform Specification

EDK II Minimum Platform Specification

 DRAFT FOR REVIEW

 12/01/2020 06:43:00

Acknowledgements

Redistribution and use in source (original document form) and 'compiled'
forms (converted to PDF, epub, HTML and other formats) with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code (original document form) must retain the
above copyright notice, this list of conditions and the following
disclaimer as the first lines of this file unmodified.

	Redistributions in compiled form (transformed to other DTDs, converted to
PDF, epub, HTML and other formats) must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY TIANOCORE PROJECT "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL TIANOCORE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2019, Intel Corporation. All rights reserved.

Revision History

	Revision
	Revision History
	Date

	0.7
	Initial release
	May 2019

 Tables

Tables

	Table 1 Document Flow

	Table 2 Terminology

	Table 3 Reference Documents

	Table 4 Architecture Stages

Stage I

	Table 5 Stage I Firmware Volumes

	Table 6 Stage I FV and Component Layout

	Table 7 Stage I UEFI Components Platform Architecture Libraries

	Table 8 Stage I Libraries

	Table 9 Stage I SEC Functions

	Table 10 Stage I PEI Functions

	Table 11 Stage I Flash Map Configuration PCDs

	Table 12 Stage I Debug Configuration

	Table 13 Stage I Build Files

	Table 14 Stage I Test Point Results

Stage II

	Table 15 Stage II Firmware Volumes

	Table 16 Stage II FV and Component Layout

	Table 17 Stage II DXE UEFI Components

	Table 18 Stage II PEI Platform Architecture Libraries

	Table 19 Stage II DXE Platform Architecture Libraries

	Table 20 Stage II PEI Functions

	Table 21 Stage II Interfaces

	Table 22 Stage II FSP Related Configuration

	Table 23 Stage II FV Related Configuration

	Table 24 Silicon Policy Libraries

	Table 25 Stage II Build Files

	Table 26 Test Point Results

Stage III

	Table 27 Stage III Firmware Volumes

	Table 28 Stage III FV and Component Layouts

	Table 29 Stage III DXE UEFI Components

	Table 30 Stage III Platform Architecture Libraries

	Table 31 Stage III Required PEI Functions

	Table 32 Stage III PEI Functions

	Table 33 Stage III DXE Functions

	Table 34 Stage III DXE Interfaces

	Table 35 Stage III Flash Map Configuration PCDs

	Table 36 Stage III Driver Configuration

	Table 37 Stage III Build Files

	Table 38 Stage III Test Point Results

Stage IV

	Table 39 Stage IV Firmware Volumes

	Table 40 Stage IV FV and Component Layout

	Table 41 Stage IV ACPI DXE UEFI Components

	Table 42 Stage IV DXE UEFI Components

	Table 43 Stage IV SMM UEFI Components

	Table 44 Stage IV Platform Architecture Libraries

	Table 45 Stage IV DXE Functions

	Table 46 Stage IV DXE Interfaces

	Table 47 Stage IV SMM Functions

	Table 48 Stage IV SMM Interfaces

	Table 49 Memory Type Information Configuration

	Table 50 Flash Map Configuration PCDs

	Table 51 Stage IV Build Files

	Table 52 Stage IV Test Point Results

Stage V

	Table 53 Stage V Firmware Volumes

	Table 54 Stage V FV and Components Layout

	Table 55 Stage V PEI UEFI Components

	Table 56 Stage V DXE UEFI Components

	Table 57 Stage V SMM UEFI Components

	Table 58 Stage V Platform Architecture Libraries

	Table 59 Stage V PEI Functions

	Table 60 Stage V DXE Functions

	Table 61 Stage V SMM Functions

	Table 62 Stage V Security Configuration

	Table 63 Stage V Flash Map Configuration PCDs

	Table 64 Stage V Feature Configuration

	Table 65 Stage V Build Files

	Table 66 Stage V Test Point Results

Stage VI

	Table 67 Stage VI Firmware Volumes

	Table 68 Stage VI FV and Component Layout

	Table 69 Stage VI Flash Map Configuration PCDs

	Table 70 Advanced Feature Template

Appendix

	Table 71 Full Firmware Volume Layout

	Table 72 Key Function Invocation

 Figures

Figures

	Figure 1 Minimum Platform Architecture Overview

	Figure 2 Minimum Platform Architecture High Level Sequence

	Figure 3 Example of a Minimal Platform Firmware Stack

	Figure 4 Stage I Main Control Flow

	Figure 5 Stage II Main Control Flow

	Figure 6 Non-FSP Policy Data Flow

	Figure 7 FSP Policy Data Flow

	Figure 8 Stage III Main Control Flow

	Figure 9 Stage IV Main Control Flow

	Figure 10 Full BDS Hook Point Map

	Figure 11 Test Point Check Infrastructure

	Figure 12 ACPI Platform Flow

 1 Introduction

1 Introduction

This specification details the required and optional elements for an EDK II
based platform design with the following objectives:

	Define a structure that enables developers to consistently navigate source
code, execution flow, and the functional results of bootstrapping a system.

	Enable a minimal platform where minimal is defined as the minimal firmware
implementation required to produce a basic solution that can be further
extended to meet a multitude of client, server, and embedded market needs.

	Minimize coupling between common, silicon, platform, and board packages.

	Enable large granularity binary solutions.

A key aspect of these objectives is to improve the transparency and security
quality across the client, server, and embedded ecosystems.

This document assumes a working knowledge of the EDK II and UEFI Specifications.
The minimal platform defined supports the use of Intel® Firmware Support Package
(FSP), but does not require usage of the Intel® FSP API. The minimal platform
is binary component oriented, but designed to enable a highly optimized form for
embedded boot loaders.

 1.1 Audience / Document scope

1.1 Audience / Document scope

The audience for this document includes UEFI firmware architecture,
development, validation, and enabling engineers.

The UEFI Forum and the TianoCore.org EDK II specifications provide tremendous
flexibility and extensibility. The Minimum Platform Architecture is intended to
introduce interfaces and structure so that platforms are consistent and thus
approachable by engineers from across the ecosystem. The minimal platform
specifically refers to a platform layer within a multi-layer solution; its
scope and therefore this specification defines this layer and its dependencies.
The minimal platform is a single code package used as-is from open source
similar to MDE Module package usage. By using this platform as a base, the
fundamental boot flow is consistent, well-documented, and visible across the
UEFI community.

This approach does not rule out innovation and customization. The platform
calls two primary sets of external APIs throughout the boot, for board and
chipset initialization. These APIs are considered dependencies, and therefore
are defined in this specification. The implementation of these APIs is expected
to vary based on unique board and chipset requirements. Furthermore, the
minimal platform can be arbitrarily extended through a simple and modular
advanced feature design.

The Minimum Platform Architecture enables scalability from pre-silicon
validation activities, to final product shipment, to derivative product use.
The Minimum Platform Architecture should enable engineering activities from all
segments: from high-touch Intel supported OEMs to individual makers with
previous UEFI experience but no direct support from Intel.

 1.2 Document Flow

1.2 Document Flow

The document introduces the Minimum Platform Architecture, and then details the
"boot stages" through the following subsections.

	Overview
	An overview of the stage

	Firmware Volumes
	The binary containers needed for each stage

	Modules
	The EDK II component binaries and static libraries required

	Required Functions
	The architecturally defined functions for a given stage

	Configuration
	The defined configurable parameters for a given stage

	Data Flows
	The architecturally defined data structures and flows for a given stage

	Control Flows
	Key control flows for a given stage

	Build Files
	The DSC/FDF for a given stage

	Test Point Results
	The test that can verify porting is complete for a given stage

	Functional Exit Criteria
	The testable functionality for the stage

	Stage Enabling Checklist
	The required activities to achieve desired functionality for a given stage

Table 1 Document Flow

 1.3 Terminology

1.3 Terminology

	Term
	Definition

	ACM
	Authenticated Code Module

	ACPI
	Advanced Configuration and Power Interface

	BCT
	Intel Binary Configuration Tool

	BFV
	Boot Firmware Volume

	BoardPkg
	The EDK II package a developer creates to port the Minimum Platform for their motherboard or family of motherboards

	BSF
	Boot Setting File

	CAR
	Cache-As-RAM

	Component
	An executable binary. Typically UEFI defined, e.g. PEIM, DXE driver, SMM driver, or UEFI application. Also used to refer to other system binaries. Not appropriate for statically linked libraries.

	DXE
	Driver execution environment. Role is to load drivers for system devices. Finds and executes boot code. After OS loads, it handles OS to UEFI calls.

	DSDT
	Differentiated System Description Table

	EC
	Embedded Controller

	EDK
	EFI Development Kit

	FACS
	Firmware ACPI Control Structure

	FADT
	Firmware ACPI Description Table

	FFS
	EFI Firmware File System Specification

	FRU
	Field Replaceable Unit, the minimal silicon that can be added or removed from a system, e.g.

	
	an SoC, a MCP, a standalone processor or PCH.

	FSP
	Intel® Firmware Support Package

	Full Platform
	A platform implementation that includes the minimal features, as well as some number of advanced features. (Stage I-VII). Note: most advanced features may not be described in this document.

	FV
	Firmware Volume, a UEFI Forum defined firmware storage container

	GPIO
	General Purpose Input/Output

	GUID
	Globally Unique Identifier(s)

	HOB
	Hand Off Blocks(s)

	Hybrid EDKII
	Any Module that contains both EDKII compliant wrapper code, and non EDK payloads (e.g., CSM-bin or FSP-bin)

	IBB
	Initial Boot Block

	IFWI
	Integrated Firmware Image, includes things like UEFI firmware, microcode, microcontroller and firmware, configuration data.

	Term
	Definition

	IPL
	Initial Program Load

	MASM
	Microsoft Macro Assembler

	Minimum Platform
	A platform implementation that only includes the minimal features. (Stage I-VII)

	MinPlatformPkg
	The EDK II package that contains common elements of the platform architecture.

	Module
	Typically any EDK II independently buildable item, includes static libraries and executables.

	MOR
	Memory Overwrite Request. See Trusted Computing Group documentation.

	MTRR
	Memory Type Range Register

	NASM
	Netwide Assembler

	Native EDKII
	All modules build with only EDKII compliant source code, and no non-EDK payloads (e.g., CSM-bin, LegacyOpRom, or FSP-bin)

	NVRAM
	Non-Volatile Random Access Memory

	OBB
	OEM Boot Block

	OPROM
	Option ROM

	PCD
	Platform Configuration Database

	PEI
	Pre EFI Initialization. Role is to initialize memory, and also initialize enough of the system to run DXE.

	PEIM
	Pre-EFI Initialization Module

	PI
	Platform Initialization

	PPI
	PEIM-to-PEIM Interface

	RSDP
	Root System Description Pointer

	RSDT
	Root System Description Table

	SEC
	Security phase. Role is to initialize the system far enough to find, validate, install and run PEI.

	SiliconPkg
	The EDK II Package that contains silicon support for a system.

	SIO
	Super I/O is a type of I/O controller IP. Typical functionality provided are one or more serial port UARTs, keyboard controller, and many others.

	SMBIOS
	System Management BIOS

	SMM
	System Management Mode

	SSDT
	Secondary System Description Table

	T-RAM
	Temporary RAM (memory used before permanent memory is initialized such as CAR)

	TPM
	Trusted Platform Module

	UEFI
	Unified Extensible Firmware Interface

	UPD
	Updatable Product Data

	XSDT
	Extended System Description Table

Table 2 Terminology

 1.4 Reference documents

1.4 Reference documents

The following documents are referenced in this specification.

	Abbreviation
	Document
	Version

	ACPI_SPEC
	Advanced Configuration and Power Interface (ACPI) Specification
	Version 6.3
January 2019

	BSF_SPEC
	Boot Setting File (BSF) Specification
	Version 1.0
March 2016

	FSP_EAS
	FSP 2.0 External Architecture Specification (EAS)
	Version 2.0
May 2016

	OpenPlatform_WP
	Intel® Open Platform White Paper
	May 2017

	PI_SPECS
	Platform Initialization (PI) Specification
	Version 1.7
January 2019

	
	Volume I: PEI
	

	
	Volume II: DXE CIS
	

	
	Volume III: Shared Architecture Elements
	

	
	Volume IV: SMM
	

	
	Volume V: Standards
	

	UEFI_SPEC
	Unified Extensible Firmware Interface (UEFI) Specification
	Version 2.8
March 2019

Table 3 Reference Documents

 2 Architecture

2 Architecture

The Minimum Platform Architecture is structured around required functionality
over time. As such, the key elements of architecture and design
(flows, interfaces, etc) are organized into a staged architecture, where each
stage will have requirements and functionality that lead to specific uses.
Stages build upon prior stages with extensibility to meet silicon, platform,
or board requirements.

Early in a development cycle, engineering is focused on creating the platform
and acquiring basic functionality. This can be pursued within simulation and
emulation environments, or on real hardware. This often includes creating a
new set of silicon and platform source code that handles the basic differences
between the new target and prior solutions. Often this entails reuse of the
prior generation silicon support and existing feature sets.

Later development engineering effort is focused on enabling the full range
of functionality, supporting all deltas in the new platform - typically in
the form of reference designs and lead products. Next, platform development
is focused on scaling. This involves customer enabling and aligning products
for time-to-market and silicon roadmaps. Finally, there is sustaining,
maintenance, and derivatives activity. These are characterized by smaller
changes to existing production-worthy solutions, repurposing them
opportunistically.

[image: Minimum Platform Architecture Overview]

Figure 1 Minimum Platform Architecture Overview

Figure 1 shows the basic Minimum Platform Architecture. The enabling steps
for a Minimum Platform solution should occur in the following order to add
complexity over time, and only where it is necessary. This progression from
minimum required to more full-featured permeates the design of the boot flow,
modules implemented, and collection of components into firmware volumes.

	Develop a board solution around the minimum platform. This involves
implementing the essential board information and initialization defined in
the Minimum Platform board API.

	Add silicon initialization support. For many silicon vendors this
will be accomplished through the use of binary blobs with well-defined
interfaces. In any case, the silicon initialization invocation is performed
from the board code.

	Add advanced features, which are typically implemented in the form of
source code designed to be generically plugged into a large number of diverse
system types.

	Add product-specific features that are required for product initialization.
This support is not part of essential board organization or maintained as a
generic advanced feature. It is enabled in the advanced feature stage.

[image: Figure 2 Minimum Platform Architecture High Level Sequence]

Figure 2 Minimum Platform Architecture High Level Sequence

Figure 2 shows the same basic idea can be represented as a Venn diagram with
three fundamental steps.

This architecture is reflected in these areas:

	Source code in modules, packages, and resulting binary components

	Execution in control, data, error, and debug flows

	Functionality as solutions evolve from initial to complete

	Scaling from silicon development to products

 2.1 Staged Architecture

2.1 Staged Architecture

The Minimum Platform Architecture defines a number of stages that are integral
to the design and implementation of conformant firmware solutions. Stages
define what code needs to be built, what functionality is required, what binary
components are required at the FV and UEFI PI Architecture executables level,
and what the system capabilities are available as a result of successfully
executing through a firmware stage.

	Stage
	Functional Objective
	Example Capabilities

	I
	Minimal Debug
	Serial Port, Port 80, External debuggers Optional: Software debugger

	II
	Memory Functional
	Basic hardware initialization including main memory

	III
	Boot to UEFI Shell
	Generic DXE driver execution

	IV
	Boot to OS
	Boot a general purpose operating system with the minimally required feature set. Publish a minimal set of ACPI tables.

	V
	Security Enabled
	UEFI Secure Boot, TCG trusted boot, DMA protection, etc.

	VI
	Advanced Feature Selection
	Firmware update, power management, networking support, manageability, testability, reliability, availability, serviceability, non-essential provisioning and resiliency mechanisms

	VII
	Tuning
	Size and performance optimizations

Table 4 Architecture Stages

The stages correspond well to bootstrapping a system and to developing a
production-worthy solution. The stages are defined in order to detail the
minimum items required. It is expected that there will be more required and
more present than what is defined in this specification for an end product. The
stages capture what is minimally required to support the strategic objectives
of transparency and quality as well as the more tactical objectives of
structure, consistency, cohesion, coupling, and compatibility. Note that the
stages represent enabling steps, not necessarily the order of execution. For
example, ACPI initialization necessary in Stage IV may be performed before
Stage III would be considered complete. Further, the stages may not necessarily
be strictly additive once enabling is complete. For example, the UEFI shell may
not be required in the production firmware image based on product requirements,
but it must have been enabled and therefore capable of being loaded in the
final firmware if chosen by a firmware engineer supporting the firmware in the
final production image.

 2.2 Modularity

2.2 Modularity

Throughout the architecture you will find a mix of static and dynamic
modularity. Static libraries are used to make the platform and board code
simpler and more approachable. Dynamic linking in the form of UEFI PI
Architecture components (PEIM and drivers) as well as large grain Firmware
Volume containers are also used extensively in order to increase leverage,
scalability, and large grain FV container updates.

An important concept is that the minimum platform is defined with a mix of
solutions for modularity, but that said modularity will be flexible. It is
intended that products will be able to scale from fully statically-linked
embedded solutions to fully dynamically-linked leveraged validation solutions
as they reach the end of Stage VII optimization activities. These advanced
solutions can be considered derivatives of the platform architecture and should
not undermine the strategic objectives of transparency and quality, nor the
more tactical objectives of structure, consistency, cohesion, coupling, and
compatibility.

 2.3 Execution

2.3 Execution

To provide for a simpler progression through functionality, there are controls
that enable building and executing the minimal code to achieve the goal for a
particular stage. There is a PCD control that platform and board code can use
to limit the scope of what must be functional at a given state of development.
For example, if the board is configured for Stage I functionality, developers
should not be burdened with errors because required porting to make memory
functional has not been done yet. Similarly, initializing memory should not be
burdened with the functionality for authenticating cryptographic hashes
required for Stage V.

 2.4 Organization

2.4 Organization

The architecture makes use of four primary classifications of code that are
generally instantiated in different EDK II packages.

	Common (EDK II) is code that does not have any direct HW requirements other
than the basics required to execute machine code on the processor (stack,
memory, IA registers, etc).
	Producer(s): TianoCore.org

	Silicon, also often called hardware code, has some tie to a specific class
of physical hardware. Sometimes governed by industry standards, sometimes
proprietary. Silicon or hardware code is usually not intended to have
multiple implementations for the same hardware.
	Producer(s): Silicon vendor

	Platform defines the actions needed to enable a specific platform's
capabilities. In this architecture, capabilities are divided into mandatory
and advanced features. Mandatory features are enabled in stages prior to
Stage VI. Advanced features are enabled in Stage VI and later.
	Minimum Platform Producer(s): TianoCore.org

	Advance Feature Producer(s): TianoCore.org, OEM, BIOS vendor

	Board packages contains board specific code for one or more motherboards.
	Producer(s): Device manufacturer, BIOS vendor, Board user

The architecture is designed to support a maintainer ownership model. For
example, board developers should not directly modify (fork) the platform,
silicon, or common code. More details on conventional usage of the package
classifications can be found in supplemental literature from UEFI Forum,
TianoCore.org, and others.

For the purposes of this document, the board package is considered an
integration point of the firmware image in addition to providing board-specific
functionality. The silicon package provides supported silicon initialization
support for one or more silicon products. The minimum platform package
represents common elements of this architecture that may depend upon board and
silicon interfaces. In order to meet the security objectives of this
specification, the minimum platform package must not depend upon deprecated EDK
II packages. Other packages composed within the firmware solution described in
this specification should consist of widely known elements of the EDKII
ecosystem from TianoCore.org.

An example of a firmware stack compliant with this specification for three
classes of computer systems is shown in the below figure.

[image: Figure 3 Example of a Minimal Platform Firmware Stack]

Figure 3 Example of a Minimal Platform Firmware Stack

 2.5 Platform and Board Layer

2.5 Platform and Board Layer

The Minimum Platform Architecture is designed to provide consistency across
boot flows with the control flows defined in this specification. These control
flows are common to all platforms. Therefore, a single implementation is
intended to serve all platforms. This implementation is maintained in the
MinPlatformPkg on TianoCore.org. Throughout the standardized boot flow,
implementation-specific details are required including board resource
information for devices, buses, GPIO settings, etc. In addition, logic is
necessary to integrate the silicon solution. For Intel® FSP, this involves
invoking the appropriate FSP API with the proper parameters at the proper time
in the boot flow. Such details are implemented in the board package behind the
board API defined in this specification. This results in flexibility at the
board layer for a custom software design that allows substitution of details
like silicon initialization flow while maintaining a common control flow with
other platforms. The board package is also typically responsible for other
implementation-specific integration such as providing a custom build
environment that prepares a firmware image processed by the tools required to
produce an image compatible for a given board.

 3 Stage I: Minimal Debug

3.1 Overview

The objective of Stage I is to provide a foundation for more complex
development in later stages. The board should implement a board-specific
minimal code path capable of firmware debug output. Basic debug capability
serves as a base for development activities in later stages. As Stage I is
inherently foundational to product execution it may include more content and
complexity than the functionality strictly required for debug output.

3.1.1 Major Execution Activities

	Establish temporary memory.

	Perform pre-memory board-specific initialization.

	Board detection

	GPIOs

	Serial Port initialization (Example: SIO, HSUART)

It is not necessary for the developer to fully configure GPIO at this time. The
only required board configuration is that necessary to reach system debug
activities.

3.1.2 Main Control Flow

Stage I is contained within SEC and PEI phases. Code must not be compressed and
content must be capable of being mapped to memory by hardware or other firmware.

The high level control flow is described in the diagram below.
[image: Stage 1 Main Control Flow]

Figure 4 Stage I Main Control Flow

These activities do not map 1:1 to the required functions. Some of this flow is
already well defined by UEFI or EDK II specifications. The following details
are focused on the Platform, Silicon, and Board interactions, and minimal
requirements for structure, consistency, and portability.

