TABLE OF CONTENTS
EDK II Minimum Platform Specification
Tables
Figures
1 Introduction
1.1 Audience / Document scope
1.2 Document Flow
1.3 Terminology
1.4 Reference documents
2 Architecture
2.1 Staged Architecture
2.2 Modularity
2.3 Execution
2.4 Organization
2.5 Platform and Board Layer
3 Stage I: Minimal Debug
3.2 Firmware Volumes
3.3 Modules
3.4 Required Functions
3.5 Configuration
3.6 Data Flows
3.7 Additional Control Flows
3.8 Build Files
3.9 Test Point Results
3.10 Functional Exit Criteria
3.11 Stage Enabling Checklist
4 Stage II: Memory Functional
4.2 Firmware Volumes
4.3 Modules
4.4 Required Functions
4.5 Configuration
4.6 Data Flows
4.7 Additional Control Flows
4.8 Build Files
4.9 Test Point Results
4.10 Functional Exit Criteria
4.11 Stage Enabling Checklist
5 Stage III: Boot to UEFI Shell
5.2 Firmware Volumes
5.3 Modules
5.4 Required Functions
5.5 Configuration
5.6 Data Flows
5.7 Additional Control Flows
5.8 Build Files
5.9 Test Point Results
5.10 Functional Exit Criteria
5.11 Stage Enabling Checklist
6 Stage IV: Boot to OS
6.2 Firmware Volumes
6.3 Modules
6.4 Required Functions
6.5 Configuration
6.6 Data Flows
6.7 Additional Control Flows
6.8 Build Files
6.9 Test Point Results
6.10 Functional Exit Criteria
6.11 Stage Enabling Checklist
7 Stage V: Security Enable
7.2 Firmware Volumes
7.3 Modules
7.4 Required Functions
7.5 Configuration
7.6 Data Flows
7.7 Additional Control Flows
7.8 Build Files
7.9 Test Point Results
7.10 Functional Exit Criteria
7.11 Stage Enabling Checklist
8 Stage VI: Advanced Feature Selection
8.2 Firmware Volumes
8.3 Configuration
8.4 Advanced Feature Design
9 Stage VII: Tuning
Appendix A Full Maps
A.1 Firmware Volume Layout
A.2 Key Function Invocation
A.3 BDS Hook Points
Appendix B Global Configuration
B.1 Stage Configuration
B.2 Test Point Check Infrastructure
Appendix C ACPI
C.1 Layout
C.2 ACPI Table Contents
C.3 ACPI Device Categorization
C.4 Flow Diagrams
Appendix D Interface Definitions
D.1 Required Functions
D.2 BoardInit
D.3 SiliconPolicyInit
D.4 TestPoint
EDK II Minimum Platform Specification
DRAFT FOR REVIEW
12/01/2020 06:43:14
Acknowledgements
Redistribution and use in source (original document form) and 'compiled' forms (converted to PDF, epub, HTML and other formats) with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code (original document form) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.
Redistributions in compiled form (transformed to other DTDs, converted to PDF, epub, HTML and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS DOCUMENTATION IS PROVIDED BY TIANOCORE PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TIANOCORE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2019, Intel Corporation. All rights reserved.
Revision History
Revision	Revision History	Date
0.7	Initial release	May 2019
Tables		
Stage I		
Stage II		
Stage III		
Stage IV		
Stage V		
Stage VI		
Appendix		
Figures		
1 INTRODUCTION		
This specification details the required and optional elements for an EDK II based platform design with the following objectives:		
A key aspect of these objectives is to improve the transparency and security quality across the client, server, and embedded ecosystems.		
This document assumes a working knowledge of the EDK II and UEFI Specifications. The minimal platform defined supports the use of Intel® Firmware Support Package (FSP), but does not require usage of the Intel® FSP API. The minimal platform is binary component oriented, but designed to enable a highly optimized form for embedded boot loaders.		
1.1 Audience / Document scope		
The audience for this document includes UEFI firmware architecture, development, validation, and enabling engineers.		
The UEFI Forum and the TianoCore.org EDK II specifications provide tremendous flexibility and extensibility. The Minimum Platform Architecture is intended to introduce interfaces and structure so that platforms are consistent and thus approachable by engineers from across the ecosystem. The minimal platform specifically refers to a platform layer within a multi-layer solution; its scope and therefore this specification defines this layer and its dependencies. The minimal platform is a single code package used as-is from open source similar to MDE Module package usage. By using this platform as a base, the fundamental boot flow is consistent, well-documented, and visible across the UEFI community.		
This approach does not rule out innovation and customization. The platform calls two primary sets of external APIs throughout the boot, for board and chipset initialization. These APIs are considered dependencies, and therefore are defined in this specification. The implementation of these APIs is expected to vary based on unique board and chipset requirements. Furthermore, the minimal platform can be arbitrarily extended through a simple and modular advanced feature design.		
The Minimum Platform Architecture enables scalability from pre-silicon validation activities, to final product shipment, to derivative product use. The Minimum Platform Architecture should enable engineering activities from all segments: from high-touch Intel supported OEMs to individual makers with previous UEFI experience but no direct support from Intel.		
1.2 Document Flow		
The document introduces the Minimum Platform Architecture, and then details the "boot stages" through the following subsections.		
Overview	An overview of the stage	
---	---	
Firmware Volumes	The binary containers needed for each stage	
Modules	The EDK II component binaries and static libraries required	
Required Functions	The architecturally defined functions for a given stage	
Configuration	The defined configurable parameters for a given stage	
Data Flows	The architecturally defined data structures and flows for a given stage	
Control Flows	Key control flows for a given stage	
Build Files	The DSC/FDF for a given stage	
Test Point Results	The test that can verify porting is complete for a given stage	
Functional Exit Criteria	The testable functionality for the stage	
Stage Enabling Checklist	The required activities to achieve desired functionality for a given stage	
Table 1 Document Flow		
1.3 Terminology		
Term	Definition	
---	---	
ACM	Authenticated Code Module	
ACPI	Advanced Configuration and Power Interface	
BCT	Intel Binary Configuration Tool	
BFV	Boot Firmware Volume	
BoardPkg	The EDK II package a developer creates to port the Minimum Platform for their motherboard or family of motherboards	
BSF	Boot Setting File	
CAR	Cache-As-RAM	
Component	An executable binary. Typically UEFI defined, e.g. PEIM, DXE driver, SMM driver, or UEFI application. Also used to refer to other system binaries. Not appropriate for statically linked libraries.	
DXE	Driver execution environment. Role is to load drivers for system devices. Finds and executes boot code. After OS loads, it handles OS to UEFI calls.	
DSDT	Differentiated System Description Table	
EC	Embedded Controller	
EDK	EFI Development Kit	
FACS	Firmware ACPI Control Structure	
FADT	Firmware ACPI Description Table	
FFS	EFI Firmware File System Specification	
FRU	Field Replaceable Unit, the minimal silicon that can be added or removed from a system, e.g.	
an SoC, a MCP, a standalone processor or PCH.		
FSP	Intel® Firmware Support Package	
Full Platform	A platform implementation that includes the minimal features, as well as some number of advanced features. (Stage I-VII). Note: most advanced features may not be described in this document.	
FV	Firmware Volume, a UEFI Forum defined firmware storage container	
GPIO	General Purpose Input/Output	
GUID	Globally Unique Identifier(s)	
HOB	Hand Off Blocks(s)	
Hybrid EDKII	Any Module that contains both EDKII compliant wrapper code, and non EDK payloads (e.g., CSM-bin or FSP-bin)	
IBB	Initial Boot Block	
IFWI	Integrated Firmware Image, includes things like UEFI firmware, microcode, microcontroller and firmware, configuration data.	
Term	Definition	
IPL	Initial Program Load	
MASM	Microsoft Macro Assembler	
Minimum Platform	A platform implementation that only includes the minimal features. (Stage I-VII)	
MinPlatformPkg	The EDK II package that contains common elements of the platform architecture.	
Module	Typically any EDK II independently buildable item, includes static libraries and executables.	
MOR	Memory Overwrite Request. See Trusted Computing Group documentation.	
MTRR	Memory Type Range Register	
NASM	Netwide Assembler	
Native EDKII	All modules build with only EDKII compliant source code, and no non-EDK payloads (e.g., CSM-bin, LegacyOpRom, or FSP-bin)	
NVRAM	Non-Volatile Random Access Memory	
OBB	OEM Boot Block	
OPROM	Option ROM	
PCD	Platform Configuration Database	
PEI	Pre EFI Initialization. Role is to initialize memory, and also initialize enough of the system to run DXE.	
PEIM	Pre-EFI Initialization Module	
PI	Platform Initialization	
PPI	PEIM-to-PEIM Interface	
RSDP	Root System Description Pointer	
RSDT	Root System Description Table	
SEC	Security phase. Role is to initialize the system far enough to find, validate, install and run PEI.	
SiliconPkg	The EDK II Package that contains silicon support for a system.	
SIO	Super I/O is a type of I/O controller IP. Typical functionality provided are one or more serial port UARTs, keyboard controller, and many others.	
SMBIOS	System Management BIOS	
SMM	System Management Mode	
SSDT	Secondary System Description Table	
T-RAM	Temporary RAM (memory used before permanent memory is initialized such as CAR)	
TPM	Trusted Platform Module	
UEFI	Unified Extensible Firmware Interface	
UPD	Updatable Product Data	
XSDT	Extended System Description Table	
Table 2 Terminology		
1.4 Reference documents		
The following documents are referenced in this specification.		
Abbreviation	Document	Version
---	---	---
ACPI_SPEC	Advanced Configuration and Power Interface (ACPI) Specification	Version 6.3 January 2019
BSF_SPEC	Boot Setting File (BSF) Specification	Version 1.0 March 2016
FSP_EAS	FSP 2.0 External Architecture Specification (EAS)	Version 2.0 May 2016
OpenPlatform_WP	Intel® Open Platform White Paper	May 2017
PI_SPECS	Platform Initialization (PI) Specification	Version 1.7 January 2019
Volume I: PEI		
Volume II: DXE CIS		
Volume III: Shared Architecture Elements		
Volume IV: SMM		
Volume V: Standards		
UEFI_SPEC	Unified Extensible Firmware Interface (UEFI) Specification	Version 2.8 March 2019
Table 3 Reference Documents		
2 ARCHITECTURE		
The Minimum Platform Architecture is structured around required functionality over time. As such, the key elements of architecture and design (flows, interfaces, etc) are organized into a staged architecture, where each stage will have requirements and functionality that lead to specific uses. Stages build upon prior stages with extensibility to meet silicon, platform, or board requirements.		