 3.2 Firmware Volumes

3.2 Firmware Volumes

The Stage I functionality is contained in these Firmware Volumes with these
attributes.

	Name
	Content
	Compressed
	Parent FV

	FvPreMemory
	SEC + StatusCode
	No
	None

	FvBspPreMemory
	Pre-memory board initialization
	No
	None

	FvFspT
	SEC silicon initialization
	No
	None

	FvFspM
	Memory initialization
	No
	None

	FvPreMemorySilicon
	Pre-memory silicon initialization
	No
	FvFspM

	FvFspS
	Silicon initialization
	No
	None

	FvPostMemorySilicon
	Post-memory silicon initialization
	Yes
	FvFspS

Table 5 Stage I Firmware Volumes

As the foundational stage for further functionality, Stage I may include
additional content beyond what is strictly required to meet the stage
objective. Typically this will include silicon initialization code that may be
packaged in a variety of mechanisms including varying size binary blobs. In the
layout shown in Table 5, the Intel® FSP solution is shown as an example. In
this case, the FSP binary can be rebased and integrated in one step rather than
distributing the work for the FSP-M and FSP-S rebase unnecessarily across later
stages. Note that a child FV is a FV embedded within the parent FV. The child
FV is identified by a file type of EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE.

Combining the FVs with full set of silicon binary components yields this
example flash map for MMIO storage:

	Binary
	FV
	Components
	Purpose

	Stage I
	FvPreMemory.fv
	SecCore.efi
		Reset Vector
	Passes PEI core the address of FvFspM
	Passes PEI core the debug configuration

	
	
	ReportFvPei.efi
		Installs firmware volumes

	
	
	SiliconPolicyPeiPreMemory.efi
		Publishes silicon initialization configuration

	
	
	PlatformInitPreMemory.efi
		Performs pre memory initialization

	
	
	Additional Components
		Additional pre-memory components required for Stage I boot

	
	FvBspPreMemory.fv
	Additional Components
		Advanced pre-memory board support components

	
	FvFspT.fv
	PlatformSec.efi
		Initializes T-RAM silicon functionality

	
	
	
		Tests T-RAM functionality

	
	
	Additional Components
	

	
	FvFspM.fv
	PeiCore.efi
		PEI services and dispatcher

	
	
	PcdPeim.efi
		PCD service

	
	
	FspPlatform.efi
		Converts UPD to Policy PPI

	
	
	FvPreMemorySilicon.fv
	

	
	
	(child FV)
	

	
	
	Additional Components
		Pre-memory silicon initialization components

	
	
	ReportStatusCodeRouterPei.efi
		Provide status code infrastructure

	
	
	StatusCodeHandlerPei.efi
		Provide status code listeners

	
	
	Additional Components
	

	
	FvFspS.fv
	FvPostMemorySilicon.fv
	

	
	
	(child FV)
	

	
	
	Additional Components
		Post-memory silicon initialization components

	
	
	Additional components

Table 6 Stage I FV and Component Layout

Note that many of the components included above do not actually participate in
producing Stage I functionality, and will not be executed when the boot stage
target is set to Stage I. For systems that use non-volatile storage technology
that does not provide memory map capabilities, this layout may be modified
where necessary. However, the firmware execution path must remain scoped to
only perform actions required to achieve the boot stage objective.

See Appendix: Full FV Map for a more complete example Firmware Volume layout.

 3.3 Modules

3.3 Modules

The architecture requires the following modules. Only modules found in the
BoardPkg should be modified for board porting. MinPlatformPkg and other common
package contents must not be directly modified. BoardPkg and SiliconPkg modules
will have multiple instances to support different boards and different silicon.

3.3.1 UEFI Components

These components are required. They enable orderly board porting and add the
support for extensibility in later stages. The libraries consumed are the
subset of libraries required by this specification. Some libraries are defined
in this specification, and some are defined in EDK II documentation.

	Item
	Producing Package
	Libraries Consumed

	SecCore.efi
	UefiCpuPkg
	PlatformSecLib, SerialPortLib

	PeiCore.efi
	MdeModulePkg
	

	PcdPeim.efi
	MdeModulePkg
	

	ReportStatusCodeRouterPei.efi
	MdeModulePkg
	

	StatusCodeHandlerPei.efi
	MdeModulePkg
	SerialPortLib

	ReportFvPei.efi
	MinPlatformPkg
	ReportFvLib, TestPointCheckLib

	SiliconPolicyPeiPreMemory.efi
	MinPlatformPkg
	SiliconPolicyInitLib,

	
	
	SiliconPolicyUpdateLib

	PlatformInitPreMemory.efi
	MinPlatformPkg
	BoardInitLib, TestPointCheckLib

Table 7 Stage I UEFI Components Platform Architecture Libraries

3.3.2 Platform Architecture Libraries

Board porting will require creation of libraries identified as produced by the
BoardPkg. Depending on the board, there may be existing libraries that are
sufficient for a board, so it is important to assess the utility of existing
library instances when developing board support.

	Item
	API Definition Package
	Producing Package
	Description

	BoardInitLib
	MinPlatformPkg
	BoardPkg
	Board initialization library.

	ReportFvLib
	MinPlatformPkg
	MinPlatformPkg
	Installs platform firmware volumes.

	SerialPortLib
	MdeModulePkg
	BoardPkg
	SIO vendor specific initialization to enable serial port.

	SiliconPolicyInitLib
	IntelSiliconPkg
	SiliconPkg
	Provides default silicon configuration policy data.

	SiliconPolicyUpdateLib
	IntelSiliconPkg
	BoardPkg
	Provides board updates to silicon configuration policy data.

	PlatformSecLib
	UefiCpuPkg
	MinPlatformPkg
	Reset vector and SEC initialization code.

	TestPointCheckLib
	MinPlatformPkg
	MinPlatformPkg
	Test point check library. It is called by PlatformInit module to perform stage-specific checks.

	TestPointLib
	MinPlatformPkg
	MinPlatformPkg
	Test point library. It provides helper functionality for TestPointCheck lib.

Table 8 Stage I Libraries

 3.4 Required Functions

3.4 Required Functions

The following functions are required to exist and to execute in the listed
order. The component that provides the function is not specified because it is
not required by the architecture.

* In the common EDK II open source code.

3.4.1 Required SEC functions

	Name
	Purpose

	ResetHandler (*)
	The reset vector invoked by silicon

	TempRamInit
	Silicon initializes temporary memory

	TestPointTempMemoryFunction
	Test temporary memory functionality

	SecStartup (*)
	First C code execution, constructs PEI input

	TestPointEndOfSec
	Verify state before switching to PEI

Table 9 Stage I SEC Functions

3.4.2 Required PEI functions

	Name
	Purpose

	PeiCore (*)
	PEI entry point

	PeiDispatcher (*)
	Calls the entry points of PEIM

	ReportPreMemFv
	Installs firmware volumes required in pre-memory

	BoardDetect
	Board detection of the motherboard type

	BoardDebugInit
	Board specific initialization for debug device

	PlatformHookSerialPortInitialize
	Board serial port initialization. Called from SEC or PEI

	TestPointDebugInitDone
	Verify debug functionality

Table 10 Stage I PEI Functions

 3.5 Configuration

3.5 Configuration

This section defines the configurable items that must be available to achieve
Stage I functionality.

Stage I configuration is largely concerned with hard-coded address space data
and serial port data. In some platform architectures, a firmware or ROM may be
responsible for handing off NEM configuration data to Stage I.

3.5.1 Flash Map Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemoryBase
	Pre-Memory FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemorySize
	Pre-Memory FV size.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTBase
	Fsp-T FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTSize
	Fsp-T FV size.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMBase
	Fsp-M FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMSize
	Fsp-M FV size.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSBase
	Fsp-S FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSSize
	Fsp-S FV size.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeBase
	Microcode FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeSize
	Microcode FV size.

Table 11 Stage I Flash Map Configuration PCDs

 3.6 Data Flows

3.6 Data Flows

This section defines key data structures and the ways this data flows through
the system over time.

3.6.1 Serial Port Configuration

Serial port configuration spans build and boot. Serial port parameters come
from the board and are used for debug features, serial input/output devices
supporting local or remote consoles, and OS level debuggers.

	Serial port default configuration options are defined in
the MdePkg.dec.

	Serial port configuration options may be overwritten by
the BoardPkg.dsc.

	Serial port configuration options are consumed by the
SerialPortLib library class implementation.

	SerialPortLib library class is used by the
StatusCodeHandlerPei.inf component to initialize and display messages to a
serial port.

	Serial port configuration options are published via a
SERIAL_PORT_CONFIGURATION_HOB.

	SERIAL_PORT_CONFIGURATION_HOB is consumed by
MinPlatformSerialDxe.inf to produce EFI_SERIAL_IO_PROTOCOL.

3.6.2 Debug Configuration

	PCD
	Purpose

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialBaudRate
	Baud rate for the 16550 serial port

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseMmio
	Enable serial port MMIO addressing

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseHardwareFlowControl
	Enable serial port HW flow control

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialDetectCable
	Enable blocking Tx if no cable

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialRegisterBase
	Register the serial port base address

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialLineControl
	Serial port line control configuration

	gEfiMdeModulePkgTokenSpaceGuid.PcdSerialFifoControl
	Serial port FIFO control

	gMinPlatformPkgTokenSpaceGuid.PcdSecSerialPortDebugEnable
	Enable serial port debug in SEC phase

	gEfiMdePkgTokenSpaceGuid.PcdFixedDebugPrintErrorLevel
	Control build time optimization based on debug print level

	gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask
	Control DebugLib behavior

	gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel
	Control run time debug print level

	gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask
	Control display of status codes

Table 12 Stage I Debug Configuration

 3.7 Additional Control Flows

3.7 Additional Control Flows

None

 3.8 Build Files

3.8 Build Files

UEFI system firmware by nature is often constructed with a large number of
modules and components. EDK II modules are typically written to be generic and
reusable. As such, much of the build file content is the same for all
platforms. The platform architecture provides further structure and consistency
by defining dedicated build files that are exposed to all consumers of the
platform package. The modular separation of the build files is based on the
UEFI PI Architecture phases, the platform architecture stages, and optional
features. The board package is ultimately able to leverage as much of this
content as applicable for a given system. The build is coordinated by the board
package which should include standard build files from the minimum platform
package or other dependent packages such as a silicon package.

	Name
	Consumer
	Standalone Buildable
	FV Produced
	Comments

	MinPlatformPkg
\Include\CoreCommonLib.dsc
	Board
	No
	None
	Stage I-V common libraries

	MinPlatformPkg
\Include\CorePeiInclude.dsc
	Board
	No
	None
	Combination of Stage I-V
that will be processed by compilation building

	MinPlatformPkg
\Include\CorePeiLib.dsc
	Board
	No
	None
	Combination of Stage I-V
that will be processed by compilation building

	BoardPkg
\BoardName\BoardPkg.dsc
	Build
	Yes
	None
	Primary build file.

	Name
	Consumer
	Standalone Buildable
	FV Produced
	Comments

	MinPlatformPkg
\Include\CorePreMemoryInclude.fdf
	Board
	No
	None
	Combination of Stage I-II
that will be processed by compilation building

	BoardPkg
\BoardName\BoardPkg.fdf
	Build
	Yes
	Yes
	Combination of Stage I-V
that will be processed by compilation building

Table 13 Stage I Build Files

 3.9 Test Point Results

3.9 Test Point Results

	Test Point Function
	Test Subject
	Test Overview
	Reporting Mechanism

	TestPointTempMemoryFunction ()
	Temporary Memory
	Reads/writes results on the stack and heap
	Reported through PPI

	TestPointDebugInitDone ()
	Debug Capability
	Dumps a struct of debug configuration parameters to the log
	Serial Port shows debug log
Port 80 shows number

Table 14 Stage I Test Point Results

 3.10 Functional Exit Criteria

3.10 Functional Exit Criteria

	Temporary Memory is initialized.

	The debug device is initialized and the platform has written a message to
indicate Stage I termination.

 3.11 Stage Enabling Checklist

3.11 Stage Enabling Checklist

The following steps should be followed to enable a board for Stage I.

	Copy the EDK II packages locally to the workspace.

	Select an appropriate silicon initialization solution such as Intel® FSP.

	Review the requirements for the silicon initialization solution.

	Gather the silicon initialization requirements for the given board.

	Customize the silicon initialization solution to configure the system to the
board-specific requirements.

	For Intel® FSP, this includes setting minimal policy configuration.

	For other silicon solutions, similar parameter customization may be
needed if the silicon solution is not written for a particular system
design.

	Determine other firmware and software components required for the system to
function properly.

	For an Intel platform, this may include firmware images such as the
appropriate microcode patch, EC firmware image, power management
controller firmware, and others.

	Additional third-party add-in components such as specific UEFI drivers
may also be required.

	Determine board-specific information required to fetch code and show debug
output.

	This includes details such as the NVRAM layout and strap information.

	Copy a reference GenerationOpenBoardPkg/BoardXXX and update the
board interfaces in Required Functions.

	Add serial port initialization code in PlatformHookSerialPortInitialize () at BoardPkg/Library/BasePlatformHookLib.

	This is SIO related code.

	Add Board detection code in BoardDetect (),

BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c`

	If the project only supports one board, this function can return directly.

	Add Board pre-memory debug initialization code in BoardDebugInit (),
BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.

	This is for debug channel related initialization.

	Audit BoardPkg/Stage1.dsc, ensure all PCDs in the Configuration section
are correct for your board.

	Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 1

	Follow "Debug Lib Selection" to enable serial debug capability.

	Audit all other PCD settings in the board DSC file to verify the values are
correct for your board.

	Verify the flash layout is compliant with this specification.

	Verify the required binaries will be included in the image produced in the
build.

	Verify the code execution path for Stage I will only perform the actions
required to achieve debug output.

	Boot the system, collect the debug log, and verify the test point results
defined in the Test Point section are correct.

 4 Stage II: Memory Functional

4.1 Overview

The objective of Stage II is to enable a minimal boot path memory
initialization code execution that successfully installs permanent memory.

4.1.1 Major Execution Activities

	Complete execution of the memory initialization module.

	Discover, train and install permanent memory.

	Migrate the temporary memory/stack to permanent memory.

	Migrate any code modules from temporary RAM to permanent memory.

	Perform cache configuration for a post-memory environment.

	Execute memory installed notification actions.

	Stage II Functionality

	Non-volatile storage read-only access

	Pre-memory silicon policy initialization

	Basic services like cache and CPU IO

	Initialization of decompression capability

	Memory initialization and basic memory test

4.1.2 Main Control Flow

Stage II extends the Stage I control flow by executing the platform and silicon
initialization required for memory initialization. The stage is completed when
permanent memory is installed. Since execution prior to memory initialization
typically occurs in a resource-constrained environment, the code in this stage
is not compressed. To simplify silicon enabling which may be opaque to the
board engineer in the form of a binary blob, Stage II enabling does not
strictly constrain the extent of silicon initialization. In particular, it is
recommended to perform standard security lock functionality such as register
locks, privilege level changes, and other actions that are in the system
requirements to reduce conditional logic and therefore potential for error in
enabling those settings. This only pertains to security settings within the
chipset. This does not include larger industry standard security features such
as UEFI Secure Boot and TCG measured boot. Those features are enabled in Stage
V Security Enable.

[image: Stage II Main Control Flow]

Figure 5 Stage II Main Control Flow

 4.2 Firmware Volumes

4.2 Firmware Volumes

Stage II leverages most of the Stage I content. Additional firmware volumes
include:

	Name
	Content
	Compressed
	Parent FV

	FvPostMemory
	Post-memory modules
	Yes
	None

	FvBsp.fv
	Post-memory board support
	Yes
	None

Table 15 Stage II Firmware Volumes

Which yields this example extension of the flash map for MMIO storage (append
to Stage I map):

	Binary
	FV
	Components
	Purpose

	Stage II
	FvPostMemory.fv
	ReadOnlyVariable.efi
	Common core variable services

	
	
	SiliconPolicyPeiPostMemory.efi
	Publishes silicon initialization configuration

	
	
	PlatformInitPostMemory.efi
	Performs post memory initialization

	
	
	DxeIpl.efi
	Load and invoke DXE

	
	
	ResetSystemRuntimeDxe.efi
	Provides reset service

	
	
	PciHostBridge.efi
	PCI host bridge driver

	
	
	Additional Components
	Additional post-memory components required for Stage II boot

	
	FvBsp.fv
	Additional Components
	Post-memory board support components

Table 16 Stage II FV and Component Layout

See Appendix: Full FV Map for a more complete example Firmware Volume layout.

 4.3 Modules

4.3 Modules

Only modules in the board package should be modified in the process of board
porting. The minimum platform package and other common package contents must
not be directly modified. The board package and silicon package modules may
have multiple instances to support different boards and different silicon.
These components are required. They enable orderly board porting and add the
support for extensibility in later stages. The libraries consumed are the
subset of libraries required by this specification. Some libraries are defined
in this specification, some are defined in EDK II documentation.

4.3.1 UEFI Components (DXE)

	Item
	Producing Package
	Libraries Consumed

	DxeIpl.efi
	MdeModulePkg
	

	SiliconPolicyPeiPostMemory.efi
	MinPlatformPkg
	SiliconPolicyInitLib
SiliconPolicyUpdateLib

	PlatformInitPostMemory.efi
	MinPlatformPkg
	BoardInitLib
TestPointCheckLib

	ResetSystemRuntimeDxe.efi
	MdeModulePkg
	ResetSystemLib

	PciHostBridge.efi
	MdeModulePkg
	PciHostBridgeLib

Table 17 Stage II DXE UEFI Components

4.3.2 Platform Architecture Libraries (PEI)

	Item
	API Definition Package
	Producing Package
	Description

	BoardInitLib
	MinPlatformPkg
	BoardPkg
	Board initialization library.

	SiliconPolicyInitLib
	IntelSiliconPkg
	SiliconPkg
	Provides default silicon configuration policy data.

	SiliconPolicyUpdat eLib
	IntelSiliconPkg
	BoardPkg
	Provides board updates to silicon configuration policy data.

	TestPointCheckLib
	MinPlatformPkg
	MinPlatformPkg
	Test point check library. It is called by PlatformInit module to perform stage-specific checks.

	TestPointLib
	MinPlatformPkg
	MinPlatformPkg
	Test point library. It provides helper functionality for TestPointCheck lib.

Table 18 Stage II PEI Platform Architecture Libraries

4.3.3. Platform Architecture Libraries (DXE)

Stage II contains some DXE items needed to enable Stage III. No board porting
of these libraries is required. Board integrators should ensure that their
silicon package provides the necessary libraries. These libraries and the UEFI
Components (DXE) are functionally irrelevant to Stage II functionality.

	Item
	API Definition Package
	Producing Package
	Description

	ResetSystemLib
	MdeModulePkg
	SiliconPkg
	For DXE reset architecture protocol

	PciHostBridgeLib
	MdeModulePkg
	SiliconPkg
	For DXE PCI host bridge driver

Table 19 Stage II DXE Platform Architecture Libraries

 4.4 Required Functions

4.4 Required Functions

The following functions are required to exist and to execute in the listed
order. The component that provides the function is not specified because it is
not required by the architecture.

4.4.1 Required PEI functions

* In the common EDK II open source code.

	Name
	Purpose

	BoardBootModeDetect
	Board hook for EFI_BOOT_MODE detection

	BoardInitBeforeMemoryInit
	Board specific initialization prior to permanent memory initialization (e.g. GPIO configuration)

	SiliconPolicyInitPreMemory
	Pre-memory silicon policy default initialization

	SiliconPolicyUpdatePreMemory
	Pre-memory silicon policy update logic

	SiliconPolicyDonePreMemory
	Opportunity to implement a board-specific indicator that silicon policy initialization is done

	MemoryInit
	Permanent memory initialization

	InstallEfiMemory
	Install permanent memory to core

	PeiCore (*)
	PEI entry point (post-memory entry)

	SecTemporaryRamDone (*)
	Optional API defined in the PI specification to disabled temporary RAM

	ReportPostMemFv
	Firmware volume installation in post-memory

	TestPointPostMemoryFvInfoFunctional
	Test to verify correctness of the firmware volume map in post-memory

	BoardInitAfterMemoryInit
	Board initialization after memory is installed

	SetCacheMtrr
	Configuration of MTRR settings for post-memory

	TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional
	Test to verify the correctness of the MTRR settings in post-memory

	TestPointPostMemoryResourceFunctional
	Test to verify correctness of permanent memory

Table 20 Stage II PEI Functions

4.4.2 Interfaces

* In the common EDK II open source code.

	Component
	Name
	Consumer
	Purpose

	BoardInitLib
	BoardBootModeDetect
	Platform
	Board-specific boot mode detection

	
	BoardInitAfterMemoryInit
	Platform
	Board specific initialization after memory initialization

	
	BoardInitBeforeTempRamExit
	Platform
	Board specific hook before temporary RAM exit

	
	BoardInitAfterTempRamExit
	Platform
	Board specific hook after temporary RAM exit

	SiliconPolicyInitLib
	SiliconPolicyInitPreMemory
	Platform
	Initialize silicon policy default values

	
	SiliconPolicyDonePreMemory
	Platform
	Platform-specific behavior to indicate the policy update is done

	SiliconPolicyUpdateLib
	SiliconPolicyUpdatePreMemory
	Platform
	Board updates default policy

Table 21 Stage II Interfaces

 4.5 Configuration

4.5 Configuration

This section defines the configurable items that must be available to achieve
Stage II functionality.

4.5.1 Intel® FSP Related Configuration

	PCD
	Purpose

	gIntelFsp2WrapperTokenSpaceGuid.PcdFspmBaseAddress
	FSP-M FV base address

	gIntelFsp2WrapperTokenSpaceGuid.PcdPeiMinMemorySize
	Indicates the PEI memory size reported by the platform

	gIntelFsp2WrapperTokenSpaceGuid.PcdPeiRecoveryMinMemorySize
	Indicates the PEI recovery memory size reported by the platform

Table 22 Stage II FSP Related Configuration

4.5.2 FV Related Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemoryBase
	Post-memory FV base address

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemorySize
	Post-memory FV size

Table 23 Stage II FV Related Configuration

 4.6 Data Flows

4.6 Data Flows

This section defines architectural data structures and the flows in which these
structures move through the boot over time.