Early in a development cycle, engineering is focused on creating the platform and acquiring basic functionality. This can be pursued within simulation and emulation environments, or on real hardware. This often includes creating a new set of silicon and platform source code that handles the basic differences between the new target and prior solutions. Often this entails reuse of the prior generation silicon support and existing feature sets.		
Later development engineering effort is focused on enabling the full range of functionality, supporting all deltas in the new platform - typically in the form of reference designs and lead products. Next, platform development is focused on scaling. This involves customer enabling and aligning products for time-to-market and silicon roadmaps. Finally, there is sustaining, maintenance, and derivatives activity. These are characterized by smaller changes to existing production-worthy solutions, repurposing them opportunistically.		
Figure 1 Minimum Platform Architecture Overview		
Figure 1 shows the basic Minimum Platform Architecture. The enabling steps for a Minimum Platform solution should occur in the following order to add complexity over time, and only where it is necessary. This progression from minimum required to more full-featured permeates the design of the boot flow, modules implemented, and collection of components into firmware volumes.		
Figure 2 Minimum Platform Architecture High Level Sequence		
Figure 2 shows the same basic idea can be represented as a Venn diagram with three fundamental steps.		
This architecture is reflected in these areas:		
2.1 Staged Architecture		
The Minimum Platform Architecture defines a number of stages that are integral to the design and implementation of conformant firmware solutions. Stages define what code needs to be built, what functionality is required, what binary components are required at the FV and UEFI PI Architecture executables level, and what the system capabilities are available as a result of successfully executing through a firmware stage.		
Stage	Functional Objective	Example Capabilities
---	---	---
I	Minimal Debug	Serial Port, Port 80, External debuggers Optional: Software debugger
II	Memory Functional	Basic hardware initialization including main memory
III	Boot to UEFI Shell	Generic DXE driver execution
IV	Boot to OS	Boot a general purpose operating system with the minimally required feature set. Publish a minimal set of ACPI tables.
V	Security Enabled	UEFI Secure Boot, TCG trusted boot, DMA protection, etc.
VI	Advanced Feature Selection	Firmware update, power management, networking support, manageability, testability, reliability, availability, serviceability, non-essential provisioning and resiliency mechanisms
VII	Tuning	Size and performance optimizations
Table 4 Architecture Stages		
The stages correspond well to bootstrapping a system and to developing a production-worthy solution. The stages are defined in order to detail the minimum items required. It is expected that there will be more required and more present than what is defined in this specification for an end product. The stages capture what is minimally required to support the strategic objectives of transparency and quality as well as the more tactical objectives of structure, consistency, cohesion, coupling, and compatibility. Note that the stages represent enabling steps, not necessarily the order of execution. For example, ACPI initialization necessary in Stage IV may be performed before Stage III would be considered complete. Further, the stages may not necessarily be strictly additive once enabling is complete. For example, the UEFI shell may not be required in the production firmware image based on product requirements, but it must have been enabled and therefore capable of being loaded in the final firmware if chosen by a firmware engineer supporting the firmware in the final production image.		
2.2 Modularity		
Throughout the architecture you will find a mix of static and dynamic modularity. Static libraries are used to make the platform and board code simpler and more approachable. Dynamic linking in the form of UEFI PI Architecture components (PEIM and drivers) as well as large grain Firmware Volume containers are also used extensively in order to increase leverage, scalability, and large grain FV container updates.		
An important concept is that the minimum platform is defined with a mix of solutions for modularity, but that said modularity will be flexible. It is intended that products will be able to scale from fully statically-linked embedded solutions to fully dynamically-linked leveraged validation solutions as they reach the end of Stage VII optimization activities. These advanced solutions can be considered derivatives of the platform architecture and should not undermine the strategic objectives of transparency and quality, nor the more tactical objectives of structure, consistency, cohesion, coupling, and compatibility.		
2.3 Execution		
To provide for a simpler progression through functionality, there are controls that enable building and executing the minimal code to achieve the goal for a particular stage. There is a PCD control that platform and board code can use to limit the scope of what must be functional at a given state of development. For example, if the board is configured for Stage I functionality, developers should not be burdened with errors because required porting to make memory functional has not been done yet. Similarly, initializing memory should not be burdened with the functionality for authenticating cryptographic hashes required for Stage V.		
2.4 Organization		
The architecture makes use of four primary classifications of code that are generally instantiated in different EDK II packages.		
The architecture is designed to support a maintainer ownership model. For example, board developers should not directly modify (fork) the platform, silicon, or common code. More details on conventional usage of the package classifications can be found in supplemental literature from UEFI Forum, TianoCore.org, and others.		
For the purposes of this document, the board package is considered an integration point of the firmware image in addition to providing board-specific functionality. The silicon package provides supported silicon initialization support for one or more silicon products. The minimum platform package represents common elements of this architecture that may depend upon board and silicon interfaces. In order to meet the security objectives of this specification, the minimum platform package must not depend upon deprecated EDK II packages. Other packages composed within the firmware solution described in this specification should consist of widely known elements of the EDKII ecosystem from TianoCore.org.		
An example of a firmware stack compliant with this specification for three classes of computer systems is shown in the below figure.		
Figure 3 Example of a Minimal Platform Firmware Stack		
2.5 Platform and Board Layer		
The Minimum Platform Architecture is designed to provide consistency across boot flows with the control flows defined in this specification. These control flows are common to all platforms. Therefore, a single implementation is intended to serve all platforms. This implementation is maintained in the MinPlatformPkg on TianoCore.org. Throughout the standardized boot flow, implementation-specific details are required including board resource information for devices, buses, GPIO settings, etc. In addition, logic is necessary to integrate the silicon solution. For Intel® FSP, this involves invoking the appropriate FSP API with the proper parameters at the proper time in the boot flow. Such details are implemented in the board package behind the board API defined in this specification. This results in flexibility at the board layer for a custom software design that allows substitution of details like silicon initialization flow while maintaining a common control flow with other platforms. The board package is also typically responsible for other implementation-specific integration such as providing a custom build environment that prepares a firmware image processed by the tools required to produce an image compatible for a given board.		
3.1 Overview		
The objective of Stage I is to provide a foundation for more complex development in later stages. The board should implement a board-specific minimal code path capable of firmware debug output. Basic debug capability serves as a base for development activities in later stages. As Stage I is inherently foundational to product execution it may include more content and complexity than the functionality strictly required for debug output.		
3.1.1 Major Execution Activities		
It is not necessary for the developer to fully configure GPIO at this time. The only required board configuration is that necessary to reach system debug activities.		
3.1.2 Main Control Flow		
Stage I is contained within SEC and PEI phases. Code must not be compressed and content must be capable of being mapped to memory by hardware or other firmware.		
The high level control flow is described in the diagram below.		
Figure 4 Stage I Main Control Flow		
These activities do not map 1:1 to the required functions. Some of this flow is already well defined by UEFI or EDK II specifications. The following details are focused on the Platform, Silicon, and Board interactions, and minimal requirements for structure, consistency, and portability.		
3.2 Firmware Volumes		
The Stage I functionality is contained in these Firmware Volumes with these attributes.		
Name	Content	Compressed
---	---	---
FvPreMemory	SEC + StatusCode	No
FvBspPreMemory	Pre-memory board initialization	No
FvFspT	SEC silicon initialization	No
FvFspM	Memory initialization	No
FvPreMemorySilicon	Pre-memory silicon initialization	No
FvFspS	Silicon initialization	No
FvPostMemorySilicon	Post-memory silicon initialization	Yes
Table 5 Stage I Firmware Volumes		
As the foundational stage for further functionality, Stage I may include additional content beyond what is strictly required to meet the stage objective. Typically this will include silicon initialization code that may be packaged in a variety of mechanisms including varying size binary blobs. In the layout shown in Table 5, the Intel® FSP solution is shown as an example. In this case, the FSP binary can be rebased and integrated in one step rather than distributing the work for the FSP-M and FSP-S rebase unnecessarily across later stages. Note that a child FV is a FV embedded within the parent FV. The child FV is identified by a file type of EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE.		
Combining the FVs with full set of silicon binary components yields this example flash map for MMIO storage:		
Binary	FV	Components
---	---	---
Stage I	FvPreMemory.fv	SecCore.efi
ReportFvPei.efi		
SiliconPolicyPeiPreMemory.efi		
PlatformInitPreMemory.efi		
Additional Components		
FvBspPreMemory.fv	Additional Components	
FvFspT.fv	PlatformSec.efi	
Additional Components		
FvFspM.fv	PeiCore.efi	
PcdPeim.efi		
FspPlatform.efi		
FvPreMemorySilicon.fv		
(child FV)		
Additional Components		
ReportStatusCodeRouterPei.efi		
StatusCodeHandlerPei.efi		
Additional Components		
FvFspS.fv	FvPostMemorySilicon.fv	
(child FV)		
Additional Components		
Additional components |
Table 6 Stage I FV and Component Layout
Note that many of the components included above do not actually participate in producing Stage I functionality, and will not be executed when the boot stage target is set to Stage I. For systems that use non-volatile storage technology that does not provide memory map capabilities, this layout may be modified where necessary. However, the firmware execution path must remain scoped to only perform actions required to achieve the boot stage objective.
See Appendix: Full FV Map for a more complete example Firmware Volume layout.
3.3 Modules
The architecture requires the following modules. Only modules found in the BoardPkg should be modified for board porting. MinPlatformPkg and other common package contents must not be directly modified. BoardPkg and SiliconPkg modules will have multiple instances to support different boards and different silicon.
3.3.1 UEFI Components
These components are required. They enable orderly board porting and add the support for extensibility in later stages. The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, and some are defined in EDK II documentation.
Item | Producing Package | Libraries Consumed |
---|---|---|
SecCore.efi | UefiCpuPkg | PlatformSecLib, SerialPortLib |
PeiCore.efi | MdeModulePkg | |
PcdPeim.efi | MdeModulePkg | |
ReportStatusCodeRouterPei.efi | MdeModulePkg | |
StatusCodeHandlerPei.efi | MdeModulePkg | SerialPortLib |
ReportFvPei.efi | MinPlatformPkg | ReportFvLib, TestPointCheckLib |
SiliconPolicyPeiPreMemory.efi | MinPlatformPkg | SiliconPolicyInitLib, |
SiliconPolicyUpdateLib | ||
PlatformInitPreMemory.efi | MinPlatformPkg | BoardInitLib, TestPointCheckLib |
Table 7 Stage I UEFI Components Platform Architecture Libraries
3.3.2 Platform Architecture Libraries
Board porting will require creation of libraries identified as produced by the BoardPkg. Depending on the board, there may be existing libraries that are sufficient for a board, so it is important to assess the utility of existing library instances when developing board support.
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
BoardInitLib | MinPlatformPkg | BoardPkg | Board initialization library. |
ReportFvLib | MinPlatformPkg | MinPlatformPkg | Installs platform firmware volumes. |
SerialPortLib | MdeModulePkg | BoardPkg | SIO vendor specific initialization to enable serial port. |
SiliconPolicyInitLib | IntelSiliconPkg | SiliconPkg | Provides default silicon configuration policy data. |
SiliconPolicyUpdateLib | IntelSiliconPkg | BoardPkg | Provides board updates to silicon configuration policy data. |
PlatformSecLib | UefiCpuPkg | MinPlatformPkg | Reset vector and SEC initialization code. |
TestPointCheckLib | MinPlatformPkg | MinPlatformPkg | Test point check library. It is called by PlatformInit module to perform stage-specific checks. |
TestPointLib | MinPlatformPkg | MinPlatformPkg | Test point library. It provides helper functionality for TestPointCheck lib. |
Table 8 Stage I Libraries
3.4 Required Functions
The following functions are required to exist and to execute in the listed order. The component that provides the function is not specified because it is not required by the architecture.
* In the common EDK II open source code.
3.4.1 Required SEC functions
Name | Purpose |
---|---|
ResetHandler (*) | The reset vector invoked by silicon |
TempRamInit | Silicon initializes temporary memory |
TestPointTempMemoryFunction | Test temporary memory functionality |
SecStartup (*) | First C code execution, constructs PEI input |
TestPointEndOfSec | Verify state before switching to PEI |
Table 9 Stage I SEC Functions
3.4.2 Required PEI functions
Name | Purpose |
---|---|
PeiCore (*) | PEI entry point |
PeiDispatcher (*) | Calls the entry points of PEIM |
ReportPreMemFv | Installs firmware volumes required in pre-memory |
BoardDetect | Board detection of the motherboard type |
BoardDebugInit | Board specific initialization for debug device |
PlatformHookSerialPortInitialize | Board serial port initialization. Called from SEC or PEI |
TestPointDebugInitDone | Verify debug functionality |
Table 10 Stage I PEI Functions
3.5 Configuration
This section defines the configurable items that must be available to achieve Stage I functionality.
Stage I configuration is largely concerned with hard-coded address space data and serial port data. In some platform architectures, a firmware or ROM may be responsible for handing off NEM configuration data to Stage I.
3.5.1 Flash Map Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemoryBase | Pre-Memory FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemorySize | Pre-Memory FV size. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTBase | Fsp-T FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTSize | Fsp-T FV size. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMBase | Fsp-M FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMSize | Fsp-M FV size. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSBase | Fsp-S FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSSize | Fsp-S FV size. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeBase | Microcode FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeSize | Microcode FV size. |
Table 11 Stage I Flash Map Configuration PCDs
3.6 Data Flows
This section defines key data structures and the ways this data flows through the system over time.
3.6.1 Serial Port Configuration
Serial port configuration spans build and boot. Serial port parameters come from the board and are used for debug features, serial input/output devices supporting local or remote consoles, and OS level debuggers.
Serial port default configuration options are defined in the MdePkg.dec.
Serial port configuration options may be overwritten by the BoardPkg.dsc.
Serial port configuration options are consumed by the SerialPortLib library class implementation.
SerialPortLib library class is used by the StatusCodeHandlerPei.inf component to initialize and display messages to a serial port.
Serial port configuration options are published via a SERIAL_PORT_CONFIGURATION_HOB.
SERIAL_PORT_CONFIGURATION_HOB is consumed by MinPlatformSerialDxe.inf to produce EFI_SERIAL_IO_PROTOCOL.
3.6.2 Debug Configuration
PCD | Purpose |
---|---|
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialBaudRate | Baud rate for the 16550 serial port |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseMmio | Enable serial port MMIO addressing |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseHardwareFlowControl | Enable serial port HW flow control |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialDetectCable | Enable blocking Tx if no cable |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialRegisterBase | Register the serial port base address |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialLineControl | Serial port line control configuration |
gEfiMdeModulePkgTokenSpaceGuid.PcdSerialFifoControl | Serial port FIFO control |
gMinPlatformPkgTokenSpaceGuid.PcdSecSerialPortDebugEnable | Enable serial port debug in SEC phase |
gEfiMdePkgTokenSpaceGuid.PcdFixedDebugPrintErrorLevel | Control build time optimization based on debug print level |
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask | Control DebugLib behavior |
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel | Control run time debug print level |
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask | Control display of status codes |
Table 12 Stage I Debug Configuration
3.7 Additional Control Flows
None
3.8 Build Files
UEFI system firmware by nature is often constructed with a large number of modules and components. EDK II modules are typically written to be generic and reusable. As such, much of the build file content is the same for all platforms. The platform architecture provides further structure and consistency by defining dedicated build files that are exposed to all consumers of the platform package. The modular separation of the build files is based on the UEFI PI Architecture phases, the platform architecture stages, and optional features. The board package is ultimately able to leverage as much of this content as applicable for a given system. The build is coordinated by the board package which should include standard build files from the minimum platform package or other dependent packages such as a silicon package.
Name | Consumer | Standalone Buildable | FV Produced | Comments |
---|---|---|---|---|
MinPlatformPkg \Include\CoreCommonLib.dsc | Board | No | None | Stage I-V common libraries |
MinPlatformPkg \Include\CorePeiInclude.dsc | Board | No | None | Combination of Stage I-V that will be processed by compilation building |
MinPlatformPkg \Include\CorePeiLib.dsc | Board | No | None | Combination of Stage I-V that will be processed by compilation building |
BoardPkg \BoardName\BoardPkg.dsc | Build | Yes | None | Primary build file. |
Name | Consumer | Standalone Buildable | FV Produced | Comments |
MinPlatformPkg \Include\CorePreMemoryInclude.fdf | Board | No | None | Combination of Stage I-II that will be processed by compilation building |
BoardPkg \BoardName\BoardPkg.fdf | Build | Yes | Yes | Combination of Stage I-V that will be processed by compilation building |
Table 13 Stage I Build Files
3.9 Test Point Results
Test Point Function | Test Subject | Test Overview | Reporting Mechanism |
---|---|---|---|
TestPointTempMemoryFunction () | Temporary Memory | Reads/writes results on the stack and heap | Reported through PPI |
TestPointDebugInitDone () | Debug Capability | Dumps a struct of debug configuration parameters to the log | Serial Port shows debug log Port 80 shows number |
Table 14 Stage I Test Point Results
3.10 Functional Exit Criteria
Temporary Memory is initialized.
The debug device is initialized and the platform has written a message to indicate Stage I termination.
3.11 Stage Enabling Checklist
The following steps should be followed to enable a board for Stage I.
Copy the EDK II packages locally to the workspace.
Select an appropriate silicon initialization solution such as Intel® FSP.
Review the requirements for the silicon initialization solution.
Gather the silicon initialization requirements for the given board.
Customize the silicon initialization solution to configure the system to the board-specific requirements.
For Intel® FSP, this includes setting minimal policy configuration.
For other silicon solutions, similar parameter customization may be needed if the silicon solution is not written for a particular system design.
Determine other firmware and software components required for the system to function properly.
For an Intel platform, this may include firmware images such as the appropriate microcode patch, EC firmware image, power management controller firmware, and others.
Additional third-party add-in components such as specific UEFI drivers may also be required.
Determine board-specific information required to fetch code and show debug output.
Copy a reference GenerationOpenBoardPkg/BoardXXX and update the board interfaces in Required Functions.
Add serial port initialization code in PlatformHookSerialPortInitialize () at BoardPkg/Library/BasePlatformHookLib.
Add Board detection code in BoardDetect (),
BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c`
If the project only supports one board, this function can return directly.
Add Board pre-memory debug initialization code in BoardDebugInit (), BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.
Audit BoardPkg/Stage1.dsc, ensure all PCDs in the Configuration section are correct for your board.
Set gMinPlatformPkgTokenSpaceGuid.PcdBootStage = 1
Follow "Debug Lib Selection" to enable serial debug capability.
Audit all other PCD settings in the board DSC file to verify the values are correct for your board.
Verify the flash layout is compliant with this specification.
Verify the required binaries will be included in the image produced in the build.
Verify the code execution path for Stage I will only perform the actions required to achieve debug output.
Boot the system, collect the debug log, and verify the test point results defined in the Test Point section are correct.
4.1 Overview
The objective of Stage II is to enable a minimal boot path memory initialization code execution that successfully installs permanent memory.
4.1.1 Major Execution Activities
Stage II Functionality |
---|
Non-volatile storage read-only access |
Pre-memory silicon policy initialization |
Basic services like cache and CPU IO |
Initialization of decompression capability |
Memory initialization and basic memory test |
4.1.2 Main Control Flow
Stage II extends the Stage I control flow by executing the platform and silicon initialization required for memory initialization. The stage is completed when permanent memory is installed. Since execution prior to memory initialization typically occurs in a resource-constrained environment, the code in this stage is not compressed. To simplify silicon enabling which may be opaque to the board engineer in the form of a binary blob, Stage II enabling does not strictly constrain the extent of silicon initialization. In particular, it is recommended to perform standard security lock functionality such as register locks, privilege level changes, and other actions that are in the system requirements to reduce conditional logic and therefore potential for error in enabling those settings. This only pertains to security settings within the chipset. This does not include larger industry standard security features such as UEFI Secure Boot and TCG measured boot. Those features are enabled in Stage V Security Enable.
Figure 5 Stage II Main Control Flow
4.2 Firmware Volumes
Stage II leverages most of the Stage I content. Additional firmware volumes include:
Name | Content | Compressed | Parent FV |
---|---|---|---|
FvPostMemory | Post-memory modules | Yes | None |
FvBsp.fv | Post-memory board support | Yes | None |
Table 15 Stage II Firmware Volumes
Which yields this example extension of the flash map for MMIO storage (append to Stage I map):
Binary | FV | Components | Purpose |
---|---|---|---|
Stage II | FvPostMemory.fv | ReadOnlyVariable.efi | Common core variable services |
SiliconPolicyPeiPostMemory.efi | Publishes silicon initialization configuration | ||
PlatformInitPostMemory.efi | Performs post memory initialization | ||
DxeIpl.efi | Load and invoke DXE | ||
ResetSystemRuntimeDxe.efi | Provides reset service | ||
PciHostBridge.efi | PCI host bridge driver | ||
Additional Components | Additional post-memory components required for Stage II boot | ||
FvBsp.fv | Additional Components | Post-memory board support components |
Table 16 Stage II FV and Component Layout
See Appendix: Full FV Map for a more complete example Firmware Volume layout.