4.6.1 Silicon Policy Flow and Rules

4.6.1.1 Silicon Module Provides Default Silicon Policy Data

One silicon policy data structure is created per silicon module. The data
structure should only contain data. Functions should not be used in silicon
policy data.

When a silicon module installs this policy data, it should consider the most
common usage as the default policy data. Therefore, a board module must only
update non-default values instead of all fields.

This silicon code may expose the APIs below.

	An API to initialize all policy data to the default value, based upon the
current silicon.

	An API to tell silicon code that all policy data have been updated, and they
are ready to consume.

	Library
	Interface
	Definition Location
	Producer
	Consumer in FSP Boot Path
	Consumer in EDK II Path

	SiliconPolicyInitLib
	SiliconPolicy
InitPreMemory
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
DonePreMemory
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
InitPostMemory
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
DonePostMemory
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
InitLate
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
DoneLate
	Silicon
	Silicon
	FspWrapper
PlatformLib
	Platform

	SiliconPolicyUpdateLib
	SiliconPolicy
UpdatePreMemory
	Minimum Platform /
Silicon
	Board
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
Update PostMemory
	Minimum Platform /
Silicon
	Board
	FspWrapper
PlatformLib
	Platform

	
	SiliconPolicy
UpdateLate
	Minimum Platform /
Silicon
	Board
	FspWrapper
PlatformLib
	Platform

Table 24 Silicon Policy Libraries

NOTE: A general guideline is that pointers should not be used in policies
that persist across the CAR to permanent memory boundary as the pointer
addresses will become invalid. Pre-memory only and post-memory only policies
are not affected by the memory transition. A pre-memory policy installation
PEIM should only be used for policies that must be updated in pre-memory for
early use by silicon code. The post-memory policy installation PEIM can be
compressed and does risk pointers becoming invalidated due to the memory
transition.

The policy configuration HOBs are inherently passed to DXE, so a silicon DXE
module can locate and install a policy protocol for a particular policy if it
is used in DXE.

4.6.1.2 Board Module Silicon Policy Data

Using the SiliconPolicyUpdateLib, the board package may reference a variety of
sources to obtain the board-specific policy values, including but limited to
the following common sources.

	PCD database

	UEFI Variable

	Binary Blob

	Built-in C structure

	Hardware information

4.6.1.3 Board Module Silicon Policy Update Completion

After policy configuration is completed, the board may indicate that the policy
is configured with board-specific actions in the SiliconPolicyDonePreMemory ()
API in SiliconPolicyInitLib.

4.6.1.4 Non-Intel® FSP Policy Data Flow

The SiliconPolicyPeiPreMemory module in the minimum platform package will
invoke the following policy configuration functions in the given order.

	BoardPreMemoryInit ()
	SiliconPolicyInitPreMemory ()

	SiliconPolicyUpdatePreMemory ()
	Minimum platform: Minor update of relevant options

	Fully featured platform (Stage VI and greater): Full update for all platform
features

	SiliconPolicyDonePreMemory ()

[image: Non-FSP Policy Data Flow]

Figure 6 Non-FSP Policy Data Flow

4.6.1.5 Intel® FSP Policy Data Flow

	UpdateFspmUpdData (Upd)

	SiliconPolicyInitPreMemory ()

	SiliconPolicyUpdatePreMemory ()

	Minimum platform: Minor update of relevant options

	Fully featured platform (Stage VI and greater): Full update for all platform
features

	SiliconPolicyDonePreMemory ()

[image: FSP Policy Data Flow]

Figure 7 FSP Policy Data Flow

4.6.2 HOB Output

	Intel® FSP HOB to PEI HOB transition

In an Intel® FSP API mode boot with an EDK II wrapper, the system will have
two HOB lists - one maintained in the FSP PEI environment and the other in the
FSP wrapper PEI environment. The FSP wrapper environment is responsible for
converting data from the FSP HOB to a PEI HOB. These HOBs are
platform-specific; examples include the SmbiosHob and GraphicInfoHob.

	PEI HOBs for Phase Handoff to DXE

4.6.3 MTRR Configuration Settings in Post-Memory

The system MTRR settings are typically configured in two locations after
permanent memory initialization.

	After permanent memory installation

At this point, cache attributes are set for PEI memory usage. This
specification does not require any particular MTRR configuration, as it is
ultimately dependent upon platform goals such as functionality and performance
given the device and storage technologies present on the platform. The most
common ranges configured are the default memory setting as UC, the DRAM region
as WB, and the SPI flash MMIO region as WP. These settings are usually applied
in a memory installation notification function or a PEIM shadow. The
architecture requires that the settings be applied in the board package.

	Prior to DXE IPL

At this point PEI execution has completed and control is transitioning to the
DXE phase. The MTRR settings are typically modified to prepare for the DXE
environment. The most common ranges configured are the default memory as WB,
the TSEG (SMRAM) region as UC, and MMIO as UC. These settings are usually
applied in an end of PEI notification function. The architecture requires that
the settings be applied in the board package.

 4.7 Additional Control Flows

4.7 Additional Control Flows

None

 4.8 Build Files

4.8 Build Files

This is appended to previous Build Files section.

	Name
	Consumer
	Standalone Buildable
	FV Produced
	Comments

	MinPlatformPkg
\Include\CorePostMemoryInclude.fdf
	Board
	No
	None

Table 25 Stage II Build Files

 4.9 Test Point Results

4.9 Test Point Results

	Test Point
	Test Subject
	Test Overview
	Reporting Mechanism

	TestPointMemory
DiscoveredMtrr
Functional ()
	MTRR after memory discovered
	Verifies MTRR settings.

(No overlap, PEI memory WB, Flash region is WP, MMIO UC)
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPointMemory
DiscoveredMemory
Resource
Functional ()
	Resource description HOB
	No memory resource overlap.
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPointMemory
DiscoveredFvInfo
Functional ()
	FV HOB and FV info PPI
	FV HOB and FV info PPI.
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table 26 Test Point Results

NOTE: ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT can be updated by
TestPointCheckLib. The format is similar to the HSTI. See Appendix - Interface
TestPoint.

 4.10 Functional Exit Criteria

4.10 Functional Exit Criteria

	Permanent memory is initialized.

	Temporary memory is disabled.

	PEI phase MTRR configuration settings are applied.

	Resource description HOB is built.

 4.11 Stage Enabling Checklist

4.11 Stage Enabling Checklist

The following steps should be followed to enable a platform for Stage II.

	Update GenerationOpenBoardPkg/BoardXXX

	Add Board boot mode detection code in BoardBootModeDetect (),
BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.

	The boot mode can be hardcoded. It should reflect actual
functionality based upon the feature, such as S3 (silicon register),
Capsule (variable), Recovery (GPIO).

	Add Board pre-memory initialization code in BoardInitBeforeMemoryInit () and BoardInitAfterMemoryInit (), BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemLib.c.

	It initializes board specific hardware devices, such as GPIO.

	It also updates pre-memory policy configuration by using PCD

	Add Board policy update code in SiliconPolicyUpdatePreMemory (),
BoardXXX/PeiSiliconPolicyUpdateLib/PeiBoardXXXInitPreMemoryLib.c.

	The PCD updated in BoardInitBeforeMemoryInit () might be used here.

	Ensure all PCDs in the configuration section (DSC files) are correct for your board.

	Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 2

	Ensure all required binaries in the flash file (FDF files) are correct for your board.

	Boot, collect log, verify test point results defined in section 4.9 are correct.

 5 Stage III: Boot to UEFI Shell

5.1 Overview

The primary objective of Stage III is to enable a minimal boot path that
successfully loads the UEFI Shell. A secondary objective for Stage III is to be
silicon and board agnostic. All silicon and board specific details should be
leveraged from Stages I and II. Demonstrating the capability to load the UEFI
shell does not imply that the UEFI shell is a required component in the end
product firmware. It does ensure that the platforms with a terminal boot stage
target greater than Stage II can load the UEFI shell so the system can be
analyzed and configured in the UEFI boot services environment with well-defined
behavior in a consistent manner with other Minimum Platform
specification-compliant systems.

The minimal UI capability that is required is serial console. UEFI variables
must be supported with at least emulated variable behavior. UEFI variable
storage to a non-volatile media such as SPI NOR flash is acceptable if the
platform requirements mandate such support. Additional capabilities are
optional and must not be assumed. These include USB input devices, graphics
devices, and other storage devices.

5.1.1 Major Execution Activities

	DXE Initial Program Load (IPL)

	DXE Core initialization and dispatcher execution

	Initialize the generic infrastructure required for the DXE environment o
Installation of DXE architectural protocols o Initialization of
architecturally required hardware such as timers

	Post-memory silicon policy initialization

	Serial console input and output capabilities

	Stage III Functionality

	Universally usable infrastructure: DXE Core, Minimal BDS, console infrastructure

	Silicon agnostic architectural protocol producing hardware modules

	UEFI Variable support (emulation allowed)

	UEFI Shell

	Tests for Memory Map, Cache Map, architectural hardware

5.1.2 Main Control Flow

Stage III extends Stage II control flow by executing Driver Execution
Environment (DXE), executing Boot Device Selection (BDS) and invoking the UEFI
Shell.

[image: Stage III Main Control Flow]

Figure 8 Stage III Main Control Flow

After memory is installed during Stage II, the remaining silicon and platform
initialization must take place in the PEI phase only. All silicon
initialization tasks should have been completed in Stage II, and there should
be no silicon-specific initialization required in the DXE phase. The default
console information should be transferred via a HOB and initialized and used in
Stage III.

 5.2 Firmware Volumes

5.2 Firmware Volumes

Stage III finalizes silicon and prepares DXE/BDS services. Additional firmware
volumes include:

	Name
	Content
	Compressed
	Parent FV

	FvUefiBoot
	Common DXE/BDS Services
	Yes
	None

Table 27 Stage III Firmware Volumes

Which yields this example extension of the flash map for MMIO storage (add to Stage I + II map):

	Binary
	FV
	Components
	Purpose

	Stage III
	FvUefiBoot.fv
	DxeCore.efi
	DXE services and dispatcher

	
	
	PcdDxe.efi
	Provides PCD services

	
	
	ReportStatusCodeRouterDxe.efi
	Provides status code infrastructure

	
	
	StatusCodeHandlerRuntimeDxe.efi
	Provides status code listeners

	
	
	BdsDxe.efi
	Provides Boot Device Selection phase

	
	
	CpuDxe.efi
	Provides processor services

	
	
	Metronome.efi
	Provides metronome HW abstraction

	
	
	MonotonicCounterRuntimeDxe.efi
	Provides monotonic counter service

	
	
	PcatRealTimeClockRuntimeDxe.efi
	Provides RTC abstraction

	
	
	WatchdogTimer.efi
	Provides watchdog timer service

	
	
	RuntimeDxe.efi
	Provides UEFI runtime service functionality

	
	
	HpetTimerDxe.efi
	Provide timer service

	
	
	EmuVariableRuntimeDxe.efi
	Provides UEFI variable service

	
	
	CapsuleRuntimeDxe.efi
	Provides capsule service

	
	
	PciBusDxe.efi
	PCI bus driver

	
	
	GraphicsOutputDxe.efi
	Provides graphics support

	
	
	TerminalDxe.efi
	Provides terminal services

	
	
	GraphicsConsoleDxe.efi
	Provides graphics console

	
	
	ConSplitterDxe.efi
	Provides multi console support

	
	
	EnglishDxe.efi
	Provides Unicode collation services

	
	
	GenericMemoryTestDxe.efi
	Provide memory test

	
	
	DevicePathDxe.efi
	Provides device path services

	
	
	DiskIo.efi
	Provides disk IO services

	
	
	Partition.efi
	Provides disk partition services

	
	
	Fat.efi
	Provides FAT filesystem services

	
	
	Additional Components
	Additional post-memory components required for Stage III boot

Table 28 Stage III FV and Component Layout

See Appendix: Full FV Map for a more complete example Firmware Volume layout.

 5.3 Modules

5.3 Modules

Only modules in the board package should be modified in the process of board
porting. The minimum platform package and other common package contents must
not be directly modified. The board package and silicon package modules may
have multiple instances to support different boards and different silicon.
These components are required. They enable orderly board porting and add the
support for extensibility in later stages. The libraries consumed are the
subset of libraries required by this specification. Some libraries are defined
in this specification, some are defined in EDK II documentation.

5.3.1 UEFI Components (DXE)

	Item
	Producing Package
	Libraries Consumed
	Comments

	DxeCore.efi
	MdeModulePkg
	
	

	PcdDxe.efi
	MdeModulePkg
	
	

	BdsDxe.efi
	MdeModulePkg
	PlatformBootManagerLib
	

	CpuDxe.efi
	UefiCpuPkg
	
	Architecture Protocol

	Metronome.efi
	MdeModulePkg
	
	Architecture Protocol

	MonotonicCounterRuntimeDxe.efi
	MdeModulePkg
	
	Architecture Protocol

	PcatRealTimeClockRuntimeDxe.efi
	PcAtChipsetPkg
	
	Architecture Protocol

	WatchdogTimer.efi
	MdeModulePkg
	
	Architecture Protocol

	RuntimeDxe.efi
	MdeModulePkg
	
	Architecture Protocol

	SecurityStubDxe.efi
	SecurityPkg
	
	Architecture Protocol

	HpetTimerDxe.efi (*)
	PcAtChipsetPkg
	
	Architecture Protocol

	VariableRuntimeDxe.efi /
	MdeModulePkg
	
	Architecture Protocol

	VariableSmmRuntimeDxe.efi
	
	
	

	CapsuleRuntimeDxe.efi
	MdeModulePkg
	
	Architecture Protocol

	PciBusDxe.efi
	MdeModulePkg
	
	PCI

	TerminalDxe.efi
	MdeModulePkg
	
	Terminal

	ConSplitterDxe.efi
	MdeModulePkg
	
	Console

	EnglishDxe.efi
	MdeModulePkg
	
	Localization

	DevicePathDxe.efi
	MdeModulePkg
	
	Other

	Optional drivers
	
	
	

	GraphicsOutputDxe.efi
	MdeModulePkg
	
	Graphics

	GraphicsConsoleDxe.efi
	MdeModulePkg
	
	Console

	MemoryTest.efi
	MdeModulePkg
	
	Other

	ReportStatusCodeRouterDxe.efi
	MdeModulePkg
	
	Status code

	StatusCodeHandlerRuntimeDxe.efi
	MdeModulePkg
	SerialPortLib
	Status code

Table 29 Stage III DXE UEFI Components

* An alternative timer module may be used to produce an instance of gEfiTimerArchProtocolGuid.

5.3.2 Platform Architecture Libraries

No board porting of these libraries is required.

	Item
	API Definition Package
	Producing Package
	Description

	SerialPortLib
	MdeModulePkg
	MinPlatformPkg
	Serial port leveraging PEI and HOB initialization.

	PlatformBoot ManagerLib
	MdeModulePkg
	MinPlatformPkg
	Basic platform boot manager port.

Table 30 Stage III Platform Architecture Libraries

 5.4 Required Functions

5.4 Required Functions

The following functions are required to exist and to execute in the listed
order. The component that provides the function is not specified because it is
not required by the architecture.

5.4.1 Required PEI functions

	Name
	Purpose

	BoardInitBeforeSiliconInit
	Board initialization hook

	SiliconPolicyInitPostMemory
	Silicon post memory policy initialization

	SiliconPolicyUpdatePostMemory
	Board updates silicon policies

	SiliconPolicyDonePostMemory
	Complete post memory silicon policy data collection

	BoardInitAfterSiliconInit
	Board specific initialization after silicon is initialized

	DxeLoadCore (*)
	DXE IPL locate and call DXE Core

	SetCacheMtrrAfterEndOfPei
	Sets cache map in preparation for DXE

	TestPointEndOfPei
	Verify expected state as we exit PEI phase

	TestPointPostMemoryMtrrEndOfPeiFunctional
	Basic test for cache configuration before entering DXE

Table 31 Stage III Required PEI Functions

* In the common EDK II open source code.

5.4.2 PEI Interfaces

	Component
	Name
	Consumer
	Purpose

	BoardInitLib
	BoardInitBeforeSiliconInit
	Platform
	Board specific initialization before silicon initialization

	
	BoardInitAfterSiliconInit
	Platform
	Board specific initialization after silicon initialization

	SiliconPolicyInitLib
	SiliconPolicyInitPostMemory
	Platform
	Silicon provides default policy

	
	SiliconPolicyDonePostMemory
	Platform
	Platform to indicate the policy update is done

	
	SiliconGetPolicySubData
	Board
	Return policy data for update.

	SiliconPolicyUpdateLib
	SiliconPolicyUpdatePostMemory
	Platform
	Board updates default policy

Table 32 Stage III PEI Functions

5.4.3 Required DXE functions

	Name
	Purpose

	DxeMain (*)
	DXE entry point

	CoreStartImage (*)
	DXE driver entry point

	SiliconPolicyInitLate
	Silicon policy late (DXE) initialization

	SiliconPolicyUpdateLate
	Silicon policy late (DXE) update from the board package

	SiliconPolicyDoneLate
	Silicon policy late (DXE) indication policy initialization is done

	CoreAllEfiServicesAvailable (*)
	Verify all architectural protocols are installed

	BdsEntry (*)
	BDS entry point

	PlatformBootManagerBeforeConsole (*)
	Platform-specific BDS functionality before console

	BoardInitAfterPciEnumeration
	Board-specific hook after PCI enumeration completion

	TestPointPciEnumerationDone
	Test to verify PCI enumeration assignment

	ExitPmAuth
	Signal key security events EndOfDxe and SmmReadyToLock

	TestPointEndOfDxe
	Test to verify expected state after EndOfDxe

	TestPointDxeSmmReadyToLock
	Test to verify expected state after SmmReadyToLock

	EfiBootManagerDispatchDeferredImages (*)
	Dispatch deferred third party UEFI driver OPROMs

	PlatformBootManagerAfterConsole (*)
	Platform specific BDS functionality after console

	BootBootOptions (*)
	Attempt each boot option

	EfiSignalEventReadyToBoot (*)
	Signals the ReadyToBoot event group

	BoardInitReadyToBoot
	Board hook on ReadyToBoot event

	TestPointReadyToBoot
	Test to verify expected state after ReadyToBoot event signal

	UefiMain (*)
	UEFI Shell entry point

Table 33 Stage III DXE Functions

5.4.4 DXE Interfaces

	Component
	Name
	Consumer
	Purpose

	BoardInitLib
	BoardNotificationInit
	Platform
	Board specific initialization hook at DXE phase

Table 34 Stage III DXE Interfaces

 5.5 Configuration

5.5 Configuration

This section defines the configurable items that must be available to achieve
Stage III functionality.

These definitions may be both source and binary in nature.

5.5.1 FV Related Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootBase
	UefiBoot FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootSize
	UefiBoot FV size.

Table 35 Stage III Flash Map Configuration PCDs

5.5.2 Driver Related Configuration

	PCD
	Purpose

	gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvModeEnable
	Enables UEFI variable emulation mode.

Table 36 Stage III Driver Configuration

 5.6 Data Flows

5.6 Data Flows

This section defines the architecturally defined data structures and the ways
this data flows through the system over time. In addition to the definition and
lifecycle for important pieces of data.

5.6.1 Memory Map Flow

The detailed description on memory map can be found in the whitepaper A Tour Beyond BIOS
Memory Map and Practices in UEFI
BIOS.

 5.7 Additional Control Flows

5.7 Additional Control Flows

None

 5.8 Build Files

5.8 Build Files

This is appended to previous Build files section.

	Name
	Consumer
	Standalone Buildable
	FV Produced
	Comments

	MinPlatformPkg
\Include\CoreUefiBootInclude.fdf
	Board
	No
	None

Table 37 Stage III Build Files

 5.9 Test Point Results

5.9 Test Point Results

	Test Point
	Test Subject
	Test Overview
	Reporting Mechanism

	TestPoint
EndOfPeiMtrr
Functional ()
	MTRR after EndOfPei
	Confirm MTRR settings.

Example:	No overlap
	DXE memory is WB
	MMIO is UC
	Flash region is UC

	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
EndOfPei
SystemResource
Functional ()
	Resource HOB

SMRAM HOB
	SMRAM

No system resource overlap
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
EndOfPei
PciBusMaster
Disabled ()
	PCI device

BME
	Check if BME is cleared
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
PciEnumerationDone
PciResource
Allocated ()
	PCI device resource
	Check if all PCI devices have
been assigned proper resources.
	Dump PCI resource assignment.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
PciEnumerationDone
PciBusMaster
Disabled ()
	PCI device

BME
	Check if BME is cleared
	Dump result to serial log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
EndOfDxe
NoThirdParty
PciOptionRom ()
	3rd party PCI option ROMs
	Check if any 3rd party PCI option
ROMs have been dispatched before EndOfDxe.
	Dump LoadedImage.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
UefiMemoryAttribute
TableFunctional ()
	UEFI memory attribute table
	Table is reported.

Image code and data is consistent with the table.
	Dump UEFI Table and UEFI
Image Info.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
MemoryTypeInformation
Functional ()
	Memory type information
	Inspect and verify memory type
information is correct.

Confirm no fragmentation exists in the ACPI/Reserved/Runtime memory regions.
	Dump the memory type information
settings to the debug log.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
UefiConsoleVariable
Functional ()
	Console
	Inspect and verify console variable
information is correct.
	Dump the variable information to
the serial log

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
UefiBootVariable
Functional ()
	Boot Option
	Inspect and verify boot option
information is correct.
	Dump the variable information to the
serial log

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table 38 Stage III Test Point Results

 5.10 Functional Exit Criteria

5.10 Functional Exit Criteria

	UEFI Shell can be loaded and invoked by the platform firmware.