4.3 Modules
Only modules in the board package should be modified in the process of board porting. The minimum platform package and other common package contents must not be directly modified. The board package and silicon package modules may have multiple instances to support different boards and different silicon. These components are required. They enable orderly board porting and add the support for extensibility in later stages. The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
4.3.1 UEFI Components (DXE)
Item | Producing Package | Libraries Consumed |
---|---|---|
DxeIpl.efi | MdeModulePkg | |
SiliconPolicyPeiPostMemory.efi | MinPlatformPkg | SiliconPolicyInitLib SiliconPolicyUpdateLib |
PlatformInitPostMemory.efi | MinPlatformPkg | BoardInitLib TestPointCheckLib |
ResetSystemRuntimeDxe.efi | MdeModulePkg | ResetSystemLib |
PciHostBridge.efi | MdeModulePkg | PciHostBridgeLib |
Table 17 Stage II DXE UEFI Components
4.3.2 Platform Architecture Libraries (PEI)
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
BoardInitLib | MinPlatformPkg | BoardPkg | Board initialization library. |
SiliconPolicyInitLib | IntelSiliconPkg | SiliconPkg | Provides default silicon configuration policy data. |
SiliconPolicyUpdat eLib | IntelSiliconPkg | BoardPkg | Provides board updates to silicon configuration policy data. |
TestPointCheckLib | MinPlatformPkg | MinPlatformPkg | Test point check library. It is called by PlatformInit module to perform stage-specific checks. |
TestPointLib | MinPlatformPkg | MinPlatformPkg | Test point library. It provides helper functionality for TestPointCheck lib. |
Table 18 Stage II PEI Platform Architecture Libraries
4.3.3. Platform Architecture Libraries (DXE)
Stage II contains some DXE items needed to enable Stage III. No board porting of these libraries is required. Board integrators should ensure that their silicon package provides the necessary libraries. These libraries and the UEFI Components (DXE) are functionally irrelevant to Stage II functionality.
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
ResetSystemLib | MdeModulePkg | SiliconPkg | For DXE reset architecture protocol |
PciHostBridgeLib | MdeModulePkg | SiliconPkg | For DXE PCI host bridge driver |
Table 19 Stage II DXE Platform Architecture Libraries
4.4 Required Functions
The following functions are required to exist and to execute in the listed order. The component that provides the function is not specified because it is not required by the architecture.
4.4.1 Required PEI functions
* In the common EDK II open source code.
Name | Purpose |
---|---|
BoardBootModeDetect | Board hook for EFI_BOOT_MODE detection |
BoardInitBeforeMemoryInit | Board specific initialization prior to permanent memory initialization (e.g. GPIO configuration) |
SiliconPolicyInitPreMemory | Pre-memory silicon policy default initialization |
SiliconPolicyUpdatePreMemory | Pre-memory silicon policy update logic |
SiliconPolicyDonePreMemory | Opportunity to implement a board-specific indicator that silicon policy initialization is done |
MemoryInit | Permanent memory initialization |
InstallEfiMemory | Install permanent memory to core |
PeiCore (*) | PEI entry point (post-memory entry) |
SecTemporaryRamDone (*) | Optional API defined in the PI specification to disabled temporary RAM |
ReportPostMemFv | Firmware volume installation in post-memory |
TestPointPostMemoryFvInfoFunctional | Test to verify correctness of the firmware volume map in post-memory |
BoardInitAfterMemoryInit | Board initialization after memory is installed |
SetCacheMtrr | Configuration of MTRR settings for post-memory |
TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional | Test to verify the correctness of the MTRR settings in post-memory |
TestPointPostMemoryResourceFunctional | Test to verify correctness of permanent memory |
Table 20 Stage II PEI Functions
4.4.2 Interfaces
* In the common EDK II open source code.
Component | Name | Consumer | Purpose |
---|---|---|---|
BoardInitLib | BoardBootModeDetect | Platform | Board-specific boot mode detection |
BoardInitAfterMemoryInit | Platform | Board specific initialization after memory initialization | |
BoardInitBeforeTempRamExit | Platform | Board specific hook before temporary RAM exit | |
BoardInitAfterTempRamExit | Platform | Board specific hook after temporary RAM exit | |
SiliconPolicyInitLib | SiliconPolicyInitPreMemory | Platform | Initialize silicon policy default values |
SiliconPolicyDonePreMemory | Platform | Platform-specific behavior to indicate the policy update is done | |
SiliconPolicyUpdateLib | SiliconPolicyUpdatePreMemory | Platform | Board updates default policy |
Table 21 Stage II Interfaces
4.5 Configuration
This section defines the configurable items that must be available to achieve Stage II functionality.
4.5.1 Intel® FSP Related Configuration
PCD | Purpose |
---|---|
gIntelFsp2WrapperTokenSpaceGuid.PcdFspmBaseAddress | FSP-M FV base address |
gIntelFsp2WrapperTokenSpaceGuid.PcdPeiMinMemorySize | Indicates the PEI memory size reported by the platform |
gIntelFsp2WrapperTokenSpaceGuid.PcdPeiRecoveryMinMemorySize | Indicates the PEI recovery memory size reported by the platform |
Table 22 Stage II FSP Related Configuration
4.5.2 FV Related Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemoryBase | Post-memory FV base address |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemorySize | Post-memory FV size |
Table 23 Stage II FV Related Configuration
4.6 Data Flows
This section defines architectural data structures and the flows in which these structures move through the boot over time.
4.6.1 Silicon Policy Flow and Rules
4.6.1.1 Silicon Module Provides Default Silicon Policy Data
One silicon policy data structure is created per silicon module. The data structure should only contain data. Functions should not be used in silicon policy data.
When a silicon module installs this policy data, it should consider the most common usage as the default policy data. Therefore, a board module must only update non-default values instead of all fields.
This silicon code may expose the APIs below.
An API to initialize all policy data to the default value, based upon the current silicon.
An API to tell silicon code that all policy data have been updated, and they are ready to consume.
Library | Interface | Definition Location | Producer | Consumer in FSP Boot Path | Consumer in EDK II Path |
---|---|---|---|---|---|
SiliconPolicyInitLib | SiliconPolicy InitPreMemory | Silicon | Silicon | FspWrapper PlatformLib | Platform |
SiliconPolicy DonePreMemory | Silicon | Silicon | FspWrapper PlatformLib | Platform | |
SiliconPolicy InitPostMemory | Silicon | Silicon | FspWrapper PlatformLib | Platform | |
SiliconPolicy DonePostMemory | Silicon | Silicon | FspWrapper PlatformLib | Platform | |
SiliconPolicy InitLate | Silicon | Silicon | FspWrapper PlatformLib | Platform | |
SiliconPolicy DoneLate | Silicon | Silicon | FspWrapper PlatformLib | Platform | |
SiliconPolicyUpdateLib | SiliconPolicy UpdatePreMemory | Minimum Platform / Silicon | Board | FspWrapper PlatformLib | Platform |
SiliconPolicy Update PostMemory | Minimum Platform / Silicon | Board | FspWrapper PlatformLib | Platform | |
SiliconPolicy UpdateLate | Minimum Platform / Silicon | Board | FspWrapper PlatformLib | Platform |
Table 24 Silicon Policy Libraries
NOTE: A general guideline is that pointers should not be used in policies that persist across the CAR to permanent memory boundary as the pointer addresses will become invalid. Pre-memory only and post-memory only policies are not affected by the memory transition. A pre-memory policy installation PEIM should only be used for policies that must be updated in pre-memory for early use by silicon code. The post-memory policy installation PEIM can be compressed and does risk pointers becoming invalidated due to the memory transition.
The policy configuration HOBs are inherently passed to DXE, so a silicon DXE module can locate and install a policy protocol for a particular policy if it is used in DXE.
4.6.1.2 Board Module Silicon Policy Data
Using the SiliconPolicyUpdateLib, the board package may reference a variety of sources to obtain the board-specific policy values, including but limited to the following common sources.
PCD database
UEFI Variable
Binary Blob
Built-in C structure
Hardware information
4.6.1.3 Board Module Silicon Policy Update Completion
After policy configuration is completed, the board may indicate that the policy is configured with board-specific actions in the SiliconPolicyDonePreMemory () API in SiliconPolicyInitLib.
4.6.1.4 Non-Intel® FSP Policy Data Flow
The SiliconPolicyPeiPreMemory module in the minimum platform package will invoke the following policy configuration functions in the given order.
Figure 6 Non-FSP Policy Data Flow
4.6.1.5 Intel® FSP Policy Data Flow
Figure 7 FSP Policy Data Flow
4.6.2 HOB Output
Intel® FSP HOB to PEI HOB transition
In an Intel® FSP API mode boot with an EDK II wrapper, the system will have two HOB lists - one maintained in the FSP PEI environment and the other in the FSP wrapper PEI environment. The FSP wrapper environment is responsible for converting data from the FSP HOB to a PEI HOB. These HOBs are platform-specific; examples include the SmbiosHob and GraphicInfoHob.
PEI HOBs for Phase Handoff to DXE
4.6.3 MTRR Configuration Settings in Post-Memory
The system MTRR settings are typically configured in two locations after permanent memory initialization.
After permanent memory installation
At this point, cache attributes are set for PEI memory usage. This specification does not require any particular MTRR configuration, as it is ultimately dependent upon platform goals such as functionality and performance given the device and storage technologies present on the platform. The most common ranges configured are the default memory setting as UC, the DRAM region as WB, and the SPI flash MMIO region as WP. These settings are usually applied in a memory installation notification function or a PEIM shadow. The architecture requires that the settings be applied in the board package.
Prior to DXE IPL
At this point PEI execution has completed and control is transitioning to the DXE phase. The MTRR settings are typically modified to prepare for the DXE environment. The most common ranges configured are the default memory as WB, the TSEG (SMRAM) region as UC, and MMIO as UC. These settings are usually applied in an end of PEI notification function. The architecture requires that the settings be applied in the board package.
4.7 Additional Control Flows
None
4.8 Build Files
This is appended to previous Build Files section.
Name | Consumer | Standalone Buildable | FV Produced | Comments |
---|---|---|---|---|
MinPlatformPkg \Include\CorePostMemoryInclude.fdf | Board | No | None |
Table 25 Stage II Build Files
4.9 Test Point Results
Test Point | Test Subject | Test Overview | Reporting Mechanism |
---|---|---|---|
TestPointMemory DiscoveredMtrr Functional () | MTRR after memory discovered | Verifies MTRR settings. (No overlap, PEI memory WB, Flash region is WP, MMIO UC) | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPointMemory DiscoveredMemory Resource Functional () | Resource description HOB | No memory resource overlap. | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPointMemory DiscoveredFvInfo Functional () | FV HOB and FV info PPI | FV HOB and FV info PPI. | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
Table 26 Test Point Results
NOTE: ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT can be updated by TestPointCheckLib. The format is similar to the HSTI. See Appendix - Interface TestPoint.