	The DXE MTRRs are set correctly and verified in the test point results.

 5.11 Stage Enabling Checklist

5.11 Stage Enabling Checklist

The following steps should be followed to enable a platform for Stage III.

	Add board post-memory initialization code in BoardInitBeforeSiliconInit ()
and BoardInitAfterSiliconInit (), BoardPkg/BoardInitLib/PeiBoardXXXInitPostMemoryLib.c.

	Initialize board-specific hardware device, such as GPIO.

	Update post-memory policy configuration by using PCD.

	Add board policy update code in SiliconPolicyUpdatePostMemory (),
BoardPkg\PeiSiliconPolicyUpdateLib \PeiBoardXXXInitLib.c.

	The PCD updated in BoardInitBeforeSiliconInit () might be used here.

	Add board initialization DXE code in BoardInitAfterPciEnumeration (),
BoardInitReadyToBoot (), BoardInitEndOfFirmware ().

	NOTE: The functions may be empty if nothing needs to be updated.

	Ensure all PCDs in the configuration section (DSC files) are correct for your board.

	Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 2

	Ensure all required binaries in the flash file (FDF files) are correct for your board.

	Boot, collect debug log, and verify the test point results defined in section 5.9 are correct.

 6 Stage IV: Boot to OS

6.1 Overview

The objective of Stage IV is to enable a minimal boot path that successfully
boots a commercial operating system such as Linux or Windows, with UEFI
interfaces exposed to the OS implemented in compliance with the UEFI
specification. The minimal boot path only involves functionality necessary to
load the OS to a state where a user may begin performing more complex
interactions. This involves successfully reaching an environment that allows
the user to launch applications. The stage does not include support for all
applications that, for example, may require certain CPU or GPU features
enabled. Nor does it require any further support, including but not limited to
device and system power management, full hardware performance support enabled,
system reset support, etc.

Any additional functionality is classified as an advanced feature. Those
features are collectively enabled in Stage VI.

6.1.1 Major Execution Activities

	Stage IV Modules

	Minimum ACPI table initialization

	Additional input, output, and storage support based on platform and operating system requirements

	SMM

	Perform ACPI enable/disable

	Kernel debug support

	UEFI variable support

6.1.2 Main Control Flow

Stage IV introduces additional functionality to meet the minimal requirements
for a UEFI-compliant operating system. Much of the support required will be
performed during the DXE phase interleaving Stage IV control flows with
pre-existing control flows from Stage III. A minimum set of ACPI tables, namely
RSDT, FACP, FACS, FADT, MADT, HPET and DSDT, need to be initialized and
published. If there are alternative and/or additional operating system
expectations such as full DeviceTree support, that should be enabled to allow
the operating system to be loaded.

It is recommended that only the mandatory boot option devices are connected in
BDS to minimize complexity and boot time in the minimal execution path to the
operating system. In the flow diagram below, the left half is identical to the
functionality enabled by Stage III prior to entering the BDS phase. It is
expected that the Stage III components are reused to complete Stage IV tasks.

The green blocks in Figure 9 Stage IV Control Flow reuse the existing blocks
from Stage III.

[image: Stage IV Main Control Flow]

Figure 9 Stage IV Main Control Flow

 6.2 Firmware Volumes

6.2 Firmware Volumes

Stage IV finalizes silicon initialization, adds basic operating system required
interfaces, and supports minimally featured operating system boot. The new
components are support in a dedicated firmware volume.

	Name
	Content
	Compressed
	Parent FV

	FvOsBoot
	DXE/BDS Services
	Yes
	None

	FvLateSilicon
	ACPI and SMM silicon support
	No
	FvOsBoot

Table 39 Stage IV Firmware Volumes

Which yields this example extension of the flash map for MMIO storage (add to
Stage I + II + III map):

	Binary
	FV
	Components
	Purpose

	Stage IV
	FvOsBoot.fv
	FvLateSilicon.fv (child FV)
	

	
	
	Additional Components
	Additional silicon initialization support that is performed late in the boot

	
	
	AcpiTable.efi
	Provides common ACPI services

	
	
	PlatformAcpi.efi
	Provides MinPlatform ACPI content

	
	
	BoardAcpi.efi
	Provides board ACPI content

	
	
	PiSmmIpl.efi
	SMM initial loader

	
	
	PiSmmCore.efi
	SMM core services

	
	
	ReportStatusCodeRouterSmm.efi
	SMM status code infrastructure

	
	
	StatusCodeHandlerSmm.efi
	SMM status code handlers

	
	
	PiSmmCpu.efi
	SMM CPU services

	
	
	CpuIo2Smm.efi
	SMM CPU IO services

	
	
	FaultTolerantWriteSmm.efi
	SMM fault tolerant write services

	
	
	SpiFvbServiceSmm.efi
	SMM SPI FLASH services

	
	
	Additional Components
	Additional post-memory components required for Stage IV boot

Table 40 Stage IV FV and Component Layout

See Appendix: Full FV Map for a more complete example Firmware Volume layout.

 6.3 Modules

6.3 Modules

Only modules in the board package should be modified in the process of board
porting. The minimum platform package and other common package contents must
not be directly modified. The board package and silicon package modules may
have multiple instances to support different boards and different silicon.
These components are required. They enable orderly board porting and add the
support for extensibility in later stages. The libraries consumed are the
subset of libraries required by this specification. Some libraries are defined
in this specification, some are defined in EDK II documentation.

6.3.1 UEFI Components (DXE)

These components are required. They enable orderly board porting and orderly
extensibility to add functionality over time.

The libraries consumed are the subset of libraries required by this
specification. Some libraries are defined in this specification, some are
defined in EDK II documentation.

	Item
	Producing Package
	Libraries Consumed

	AcpiTable.efi
	MdeModulePkg
	

	PlatformAcpi.efi
	MinPlatformPkg
	BoardAcpiLib

Table 41 Stage IV ACPI DXE UEFI Components

6.3.2 UEFI Components (DXE)

	Item
	Producing Package
	Libraries Consumed

	SataControllerDxe.efi
	MdeModulePkg
	

	AtaAtapiPassThru.efi
	MdeModulePkg
	

	AtaBusDxe.efi
	MdeModulePkg
	

	UhciDxe.efi
	MdeModulePkg
	

	EhciDxe.efi
	MdeModulePkg
	

	XhciDxe.efi
	MdeModulePkg
	

	UsbBusDxe.efi
	MdeModulePkg
	

	UsbMassStorageDxe.efi
	MdeModulePkg
	

	UsbKbDxe.efi
	MdeModulePkg

Table 42 Stage IV DXE UEFI Components

6.3.3 UEFI Components (SMM)

	Item
	Producing Package
	Libraries Consumed

	PiSmmIpl.efi
	MdeModulePkg
	

	PiSmmCore.efi
	MdeModulePkg
	

	ReportStatusCodeRouterSmm.e fi
	MdeModulePkg
	

	StatusCodeHandlerSmm.efi
	MdeModulePkg
	SerialPortLib

	PiSmmCpu.efi
	UefiCpuPkg
	

	CpuIo2Smm.efi
	UefiCpuPkg
	

	FaultTolerantWriteSmm.efi
	MdeModulePkg
	

	SpiFvbServiceSmm.efi
	MinPlatformPkg

Table 43 Stage IV SMM UEFI Components

6.3.4 Platform Architecture Libraries

Board porting will require creation of libraries identified as produced by the
BoardPkg. Depending on the board, there may be existing libraries that are
sufficient for a board, so it is important to assess the utility of existing
library instances when developing board support.

	Item
	API Definition Package
	Producing Package
	Description

	BoardAcpiLib
	MinPlatformPkg
	BoardPkg
	Services for ACPI table creation

Table 44 Stage IV Platform Architecture Libraries

 6.4 Required Functions

6.4 Required Functions

The following functions are required to exist and to execute in the given
order. The component that provides the function is not specified because it is
not required by the architecture.

The required functions for Stage IV are organized by phase and subsystem (e.g.
ACPI, SMM, etc). See Appendix: Full Functions Map for a complete ordering for
all stages.

6.4.1 Required DXE Functions

	Name
	Purpose

	PlatformCreateAcpiTable
	Create the minimum set of platform-specific ACPI tables

	PlatformUpdateAcpiTable
	Update data in platform-specific in ACPI tables

	PlatformInstallAcpiTable
	Install platform-specific ACPI tables

	CoreExitBootServices (*)
	Dismantles UEFI boot services and enter UEFI run time

	BoardInitEndOfFirmware
	Board hook for the ExitBootServices event

	TestPointExitBootServices
	Test to verify state after ExitBootServices has been invoked

	RuntimeDriverSetVirtualAddressMap (*)
	Sets virtual address mode

Table 45 Stage IV DXE Functions

* In the common EDK II open source code.

6.4.2 DXE Interfaces

	Component
	Name
	Consumer
	Purpose

	BoardInitLib
	BoardNotificationInit
	Platform
	Board specific initialization hook at DXE phase

Table 46 Stage IV DXE Interfaces

6.4.3 Required SMM Functions

	Name
	Purpose

	SmmIplEntry (*)
	SMM IPL

	SmmMain (*)
	SMM Core entry point

	PiCpuSmmEntry (*)
	SMM CPU driver

	SmmRelocateBases (*)
	Relocation

	_SmiEntryPoint (*)
	SMI entry point

	SmmEntryPoint (*)
	Dispatch SMI handlers

	PchSmmCoreDispatcher
	Dispatch PCH child SMI handlers

	TestPointSmmEndOfDxe
	Verify state after SmmEndOfDxe

	TestPointSmmEndOfDxe
	Verify state after SmmEndOfDxe

	TestPointSmmReadyToLock
	Verify state after SmmReadyToLock

	PlatformEnableAcpiCallback
	Switch the system to ACPI mode

	BoardEnableAcpiCallback
	Board hook for ACPI mode switch

Table 47 Stage IV SMM Functions

* In the common EDK II open source code.

6.4.4 SMM Interfaces

	Component
	Name
	Consumer
	Purpose

	BoardAcpiLib
	BoardEnableEcAcpiMode ()
	Platform
	Board specific ENABLE_ACPI_MODE action

	
	BoardDisableEcAcpiMode ()
	Platform
	Board specific DISABLE_ACPI_MODE action

Table 48 Stage IV SMM Interfaces

 6.5 Configuration

6.5 Configuration

This section defines the configurable items that must be available to achieve
Stage IV functionality.

These definitions may be both source and binary in nature.

6.5.1 Memory Type Information Related Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.
	Memory size reserved for ACPI reclaim memory

	PcdPlatformEfiAcpiReclaimMemorySize
	

	gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiAcpiNvsMemorySize
	Memory size reserved for ACPI NVS memory

	gMinPlatformPkgTokenSpaceGuid.
	Memory size reserved for EFI reserved memory

	PcdPlatformEfiReservedMemorySize
	

	gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiRtDataMemorySize
	Memory size reserved for EFI runtime data memory

	gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiRtCodeMemorySize
	Memory size reserved for EFI runtime code memory

Table 49 Memory Type Information Configuration

6.5.2 FV Related Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootBase
	OsBoot FV base address

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootSize
	OsBoot FV size

Table 50 Flash Map Configuration PCDs

 6.6 Data Flows

6.6 Data Flows

This section defines the architecturally defined data structures and the ways
this data flows through the system over time. In addition to the definition and
lifecycle for important pieces of data.

ACPI tables in this stage are located using AcpiSdtProtocol supplied by
MdeModulePkg. These tables are updated with the help existing HOBs, policies
for different silicon components. APIs to update these tables are located in
the AcpiPlatfrom DXE driver.

 6.7 Additional Control Flows

6.7 Additional Control Flows

None

 6.8 Build Files

6.8 Build Files

This is appended to previous Build files section.

	Name
	Consumer
	Standalone Buildable
	FV Produced
	Comments

	MinPlatformPkg
\Include\CoreOsBootInclude.fdf
	Board
	No
	None
	Stage IV required components

Table 51 Stage IV Build Files

 6.9 Test Point Results

6.9 Test Point Results

	Test Point
	Test Subject
	Test Overview
	Reporting Mechanism

	TestPoint
ReadyToBoot
AcpiTable
Functional ()
	ACPI table(s)
		Table is reported.
	MADT is consistent with MP services.

	Dump ACPI tables.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
SmmReadyToLock
SecureSmmCommunication
Buffer ()
	SMM communication buffer
	Only CommBuffer(s) and MMIO
are mapped in the page table.
	Dump memory map and
 GCD map at SmmReadyToLock and
check at SmmReadyToBoot.

	TestPoint
SmmReadyToLock
SmmMemoryAttributeTable
Functional ()
	SMM memory page attribute table
	Table is reported. Image code/data
mapping is accurate.	GDT, IDT, and page table are RO
	Data is NX
	Code is RO

	Dump SMM table and SMM Image Info.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
SmmEndOfDxe
Smrr
Functional ()
	SMRR
		SMRR is aligned.
	SMRR matches SMRAM_INFO

	Dump SMRR and SMRAM_INFO.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
SmmReadyToBoot
SmmPageProtection ()
	SMM page table
	SMM page table matches
SmmMemoryAttribute table.
	Report error based upon check.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
DxeSmmReadyToLock
SmramAligned ()
	SMRAM info
	SMRAM is aligned.
	Dump SMRAM region table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
DxeSmmReadyToLock
WsmtTable
Functional ()
	WSMT table
	WSMT is reported.
	Dump WSMT table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
DxeSmmReadyToBoot
SmiHandlerInstrument ()
	SmiHandler profile
	SmiHandler profile.
	Dump SMI Handler profile.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table 52 Stage IV Test Point Results

 6.10 Functional Exit Criteria

6.10 Functional Exit Criteria

	Successfully load a UEFI compatible operating system such that all firmware
interfaces required for the OS to load are satisfied (optional interfaces
not necessary for loading are not required).

	On an x86 compatible system which supports SMM, SMM is initialized.

	Core/CPU
	CPU code relocates SMM base.

	CPU code sets SMRR correctly.

	CPU sets SMM_CODE_CHECK.

	Silicon

	Silicon provides software SMI registration capability.

	Silicon provides capability Sx SMI registration capability.

	The minimum ACPI tables described in this section are installed.

 6.11 Stage Enabling Checklist

6.11 Stage Enabling Checklist

The following steps should be followed to enable a platform for Stage IV.

	Install the minimal DSDT

	In rare cases: Install board-specific SSDT

	Ensure all PCDs in the configuration section (DSC files) are correct for your board.

	Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 4

	Ensure all required binaries in the flash file (FDF files) are correct for your board.

	Boot, collect log, verify test point results defined in section 6.9 Test Point Results are correct

 7 Stage V: Security Enable

7.1 Overview

The objective of Stage V is to establish the basic system security foundation
for a production environment. Given the importance of security for all
connected systems, the platform architecture considers the following basic
security features as minimum requirements for any product and thus an important
part of the effort to produce a minimal platform. This stage is concerned with
enabling security technologies described in industry specifications.
Lower-level chipset-specific security technologies such as register locks may
exist and those should be enabled during standard silicon initialization flows
in earlier stages.

7.1.1 Major Execution Activities

	Stage V Modules

	Full UEFI variable services support (i.e. non-volatile, volatile, and authenticated)

	Authenticated boot (HW and UEFI)

	TCG trusted boot (if TPM HW is present)

	DMA protection

7.1.2 Main Control Flow

Stage V introduces new modules and requirements to the boot incrementally over
Stage IV. The key requirement is to satisfy industry standard security
specifications applicable to the platform. The security technologies enabled in
this stage are not strictly bound to the definition in this specification and
may consist of a subset or superset of the content described in this section.
However, the only case in which a modern production system should not implement
a form of any of these technologies is if the necessary hardware is not
available. In all other cases, the system must at least implement a form of the
following:

	Hardware rooted authenticated boot that can establish a Static Root of Trust
for Verification (S-RTV) and continue an authenticated chain of verification
throughout the boot process.

	System measurement capability that allows the firmware to serve as a Static
Root of Trust for Measurement (S-RTM).

	Protection from Direct Memory Access (DMA) attacks.

The TCG measured boot chain of trust is should be enabled in this stage. At
this point, Authenticated UEFI Variable support must be completely functional.
This is a basic requirement for secure authentication and management of the
UEFI Secure Boot keys.

 7.2 Firmware Volumes

7.2 Firmware Volumes

Stage V supports key security features. Additional FV are:

	Name
	Content
	Compressed
	Parent FV

	FvSecurity
	Security related modules
	No
	None

	NvStorage
	Real NV storage on flash
	No
	None

Table 53 Stage V Firmware Volumes

Which yields this example extension of the flash map for MMIO storage (add to Stage I - IV map):

	Binary
	FV
	Components
	Purpose

	Stage V
	FvSecurity.fv
	Tcg2Dxe.efi
	TPM2 services

	
	
	Tcg2ConfigDxe.efi
	TPM2 configuration UI.

	
	
	Tcg2PlatformDxe.efi
	TPM2 platform module.

	
	
	Tcg2Smm.efi
	TPM2 ACPI services.

	
	
	TcgMor.efi
	TCG Memory Override support

	
	
	IntelVTdPmrPei.efi
	IOMMU PEI services.

	
	
	IntelVTdDxe.efi
	IOMMU DXE services.

	
	
	SecurityStubDxe.efi
	Provide security architecture protocol.

	
	
	FaultTolerantWriteSmm.efi
	Fault-tolerant services in SMM.

	
	
	VariableSmm.efi
	Provide Variable service in SMM.

	
	
	VariableSmmRuntimeDxe.efi
	Provide Variable service in UEFI.

	
	
	SecureBootConfigDxe.efi
	SecureBoot configuration UI.

	
	
	Additional Components
	Additional post-memory components required for Stage V boot

Table 54 Stage V FV and Components Layout

See Appendix: Full FV Map for a more complete example Firmware Volume layout.

 7.3 Modules

7.3 Modules

Only modules in the board package should be modified in the process of board
porting. The minimum platform package and other common package contents must
not be directly modified. The board package and silicon package modules may
have multiple instances to support different boards and different silicon.
These components are required. They enable orderly board porting and add the
support for extensibility in later stages. The libraries consumed are the
subset of libraries required by this specification. Some libraries are defined
in this specification, some are defined in EDK II documentation.

7.3.1 UEFI Components (PEI)

These components are required. They enable orderly board porting and orderly
extensibility to add functionality over time.

The libraries consumed are the subset of libraries required by this
specification. Some libraries are defined in this specification, some are
defined in EDK II documentation.

	Item
	Producing Package
	Libraries Consumed

	Tcg2Pei.efi
	SecurityPkg
	

	Tcg2ConfigPei.efi
	SecurityPkg
	

	Tcg2PlatformPei.efi
	MinPlatformPkg
	

	IntelVTdPmrPei.efi
	IntelSiliconPkg

Table 55 Stage V PEI UEFI Components

7.3.2 UEFI Components (DXE)

These components are required. They enable orderly board porting and orderly
extensibility to add functionality over time.

The libraries consumed are the subset of libraries required by this
specification. Some libraries are defined in this specification, some are
defined in EDK II documentation.

	Item
	Producing Package
	Libraries Consumed

	TcgMor.efi
	SecurityPkg
	

	Tcg2Dxe.efi
	SecurityPkg
	

	Tcg2ConfigDxe.efi
	SecurityPkg
	

	Tcg2PlatformDxe.efi
	MinPlatformPkg
	

	VariableSmmRuntimeDxe.efi
	MdeModulePkg
	

	SecureBootConfigDxe.efi
	SecurityPkg
	

	SecurityStubDxe.efi
	MdeModulePkg
	

	IntelVTdDxe.efi
	

Table 56 Stage V DXE UEFI Components

7.3.3 UEFI Components (SMM)

These components are required. They enable orderly board porting and orderly
extensibility to add functionality over time.

The libraries consumed are the subset of libraries required by this
specification. Some libraries are defined in this specification, some are
defined in EDK II documentation.

	Item
	Producing Package
	Libraries Consumed

	Tcg2Smm.efi
	SecurityPkg
	

	FaultTolerantWriteSmm.efi
	MdeModulePkg
	

	VariableSmm.efi
	MdeModulePkg

Table 57 Stage V SMM UEFI Components

7.3.4 Platform Architecture Libraries

Board porting will require creation of libraries identified as produced by the
BoardPkg. Depending on the board, there may be existing libraries that are
sufficient for a board, so it is important to assess the utility of existing
library instances when developing board support.

	Item
	API Definition Package
	Producing Package
	Description

	
	
	

Table 58 Stage V Platform Architecture Libraries

 7.4 Required Functions

7.4 Required Functions

The following functions are required to exist and to execute in the given
order. The component that provides the function is not specified because it is
not required by the architecture.

* In the common EDK II open source code.

The required functions for Stage IV are presented organized by phase and
subsystem (e.g. ACPI, SMM, etc). See Appendix: Full Functions Map for a
complete ordering for all stages.

7.4.1 Required PEI functions

	Name
	Purpose

	PeimEntryMA (*)
	Entry point for the TPM2 PEIM

	IntelVTdPmrInitialize (*)
	Entry point for the VT-d PEIM

Table 59 Stage V PEI Functions

* In the common EDK II open source code.

7.4.2 Required DXE functions

	Name
	Purpose

	DriverEntry (*)
	Entry point for the TPM2 DXE module

	IntelVTdInitialize(*)
	Entry point for the VT-d DXE module

	UserPhysicalPresent (*)
	Indicates whether a physical user is present for UEFI secure boot

	ProcessTcgPp
	Process the TPM physical presence (PP) request

	ProcessTcgMor
	Process the TPM memory overwrite request (MOR)

Table 60 Stage V DXE Functions

* In the common EDK II open source code.

7.4.3 Required SMM functions

	Name
	Purpose

	InitializeTcgSmm (*)
	Entry point for the TPM2 SMM module

	MemoryClearCallback (*)
	Callback function for setting the MOR variable

Table 61 Stage V SMM Functions

* In the common EDK II open source code.

 7.5 Configuration

7.5 Configuration

This section defines the configurable items that must be available to achieve
Stage IV functionality.

These definitions may be both source and binary in nature.

7.5.1 Security Related Configuration

	Component
	Name
	Producer
	Consumer
	Purpose
	Porting Category

	Post Build
	PK
	Board
	Core
	PK variable
	Platform Policy: UEFI Secure Boot

	
	KEK
	Board
	Core
	KEK variable
	Platform Policy: UEFI Secure Boot

	
	db
	Board
	Core
	db variable
	Platform Policy: UEFI Secure Boot

	
	dbx
	Board
	Core
	dbx variable
	Platform Policy: UEFI Secure Boot

	PcdTpmInstance
Guid
	GUID
	Board
	Core
	Select TPM instance
	Platform Policy: TCG trusted boot

	PcdTpm2
InitializationPolicy
	UINT8
	Board
	Core
	Choose if TPM driver need send Tpm2Init.
	Platform Policy: TCG trusted boot

	PcdTpm2Self
TestPolicy
	UINT8
	Board
	Core
	Choose if TPM driver need send Tpm2SelfTest
	Platform Policy: TCG trusted boot

	PRE_MEM_SILICON_POLICY
	MOR data
	Board
	Silicon
	The board code consumes the MOR variable and pass it to MemoryInit module as policy
	Platform Policy: TCG MOR

	L"MemoryOverwrite
RequestControl"
	MOR Variable
	OS
	Board
	OS indicates to UEFI FW the MOR request.
	Platform Policy: TCG MOR

	PcdVTdPolicy
PropertyMask
	VTd policy mask
	Platform
	Core
	VTd policy
	Platform Policy: DMA

Table 62 Stage V Security Configuration

7.5.2 FV Related Configuration

	PCD
	Purpose

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageVariableBase
	Base address of the NV variable range in flash device.

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageVariableSize
	Size of the non-volatile variable range. Note that this value should less than or equal to PcdFlashNvStorageFtwSpareSize.

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwWorkingBase
	Base address of the FTW working block range in flash device.

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwWorkingSize
	Size of the FTW working block range.

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwSpareBase
	Base address of the FTW spare block range in flash device. Note that this value should be block size aligned.

	gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwSpareSize
	Size of the FTW spare block range. Note that this value should larger than PcdFlashNvStorageVariableSize and block size aligned.

	gMinPlatformPkgTokenSpaceGuid. PcdFlashFvSecurityBase
	Security FV base address.

	gMinPlatformPkgTokenSpaceGuid. PcdFlashFvSecuritySize
	Security FV size.

Table 63 Stage V Flash Map Configuration PCDs

7.5.3 Feature Related Configuration

	PCD
	Purpose

	gMinPlatformModuleTokenSpaceGuid.PcdSmiHandlerProfileEnable
	Enable SMI handler profile.

	gMinPlatformModuleTokenSpaceGuid.PcdTpm2Enable
	Enable TPM2.

	gMinPlatformModuleTokenSpaceGuid.PcdUefiSecureBootEnable
	Enable UEFI Secure Boot.

Table 64 Stage V Feature Configuration

 7.6 Data Flows

7.6 Data Flows

This section defines the architecturally defined data structures and the ways
this data flows through the system over time. In addition to the definition and
lifecycle for important pieces of data.

 7.7 Additional Control Flows

7.7 Additional Control Flows

This section describes how the security features are embedded in the control
flows. PSCS/ChipSec required features should be enabled in this stage in addition
to other general security flow. This section will also elaborate on each security
feature and the platform code implementation required to enable the feature.

Note: Some of these features can be treated as an advanced feature and can
be turned on or off based on system-specific usage. However, this section
serves as a guideline to develop platform code for security features.

7.7.1 UEFI Secure Boot

Refer to the UEFI specification and the whitepaper
A Tour Beyond BIOS - Implementing UEFI Authenticated Variables in SMM with EDK II

7.7.2 Hardware Authenticated Boot

UEFI Secure boot provides verification of 3rd party drivers, such as the OS
loader or PCI option ROMs.

A platform may provide additional authentication for firmware volume.

For example: Intel Boot Guard, or PI signed FV.

	Intel® Boot Guard provides a hardware way to verify the initial boot block
(IBB) code. After power on, the CPU Microcode finds a Boot Guard ACM and
executes the Boot Guard ACM, which is signed by Intel. Then the Boot Guard
ACM takes the Boot Guard manifest and verifies the IBB code.

	The PI specification also provides the verification for the system firmware
code on the board. Refer to PI specification, EFI Signed Firmware Volumes and
EFI Signed Sections.

The whole hardware based secure boot flow on an Intel Boot Guard platform is:

	Startup ACM or some equivalent module verifies the initial boot block of the
system firmware.
	Intel® Boot Guard Technology is one possible implementation

	The initial boot block verifies the rest of the system firmware.
	PI signed FV is one possible implementation. An implementation may choose
PKCS7 or RSA2048_SHA256 based signing verification.

	The other option is just to use the HASH for the rest of the system
firmware. In PEI phase, the code who installs the addition FV for the post
memory phase need verify the HASH of the system firmware.

	The system firmware verifies 3rd party code.
	UEFI secure boot is the implementation.

7.7.3 TCG Trusted Boot and Memory Overwrite Request (MOR)

Refer to TCG platform specification and the white paper
A Tour Beyond BIOS - Implementing TPM Support in EDK II

7.7.4 DMA (VT-d) Protection

Refer to Intel® VT-d specification and the white paper
Using IOMMU for DMA Protection in UEFI

 7.8 Build Files

7.8 Build Files

This is appended to the previous Build files section.

	Name
	Consumer
	Standalone Buildable
	FV Produced

	MinPlatformPkg\Include\CoreSecurityPreMemoryInclude.fdf
	Board
	No
	None

	MinPlatformPkg\Include\CoreSecurityPostMemoryInclude.fdf
	Board
	No
	None

	MinPlatformPkg\Include\CoreSecurityLateInclude.fdf
	Board
	No
	None

Table 65 Stage V Build Files

 7.9 Test Point Results

7.9 Test Point Results

	Test Point
	Test Subject
	Test Overview
	Reporting Mechanism

	TestPoint
EndOfDxe
DmarTable
Funtional ()
	DMAR table
	DMAR table is reported.
	Dump DMAR table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
AcpiTable
Functional ()
	ACPI table
	ACPI tables are valid.
	Dump installed ACPI tables.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
GcdResource
Functional ()
	GCD resource
	Memory resources are described consistently in ACPI tables and GDT.
	Dump installed ACPI tables and GDT.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
HstiTable
Functional ()
	HSTI table
	HSTI table is reported.
	Dump HSTI table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
EsrtTable
Functional ()
	ESRT table
	ESRT table is reported.
	Dump ESRT table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
PiSignedFvBoot
Enabled ()
	PI signed FV boot
	Verify PI signed FV boot is enabled.
	Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
UefiSecureBoot
Enabled ()
	UEFI Secure Boot
	SecureBoot variable is set.
	Dump the SecureBoot variable.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
TcgTrustedBoot
Enabled ()
	TCG trusted boot
	TCG protocol is installed.
	Dump TCG protocol capability.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
ReadyToBoot
TcgMor
Enabled ()
	TCG MOR
	MOR variable is set.
	Dump the MOR UEFI variable.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
DiscoveredDma
Protection
Enabled ()
	DMA protection
	DMA protection in PEI.
	Dump DMA ACPI table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
EndOfDxe
DmaAcpiTable
Functional ()
	DMA protection
	DMA ACPI table is reported.
	Dump DMA ACPI table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

	TestPoint
EndOfDxe
DmaProtection
Enabled()
	DMA protection
	DMA protection in DXE.
	Dump DMA ACPI table.

Set ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table 66 Stage V Test Point Results

 7.10 Functional Exit Criteria

7.10 Functional Exit Criteria

	UEFI secure boot is enabled.

	TCG trusted boot is enabled.

	TCG MOR is enabled.

 7.11 Stage Enabling Checklist

7.11 Stage Enabling Checklist

The following steps should be followed to enable a platform for Stage V.

	Update BoardPkg/Board.

	Deploy the UEFI secure boot variables (PK/KEK/db/dbx)

	Configure PcdTpmInstanceGuid to select TPM hardware. Default of
gEfiTpmDeviceInstanceTpm20DtpmGuidvalue is usually correct.

	UEFI secure boot

	Update PlatformSecureLib:UserPhysicalPresent (), to check if a
user is physically present to authorize change of authenticated variables

	For TCG trusted boot

	May select TPM2 instance PcdTpmInstanceGuid.

	May set PcdFirmwareDebuggerInitialized based on whether or not a
Firmware Debugger is attached to the platform

	For DMA Protection

	May include IOMMU driver to do DMA protection, if the silicon supports
IOMMU.

	Ensure all PCDs in the configuration section (DSC files) are correct for your board.

	Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 5

	Ensure all required binaries in the flash file (FDF files) are correct for your board.

	Boot, collect log, verify test point results defined in section 7.9 Test Point Results are correct

 8 Stage VI: Advanced Feature Selection

8.1 Overview

Advanced features are non-essential features. Essential features are defined as
being support required to meet earlier stage boot objectives. An advanced
feature must be implemented as highly cohesive and stand-alone software to only
support a specific feature. Modularizing such features, reducing dependencies
on other advanced features, and eliminating dependencies on specific
implementations of other advanced features is critical and results in a variety
of benefits:

	The minimum platform serves as a basic enabling vehicle ready to support
various roles for a given hardware platform. This yields a minimum platform
solution that is open to extension but closed for modification.

	System power-on is simplified because unnecessary code paths and silicon
paths can be avoided or deferred.

	Platforms can be composed in a more modular and portable manner allowing
generic advanced features to be readily shared among participants.

	Feature adoption benefits from modular design that is simple to maintain.

Organizing advanced features in the platform architecture enables better
realization of the benefits in UEFI specification compliant firmware with
highly cohesive and lowly coupled component interactions.

This chapter provides guidance on how to design and integrate advanced features.
The source code layout and other maintenance details are outside the scope of this
specification.

The core advanced feature requirements that must be met:

	Cohesive, the feature should not contain any functionality unrelated to the feature.

	Complete, the feature must have a complete design that minimizes dependencies. A feature package cannot directly
depend on another feature package.

	Easy to Integrate, the feature should expose well-defined software interfaces to use and configure the feature.
	It should also present a set of simple and well-documented standard EDK II configuration options such as PCDs to
configure the feature.

	In general, features should be self-contained and started by the dispatcher. The board firmware should
be required to perform as few steps as possible to enable the feature.

	All features are required to have a feature enable PCD (PcdFeatureEnable). Any effort to enable the feature
besides this PCD should be carefully considered. Default configuration values should apply to the common case.

	Portable, the feature is not allowed to depend on other advanced feature or board source code packages. For example,
if Feature A depends on output Feature B, a board integration module should use a generic interface in Feature A
to get the output and pass it to a generic interface in Feature B. Structures should not be shared between feature
packages. Most structures should be defined in a common package such as MdePkg if the structure is industry standard,
IntelSiliconPkg if the structure is specific to Intel silicon initialization, etc. Feature-specific structures are
of course allowed to be defined within a feature package and used by libraries and modules in that package.

	Self Documenting, the feature should follow software best practices to allow others to debug the code and
contribute changes. In addition to source code, advanced features must have a Readme.md with sufficient
information for a newcomer to understand the feature.

	Single Instance, the feature should not have more than one instance of a source solution. If an existing feature
package does not solve a specific instance of a problem for the feature, the feature package should be re-worked
to consider new requirements instead of duplicating feature code.

8.1.1 Major Execution Activities

	Stage VI Modules

	Execute the Enabled Advanced Features

The number of embedded features must be minimized in order to support the
broadest compatibility of the minimal platform. Features should be designed to
define an API that can be used to integrate the feature into generic platform
configurations. The feature source code should never be modified to absorb
details of a specific platform or board.

 8.2 Firmware Volumes

8.2 Firmware Volumes

Stage VI enables advanced features. There is a container FV for adding advanced
features:

	Name
	Content
	Compressed
	Parent FV

	FvAdvancedPreMemory
	Advanced feature drivers that should be dispatched prior to memory initialization
	No
	None

	FvAdvanced
	Advanced feature drivers that should be dispatched after memory initialization
	Yes
	None

Table 67 Stage VI Firmware Volumes

Which yields this example extension of the flash map for MMIO storage (append to Stage I-Stage V map):

	Binary
	FV
	Components
	Purpose

	Stage VI
	FvAdvancedPreMemory.fv
	FeatureStack1.fv
	Feature 1

	
	
	Additional Feature Stacks
	Additional pre-memory advanced features

	
	FvAdvanced.fv
	FeatureStack1.fv
	Feature 1

	
	
	FeatureStack2.fv
	Feature 2

	
	
	FeatureStack3.fv
	Feature 3

	
	
	Additional Feature Stacks
	Additional advanced features

The modules that constitute a particular feature are not required to be contained within a single firmware volume and
this might especially be the case in systems with limited flash storage capacity which could be impacted by firmware
volume alignment requirements.

Table 68 Stage VI FV and Component Layout

The PEI core will create a FV HOB for each child firmware volume such that each
DXE firmware volume is exposed to the DXE dispatcher.

 8.3 Configuration

8.3 Configuration

8.3.1 FV Related Configuration

	PCD
	Purpose

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemoryBase
	Pre-memory advanced features FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemorySize
	Pre-memory advanced features FV size.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedBase
	Advanced Features FV base address.

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedSize
	Advanced Features FV size.

Table 69 Stage VI Flash Map Configuration PCDs

 8.4 Advanced Feature Design

8.4 Advanced Feature Design

Advanced features should be designed such that they are easily portable between
minimum platform compliant implementations. In consideration of portability, it
is recommended to encapsulate each feature within a dedicated package. Such
encapsulation enables rapid integration of the feature and a focused area for
feature-related changes. For example, feature declarations for build elements
such as GUIDs, PCDs, PPIs, and protocols are scoped within the feature package
DEC file. Including the feature and consequently the package imports the
feature tokens within the available namespace and changes affecting the feature
are localized to the package which in turn exposes the change to all feature
consumers.

The Advanced Feature template should be used to describe relevant configuration
for integrating the feature into a minimum platform compliant system. Any board
or silicon-specific details should be abstracted such that the information is
provided to the feature via "feature APIs". Such dependencies are recommended
to be exposed via binary interfaces such as PPIs and protocols and can be
considered similar in purpose to the architectural PPIs and Protocols defined
in the PI specification. Such requirements must be included in the "Required
Functions" section of the advanced feature template. Though not required, to
increase portability, advanced features should not depend upon deprecated EDK
II packages and attempt to reduce exposure to packages other than MdePkg and
UefiCpuPkg. In turn, this decreases risk of depending upon deprecated packages
in the future.

 9 Stage VII: Tuning

9.1 Overview

Note: This is a proposed stage in the architecture and this section is
reserved for future completion and definition of the stage. Any implementation
may ignore this stage until this section is completed and this notice is
removed.

It is anticipated that future versions of this architecture specification
will provide details for embedded performance tuning, common component
tuning, and more invasive customization. The objective for this section is to
provide a spectrum of options that keep as many board designs as consistent as
possible. Some potential topics follow, but should not be reviewed at this

In Stage VII, the fully featured is tuned for production.

First, it can be worthwhile to look at the embedded features and performance
oriented options that have been designed into the core or minimum platform. For
example, if you do not support network boot, the PciBus driver provides a PCD
to disable dispatching the network option ROM. By default, network option ROM
dispatch is enabled. This is a known tunable setting.

Second, it can be worthwhile to strip unused components from the defined FV.
For simplicity and consistency of progressing through Stage VI, it is better to
use the provided code consistent with the architecture. Once a stable and fully
functional system is completed, it is intended that platform architecture
compatible systems can still remove unneeded components in order to finely tune
the product. The core provides a tool named FMMT that can be used to process
the build output and remove unnecessary components. Alternatively, a board can
copy and modify the provided Build DSC and FDF files in the MinPlatformPkg and
SiliconPkg. The former increases build time. The latter increases integration
effort for new core, MinPlatformPkg, and SiliconPkg releases.

Third, it is often necessary to enable and use tools to perform detailed
analysis of performance and size to identify hotspots that need to be improved.

 Appendix A Full Maps

Appendix A Full Maps Overview

This appendix section provides full reference maps of concepts covered in the specification.

These maps are maintained in this section as they incorporate information across
several sections.

 A.1 Firmware Volume Layout

A.1 Firmware Volume Layout

This is a logical firmware volume layout by stage.

	Binary
	FV
	Components
	Purpose

	Stage I
	FvPreMemory.fv
	SecCore.efi
		Reset Vector
	Passes PEI core the address of FvFspmM
	Passes PEI core the debug configuration

	
	
	ReportFvPei.efi
		Installs firmware volumes

	
	
	SiliconPolicyPeiPreMemory.efi
		Publishes silicon initialization configuration

	
	
	PlatformInitPreMemory.efi
		Performs pre memory initialization

	
	
	FvSecurityPreMemory.fv</br>(child FV)
	

	
	
	 Tcg2Pei.efi
		TPM2 initialization

	
	
	 Tcg2ConfigPei.efi
		TPM2 selection

	
	
	 Tcg2PlatformPei.efi
		TPM2 platform module

	
	
	 Additional Components
		Additional pre-memory components required for Stage V boot

	
	
	Additional Components
		Additional pre-memory components required for Stage I boot

	
	FvBspPreMemory.fv
	FvAdvancedPreMemory.fv</br>(child FV)
	

	
	
	 Additional Components
		Advanced feature pre-memory stacks

	
	
	Additional Components
		Additional pre-memory board support components

	
	FvFspT.fv
	PlatformSec.efi
		Initializes T-RAM silicon functionality
	Tests T-RAM functionality

	
	
	Additional Components
	

	
	FvFspM.fv
	PeiCore.efi
		PEI services and dispatcher

	
	
	PcdPeim.efi
		PCD service

	
	
	FspPlatform.efi
		Converts UPD to Policy PPI

	
	
	FvPreMemorySilicon.fv</br>(child FV)
	

	
	
	 Additional Components
		Pre-memory silicon initialization components

	
	
	ReportStatusCodeRouterPei.efi
		Provide status code infrastructure

	
	
	StatusCodeHandlerPei.efi
		Provide status code listeners

	
	
	Additional Components
	

	
	FvFspS.fv
	FvPostMemorySilicon.fv</br>(child FV)
	

	
	
	 Additional Components
		Post-memory silicon initialization components

	
	
	Additional components
	

	Binary
	FV
	Components
	Purpose

	Stage II
	FvPostMemory.fv
	ReadOnlyVariable.efi
		Common core variable services

	
	
	SiliconPolicyPeiPostMemory.efi
		Publishes silicon initialization configuration

	
	
	PlatformInitPostMemory.efi
		Performs post memory initialization

	
	
	DxeIpl.efi
		Load and invoke DXE

	
	
	ResetSystemRuntimeDxe.efi
		Provides reset service

	
	
	PciHostBridge.efi
		PCI host bridge driver

	
	
	Additional Components
		Additional post-memory components required for Stage II boot

	
	FvBsp.fv
	Additional Components
		Post-memory board support components

	Binary
	FV
	Components
	Purpose

	Stage III
	FvUefiBoot.fv
	DxeCore.efi
		DXE services and dispatcher

	
	
	PcdDxe.efi
		Provides PCD services

	
	
	ReportStatusCodeRouterDxe.efi
		Provides status code infrastructure

	
	
	StatusCodeHandlerRuntimeDxe.efi
		Provides status code listeners

	
	
	BdsDxe.efi
		Provides Boot Device Selection phase

	
	
	CpuDxe.efi
		Provides processor services

	
	
	Metronome.efi
		Provides metronome HW abstraction

	
	
	MonotonicCounterRuntimeDxe.efi
		Provides monotonic counter service

	
	
	PcatRealTimeClockRuntimeDxe.efi
		Provides RTC abstraction

	
	
	WatchdogTimer.efi
		Provides watchdog timer service

	
	
	RuntimeDxe.efi
		Provides UEFI runtime service functionality

	
	
	Security.efi
		Provides security services to core

	
	
	HpetTimerDxe.efi
		Provide timer service

	
	
	EmuVariableRuntimeDxe.efi
		Provides UEFI variable service

	
	
	CapsuleRuntimeDxe.efi
		Provides capsule service

	
	
	PciBusDxe.efi
		PCI bus driver

	
	
	GraphicsOutputDxe.efi
		Provides graphics support

	
	
	TerminalDxe.efi
		Provides terminal services

	
	
	GraphicsConsoleDxe.efi
		Provides graphics console

	
	
	ConSplitterDxe.efi
		Provides multi console support

	
	
	EnglishDxe.efi
		Provides Unicode collation services

	
	
	MemoryTest.efi
		Provide memory test

	
	
	DevicePathDxe.efi
		Provides device path services

	
	
	DiskIo.efi
		Provides disk IO services

	
	
	Partition.efi
		Provides disk partition services

	
	
	Fat.efi
		Provides FAT filesystem services

	
	
	Additional Components
		Additional post-memory components required for Stage III boot

	Binary
	FV
	Components
	Purpose

	Stage IV
	FvOsBoot.fv
	FvLateSilicon.fv
(child FV)
	

	
	
	 Additional Components
		Additional silicon initialization support that is performed late in the boot

	
	
	AcpiTable.efi
		Provides common ACPI services

	
	
	PlatformAcpi.efi
		Provides MinPlatform ACPI content

	
	
	BoardAcpi.efi
		Provides board ACPI content

	
	
	PiSmmIpl.efi
		SMM initial loader

	
	
	PiSmmCore.efi
		SMM core services

	
	
	ReportStatusCodeRouterSmm.efi
		SMM status code infrastructure

	
	
	StatusCodeHandlerSmm.efi
		SMM status code handlers

	
	
	PiSmmCpu.efi
		SMM CPU services

	
	
	CpuIo2Smm.efi
		SMM CPU IO services

	
	
	FaultTolerantWriteSmm.efi
		SMM fault tolerant write services

	
	
	SpiFvbServiceSmm.efi
		SMM SPI FLASH services

	
	
	Additional Components
		Additional post-memory components required for Stage IV boot

	Binary
	FV
	Components
	Purpose

	Stage V
	FvSecurity.fv
	Tcg2Dxe.efi
		TPM2 services

	
	
	Tcg2ConfigDxe.efi
		TPM2 configuration UI

	
	
	Tcg2PlatformDxe.efi
		TPM2 platform module

	
	
	Tcg2Smm.efi
		TPM2 ACPI services

	
	
	TcgMor.efi
		TCG Memory Override support

	
	
	IntelVTdPmrPei.efi
		IOMMU PEI services

	
	
	IntelVTdDxe.efi
		IOMMU DXE services

	
	
	SecurityStubDxe.efi
		Provide security architecture protocol.