4.10 Functional Exit Criteria
Permanent memory is initialized.
Temporary memory is disabled.
PEI phase MTRR configuration settings are applied.
Resource description HOB is built.
4.11 Stage Enabling Checklist
The following steps should be followed to enable a platform for Stage II.
Update GenerationOpenBoardPkg/BoardXXX
Add Board boot mode detection code in BoardBootModeDetect (), BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.
Add Board pre-memory initialization code in BoardInitBeforeMemoryInit () and BoardInitAfterMemoryInit (), BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemLib.c.
It initializes board specific hardware devices, such as GPIO.
It also updates pre-memory policy configuration by using PCD
Add Board policy update code in SiliconPolicyUpdatePreMemory (), BoardXXX/PeiSiliconPolicyUpdateLib/PeiBoardXXXInitPreMemoryLib.c.
Ensure all PCDs in the configuration section (DSC files) are correct for your board.
Ensure all required binaries in the flash file (FDF files) are correct for your board.
Boot, collect log, verify test point results defined in section 4.9 are correct.
5.1 Overview
The primary objective of Stage III is to enable a minimal boot path that successfully loads the UEFI Shell. A secondary objective for Stage III is to be silicon and board agnostic. All silicon and board specific details should be leveraged from Stages I and II. Demonstrating the capability to load the UEFI shell does not imply that the UEFI shell is a required component in the end product firmware. It does ensure that the platforms with a terminal boot stage target greater than Stage II can load the UEFI shell so the system can be analyzed and configured in the UEFI boot services environment with well-defined behavior in a consistent manner with other Minimum Platform specification-compliant systems.
The minimal UI capability that is required is serial console. UEFI variables must be supported with at least emulated variable behavior. UEFI variable storage to a non-volatile media such as SPI NOR flash is acceptable if the platform requirements mandate such support. Additional capabilities are optional and must not be assumed. These include USB input devices, graphics devices, and other storage devices.
5.1.1 Major Execution Activities
DXE Initial Program Load (IPL)
DXE Core initialization and dispatcher execution
Initialize the generic infrastructure required for the DXE environment o Installation of DXE architectural protocols o Initialization of architecturally required hardware such as timers
Post-memory silicon policy initialization
Serial console input and output capabilities
Stage III Functionality |
---|
Universally usable infrastructure: DXE Core, Minimal BDS, console infrastructure |
Silicon agnostic architectural protocol producing hardware modules |
UEFI Variable support (emulation allowed) |
UEFI Shell |
Tests for Memory Map, Cache Map, architectural hardware |
5.1.2 Main Control Flow
Stage III extends Stage II control flow by executing Driver Execution Environment (DXE), executing Boot Device Selection (BDS) and invoking the UEFI Shell.
Figure 8 Stage III Main Control Flow
After memory is installed during Stage II, the remaining silicon and platform initialization must take place in the PEI phase only. All silicon initialization tasks should have been completed in Stage II, and there should be no silicon-specific initialization required in the DXE phase. The default console information should be transferred via a HOB and initialized and used in Stage III.
5.2 Firmware Volumes
Stage III finalizes silicon and prepares DXE/BDS services. Additional firmware volumes include:
Name | Content | Compressed | Parent FV |
---|---|---|---|
FvUefiBoot | Common DXE/BDS Services | Yes | None |
Table 27 Stage III Firmware Volumes
Which yields this example extension of the flash map for MMIO storage (add to Stage I + II map):
Binary | FV | Components | Purpose |
---|---|---|---|
Stage III | FvUefiBoot.fv | DxeCore.efi | DXE services and dispatcher |
PcdDxe.efi | Provides PCD services | ||
ReportStatusCodeRouterDxe.efi | Provides status code infrastructure | ||
StatusCodeHandlerRuntimeDxe.efi | Provides status code listeners | ||
BdsDxe.efi | Provides Boot Device Selection phase | ||
CpuDxe.efi | Provides processor services | ||
Metronome.efi | Provides metronome HW abstraction | ||
MonotonicCounterRuntimeDxe.efi | Provides monotonic counter service | ||
PcatRealTimeClockRuntimeDxe.efi | Provides RTC abstraction | ||
WatchdogTimer.efi | Provides watchdog timer service | ||
RuntimeDxe.efi | Provides UEFI runtime service functionality | ||
HpetTimerDxe.efi | Provide timer service | ||
EmuVariableRuntimeDxe.efi | Provides UEFI variable service | ||
CapsuleRuntimeDxe.efi | Provides capsule service | ||
PciBusDxe.efi | PCI bus driver | ||
GraphicsOutputDxe.efi | Provides graphics support | ||
TerminalDxe.efi | Provides terminal services | ||
GraphicsConsoleDxe.efi | Provides graphics console | ||
ConSplitterDxe.efi | Provides multi console support | ||
EnglishDxe.efi | Provides Unicode collation services | ||
GenericMemoryTestDxe.efi | Provide memory test | ||
DevicePathDxe.efi | Provides device path services | ||
DiskIo.efi | Provides disk IO services | ||
Partition.efi | Provides disk partition services | ||
Fat.efi | Provides FAT filesystem services | ||
Additional Components | Additional post-memory components required for Stage III boot |
Table 28 Stage III FV and Component Layout
See Appendix: Full FV Map for a more complete example Firmware Volume layout.
5.3 Modules
Only modules in the board package should be modified in the process of board porting. The minimum platform package and other common package contents must not be directly modified. The board package and silicon package modules may have multiple instances to support different boards and different silicon. These components are required. They enable orderly board porting and add the support for extensibility in later stages. The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
5.3.1 UEFI Components (DXE)
Item | Producing Package | Libraries Consumed | Comments |
---|---|---|---|
DxeCore.efi | MdeModulePkg | ||
PcdDxe.efi | MdeModulePkg | ||
BdsDxe.efi | MdeModulePkg | PlatformBootManagerLib | |
CpuDxe.efi | UefiCpuPkg | Architecture Protocol | |
Metronome.efi | MdeModulePkg | Architecture Protocol | |
MonotonicCounterRuntimeDxe.efi | MdeModulePkg | Architecture Protocol | |
PcatRealTimeClockRuntimeDxe.efi | PcAtChipsetPkg | Architecture Protocol | |
WatchdogTimer.efi | MdeModulePkg | Architecture Protocol | |
RuntimeDxe.efi | MdeModulePkg | Architecture Protocol | |
SecurityStubDxe.efi | SecurityPkg | Architecture Protocol | |
HpetTimerDxe.efi (*) | PcAtChipsetPkg | Architecture Protocol | |
VariableRuntimeDxe.efi / | MdeModulePkg | Architecture Protocol | |
VariableSmmRuntimeDxe.efi | |||
CapsuleRuntimeDxe.efi | MdeModulePkg | Architecture Protocol | |
PciBusDxe.efi | MdeModulePkg | PCI | |
TerminalDxe.efi | MdeModulePkg | Terminal | |
ConSplitterDxe.efi | MdeModulePkg | Console | |
EnglishDxe.efi | MdeModulePkg | Localization | |
DevicePathDxe.efi | MdeModulePkg | Other | |
Optional drivers | |||
GraphicsOutputDxe.efi | MdeModulePkg | Graphics | |
GraphicsConsoleDxe.efi | MdeModulePkg | Console | |
MemoryTest.efi | MdeModulePkg | Other | |
ReportStatusCodeRouterDxe.efi | MdeModulePkg | Status code | |
StatusCodeHandlerRuntimeDxe.efi | MdeModulePkg | SerialPortLib | Status code |
Table 29 Stage III DXE UEFI Components
* An alternative timer module may be used to produce an instance of gEfiTimerArchProtocolGuid.
5.3.2 Platform Architecture Libraries
No board porting of these libraries is required.
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
SerialPortLib | MdeModulePkg | MinPlatformPkg | Serial port leveraging PEI and HOB initialization. |
PlatformBoot ManagerLib | MdeModulePkg | MinPlatformPkg | Basic platform boot manager port. |
Table 30 Stage III Platform Architecture Libraries
5.4 Required Functions
The following functions are required to exist and to execute in the listed order. The component that provides the function is not specified because it is not required by the architecture.
5.4.1 Required PEI functions
Name | Purpose |
---|---|
BoardInitBeforeSiliconInit | Board initialization hook |
SiliconPolicyInitPostMemory | Silicon post memory policy initialization |
SiliconPolicyUpdatePostMemory | Board updates silicon policies |
SiliconPolicyDonePostMemory | Complete post memory silicon policy data collection |
BoardInitAfterSiliconInit | Board specific initialization after silicon is initialized |
DxeLoadCore (*) | DXE IPL locate and call DXE Core |
SetCacheMtrrAfterEndOfPei | Sets cache map in preparation for DXE |
TestPointEndOfPei | Verify expected state as we exit PEI phase |
TestPointPostMemoryMtrrEndOfPeiFunctional | Basic test for cache configuration before entering DXE |
Table 31 Stage III Required PEI Functions
* In the common EDK II open source code.