	
	
	FaultTolerantWriteSmm.efi
		Fault-tolerant services in SMM.

	
	
	VariableSmm.efi
		Provide Variable service in SMM.

	
	
	VariableSmmRuntimeDxe.efi
		Provide Variable service in UEFI.

	
	
	SecureBootConfigDxe.efi
		SecureBoot configuration UI.

	
	
	Additional Components
		Additional post-memory components required for Stage V boot

	Binary
	FV
	Components
	Purpose

	Stage VI
	FvAdvancedPreMemory.fv
	FeatureStack1.fv (child FV)
		Feature 1

	
	
	FeatureStack2.fv (child FV)
		Feature 2

	
	FvAdvanced.fv
	FeatureStack1.fv (child FV)
		Feature 1

	
	
	FeatureStack2.fv (child FV)
		Feature 2

	
	
	FeatureStack3.fv (child FV)
		Feature 3

	
	
	Additional Feature Stacks
		Features

Table 71 Full Firmware Volume Layout

 A.2 Key Function Invocation

A.2 Key Function Invocation

	Name
	Purpose

	ResetHandler (*)
	The reset vector invoked by silicon

	TempRamInit
	Silicon initializes temporary memory

	TestPointTempMemoryFunction
	Test temporary memory functionality

	SecStartup (*)
	First C code execution, constructs PEI input

	TestPointEndOfSec
	Verify state before switching to PEI

	PeiCore (*)
	PEI entry point

	PeiDispatcher (*)
	Calls the entry points of PEIM

	ReportPreMemFv
	Installs firmware volumes required in pre-memory

	BoardDetect
	Board detection of the motherboard type

	BoardDebugInit
	Board specific initialization for debug device

	PlatformHookSerialPortInitialize
	Board serial port initialization. Called from SEC or PEI

	TestPointDebugInitDone
	Verify debug functionality

	BoardBootModeDetect
	Board hook for EFI_BOOT_MODE detection

	BoardInitBeforeMemoryInit
	Board specific initialization, e.g. GPIO

	SiliconPolicyInitPreMemory
	Silicon pre memory policy initialization

	SiliconPolicyUpdatePreMemory
	Board updates silicon policies

	SiliconPolicyDonePreMemory
	Complete pre memory silicon policy data collection

	MemoryInit
	Silicon initializes permanent memory

	InstallEfiMemory
	Install permantent memory to core

	PeiCore (*)
	PEI entry point (post memory entry)

	SecTemporaryRamDone (*)
	Call SEC to tear down temporary memory

	ReportPostMemFv
	Installs firmware volumes required in post-memory

	TestPointPostMemoryFvInfoFunctional
	Test for Firmware Volume map

	BoardInitAfterMemoryInit
	Board initialization after memory is installed

	SetCacheMtrr
	Configure cache map for permanent memory

	TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional
	Test post-memory cache map

	TestPointPostMemoryResourceFunctional
	Test resources

	TestPointPostMemoryFvInfoFunctional
	Test for Firmware Volume map

	BoardInitBeforeSiliconInit
	Board initialization hook

	SiliconPolicyInitPostMemory
	Silicon post memory policy initialization

	SiliconPolicyUpdatePostMemory
	Board updates silicon policies

	SiliconPolicyDonePostMemory
	Complete post memory silicon policy data collection

	BoardInitAfterSiliconInit
	Board specific initialization after silicon is initialized

	DxeLoadCore (*)
	DXE IPL locate and call DXE Core

	SetCacheMtrrAfterEndOfPei
	Sets cache map in preparation for DXE

	TestPointEndOfPei
	Verify expected state as we exit PEI phase

	TestPointPostMemoryMtrrEndOfPeiFunctional
	Basic test for cache configuration before entering DXE

	PeimEntryMA (*)
	Entrypoint for TPM2 PEIM

	IntelVTdPmrInitialize (*)
	Entrypoint for VT-d PEIM

	DxeMain (*)
	DXE entry point

	CoreStartImage (*)
	Calls the entry points of DXE drivers

	SiliconPolicyInitLate
	Silicon late policy initialization

	SiliconPolicyUpdateLate
	Board updates silicon policies

	SiliconPolicyDoneLate
	Complete late silicon policy data collection

	CoreAllEfiServicesAvailable (*)
	Check if required architectural protocols are installed

	SmmIplEntry (*)
	SMM IPL

	SmmMain (*)
	SMM Core entrypoint

	PiCpuSmmEntry (*)
	SMM CPU driver

	SmmRelocateBases (*)
	Relocation

	_SmiEntryPoint (*)
	SMI entry point

	SmmEntryPoint (*)
	Dispatch SMI handlers

	PchSmmCoreDispatcher
	Dispatch PCH child SMI handlers

	InitializeTcgSmm (*)
	Entrypoint for TPM2 SMM

	MemoryClearCallback (*)
	Callback function for MOR setting

	PlatformCreateAcpiTable
	Create the minimum set of platform specific tables

	PlatformUpdateAcpiTable
	Update platform specific data in ACPI tables - FADT.

	PlatformInstallAcpiTable
	Install platform specific ACPI tables

	DriverEntry (*)
	Entrypoint for TPM2 DXE

	IntelVTdInitialize(*)
	Entrypoint for VT-d DXE

	UserPhysicalPresent (*)
	Return if physical user is present for UEFI secure boot

	ProcessTcgPp
	Process TPM PP request

	ProcessTcgMor
	Process TPM MOR request

	BdsEntry (*)
	BDS entry point

	PlatformBootManagerBeforeConsole (*)
	Platform specific BDS functionality before console

	BoardInitAfterPciEnumeration
	Board-specific hook on PCI enumeration completion

	TestPointPciEnumerationDone
	Verify PCI

	ExitPmAuth
	Signal key security events EndOfDxe and SmmReadyToLock

	TestPointEndOfDxe
	Verify expected state after EndOfDxe

	TestPointDxeSmmReadyToLock
	Verify expected state after SmmReadyToLock

	TestPointSmmEndOfDxe
	Verify state after SmmEndOfDxe

	TestPointSmmEndOfDxe
	Verify state after SmmEndOfDxe

	TestPointSmmReadyToLock
	Verify state after SmmReadyToLock

	EfiBootManagerDispatchDeferredImages (*)
	Dispatch deferred third party UEFI driver OPROMs

	PlatformBootManagerAfterConsole (*)
	Platform specific BDS functionality after console

	BootBootOptions (*)
	Attempt each boot option

	EfiSignalEventReadyToBoot (*)
	Signals the ReadyToBoot event group

	BoardInitReadyToBoot
	Board hook on ReadyToBoot event

	TestPointReadyToBoot
	Verify state after ReadyToBoot event signal

	UefiMain (*)
	UEFI Shell entry point

	CoreExitBootServices (*)
	Dismantles UEFI boot services and enters runtime

	BoardInitEndOfFirmware
	Board hook for ExitBootServices event

	TestPointExitBootServices
	Verify state after ExitBootServices has been called

	RuntimeDriverSetVirtualAddressMap (*)
	Set virtual address mode

	PlatformEnableAcpiCallback
	Switch the system to ACPI mode

	BoardEnableAcpiCallback
	Board hook for ACPI mode switch

Table 72 Key Function Invocation

* In the common EDK II open source code.

 A.3 BDS Hook Points

A.3 BDS Hook Points

BDS Hook Point Summary

Four new event signal groups are defined that will be signaled at the point
shown in Table 16 Event groups as described in the UEFI specification are
collections of events identified by a shared EFI_GUID that when one member
event group is signaled, all other event groups are signed and their individual
notification actions are taken. These event groups should be used in
combination with the pre-existing notification mechanisms: signal of
gEfiEndOfDxeEventGroupGuid and installation of the
gEfiPciEnumerationCompleteProtocolGuid or gEfiDxeSmmReadyToLockProtocolGuid.
Preference should always be given to the notification points defined outside
this specification to make code dependent upon the notification as portable as
possible.

PlatformBootManagerBeforeConsole ()
[1] Event: PCI enumeration complete - Install gEfiPciEnumerationCompleteProtocolGuid

* Minimum Platform action(s) performed:
 * Trusted consoles added

[2] Event: SignalBeforeConsoleAfterTrustedConsole

* Minimum Platform action(s) performed:
 * Enumerate USB keyboard
 * Connect controller for trusted graphics console
 * Register default boot option (UEFI shell)
 * Register static hot keys (F2/F7)
 * Process TCG Physical Presence
 * Process TCG MOR
 * Perform memory test

[3] Event: SignalBeforeConsoleBeforeEndOfDxe

* Minimum Platform action(s) performed:
 * None

[4] Event: End of DXE - Signal gEfiEndOfDxeEventGroupGuid

* Minimum Platform action(s) performed:
 * None

[5] Event: SmmReadyToLock: Signal gEfiDxeSmmReadyToLockProtocolGuid

* Minimum Platform action(s) performed:
 * Dispatch deferred 3rd party images (e.g. UEFI OPROMs)

PlatformBootManagerAfterConsole ()
[1] Invoke ConnectSequence ()

[2] Event: Signal AfterConsoleReadyBeforeBootOption

* Minimum Platform action(s) performed:
 * Print hot key message to output console ("Press F7 for BootMenu!")
 * Refresh all boot options
 * Sort load option variables

[image: Full BDS Hook Point Map]

Figure 10 Full BDS Hook Point Map

 Appendix B Global Configuration

Appendix B Global Configuration Overview

This appendix section provides configuration mechanisms that are global and therefore
are not constrained to any particular stage section.

 B.1 Stage Configuration

B.1 Stage Configuration

[PcdsFeatureFlag]
 # Stage I - Boot to Debug Enabled
 # Stage II - Boot to Memory Initialization
 # Stage III - Boot to UEFI Shell
 # Stage IV - Boot to Operating System
 # Stage V - Boot to Operating System with Security Enabled
 gMinPlatformPkgTokenSpaceGuid.PcdBootStage|5|UINT8|0xF00000A0

The default value of PcdBootStage should be Stage V Boot to Operating
System with Security Enabled. The stage selection PCD might influence code
paths within shared modules between stages or add and remove stages from the
build.

 B.2 Test Point Check Infrastructure

B.2 Test Point Check Infrastructure

Today's platforms are tested against several test suites such as Chipsec,
Windows Hardware Security Test Infrastructure (HSTI), Windows Hardware Logo Kit
(HLK), Linux UEFI Validation (LUV), and others. However, platforms may have
platform-specific requirements not covered by test suites enforcing
specification or general hardware compliance. The Test Point Check
infrastructure is intended to test that actions such as MTRRs are configured
correctly, FV HOBs are reported properly, no 3rd party options ROMs are
executed before allowed, MemoryTypeInformation is reported correctly, and any
other custom logic that platform implementer considers appropriate based on the
platform requirements.

The Test Point infrastructure is supported by two primary libraries,
TestPointLib and TestPointCheckLib. TestPointLib reports test results via the
ADAPTER_INFO_PLATFORM_TEST_POINT structure defined below. The test result is
validated in the TestPointCheckLib.

typedef struct {
 UINT32 Version;
 UINT32 Role;
 CHAR16 ImplementationID[256];
 UINT32 FeaturesSize;

 //UINT8 FeaturesImplemented[]; <- PCD set to define features
 //UINT8 FeaturesVerified[]; <- PCD read and set to determine features verified
 //CHAR16 ErrorString[];
} ADAPTER_INFO_PLATFORM_TEST_POINT;

[image: Test Point Check Infrastructure]

Figure 11 Test Point Check Infrastructure

 Appendix C ACPI

Appendix C Advanced Configuration and Power Interface (ACPI) Overview

This section documents the layout and implementation guidelines of the ACPI
tables generated for the platform. The implementation guidelines for ACPI code
will focus on coding practices for ASL irrespective of platform code details.

 C.1 Layout

C.1 Layout

ACPI tables will be organized into a set of mandatory tables defined in this section
and optional tables provided in the form of an SSDT.

C.1.1 Mandatory Tables

The mandatory tables are composed of the minimum set of tables required to boot
an ACPI compliant OS. These tables are intended to be present in Stage IV and
later stages. The contents of these tables might differ based on build stage,
it is described in the Table Contents sub-section.

The following tables fall under the mandatory tables list:

	RSDP

	RSDT/XSDT

	FADT/FACS

	DSDT

	MADT

	MCFG

	HPET

 C.2 ACPI Table Contents

C.2 ACPI Table Contents

There are three types of tables supported. Standard Static Tables,
Differentiated System Description Table (DSDT), Secondary System Description
Table (SSDT). The standard static tables have a defined structure in the ACPI
specification. The contents of the DSDT and SSDT are described in this
specification.

C.2.1 DSDT Contents

DSDT is a mandatory fixed table that is pointed to by the FADT (Fixed ACPI
Description Table).

C.2.1.1 Stage IV Build

Stage IV is intended to have the minimum configuration to boot a platform with
basic features and minimal set of devices enabled. Similarly ACPI
implementation should have a minimal framework implemented for ACPI compliant
OS.

The DSDT in this case should have a root and system bus defined. In addition to
that, the DSDT will have device scopes for all the devices present in the
minimum platform required packages (Section 8.1.1).

C.2.1.2 Stage VI Build

In this case, DSDT will include the following Device scopes and objects:

	Device scopes for all PCI devices that need an ACPI component

	Global NVS area region defined

	Interrupt routing (_PRT method)

 C.3 ACPI Device Categorization

C.3 ACPI Device Categorization

ACPI device description tables such as DSDT and SSDT are comprised of device
scopes and methods that define the capabilities and resources of an ACPI
device. For scalability purposes, the ACPI devices are categorized in a manner
that they can be easily plugged in and out of UEFI FW.

C.3.1 Silicon Specific Devices

These devices are silicon specific and are assumed to not change with different
SKUs and stepping of the silicon. These devices will become part of DSDT as it
is a mandatory table containing the fixed devices for the systems.

The number of silicon devices present in the DSDT will be decided by the scope
of minimum and full build.

C.3.2 SKU Specific Devices

These devices are SKU specific and are assumed to change based on various SKUs.
They are considered to be dynamic as they can be enabled/disabled/modified
based on setup knobs or softstraps etc.

Because of their dynamic nature, these devices are added in the Platform SSDT.
Every SKU will have a unique Platform SSDT installed. It will only contain
devices present on that platform.

C.3.3 Board Specific Devices

These devices are board specific and are assumed to change based on the various
board SKUs. These devices will also become part of SSDTs. These devices can
have an SSDT of their own or get added to the platform SSDT depending on their
availability on multiple SKUs. A fairly common board device will be added to
the platform SSDT and the other devices can have a SSDT of their own.

C.3.4 Feature Specific Devices/Methods

These devices or methods are optional as they are exposed to handle certain
advanced features. They will be added to DSDT or SSDT depending on the device
they are being added for. For example a special DSM (device specific method) is
to be added for an Audio codec, then it will fall under the Platform/Board SSDT.

 C.4 Flow Diagrams

C.4 Flow Diagrams

This section describes the flow for table integration and installing during
boot. Device nodes will be generated and added to DSDT or SSDT by the device
modules. Once the DSDT and SSDT are complete, they will be installed and
published by the ACPI DXE driver.

[image: Figure 12 ACPI Platform FLow]

Figure 12 ACPI Platform Flow

 Appendix D Interface Definitions

Appendix D Interface Definitions Overview

This section contains interface definitions defined in the Minimum Platform architecture.

 D.1 Required Functions

D.1 Required Functions

D.1.1 BoardPorting.SEC

D.1.1.1 ResetHandler (*)

; For IA32, the reset vector must be at 0xFFFFFFF0, i.e., 4G-16 byte
; Execution starts here upon power-on/platform-reset.
;
ResetHandler:
 nop
 nop
ApStartup:
 ;
 ; Jmp Rel16 instruction
 ; Use machine code directly in case of the assembler optimization
 ; SEC entry point relative address will be fixed up by some build tool.
 ;
 ; Typically, SEC entry point is the function _ModuleEntryPoint() defined in
 ; SecEntry.asm
 ;
 DB 0e9h
 DW -3

D.1.2 BoardPorting.PEI

D.1.2.1 ReportPreMemFv

VOID
ReportPreMemFv (
 VOID
);

D.1.2.2 BoardDetect

EFI_STATUS
EFIAPI
BoardDetect (
 VOID
);

D.1.2.3 BoardDebugInit

EFI_STATUS
EFIAPI
BoardDebugInit (
 VOID
);

D.1.2.4 PlatformHookSerialPortInitialize

/**
 Performs platform specific initialization required for the CPU to access
 the hardware associated with a SerialPortLib instance. This function does
 not initialize the serial port hardware itself. Instead, it initializes
 hardware devices that are required for the CPU to access the serial port
 hardware. This function may be called more than once.

 @retval RETURN_SUCCESS The platform specific initialization succeeded.
 @retval RETURN_DEVICE_ERROR The platform specific initialization could not be completed.

**/
RETURN_STATUS
EFIAPI
PlatformHookSerialPortInitialize (
 VOID
);

D.1.2.5 BoardBootModeDetect

EFI_BOOT_MODE
EFIAPI
BoardBootModeDetect (
 VOID
);

D.1.2.6 BoardInitBeforeMemoryInit

EFI_STATUS
EFIAPI
BoardInitBeforeMemoryInit (
 VOID
);

D.1.2.7 SiliconPolicyUpdatePreMemory

/**
 Performs silicon pre-memory policy update.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a PPI, etc.

 The input Policy must be returned by SiliconPolicyDonePreMemory().

 1) In FSP path, the input Policy should be FspmUpd.
 A platform may use this API to update the FSPM UPD policy initialized
 by the silicon module or the default UPD data.
 The output of FSPM UPD data from this API is the final UPD data.

 2) In non-FSP path, the board may use additional way to get
 the silicon policy data field based upon the input Policy.

 @param[in, out] Policy Pointer to policy.

 @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePreMemory (
 IN OUT VOID *Policy
);

D.1.2.8 ReportPostMemFv

VOID
ReportPostMemFv (
 VOID
);

D.1.2.9 BoardInitAfterMemoryInit

EFI_STATUS
EFIAPI
BoardInitAfterMemoryInit (
 VOID
);

D.1.2.10 SetCacheMtrrAfterMemoryDiscovered

TODO: Add prototype

D.1.2.11 BoardInitBeforeSiliconInit

EFI_STATUS
EFIAPI
BoardInitBeforeSiliconInit (
 VOID
);

D.1.2.12 SiliconPolicyUpdatePostMemory

/**
 Performs silicon post-memory policy update.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a PPI, etc.

 The input Policy must be returned by SiliconPolicyDonePostMemory().

 1) In FSP path, the input Policy should be FspsUpd.
 A platform may use this API to update the FSPS UPD policy initialized
 by the silicon module or the default UPD data.
 The output of FSPS UPD data from this API is the final UPD data.

 2) In non-FSP path, the board may use additional way to get
 the silicon policy data field based upon the input Policy.

 @param[in, out] Policy Pointer to policy.

 @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePostMemory (
 IN OUT VOID *Policy
);

D.1.2.13 BoardInitAfterSiliconInit

EFI_STATUS
EFIAPI
BoardInitAfterSiliconInit (
 VOID
);

D.1.2.14 SetCacheMtrrAfterEndOfPei

/**
 Update MTRR setting and set write back as default memory attribute.

 @retval EFI_SUCCESS The function completes successfully.
 @retval Others Some error occurs.
**/
EFI_STATUS
EFIAPI
SetCacheMtrrAfterEndOfPei (
 VOID
)

D.1.3 BoardPorting.DXE

D.1.3.1 SiliconPolicyUpdateLate

/**
 Performs silicon late policy update.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a Protocol, etc.

 The input Policy must be returned by SiliconPolicyDoneLate().

 In FSP or non-FSP path, the board may use additional way to get
 the silicon policy data field based upon the input Policy.

 @param[in, out] Policy Pointer to policy.

 @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdateLate (
 IN OUT VOID *Policy
);

D.1.3.2 PlatformBootManagerBeforeConsole (*)

/**
 Do the platform specific action before the console is connected.

 Such as:
 Update console variable;
 Register new Driver#### or Boot####;
 Signal ReadyToLock event.
**/
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
 VOID
);

D.1.3.3 BoardInitAfterPciEnumeration

EFI_STATUS
EFIAPI
BoardInitAfterPciEnumeration (
 VOID
);

D.1.3.4 PlatformBootManagerAfterConsole(*)

/**
 Do the platform specific action after the console is connected.

 Such as:
 Dynamically switch output mode;
 Signal console ready platform customized event;
 Run diagnostics like memory testing;
 Connect certain devices;
 Dispatch additional option roms.
**/
VOID
EFIAPI
PlatformBootManagerAfterConsole (
 VOID
);

D.1.3.5 BoardInitReadyToBoot

EFI_STATUS
EFIAPI
BoardInitReadyToBoot (
 VOID
);

D.1.3.6 PlatformCreateAcpiTable

TODO: Add prototype

D.1.3.7 PlatformUpdateAcpiTable

TODO: Add prototype

D.1.3.8 PlatformInstallAcpiTable

TODO: Add prototype

D.1.3.9 BoardInitEndOfFirmware

EFI_STATUS
EFIAPI
BoardInitEndOfFirmware (
 VOID
);

D.1.4 BoardPorting.SMM

D.1.4.1 BoardEnableAcpiCallback

TODO: Add prototype

D.1.5 SiliconPorting.SEC

D.1.5.1 TempRamInit

TODO: Add prototype

D.1.6 SiliconPorting.PEI

D.1.6.1 SiliconPolicyInitPreMemory

/**
 Performs silicon pre-memory policy initialization.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a PPI, etc.

 The returned data must be used as input data for SiliconPolicyDonePreMemory(),
 and SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().

 1) In FSP path, the input Policy should be FspmUpd.
 Value of FspmUpd has been initialized by FSP binary default value.
 Only a subset of FspmUpd needs to be updated for different silicon sku.
 The return data is same FspmUpd.

 2) In non-FSP path, the input policy could be NULL.
 The return data is the initialized policy.

 @param[in, out] Policy Pointer to policy.

 @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPreMemory (
 IN OUT VOID *Policy OPTIONAL
);

D.1.6.2 SiliconPolicyDonePreMemory

/*
 The silicon pre-memory policy is finalized.
 Silicon code can do initialization based upon the policy data.

 The input Policy must be returned by SiliconPolicyInitPreMemory().

 @param[in] Policy Pointer to policy.

 @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePreMemory (
 IN VOID *Policy
);

D.1.6.3 MemoryInit

/**
 This function
 1. Calling MRC to initialize memory.
 2. Install EFI Memory.
 3. Capsule coalesce if capsule boot mode.
 4. Create HOB of system memory.

 @param PeiServices Pointer to the PEI Service Table

 @retval EFI_SUCCESS If it completes successfully.

**/
EFI_STATUS
MemoryInit (
 IN EFI_PEI_SERVICES **PeiServices
);

D.1.6.4 SiliconPolicyInitPostMemory

/**
 Performs silicon post-memory policy initialization.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a PPI, etc.

 The returned data must be used as input data for SiliconPolicyDonePostMemory(),
 and SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().

 1) In FSP path, the input Policy should be FspsUpd.
 Value of FspsUpd has been initialized by FSP binary default value.
 Only a subset of FspsUpd needs to be updated for different silicon sku.
 The return data is same FspsUpd.

 2) In non-FSP path, the input policy could be NULL.
 The return data is the initialized policy.

 @param[in, out] Policy Pointer to policy.

 @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPostMemory (
 IN OUT VOID *Policy OPTIONAL
);

D.1.6.5 SiliconPolicyDonePostMemory

/*
 The silicon post-mem policy is finalized.
 Silicon code can do initialization based upon the policy data.

 The input Policy must be returned by SiliconPolicyInitPostMemory().

 @param[in] Policy Pointer to policy.

 @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePostMemory (
 IN VOID *Policy
);

D.1.6.6 SiliconInit

TODO: Add prototype

D.1.7 SiliconPorting.DXE

D.1.7.1 SiliconPolicyInitLate

/**
 Performs silicon late policy initialization.

 The meaning of Policy is defined by silicon code.
 It could be the raw data, a handle, a protocol, etc.

 The returned data must be used as input data for SiliconPolicyDoneLate(),
 and SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().

 In FSP or non-FSP path, the input policy could be NULL.
 The return data is the initialized policy.

 @param[in, out] Policy Pointer to policy.

 @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitLate (
 IN OUT VOID *Policy
);

D.1.7.2 SiliconPolicyDoneLate

/*
 The silicon late policy is finalized.
 Silicon code can do initialization based upon the policy data.

 The input Policy must be returned by SiliconPolicyInitLate().

 @param[in] Policy Pointer to policy.

 @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDoneLate (
 IN VOID *Policy
);

D.1.7.3 SiliconInitAfterPciEnumeration

TODO: Add prototype

D.1.8 SiliconPorting.SMM

D.1.8.1 PchSmmCoreDispatcher

/**
 The callback function to handle subsequent SMIs. This callback will be called by SmmCoreDispatcher.

 @param[in] SmmImageHandle Not used
 @param[in] PchSmmCore Not used
 @param[in, out] CommunicationBuffer Not used
 @param[in, out] SourceSize Not used

 @retval EFI_SUCCESS Function successfully completed
**/
EFI_STATUS
EFIAPI
PchSmmCoreDispatcher (
 IN EFI_HANDLE SmmImageHandle,
 IN CONST VOID *PchSmmCore,
 IN OUT VOID *CommunicationBuffer,
 IN OUT UINTN *SourceSize
);

D.1.9 Test.DXE

D.1.9.1 ExitPmAuth

VOID
ExitPmAuth (
 VOID
);

D.1.10 Debug.SEC

D.1.10.1 SecStartup (*)

/**
 Entry point to the C language phase of SEC. After the SEC assembly
 code has initialized some temporary memory and set up the stack,
 the control is transferred to this function.

 @param SizeOfRam Size of the temporary memory available for use.
 @param TempRamBase Base address of temporary ram
 @param BootFirmwareVolume Base address of the Boot Firmware Volume.
**/
VOID
EFIAPI
SecStartup (
 IN UINT32 SizeOfRam,
 IN UINT32 TempRamBase,
 IN VOID *BootFirmwareVolume
);

D.1.10.2 SecStartupPhase2 (*)

/**
 Caller provided function to be invoked at the end of InitializeDebugAgent().

 Entry point to the C language phase of SEC. After the SEC assembly
 code has initialized some temporary memory and set up the stack,
 the control is transferred to this function.

 @param[in] Context The first input parameter of InitializeDebugAgent().

**/
VOID
NORETURN
EFIAPI
SecStartupPhase2 (
 IN VOID *Context
);

D.1.11 Debug.PEI

D.1.11.1 PeiCore (*)

/**
 This routine is invoked by main entry of PeiMain module during transition
 from SEC to PEI. After switching stack in the PEI core, it will restart
 with the old core data.

 @param SecCoreDataPtr Points to a data structure containing information about the PEI core's operating
 environment, such as the size and location of temporary RAM, the stack location and
 the BFV location.
 @param PpiList Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
 An empty PPI list consists of a single descriptor with the end-tag
 EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
 phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
 that both the PEI Foundation and any modules can leverage the associated service
 calls and/or code in these early PPIs
 @param Data Pointer to old core data that is used to initialize the
 core's data areas.
 If NULL, it is first PeiCore entering.

**/
VOID
EFIAPI
PeiCore (
 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreDataPtr,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList,
 IN VOID *Data
);

D.1.11.2 PeiDispatcher (*)

/**
 Conduct PEIM dispatch.

 @param SecCoreData Pointer to the data structure containing SEC to PEI handoff data
 @param PrivateData Pointer to the private data passed in from caller

**/
VOID
PeiDispatcher (
 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
 IN PEI_CORE_INSTANCE *PrivateData
);

D.1.11.3 SecTemporaryRamDone(*)

/**
 TemporaryRamDone() disables the use of Temporary RAM. If present, this service is invoked
 by the PEI Foundation after the EFI_PEI_PERMANANT_MEMORY_INSTALLED_PPI is installed.

 @retval EFI_SUCCESS Use of Temporary RAM was disabled.
 @retval EFI_INVALID_PARAMETER Temporary RAM could not be disabled.

**/
EFI_STATUS
EFIAPI
SecTemporaryRamDone (
 VOID
);

D.1.11.4 DxeLoadCore (*)

/**
 Main entry point to last PEIM

 @param This Entry point for DXE IPL PPI
 @param PeiServices General purpose services available to every PEIM.
 @param HobList Address to the Pei HOB list

 @return EFI_SUCCESS DXE core was successfully loaded.
 @return EFI_OUT_OF_RESOURCES There are not enough resources to load DXE core.

**/
EFI_STATUS
EFIAPI
DxeLoadCore (
 IN CONST EFI_DXE_IPL_PPI *This,
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_HOB_POINTERS HobList
);