5.4.2 PEI Interfaces
Component | Name | Consumer | Purpose |
---|---|---|---|
BoardInitLib | BoardInitBeforeSiliconInit | Platform | Board specific initialization before silicon initialization |
BoardInitAfterSiliconInit | Platform | Board specific initialization after silicon initialization | |
SiliconPolicyInitLib | SiliconPolicyInitPostMemory | Platform | Silicon provides default policy |
SiliconPolicyDonePostMemory | Platform | Platform to indicate the policy update is done | |
SiliconGetPolicySubData | Board | Return policy data for update. | |
SiliconPolicyUpdateLib | SiliconPolicyUpdatePostMemory | Platform | Board updates default policy |
Table 32 Stage III PEI Functions
5.4.3 Required DXE functions
Name | Purpose |
---|---|
DxeMain (*) | DXE entry point |
CoreStartImage (*) | DXE driver entry point |
SiliconPolicyInitLate | Silicon policy late (DXE) initialization |
SiliconPolicyUpdateLate | Silicon policy late (DXE) update from the board package |
SiliconPolicyDoneLate | Silicon policy late (DXE) indication policy initialization is done |
CoreAllEfiServicesAvailable (*) | Verify all architectural protocols are installed |
BdsEntry (*) | BDS entry point |
PlatformBootManagerBeforeConsole (*) | Platform-specific BDS functionality before console |
BoardInitAfterPciEnumeration | Board-specific hook after PCI enumeration completion |
TestPointPciEnumerationDone | Test to verify PCI enumeration assignment |
ExitPmAuth | Signal key security events EndOfDxe and SmmReadyToLock |
TestPointEndOfDxe | Test to verify expected state after EndOfDxe |
TestPointDxeSmmReadyToLock | Test to verify expected state after SmmReadyToLock |
EfiBootManagerDispatchDeferredImages (*) | Dispatch deferred third party UEFI driver OPROMs |
PlatformBootManagerAfterConsole (*) | Platform specific BDS functionality after console |
BootBootOptions (*) | Attempt each boot option |
EfiSignalEventReadyToBoot (*) | Signals the ReadyToBoot event group |
BoardInitReadyToBoot | Board hook on ReadyToBoot event |
TestPointReadyToBoot | Test to verify expected state after ReadyToBoot event signal |
UefiMain (*) | UEFI Shell entry point |
Table 33 Stage III DXE Functions
5.4.4 DXE Interfaces
Component | Name | Consumer | Purpose |
---|---|---|---|
BoardInitLib | BoardNotificationInit | Platform | Board specific initialization hook at DXE phase |
Table 34 Stage III DXE Interfaces
5.5 Configuration
This section defines the configurable items that must be available to achieve Stage III functionality.
These definitions may be both source and binary in nature.
5.5.1 FV Related Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootBase | UefiBoot FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootSize | UefiBoot FV size. |
Table 35 Stage III Flash Map Configuration PCDs
5.5.2 Driver Related Configuration
PCD | Purpose |
---|---|
gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvModeEnable | Enables UEFI variable emulation mode. |
Table 36 Stage III Driver Configuration
5.6 Data Flows
This section defines the architecturally defined data structures and the ways this data flows through the system over time. In addition to the definition and lifecycle for important pieces of data.
5.6.1 Memory Map Flow
The detailed description on memory map can be found in the whitepaper A Tour Beyond BIOS Memory Map and Practices in UEFI BIOS.
5.7 Additional Control Flows
None
5.8 Build Files
This is appended to previous Build files section.
Name | Consumer | Standalone Buildable | FV Produced | Comments |
---|---|---|---|---|
MinPlatformPkg \Include\CoreUefiBootInclude.fdf | Board | No | None |
Table 37 Stage III Build Files
5.9 Test Point Results
Test Point | Test Subject | Test Overview | Reporting Mechanism |
---|---|---|---|
TestPoint EndOfPeiMtrr Functional () | MTRR after EndOfPei | Confirm MTRR settings. Example:
| Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint EndOfPei SystemResource Functional () | Resource HOB SMRAM HOB | SMRAM No system resource overlap | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint EndOfPei PciBusMaster Disabled () | PCI device BME | Check if BME is cleared | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint PciEnumerationDone PciResource Allocated () | PCI device resource | Check if all PCI devices have been assigned proper resources. | Dump PCI resource assignment. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint PciEnumerationDone PciBusMaster Disabled () | PCI device BME | Check if BME is cleared | Dump result to serial log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint EndOfDxe NoThirdParty PciOptionRom () | 3rd party PCI option ROMs | Check if any 3rd party PCI option ROMs have been dispatched before EndOfDxe. | Dump LoadedImage. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot UefiMemoryAttribute TableFunctional () | UEFI memory attribute table | Table is reported. Image code and data is consistent with the table. | Dump UEFI Table and UEFI Image Info. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot MemoryTypeInformation Functional () | Memory type information | Inspect and verify memory type information is correct. Confirm no fragmentation exists in the ACPI/Reserved/Runtime memory regions. | Dump the memory type information settings to the debug log. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot UefiConsoleVariable Functional () | Console | Inspect and verify console variable information is correct. | Dump the variable information to the serial log Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot UefiBootVariable Functional () | Boot Option | Inspect and verify boot option information is correct. | Dump the variable information to the serial log Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
Table 38 Stage III Test Point Results
5.10 Functional Exit Criteria
UEFI Shell can be loaded and invoked by the platform firmware.
The DXE MTRRs are set correctly and verified in the test point results.
5.11 Stage Enabling Checklist
The following steps should be followed to enable a platform for Stage III.
Add board post-memory initialization code in BoardInitBeforeSiliconInit () and BoardInitAfterSiliconInit (), BoardPkg/BoardInitLib/PeiBoardXXXInitPostMemoryLib.c.
Add board policy update code in SiliconPolicyUpdatePostMemory (), BoardPkg\PeiSiliconPolicyUpdateLib \PeiBoardXXXInitLib.c.
Add board initialization DXE code in BoardInitAfterPciEnumeration (), BoardInitReadyToBoot (), BoardInitEndOfFirmware ().
Ensure all PCDs in the configuration section (DSC files) are correct for your board.
Ensure all required binaries in the flash file (FDF files) are correct for your board.
Boot, collect debug log, and verify the test point results defined in section 5.9 are correct.
6.1 Overview
The objective of Stage IV is to enable a minimal boot path that successfully boots a commercial operating system such as Linux or Windows, with UEFI interfaces exposed to the OS implemented in compliance with the UEFI specification. The minimal boot path only involves functionality necessary to load the OS to a state where a user may begin performing more complex interactions. This involves successfully reaching an environment that allows the user to launch applications. The stage does not include support for all applications that, for example, may require certain CPU or GPU features enabled. Nor does it require any further support, including but not limited to device and system power management, full hardware performance support enabled, system reset support, etc.
Any additional functionality is classified as an advanced feature. Those features are collectively enabled in Stage VI.
6.1.1 Major Execution Activities
Stage IV Modules |
---|
Minimum ACPI table initialization |
Additional input, output, and storage support based on platform and operating system requirements |
SMM |
Perform ACPI enable/disable |
Kernel debug support |
UEFI variable support |
6.1.2 Main Control Flow
Stage IV introduces additional functionality to meet the minimal requirements for a UEFI-compliant operating system. Much of the support required will be performed during the DXE phase interleaving Stage IV control flows with pre-existing control flows from Stage III. A minimum set of ACPI tables, namely RSDT, FACP, FACS, FADT, MADT, HPET and DSDT, need to be initialized and published. If there are alternative and/or additional operating system expectations such as full DeviceTree support, that should be enabled to allow the operating system to be loaded.
It is recommended that only the mandatory boot option devices are connected in BDS to minimize complexity and boot time in the minimal execution path to the operating system. In the flow diagram below, the left half is identical to the functionality enabled by Stage III prior to entering the BDS phase. It is expected that the Stage III components are reused to complete Stage IV tasks.
The green blocks in Figure 9 Stage IV Control Flow reuse the existing blocks from Stage III.
Figure 9 Stage IV Main Control Flow
6.2 Firmware Volumes
Stage IV finalizes silicon initialization, adds basic operating system required interfaces, and supports minimally featured operating system boot. The new components are support in a dedicated firmware volume.
Name | Content | Compressed | Parent FV |
---|---|---|---|
FvOsBoot | DXE/BDS Services | Yes | None |
FvLateSilicon | ACPI and SMM silicon support | No | FvOsBoot |
Table 39 Stage IV Firmware Volumes
Which yields this example extension of the flash map for MMIO storage (add to Stage I + II + III map):
Binary | FV | Components | Purpose |
---|---|---|---|
Stage IV | FvOsBoot.fv | FvLateSilicon.fv (child FV) | |
Additional Components | Additional silicon initialization support that is performed late in the boot | ||
AcpiTable.efi | Provides common ACPI services | ||
PlatformAcpi.efi | Provides MinPlatform ACPI content | ||
BoardAcpi.efi | Provides board ACPI content | ||
PiSmmIpl.efi | SMM initial loader | ||
PiSmmCore.efi | SMM core services | ||
ReportStatusCodeRouterSmm.efi | SMM status code infrastructure | ||
StatusCodeHandlerSmm.efi | SMM status code handlers | ||
PiSmmCpu.efi | SMM CPU services | ||
CpuIo2Smm.efi | SMM CPU IO services | ||
FaultTolerantWriteSmm.efi | SMM fault tolerant write services | ||
SpiFvbServiceSmm.efi | SMM SPI FLASH services | ||
Additional Components | Additional post-memory components required for Stage IV boot |
Table 40 Stage IV FV and Component Layout
See Appendix: Full FV Map for a more complete example Firmware Volume layout.
6.3 Modules
Only modules in the board package should be modified in the process of board porting. The minimum platform package and other common package contents must not be directly modified. The board package and silicon package modules may have multiple instances to support different boards and different silicon. These components are required. They enable orderly board porting and add the support for extensibility in later stages. The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
6.3.1 UEFI Components (DXE)
These components are required. They enable orderly board porting and orderly extensibility to add functionality over time.
The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
Item | Producing Package | Libraries Consumed |
---|---|---|
AcpiTable.efi | MdeModulePkg | |
PlatformAcpi.efi | MinPlatformPkg | BoardAcpiLib |
Table 41 Stage IV ACPI DXE UEFI Components
6.3.2 UEFI Components (DXE)
Item | Producing Package | Libraries Consumed |
---|---|---|
SataControllerDxe.efi | MdeModulePkg | |
AtaAtapiPassThru.efi | MdeModulePkg | |
AtaBusDxe.efi | MdeModulePkg | |
UhciDxe.efi | MdeModulePkg | |
EhciDxe.efi | MdeModulePkg | |
XhciDxe.efi | MdeModulePkg | |
UsbBusDxe.efi | MdeModulePkg | |
UsbMassStorageDxe.efi | MdeModulePkg | |
UsbKbDxe.efi | MdeModulePkg |
Table 42 Stage IV DXE UEFI Components
6.3.3 UEFI Components (SMM)
Item | Producing Package | Libraries Consumed |
---|---|---|
PiSmmIpl.efi | MdeModulePkg | |
PiSmmCore.efi | MdeModulePkg | |
ReportStatusCodeRouterSmm.e fi | MdeModulePkg | |
StatusCodeHandlerSmm.efi | MdeModulePkg | SerialPortLib |
PiSmmCpu.efi | UefiCpuPkg | |
CpuIo2Smm.efi | UefiCpuPkg | |
FaultTolerantWriteSmm.efi | MdeModulePkg | |
SpiFvbServiceSmm.efi | MinPlatformPkg |
Table 43 Stage IV SMM UEFI Components
6.3.4 Platform Architecture Libraries
Board porting will require creation of libraries identified as produced by the BoardPkg. Depending on the board, there may be existing libraries that are sufficient for a board, so it is important to assess the utility of existing library instances when developing board support.
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
BoardAcpiLib | MinPlatformPkg | BoardPkg | Services for ACPI table creation |
Table 44 Stage IV Platform Architecture Libraries
6.4 Required Functions
The following functions are required to exist and to execute in the given order. The component that provides the function is not specified because it is not required by the architecture.
The required functions for Stage IV are organized by phase and subsystem (e.g. ACPI, SMM, etc). See Appendix: Full Functions Map for a complete ordering for all stages.
6.4.1 Required DXE Functions
Name | Purpose |
---|---|
PlatformCreateAcpiTable | Create the minimum set of platform-specific ACPI tables |
PlatformUpdateAcpiTable | Update data in platform-specific in ACPI tables |
PlatformInstallAcpiTable | Install platform-specific ACPI tables |
CoreExitBootServices (*) | Dismantles UEFI boot services and enter UEFI run time |
BoardInitEndOfFirmware | Board hook for the ExitBootServices event |
TestPointExitBootServices | Test to verify state after ExitBootServices has been invoked |
RuntimeDriverSetVirtualAddressMap (*) | Sets virtual address mode |
Table 45 Stage IV DXE Functions
* In the common EDK II open source code.
6.4.2 DXE Interfaces
Component | Name | Consumer | Purpose |
---|---|---|---|
BoardInitLib | BoardNotificationInit | Platform | Board specific initialization hook at DXE phase |
Table 46 Stage IV DXE Interfaces
6.4.3 Required SMM Functions
Name | Purpose |
---|---|
SmmIplEntry (*) | SMM IPL |
SmmMain (*) | SMM Core entry point |
PiCpuSmmEntry (*) | SMM CPU driver |
SmmRelocateBases (*) | Relocation |
_SmiEntryPoint (*) | SMI entry point |
SmmEntryPoint (*) | Dispatch SMI handlers |
PchSmmCoreDispatcher | Dispatch PCH child SMI handlers |
TestPointSmmEndOfDxe | Verify state after SmmEndOfDxe |
TestPointSmmEndOfDxe | Verify state after SmmEndOfDxe |
TestPointSmmReadyToLock | Verify state after SmmReadyToLock |
PlatformEnableAcpiCallback | Switch the system to ACPI mode |
BoardEnableAcpiCallback | Board hook for ACPI mode switch |
Table 47 Stage IV SMM Functions
* In the common EDK II open source code.
6.4.4 SMM Interfaces
Component | Name | Consumer | Purpose |
---|---|---|---|
BoardAcpiLib | BoardEnableEcAcpiMode () | Platform | Board specific ENABLE_ACPI_MODE action |
BoardDisableEcAcpiMode () | Platform | Board specific DISABLE_ACPI_MODE action |
Table 48 Stage IV SMM Interfaces
6.5 Configuration
This section defines the configurable items that must be available to achieve Stage IV functionality.
These definitions may be both source and binary in nature.
6.5.1 Memory Type Information Related Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid. | Memory size reserved for ACPI reclaim memory |
PcdPlatformEfiAcpiReclaimMemorySize | |
gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiAcpiNvsMemorySize | Memory size reserved for ACPI NVS memory |
gMinPlatformPkgTokenSpaceGuid. | Memory size reserved for EFI reserved memory |
PcdPlatformEfiReservedMemorySize | |
gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiRtDataMemorySize | Memory size reserved for EFI runtime data memory |
gMinPlatformPkgTokenSpaceGuid. PcdPlatformEfiRtCodeMemorySize | Memory size reserved for EFI runtime code memory |
Table 49 Memory Type Information Configuration
6.5.2 FV Related Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootBase | OsBoot FV base address |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootSize | OsBoot FV size |
Table 50 Flash Map Configuration PCDs
6.6 Data Flows
This section defines the architecturally defined data structures and the ways this data flows through the system over time. In addition to the definition and lifecycle for important pieces of data.
ACPI tables in this stage are located using AcpiSdtProtocol supplied by MdeModulePkg. These tables are updated with the help existing HOBs, policies for different silicon components. APIs to update these tables are located in the AcpiPlatfrom DXE driver.
6.7 Additional Control Flows
None
6.8 Build Files
This is appended to previous Build files section.
Name | Consumer | Standalone Buildable | FV Produced | Comments |
---|---|---|---|---|
MinPlatformPkg \Include\CoreOsBootInclude.fdf | Board | No | None | Stage IV required components |
Table 51 Stage IV Build Files
6.9 Test Point Results
Test Point | Test Subject | Test Overview | Reporting Mechanism |
---|---|---|---|
TestPoint ReadyToBoot AcpiTable Functional () | ACPI table(s) |
| Dump ACPI tables. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint SmmReadyToLock SecureSmmCommunication Buffer () | SMM communication buffer | Only CommBuffer(s) and MMIO are mapped in the page table. | Dump memory map and GCD map at SmmReadyToLock and check at SmmReadyToBoot. |
TestPoint SmmReadyToLock SmmMemoryAttributeTable Functional () | SMM memory page attribute table | Table is reported. Image code/data mapping is accurate.
| Dump SMM table and SMM Image Info. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint SmmEndOfDxe Smrr Functional () | SMRR |
| Dump SMRR and SMRAM_INFO. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint SmmReadyToBoot SmmPageProtection () | SMM page table | SMM page table matches SmmMemoryAttribute table. | Report error based upon check. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint DxeSmmReadyToLock SmramAligned () | SMRAM info | SMRAM is aligned. | Dump SMRAM region table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint DxeSmmReadyToLock WsmtTable Functional () | WSMT table | WSMT is reported. | Dump WSMT table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint DxeSmmReadyToBoot SmiHandlerInstrument () | SmiHandler profile | SmiHandler profile. | Dump SMI Handler profile. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
Table 52 Stage IV Test Point Results
6.10 Functional Exit Criteria
Successfully load a UEFI compatible operating system such that all firmware interfaces required for the OS to load are satisfied (optional interfaces not necessary for loading are not required).
On an x86 compatible system which supports SMM, SMM is initialized.
Silicon
The minimum ACPI tables described in this section are installed.
6.11 Stage Enabling Checklist
The following steps should be followed to enable a platform for Stage IV.
Install the minimal DSDT
Ensure all PCDs in the configuration section (DSC files) are correct for your board.
Ensure all required binaries in the flash file (FDF files) are correct for your board.
Boot, collect log, verify test point results defined in section 6.9 Test Point Results are correct
7.1 Overview
The objective of Stage V is to establish the basic system security foundation for a production environment. Given the importance of security for all connected systems, the platform architecture considers the following basic security features as minimum requirements for any product and thus an important part of the effort to produce a minimal platform. This stage is concerned with enabling security technologies described in industry specifications. Lower-level chipset-specific security technologies such as register locks may exist and those should be enabled during standard silicon initialization flows in earlier stages.
7.1.1 Major Execution Activities
Stage V Modules |
---|
Full UEFI variable services support (i.e. non-volatile, volatile, and authenticated) |
Authenticated boot (HW and UEFI) |
TCG trusted boot (if TPM HW is present) |
DMA protection |
7.1.2 Main Control Flow
Stage V introduces new modules and requirements to the boot incrementally over Stage IV. The key requirement is to satisfy industry standard security specifications applicable to the platform. The security technologies enabled in this stage are not strictly bound to the definition in this specification and may consist of a subset or superset of the content described in this section. However, the only case in which a modern production system should not implement a form of any of these technologies is if the necessary hardware is not available. In all other cases, the system must at least implement a form of the following:
Hardware rooted authenticated boot that can establish a Static Root of Trust for Verification (S-RTV) and continue an authenticated chain of verification throughout the boot process.
System measurement capability that allows the firmware to serve as a Static Root of Trust for Measurement (S-RTM).
Protection from Direct Memory Access (DMA) attacks.
The TCG measured boot chain of trust is should be enabled in this stage. At this point, Authenticated UEFI Variable support must be completely functional. This is a basic requirement for secure authentication and management of the UEFI Secure Boot keys.
7.2 Firmware Volumes
Stage V supports key security features. Additional FV are:
Name | Content | Compressed | Parent FV |
---|---|---|---|
FvSecurity | Security related modules | No | None |
NvStorage | Real NV storage on flash | No | None |
Table 53 Stage V Firmware Volumes
Which yields this example extension of the flash map for MMIO storage (add to Stage I - IV map):
Binary | FV | Components | Purpose |
---|---|---|---|
Stage V | FvSecurity.fv | Tcg2Dxe.efi | TPM2 services |
Tcg2ConfigDxe.efi | TPM2 configuration UI. | ||
Tcg2PlatformDxe.efi | TPM2 platform module. | ||
Tcg2Smm.efi | TPM2 ACPI services. | ||
TcgMor.efi | TCG Memory Override support | ||
IntelVTdPmrPei.efi | IOMMU PEI services. | ||
IntelVTdDxe.efi | IOMMU DXE services. | ||
SecurityStubDxe.efi | Provide security architecture protocol. | ||
FaultTolerantWriteSmm.efi | Fault-tolerant services in SMM. | ||
VariableSmm.efi | Provide Variable service in SMM. | ||
VariableSmmRuntimeDxe.efi | Provide Variable service in UEFI. | ||
SecureBootConfigDxe.efi | SecureBoot configuration UI. | ||
Additional Components | Additional post-memory components required for Stage V boot |
Table 54 Stage V FV and Components Layout
See Appendix: Full FV Map for a more complete example Firmware Volume layout.
7.3 Modules
Only modules in the board package should be modified in the process of board porting. The minimum platform package and other common package contents must not be directly modified. The board package and silicon package modules may have multiple instances to support different boards and different silicon. These components are required. They enable orderly board porting and add the support for extensibility in later stages. The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
7.3.1 UEFI Components (PEI)
These components are required. They enable orderly board porting and orderly extensibility to add functionality over time.
The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
Item | Producing Package | Libraries Consumed |
---|---|---|
Tcg2Pei.efi | SecurityPkg | |
Tcg2ConfigPei.efi | SecurityPkg | |
Tcg2PlatformPei.efi | MinPlatformPkg | |
IntelVTdPmrPei.efi | IntelSiliconPkg |
Table 55 Stage V PEI UEFI Components
7.3.2 UEFI Components (DXE)
These components are required. They enable orderly board porting and orderly extensibility to add functionality over time.