D.1.12 Debug.DXE

D.1.12.1 DxeMain (*)

```c
/**
  Main entry point to DXE Core.

  @param  HobStart               Pointer to the beginning of the HOB List from PEI.

  @return This function should never return.

**/
VOID
EFIAPI
DxeMain (
  IN  VOID *HobStart
  );

D.1.12.2 CoreStartImage (*)

/**
  Transfer control to a loaded image's entry point.

  @param  ImageHandle             Handle of image to be started.
  @param  ExitDataSize            Pointer of the size to ExitData
  @param  ExitData                Pointer to a pointer to a data buffer that
                                  includes a Null-terminated string,
                                  optionally followed by additional binary data.
                                  The string is a description that the caller may
                                  use to further indicate the reason for the
                                  image's exit.

  @retval EFI_INVALID_PARAMETER   Invalid parameter
  @retval EFI_OUT_OF_RESOURCES    No enough buffer to allocate
  @retval EFI_SECURITY_VIOLATION  The current platform policy specifies that the image should not be started.
  @retval EFI_SUCCESS             Successfully transfer control to the image's
                                  entry point.

**/
EFI_STATUS
EFIAPI
CoreStartImage (
  IN EFI_HANDLE  ImageHandle,
  OUT UINTN      *ExitDataSize,
  OUT CHAR16     **ExitData  OPTIONAL
  );


D.1.12.3 CoreAllEfiServicesAvailable (*)

/**
  Return TRUE if all AP services are available.

  @retval EFI_SUCCESS    All AP services are available
  @retval EFI_NOT_FOUND  At least one AP service is not available

**/
EFI_STATUS
CoreAllEfiServicesAvailable (
  VOID
  );


D.1.12.4 BdsEntry (*)

/**

  Service routine for BdsInstance->Entry(). Devices are connected, the
  consoles are initialized, and the boot options are tried.

  @param This            Protocol Instance structure.

**/
VOID
EFIAPI
BdsEntry (
  IN  EFI_BDS_ARCH_PROTOCOL *This
  );


IN EFI_BDS_ARCH_PROTOCOL ``*This

);

D.1.12.5 EfiBootManagerDispatchDeferredImages (*)

/**
  Dispatch the deferred images that are returned from all DeferredImageLoad instances.

  @retval EFI_SUCCESS       At least one deferred image is loaded successfully and started.
  @retval EFI_NOT_FOUND     There is no deferred image.
  @retval EFI_ACCESS_DENIED There are deferred images but all of them are failed to load.
**/
EFI_STATUS
EFIAPI
EfiBootManagerDispatchDeferredImages (
  VOID
  );


D.1.12.6 BootBootOptions(*)

/**
  Attempt to boot each boot option in the BootOptions array.

  @param BootOptions       Input boot option array.
  @param BootOptionCount   Input boot option count.
  @param BootManagerMenu   Input boot manager menu.

  @retval TRUE  Successfully boot one of the boot options.
  @retval FALSE Failed boot any of the boot options.
**/
BOOLEAN
BootBootOptions (
  IN EFI_BOOT_MANAGER_LOAD_OPTION    *BootOptions,
  IN UINTN                           BootOptionCount,
  IN EFI_BOOT_MANAGER_LOAD_OPTION    *BootManagerMenu OPTIONAL
  );


D.1.12.7 EfiSignalEventReadyToBoot (*)

/**
  Create, Signal, and Close the Ready to Boot event using EfiSignalEventReadyToBoot().

  This function abstracts the signaling of the Ready to Boot Event. The Framework moved
  from a proprietary to UEFI 2.0 based mechanism. This library abstracts the caller
  from how this event is created to prevent to code form having to change with the
  version of the specification supported.

**/
VOID
EFIAPI
EfiSignalEventReadyToBoot (
  VOID
  );


D.1.12.8 UefiMain (*)

/**
  The entry point for the application.

  @param[in] ImageHandle    The firmware allocated handle for the EFI image.
  @param[in] SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS       The entry point is executed successfully.
  @retval other             Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
UefiMain (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  );


D.1.12.9 CoreExitBootServices (*)

/**
  Terminates all boot services.

  @param  ImageHandle            Handle that identifies the exiting image.
  @param  MapKey                 Key to the latest memory map.

  @retval EFI_SUCCESS            Boot Services terminated
  @retval EFI_INVALID_PARAMETER  MapKey is incorrect.

**/
EFI_STATUS
EFIAPI
CoreExitBootServices (
  IN EFI_HANDLE   ImageHandle,
  IN UINTN        MapKey
  );


D.1.12.10 RuntimeDriverSetVirtualAddressMap (*)

/**
  Changes the runtime addressing mode of EFI firmware from physical to virtual.

  @param  MemoryMapSize   The size in bytes of VirtualMap.
  @param  DescriptorSize  The size in bytes of an entry in the VirtualMap.
  @param  DescriptorVersion The version of the structure entries in VirtualMap.
  @param  VirtualMap      An array of memory descriptors which contain new virtual
                         address mapping information for all runtime ranges.

  @retval  EFI_SUCCESS            The virtual address map has been applied.
  @retval  EFI_UNSUPPORTED        EFI firmware is not at runtime, or the EFI firmware is already in
                                  virtual address mapped mode.
  @retval  EFI_INVALID_PARAMETER  DescriptorSize or DescriptorVersion is invalid.
  @retval  EFI_NO_MAPPING         A virtual address was not supplied for a range in the memory
                                  map that requires a mapping.
  @retval  EFI_NOT_FOUND          A virtual address was supplied for an address that is not found
                                  in the memory map.

**/
EFI_STATUS
EFIAPI
RuntimeDriverSetVirtualAddressMap (
  IN UINTN                  MemoryMapSize,
  IN UINTN                  DescriptorSize,
  IN UINT32                 DescriptorVersion,
  IN EFI_MEMORY_DESCRIPTOR  *VirtualMap
  );


D.1.13 Debug.SMM

D.1.13.1 SmmIplEntry (*)

/**
  The Entry Point for SMM IPL

  Load SMM Core into SMRAM, register SMM Core entry point for SMIs, install
  SMM Base 2 Protocol and SMM Communication Protocol, and register for the
  critical events required to coordinate between DXE and SMM environments.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurred when executing this entry point.

**/
EFI_STATUS
EFIAPI
SmmIplEntry (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  );


D.1.D.1 SmmMain (*)

/**
  The Entry Point for SMM Core

  Install DXE Protocols and reload SMM Core into SMRAM and register SMM Core
  EntryPoint on the SMI vector.

  Note: This function is called for both DXE invocation and SMRAM invocation.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurred when executing this entry point.

**/
EFI_STATUS
EFIAPI
SmmMain (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  );


D.1.13.3 PiCpuSmmEntry (*)

/**
  The module Entry Point of the CPU SMM driver.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
PiCpuSmmEntry (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  );


D.1.13.4 SmmRelocateBases (*)

/**
  Relocate SmmBases for each processor.

  Execute on first boot and all S3 resumes

**/
VOID
EFIAPI
SmmRelocateBases (
  VOID
  );


D.1.13.5 _SmiEntryPoint (*)

TODO: Add prototype

D.1.13.6 SmmEntryPoint (*)

/**
  The main entry point to SMM Foundation.

  Note: This function is only used by SMRAM invocation.  It is never used by DXE invocation.

  @param  SmmEntryContext           Processor information and functionality
                                    needed by SMM Foundation.

**/
VOID
EFIAPI
SmmEntryPoint (
  IN CONST EFI_SMM_ENTRY_CONTEXT  *SmmEntryContext
  );


D.1.13.7 PlatformEnableAcpiCallback

TODO: Add prototype


            

        
    



        
    



        

    
        D.2 BoardInit

        
            
                
D.2 BoardInit

D.2.1 BoardInitSupportLib

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _BOARD_INIT_LIB_H_
#define _BOARD_INIT_LIB_H_

#include <PiPei.h>
#include <Uefi.h>

EFI_STATUS
EFIAPI
BoardDetect (
  VOID
  );

EFI_STATUS
EFIAPI
BoardDebugInit (
  VOID
  );

EFI_BOOT_MODE
EFIAPI
BoardBootModeDetect (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitBeforeMemoryInit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitAfterMemoryInit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitBeforeTempRamExit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitAfterTempRamExit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitBeforeSiliconInit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitAfterSiliconInit (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitAfterPciEnumeration (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitReadyToBoot (
  VOID
  );

EFI_STATUS
EFIAPI
BoardInitEndOfFirmware (
  VOID
  );

#endif


D.2.2 MultiBoardInitSupportLib

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _MULTI_BOARD_INIT_SUPPORT_LIB_H_
#define _MULTI_BOARD_INIT_SUPPORT_LIB_H_

#include <Library/BoardInitLib.h>

typedef
EFI_STATUS
(EFIAPI *BOARD_DETECT) (
  VOID
  );

typedef
EFI_STATUS
(EFIAPI *BOARD_INIT) (
  VOID
  );

typedef
EFI_BOOT_MODE
(EFIAPI *BOARD_BOOT_MODE_DETECT) (
  VOID
  );

typedef struct {
  BOARD_DETECT  BoardDetect;
} BOARD_DETECT_FUNC;

typedef struct {
  BOARD_INIT              BoardDebugInit;
  BOARD_BOOT_MODE_DETECT  BoardBootModeDetect;
  BOARD_INIT              BoardInitBeforeMemoryInit;
  BOARD_INIT              BoardInitAfterMemoryInit;
  BOARD_INIT              BoardInitBeforeTempRamExit;
  BOARD_INIT              BoardInitAfterTempRamExit;
} BOARD_PRE_MEM_INIT_FUNC;

typedef struct {
  BOARD_INIT              BoardInitBeforeSiliconInit;
  BOARD_INIT              BoardInitAfterSiliconInit;
} BOARD_POST_MEM_INIT_FUNC;

typedef struct {
  BOARD_INIT              BoardInitAfterPciEnumeration;
  BOARD_INIT              BoardInitReadyToBoot;
  BOARD_INIT              BoardInitEndOfFirmware;
} BOARD_NOTIFICATION_INIT_FUNC;

EFI_STATUS
EFIAPI
RegisterBoardDetect (
  IN BOARD_DETECT_FUNC  *BoardDetect
  );

EFI_STATUS
EFIAPI
RegisterBoardPreMemoryInit (
  IN BOARD_PRE_MEM_INIT_FUNC  *BoardPreMemoryInit
  );

EFI_STATUS
EFIAPI
RegisterBoardPostMemoryInit (
  IN BOARD_POST_MEM_INIT_FUNC  *BoardPostMemoryInit
  );

EFI_STATUS
EFIAPI
RegisterBoardNotificationInit (
  IN BOARD_NOTIFICATION_INIT_FUNC  *BoardNotificationInit
  );

#endif



            

        
    



        
    



        

    
        D.3 SiliconPolicyInit

        
            
                
D.3 SiliconPolicyInit

D.3.1 SiliconPolicyInitLib

The SiliconPolicyInitLib provides functions that silicon code initializes the default policy.

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _SILICON_POLICY_INIT_LIB_H_
#define _SILICON_POLICY_INIT_LIB_H_

/**
  Performs silicon pre-memory policy initialization.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a PPI, etc.

  The returned data must be used as input data for SiliconPolicyDonePreMemory(),
  and SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().

  1) In FSP path, the input Policy should be FspmUpd.
  Value of FspmUpd has been initialized by FSP binary default value.
  Only a subset of FspmUpd needs to be updated for different silicon sku.
  The return data is same FspmUpd.

  2) In non-FSP path, the input policy could be NULL.
  The return data is the initialized policy.

  @param[in, out] Policy       Pointer to policy.

  @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPreMemory (
  IN OUT VOID *Policy OPTIONAL
  );

/*
  The silicon pre-mem policy is finalized.
  Silicon code can do initialization based upon the policy data.

  The input Policy must be returned by SiliconPolicyInitPreMemory().

  @param[in] Policy       Pointer to policy.

  @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePreMemory (
  IN VOID *Policy
  );

/**
  Performs silicon post-memory policy initialization.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a PPI, etc.

  The returned data must be used as input data for SiliconPolicyDonePostMemory(),
  and SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().

  1) In FSP path, the input Policy should be FspsUpd.
  Value of FspsUpd has been initialized by FSP binary default value.
  Only a subset of FspsUpd needs to be updated for different silicon sku.
  The return data is same FspsUpd.

  2) In non-FSP path, the input policy could be NULL.
  The return data is the initialized policy.

  @param[in, out] Policy       Pointer to policy.

  @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPostMemory (
  IN OUT VOID *Policy OPTIONAL
  );

/*
  The silicon post-memory policy is finalized.
  Silicon code can do initialization based upon the policy data.

  The input Policy must be returned by SiliconPolicyInitPostMemory().

  @param[in] Policy       Pointer to policy.

  @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePostMemory (
  IN VOID *Policy
  );

/**
  Performs silicon late policy initialization.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a protocol, etc.

  The returned data must be used as input data for SiliconPolicyDoneLate(),
  and SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().

  In FSP or non-FSP path, the input policy could be NULL.
  The return data is the initialized policy.

  @param[in, out] Policy       Pointer to policy.

  @return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitLate (
  IN OUT VOID *Policy OPTIONAL
  );

/*
  The silicon late policy is finalized.
  Silicon code can do initialization based upon the policy data.

  The input Policy must be returned by SiliconPolicyInitLate().

  @param[in] Policy       Pointer to policy.

  @retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDoneLate (
  IN VOID *Policy
  );

#endif


D.3.2 SiliconPolicyUpdateLib

The SiliconPolicyUpdateLib provides functions that board code overrides the default policy.

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _SILICON_POLICY_UPDATE_LIB_H_
#define _SILICON_POLICY_UPDATE_LIB_H_

/**
  Performs silicon pre-memory policy update.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a PPI, etc.

  The input Policy must be returned by SiliconPolicyDonePreMemory().

  1) In FSP path, the input Policy should be FspmUpd.
  A platform may use this API to update the FSPM UPD policy initialized
  by the silicon module or the default UPD data.
  The output of FSPM UPD data from this API is the final UPD data.

  2) In non-FSP path, the board may use additional way to get
  the silicon policy data field based upon the input Policy.

  @param[in, out] Policy       Pointer to policy.

  @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePreMemory (
  IN OUT VOID *Policy
  );

/**
  Performs silicon post-memory policy update.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a PPI, etc.

  The input Policy must be returned by SiliconPolicyDonePostMemory().

  1) In FSP path, the input Policy should be FspsUpd.
  A platform may use this API to update the FSPS UPD policy initialized
  by the silicon module or the default UPD data.
  The output of FSPS UPD data from this API is the final UPD data.

  2) In non-FSP path, the board may use additional way to get
  the silicon policy data field based upon the input Policy.

  @param[in, out] Policy       Pointer to policy.

  @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePostMemory (
  IN OUT VOID *Policy
  );

/**
  Performs silicon late policy update.

  The meaning of Policy is defined by silicon code.
  It could be the raw data, a handle, a Protocol, etc.

  The input Policy must be returned by SiliconPolicyDoneLate().

  In FSP or non-FSP path, the board may use additional way to get
  the silicon policy data field based upon the input Policy.

  @param[in, out] Policy       Pointer to policy.

  @return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdateLate (
  IN OUT VOID *Policy
  );

#endif



            

        
    



        
    



        

    
        D.4 TestPoint

        
            
                
D.4 TestPoint

D.4.1 TestPointLib

The TestPointLib provides helper functions for implementing test points. This
library is optional.

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _TEST_POINT_LIB_H_
#define _TEST_POINT_LIB_H_

#include <PiPei.h>
#include <Uefi.h>

//
// Below is Test Point report definition.
//

//
// We reuse HSTI stype definition.
// ADAPTER_INFO_PLATFORM_TEST_POINT is similar to ADAPTER_INFO_PLATFORM_SECURITY.
//

#define PLATFORM_TEST_POINT_VERSION               0x00000001

#define PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE 0x00000001
#define PLATFORM_TEST_POINT_ROLE_PLATFORM_IBV       0x00000002
#define PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_OEM    0x00000003
#define PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_ODM    0x00000004

#define TEST_POINT_FEATURES_ITEM_NUMBER 2


D.4.1.1 ADAPTER_INFO_PLATFORM_TEST_POINT

typedef struct {
  UINT32  Version;
  UINT32  Role;
  CHAR16  ImplementationID[256];
  UINT32  FeaturesSize;
//UINT8   FeaturesImplemented[];
//UINT8   FeaturesVerified[];
//CHAR16  ErrorString[];
} ADAPTER_INFO_PLATFORM_TEST_POINT;

//
// Below is test point report library
//


D.4.1.2 TestPointLibSetTable

/**
  Publish TestPoint table in AIP protocol.

  One system should have only one PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE.

  @param TestPoint      TestPoint data
  @param TestPointSize  TestPoint size

  @retval EFI_SUCCESS          The TestPoint data is published in AIP protocol.
  @retval EFI_ALREADY_STARTED  There is already TestPoint table with Role and ImplementationID published in system.
  @retval EFI_VOLUME_CORRUPTED The input TestPoint data is invalid.
  @retval EFI_OUT_OF_RESOURCES There is not enough system resource to publish TestPoint data in AIP protocol.
**/
EFI_STATUS
EFIAPI
TestPointLibSetTable (
  IN VOID                     *TestPoint,
  IN UINTN                    TestPointSize
  );


D.4.1.3 TestPointLibGetTable

/**
  Search TestPoint table in AIP protocol, and return the data.
  This API will return the TestPoint table with indicated Role and ImplementationID,
  NULL ImplementationID means to find the first TestPoint table with indicated Role.

  @param Role             Role of TestPoint data.
  @param ImplementationID ImplementationID of TestPoint data.
                          NULL means find the first one match Role.
  @param TestPoint        TestPoint data. This buffer is allocated by callee, and it
                          is the responsibility of the caller to free it after
                          using it.
  @param TestPointSize    TestPoint size

  @retval EFI_SUCCESS          The TestPoint data in AIP protocol is returned.
  @retval EFI_NOT_FOUND        There is not TestPoint table with the Role and ImplementationID published in system.
**/
EFI_STATUS
EFIAPI
TestPointLibGetTable (
  IN UINT32                   Role,
  IN CHAR16                   *ImplementationID OPTIONAL,
  OUT VOID                    **TestPoint,
  OUT UINTN                   *TestPointSize
  );


D.4.1.4 TestPointLibSetFeaturesVerified

/**
  Set FeaturesVerified in published TestPoint table.
  This API will update the TestPoint table with indicated Role and ImplementationID,
  NULL ImplementationID means to find the first TestPoint table with indicated Role.

  @param Role             Role of TestPoint data.
  @param ImplementationID ImplementationID of TestPoint data.
                          NULL means find the first one match Role.
  @param ByteIndex        Byte index of FeaturesVerified of TestPoint data.
  @param BitMask          Bit mask of FeaturesVerified of TestPoint data.

  @retval EFI_SUCCESS          The FeaturesVerified of TestPoint data updated in AIP protocol.
  @retval EFI_NOT_STARTED      There is not TestPoint table with the Role and ImplementationID published in system.
  @retval EFI_UNSUPPORTED      The ByteIndex is invalid.
**/
EFI_STATUS
EFIAPI
TestPointLibSetFeaturesVerified (
  IN UINT32                   Role,
  IN CHAR16                   *ImplementationID, OPTIONAL
  IN UINT32                   ByteIndex,
  IN UINT8                    BitMask
  );


D.4.1.5 TestPointLibClearFeaturesVerified

/**
  Clear FeaturesVerified in published TestPoint table.
  This API will update the TestPoint table with indicated Role and ImplementationID,
  NULL ImplementationID means to find the first TestPoint table with indicated Role.

  @param Role             Role of TestPoint data.
  @param ImplementationID ImplementationID of TestPoint data.
                          NULL means find the first one match Role.
  @param ByteIndex        Byte index of FeaturesVerified of TestPoint data.
  @param BitMask          Bit mask of FeaturesVerified of TestPoint data.

  @retval EFI_SUCCESS          The FeaturesVerified of TestPoint data updated in AIP protocol.
  @retval EFI_NOT_STARTED      There is not TestPoint table with the Role and ImplementationID published in system.
  @retval EFI_UNSUPPORTED      The ByteIndex is invalid.
**/
EFI_STATUS
EFIAPI
TestPointLibClearFeaturesVerified (
  IN UINT32                   Role,
  IN CHAR16                   *ImplementationID, OPTIONAL
  IN UINT32                   ByteIndex,
  IN UINT8                    BitMask
  );


D.4.1.6 TestPointLibAppendErrorString

/**
  Append ErrorString in published TestPoint table.
  This API will update the TestPoint table with indicated Role and ImplementationID,
  NULL ImplementationID means to find the first TestPoint table with indicated Role.

  @param Role             Role of TestPoint data.
  @param ImplementationID ImplementationID of TestPoint data.
                          NULL means find the first one match Role.
  @param ErrorString      ErrorString of TestPoint data.

  @retval EFI_SUCCESS          The ErrorString of TestPoint data is updated in AIP protocol.
  @retval EFI_NOT_STARTED      There is not TestPoint table with the Role and ImplementationID published in system.
  @retval EFI_OUT_OF_RESOURCES There is not enough system resource to update ErrorString.
**/
EFI_STATUS
EFIAPI
TestPointLibAppendErrorString (
  IN UINT32                   Role,
  IN CHAR16                   *ImplementationID, OPTIONAL
  IN CHAR16                   *ErrorString
  );


D.4.1.7 TestPointLibSetErrorString

/**
  Set a new ErrorString in published TestPoint table.
  This API will update the TestPoint table with indicated Role and ImplementationID,
  NULL ImplementationID means to find the first TestPoint table with indicated Role.

  @param Role             Role of TestPoint data.
  @param ImplementationID ImplementationID of TestPoint data.
                          NULL means find the first one match Role.
  @param ErrorString      ErrorString of TestPoint data.

  @retval EFI_SUCCESS          The ErrorString of TestPoint data is updated in AIP protocol.
  @retval EFI_NOT_STARTED      There is not TestPoint table with the Role and ImplementationID published in system.
  @retval EFI_OUT_OF_RESOURCES There is not enough system resource to update ErrorString.
**/
EFI_STATUS
EFIAPI
TestPointLibSetErrorString (
  IN UINT32                   Role,
  IN CHAR16                   *ImplementationID, OPTIONAL
  IN CHAR16                   *ErrorString
  );

//
// TEST POINT SMM Communication command
//
#define SMI_HANDLER_TEST_POINT_COMMAND_GET_INFO           0x1
#define SMI_HANDLER_TEST_POINT_COMMAND_GET_DATA_BY_OFFSET 0x2

typedef struct {
  UINT32                            Command;
  UINT32                            DataLength;
  UINT64                            ReturnStatus;
} SMI_HANDLER_TEST_POINT_PARAMETER_HEADER;

typedef struct {
  SMI_HANDLER_TEST_POINT_PARAMETER_HEADER    Header;
  UINT64                                     DataSize;
} SMI_HANDLER_TEST_POINT_PARAMETER_GET_INFO;

typedef struct {
  SMI_HANDLER_TEST_POINT_PARAMETER_HEADER    Header;
  //
  // On input, data buffer size.
  // On output, actual data buffer size copied.
  //
  UINT64                                     DataSize;
  PHYSICAL_ADDRESS                           DataBuffer;
  //
  // On input, data buffer offset to copy.
  // On output, next time data buffer offset to copy.
  //
  UINT64                                     DataOffset;
} SMI_HANDLER_TEST_POINT_PARAMETER_GET_DATA_BY_OFFSET;

extern EFI_GUID gAdapterInfoPlatformTestPointGuid;

#endif


D.4.2 TestPointCheckLib

/** @file

Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _TEST_POINT_CHECK_LIB_H_
#define _TEST_POINT_CHECK_LIB_H_

#include <PiPei.h>
#include <Uefi.h>

D.4.2.1    Test Point Hook Points
//
// Below is Test Point Hook Point.
//
// Naming: TestPoint<Phase/Event><Function>
//
// Phase/Event(PEI) = MemoryDiscovered|EndOfPei
// Phase/Event(DXE) = PciEnumerationDone|EndOfDxe|DxeSmmReadyToLock|ReadyToBoot
// Phase/Event(SMM) = SmmEndOfDxe|SmmReadyToLock|SmmReadyToBoot
//
EFI_STATUS
EFIAPI
TestPointTempMemoryFunction (
  IN VOID   *TempRamStart,
  IN VOID   *TempRamEnd
  );

EFI_STATUS
EFIAPI
TestPointDebugInitDone (
  VOID
  );


EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredMtrrFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredMemoryResourceFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredFvInfoFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredDmaProtectionEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfPeiSystemResourceFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfPeiMtrrFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfPeiPciBusMasterDisabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointPciEnumerationDonePciBusMasterDisabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointPciEnumerationDonePciResourceAllocated (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfDxeNoThirdPartyPciOptionRom (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfDxeDmaAcpiTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointEndOfDxeDmaProtectionEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToLockSmramAligned (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToLockWsmtTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmReadyToBootSmmPageProtection (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootAcpiTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootGcdResourceFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootMemoryTypeInformationFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootUefiMemoryAttributeTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootUefiBootVariableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootUefiConsoleVariableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootHstiTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootEsrtTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootUefiSecureBootEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootPiSignedFvBootEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootTcgTrustedBootEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointReadyToBootTcgMorEnabled (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToBootSmiHandlerInstrument (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointExitBootServices (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmEndOfDxeSmrrFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmReadyToLockSmmMemoryAttributeTableFunctional (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmReadyToLockSecureSmmCommunicationBuffer (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmReadyToBootSmmPageProtection (
  VOID
  );

EFI_STATUS
EFIAPI
TestPointSmmExitBootServices (
  VOID
  );


D.4.2.2 MinPlatformPkg Macro Definitions

//
// Below is detail definition for MinPlatform implementation
//
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM         L"Intel MinPlatform TestPoint"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_PEI     TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (PEI)"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_DXE     TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (DXE)"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_SMM     TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (SMM)"

#define TEST_POINT_FEATURE_SIZE           0x10

#define TEST_POINT_ERROR                  L"Error "
#define TEST_POINT_PLATFORM_TEST_POINT    L" Platform TestPoint"

// Byte 0 - SEC/PEI
#define TEST_POINT_TEMP_MEMORY_INIT_DONE  L" - Temp Memory Init Done - "
#define TEST_POINT_DEBUG_INIT_DONE        L" - Debug Init Done - "

#define TEST_POINT_BYTE0_TEMP_INIT_DONE   BIT0
#define TEST_POINT_BYTE0_DEBUG_INIT_DONE  BIT1

// Byte 1/2 - PEI
#define TEST_POINT_MEMORY_DISCOVERED      L" - Memory Discovered - "
#define TEST_POINT_END_OF_PEI             L" - End Of PEI - "

#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL                            BIT0
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL                 BIT1
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL                         BIT2
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED                     BIT3
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_CODE               L"0x01000000"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_STRING             L"Invalid MTRR Setting\r\n"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_CODE    L"0x01010000"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_STRING  L"Invalid Memory Resource\r\n"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_CODE            L"0x01020000"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_STRING          L"Invalid FV Information\r\n"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_CODE        L"0x01030000"
#define   TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_STRING      L"DMA protection disabled\r\n"

#define TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL                                   BIT0
#define TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL                                              BIT1
#define TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED                                      BIT2
#define   TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_CODE                      L"0x02000000"
#define   TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_STRING                    L"Invalid System Resource\r\n"
#define   TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_CODE                                 L"0x02010000"
#define   TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_STRING                               L"Invalid MTRR Setting\r\n"
#define   TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_CODE                         L"0x02020000"
#define   TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_STRING                       L"PCI Bus Master Enabled\r\n"

// Byte 3/4/5 - DXE
#define TEST_POINT_PCI_ENUMERATION_DONE                                                          L" - PCI Enumeration Done - "
#define TEST_POINT_END_OF_DXE                                                                    L" - End Of DXE - "
#define TEST_POINT_DXE_SMM_READY_TO_LOCK                                                         L" - DXE SMM Ready To Lock - "
#define TEST_POINT_READY_TO_BOOT                                                                 L" - Ready To Boot - "
#define TEST_POINT_EXIT_BOOT_SERVICES                                                            L" - Exit Boot Services - "

#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED                                 BIT0
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED                                BIT1
#define TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM                                BIT2
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL                                    BIT3
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED                                       BIT4
#define   TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_CODE                    L"0x03000000"
#define   TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_STRING                  L"Invalid PCI Resource\r\n"
#define   TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_CODE                   L"0x03010000"
#define   TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_STRING                 L"PCI Bus Master Enabled\r\n"
#define   TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_CODE                   L"0x03020000"
#define   TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_STRING                 L"Third Party Option ROM dispatched\r\n"
#define   TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_CODE                       L"0x03030000"
#define   TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_STRING                     L"No DMA ACPI table\r\n"
#define   TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED_ERROR_CODE                          L"0x03040000"
#define   TEST_POINT_BYTE3_END_OF_DXE_DXE_DMA_PROTECTION_ENABLED_ERROR_STRING                    L"DMA protection disabled\r\n"

#define TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL                        BIT0
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL                    BIT1
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL                             BIT2
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL                          BIT3
#define TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL                                     BIT4
#define TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL                                   BIT5
#define   TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_CODE           L"0x04000000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_STRING         L"Invalid Memory Type Information\r\n"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE       L"0x04010000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING     L"Invalid Memory Attribute Table\r\n"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_CODE                L"0x04020000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_STRING              L"Invalid Boot Variable\r\n"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_CODE             L"0x04030000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_STRING           L"Invalid Console Variable\r\n"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_CODE                        L"0x04040000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_STRING                      L"Invalid ACPI Table\r\n"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_CODE                      L"0x04050000"
#define   TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_STRING                    L"Invalid GCD Resource\r\n"

#define TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED                                  BIT0
#define TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED                                 BIT1
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED                                  BIT2
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED                                           BIT3
#define   TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_CODE                     L"0x05000000"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_STRING                   L"UEFI Secure Boot Disable\r\n"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_CODE                    L"0x05010000"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_STRING                  L"PI Signed FV Boot Disable\r\n"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_CODE                     L"0x05020000"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_STRING                   L"TCG Trusted Boot Disable\r\n"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_CODE                              L"0x05030000"
#define   TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_STRING                            L"TCG MOR not enabled\r\n"

// Byte 6/7 - SMM
#define TEST_POINT_SMM_END_OF_DXE                                                                L" - SMM End Of DXE - "
#define TEST_POINT_SMM_READY_TO_LOCK                                                             L" - SMM Ready To Lock - "
#define TEST_POINT_SMM_READY_TO_BOOT                                                             L" - SMM Ready To Boot - "
#define TEST_POINT_SMM_EXIT_BOOT_SERVICES                                                        L" - SMM Exit Boot Services - "

#define TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL                                          BIT0
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL                 BIT1
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER                       BIT2
#define TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION                             BIT3
#define   TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_CODE                             L"0x06000000"
#define   TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_STRING                           L"Invalid SMRR\r\n"
#define   TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE    L"0x06010000"
#define   TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING  L"Invalid SMM Memory Attribute Table\r\n"
#define   TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_CODE          L"0x06020000"
#define   TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_STRING        L"Unsecure SMM communication buffer\r\n"
#define   TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_CODE                L"0x06030000"
#define   TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_STRING              L"SMM page level protection disabled\r\n"

#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED                                     BIT0
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL                             BIT1
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT                            BIT2
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_CODE                        L"0x07000000"
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_STRING                      L"Invalid SMRAM Information\r\n"
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_CODE                L"0x07010000"
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_STRING              L"No WSMT table\r\n"
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_CODE               L"0x07020000"
#define   TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_STRING             L"No SMI Instrument\r\n"

// Byte 8 - Advanced
#define TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL                                     BIT0
#define TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL                                     BIT1
#define   TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_CODE                        L"0x08000000"
#define   TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_STRING                      L"No ESRT\r\n"
#define   TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_CODE                        L"0x08010000"
#define   TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_STRING                      L"No HSTI\r\n"


D.4.2.3 ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT

#pragma pack (1)

typedef struct {
  UINT32  Version;
  UINT32  Role;
  CHAR16  ImplementationID[256];
  UINT32  FeaturesSize;
  UINT8   FeaturesImplemented[TEST_POINT_FEATURE_SIZE];
  UINT8   FeaturesVerified[TEST_POINT_FEATURE_SIZE];
  CHAR16  End;
} ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT;

#pragma pack ()

#endif



            

        
    



        
    


2_architecture_example_of_a_minimal_platform_firmware_stack.png
Open source . Closed source Implementation Choice

Silicon Initialization






3_stage_1_main_control_flow.png
Switch to 32bit
mode

Initialize MTRR and
Enable CAR

Setup temporary
Heap/Stack in CAR

Minimal Platform
Initialization

Minimal Policy
Initialization

Required Silicon
Enabling and
Status Code

Enabled






1_architecture_minimum_platform_architecture_overview.png
Advanced
Features

Advanced
Features






1_architecture_minimum_platform_architecture_high_level_sequence.png
1. MinPlatform

Advanced

Features

2. Advanced Features

Product Features

3. Production Configuration






TianocoreTitlePageLogo.jpg





4_stage_2_main_control_flow.png
Additiena Platform
Initialization

Silicon Initialization
Pre-Memory

Memory

Initialization

(Memory Test
Included)

Memory Installed

Cache Configuration
(MTRR setting)






4_non_fsp_policy_data_flow.png
iliconPkg

\=>-—

XXX-OpenBoardPkg






cover.jpg
tianocore

Minimum Platform
Specification





4_fsp_policy_data_flow.png
FspPke

XXX-Silicon (Fsp)Pkg

FspWrapperPkg

XXX-OpenSiliconPkg

e S -

Min-Platform

XXX-OpenBoardPkg






6_stage_4_main_control_flow.png





5_stage_3_main_control_flow.png
Memory Installed
Callbacks

Postmemory policy
initialization

Past memory silicon
intialization

Transit to DXE

Transit toBDS

Boot to Shell






11_test_point_check_infrastructure.png
Public

Interface
AIP_PROTOCOL )
(TestPoint) Private
Interaface

SMM_ ATP
(TestPoint)

TEST_POINT Hob

Platform Lif
Instance

TestPoint
Lib

TestPointCheckLib

Other
Platform
Check






10_bds_hook_point_summary.png
No

PCI Enumeration Complete:

Install
gEfiPciEnumerationCompleteProtocolGuid

Trusted consoles added

~
C
2
[
Yes 5 Signal BeforeConsoleAfterTrustedConsole
v} . Enumerate USB keyboard
2 «  Connect controller for trusted
e graphics console
3 . Register default boot option (UEFT
5 shell)
S| . Register static hot keys (F2/F7)
s . Process TCG Physical Presence
] . Process TCG MOR
Z . Perform memory test
Yes g Signal BeforeConsoleBeforeEndOfDxe
No | End of DXE:
E Signal gEfiEndOfDxeEventGroupGuid
No g SmmReadyToLock:
£ Signal gEfiDxeSmmReadyTolLockProtocolGuid
. Dispatch deferred 37 party images
(e.q. UEFI OPROMSs)
abi B ConnectSequence ()
=2 o Note: In MinPlatformPkg, this
k] 8 calls
o[t ~ EfiBootManagerConnectAll()
Yes "é{& nal AfterConsoleReadyBeforeBootOption
=5 . Print hot key message to output
Lla console (“Press F7 for BootMenu!”)
i o Refresh all boot options
o|s . Sort load option variables






12_acpi_platform_flow.png