The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
Item | Producing Package | Libraries Consumed |
---|---|---|
TcgMor.efi | SecurityPkg | |
Tcg2Dxe.efi | SecurityPkg | |
Tcg2ConfigDxe.efi | SecurityPkg | |
Tcg2PlatformDxe.efi | MinPlatformPkg | |
VariableSmmRuntimeDxe.efi | MdeModulePkg | |
SecureBootConfigDxe.efi | SecurityPkg | |
SecurityStubDxe.efi | MdeModulePkg | |
IntelVTdDxe.efi |
Table 56 Stage V DXE UEFI Components
7.3.3 UEFI Components (SMM)
These components are required. They enable orderly board porting and orderly extensibility to add functionality over time.
The libraries consumed are the subset of libraries required by this specification. Some libraries are defined in this specification, some are defined in EDK II documentation.
Item | Producing Package | Libraries Consumed |
---|---|---|
Tcg2Smm.efi | SecurityPkg | |
FaultTolerantWriteSmm.efi | MdeModulePkg | |
VariableSmm.efi | MdeModulePkg |
Table 57 Stage V SMM UEFI Components
7.3.4 Platform Architecture Libraries
Board porting will require creation of libraries identified as produced by the BoardPkg. Depending on the board, there may be existing libraries that are sufficient for a board, so it is important to assess the utility of existing library instances when developing board support.
Item | API Definition Package | Producing Package | Description |
---|---|---|---|
Table 58 Stage V Platform Architecture Libraries
7.4 Required Functions
The following functions are required to exist and to execute in the given order. The component that provides the function is not specified because it is not required by the architecture.
* In the common EDK II open source code.
The required functions for Stage IV are presented organized by phase and subsystem (e.g. ACPI, SMM, etc). See Appendix: Full Functions Map for a complete ordering for all stages.
7.4.1 Required PEI functions
Name | Purpose |
---|---|
PeimEntryMA (*) | Entry point for the TPM2 PEIM |
IntelVTdPmrInitialize (*) | Entry point for the VT-d PEIM |
Table 59 Stage V PEI Functions
* In the common EDK II open source code.
7.4.2 Required DXE functions
Name | Purpose |
---|---|
DriverEntry (*) | Entry point for the TPM2 DXE module |
IntelVTdInitialize(*) | Entry point for the VT-d DXE module |
UserPhysicalPresent (*) | Indicates whether a physical user is present for UEFI secure boot |
ProcessTcgPp | Process the TPM physical presence (PP) request |
ProcessTcgMor | Process the TPM memory overwrite request (MOR) |
Table 60 Stage V DXE Functions
* In the common EDK II open source code.
7.4.3 Required SMM functions
Name | Purpose |
---|---|
InitializeTcgSmm (*) | Entry point for the TPM2 SMM module |
MemoryClearCallback (*) | Callback function for setting the MOR variable |
Table 61 Stage V SMM Functions
* In the common EDK II open source code.
7.5 Configuration
This section defines the configurable items that must be available to achieve Stage IV functionality.
These definitions may be both source and binary in nature.
7.5.1 Security Related Configuration
Component | Name | Producer | Consumer | Purpose | Porting Category |
---|---|---|---|---|---|
Post Build | PK | Board | Core | PK variable | Platform Policy: UEFI Secure Boot |
KEK | Board | Core | KEK variable | Platform Policy: UEFI Secure Boot | |
db | Board | Core | db variable | Platform Policy: UEFI Secure Boot | |
dbx | Board | Core | dbx variable | Platform Policy: UEFI Secure Boot | |
PcdTpmInstance Guid | GUID | Board | Core | Select TPM instance | Platform Policy: TCG trusted boot |
PcdTpm2 InitializationPolicy | UINT8 | Board | Core | Choose if TPM driver need send Tpm2Init. | Platform Policy: TCG trusted boot |
PcdTpm2Self TestPolicy | UINT8 | Board | Core | Choose if TPM driver need send Tpm2SelfTest | Platform Policy: TCG trusted boot |
PRE_MEM_SILICON_POLICY | MOR data | Board | Silicon | The board code consumes the MOR variable and pass it to MemoryInit module as policy | Platform Policy: TCG MOR |
L"MemoryOverwrite RequestControl" | MOR Variable | OS | Board | OS indicates to UEFI FW the MOR request. | Platform Policy: TCG MOR |
PcdVTdPolicy PropertyMask | VTd policy mask | Platform | Core | VTd policy | Platform Policy: DMA |
Table 62 Stage V Security Configuration
7.5.2 FV Related Configuration
PCD | Purpose |
---|---|
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageVariableBase | Base address of the NV variable range in flash device. |
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageVariableSize | Size of the non-volatile variable range. Note that this value should less than or equal to PcdFlashNvStorageFtwSpareSize. |
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwWorkingBase | Base address of the FTW working block range in flash device. |
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwWorkingSize | Size of the FTW working block range. |
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwSpareBase | Base address of the FTW spare block range in flash device. Note that this value should be block size aligned. |
gEfiMdeModulePkgTokenSpaceGuid. PcdFlashNvStorageFtwSpareSize | Size of the FTW spare block range. Note that this value should larger than PcdFlashNvStorageVariableSize and block size aligned. |
gMinPlatformPkgTokenSpaceGuid. PcdFlashFvSecurityBase | Security FV base address. |
gMinPlatformPkgTokenSpaceGuid. PcdFlashFvSecuritySize | Security FV size. |
Table 63 Stage V Flash Map Configuration PCDs
7.5.3 Feature Related Configuration
PCD | Purpose |
---|---|
gMinPlatformModuleTokenSpaceGuid.PcdSmiHandlerProfileEnable | Enable SMI handler profile. |
gMinPlatformModuleTokenSpaceGuid.PcdTpm2Enable | Enable TPM2. |
gMinPlatformModuleTokenSpaceGuid.PcdUefiSecureBootEnable | Enable UEFI Secure Boot. |
Table 64 Stage V Feature Configuration
7.6 Data Flows
This section defines the architecturally defined data structures and the ways this data flows through the system over time. In addition to the definition and lifecycle for important pieces of data.
7.7 Additional Control Flows
This section describes how the security features are embedded in the control flows. PSCS/ChipSec required features should be enabled in this stage in addition to other general security flow. This section will also elaborate on each security feature and the platform code implementation required to enable the feature.
Note: Some of these features can be treated as an advanced feature and can be turned on or off based on system-specific usage. However, this section serves as a guideline to develop platform code for security features.
7.7.1 UEFI Secure Boot
Refer to the UEFI specification and the whitepaper A Tour Beyond BIOS - Implementing UEFI Authenticated Variables in SMM with EDK II
7.7.2 Hardware Authenticated Boot
UEFI Secure boot provides verification of 3rd party drivers, such as the OS loader or PCI option ROMs.
A platform may provide additional authentication for firmware volume.
For example: Intel Boot Guard, or PI signed FV.
Intel® Boot Guard provides a hardware way to verify the initial boot block (IBB) code. After power on, the CPU Microcode finds a Boot Guard ACM and executes the Boot Guard ACM, which is signed by Intel. Then the Boot Guard ACM takes the Boot Guard manifest and verifies the IBB code.
The PI specification also provides the verification for the system firmware code on the board. Refer to PI specification, EFI Signed Firmware Volumes and EFI Signed Sections.
The whole hardware based secure boot flow on an Intel Boot Guard platform is:
7.7.3 TCG Trusted Boot and Memory Overwrite Request (MOR)
Refer to TCG platform specification and the white paper A Tour Beyond BIOS - Implementing TPM Support in EDK II
7.7.4 DMA (VT-d) Protection
Refer to Intel® VT-d specification and the white paper Using IOMMU for DMA Protection in UEFI
7.8 Build Files
This is appended to the previous Build files section.
Name | Consumer | Standalone Buildable | FV Produced |
---|---|---|---|
MinPlatformPkg\Include\CoreSecurityPreMemoryInclude.fdf | Board | No | None |
MinPlatformPkg\Include\CoreSecurityPostMemoryInclude.fdf | Board | No | None |
MinPlatformPkg\Include\CoreSecurityLateInclude.fdf | Board | No | None |
Table 65 Stage V Build Files
7.9 Test Point Results
Test Point | Test Subject | Test Overview | Reporting Mechanism |
---|---|---|---|
TestPoint EndOfDxe DmarTable Funtional () | DMAR table | DMAR table is reported. | Dump DMAR table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot AcpiTable Functional () | ACPI table | ACPI tables are valid. | Dump installed ACPI tables. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot GcdResource Functional () | GCD resource | Memory resources are described consistently in ACPI tables and GDT. | Dump installed ACPI tables and GDT. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot HstiTable Functional () | HSTI table | HSTI table is reported. | Dump HSTI table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot EsrtTable Functional () | ESRT table | ESRT table is reported. | Dump ESRT table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot PiSignedFvBoot Enabled () | PI signed FV boot | Verify PI signed FV boot is enabled. | Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot UefiSecureBoot Enabled () | UEFI Secure Boot | SecureBoot variable is set. | Dump the SecureBoot variable. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot TcgTrustedBoot Enabled () | TCG trusted boot | TCG protocol is installed. | Dump TCG protocol capability. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint ReadyToBoot TcgMor Enabled () | TCG MOR | MOR variable is set. | Dump the MOR UEFI variable. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint DiscoveredDma Protection Enabled () | DMA protection | DMA protection in PEI. | Dump DMA ACPI table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint EndOfDxe DmaAcpiTable Functional () | DMA protection | DMA ACPI table is reported. | Dump DMA ACPI table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
TestPoint EndOfDxe DmaProtection Enabled() | DMA protection | DMA protection in DXE. | Dump DMA ACPI table. Set ADAPTER_INFO_ PLATFORM_TEST_ POINT_STRUCT |
Table 66 Stage V Test Point Results
7.10 Functional Exit Criteria
UEFI secure boot is enabled.
TCG trusted boot is enabled.
TCG MOR is enabled.
7.11 Stage Enabling Checklist
The following steps should be followed to enable a platform for Stage V.
Update BoardPkg/Board.
Deploy the UEFI secure boot variables (PK/KEK/db/dbx)
Configure PcdTpmInstanceGuid to select TPM hardware. Default of gEfiTpmDeviceInstanceTpm20DtpmGuidvalue is usually correct.
UEFI secure boot
For TCG trusted boot
May select TPM2 instance PcdTpmInstanceGuid.
May set PcdFirmwareDebuggerInitialized based on whether or not a Firmware Debugger is attached to the platform
For DMA Protection
Ensure all PCDs in the configuration section (DSC files) are correct for your board.
Ensure all required binaries in the flash file (FDF files) are correct for your board.
Boot, collect log, verify test point results defined in section 7.9 Test Point Results are correct
8.1 Overview
Advanced features are non-essential features. Essential features are defined as being support required to meet earlier stage boot objectives. An advanced feature must be implemented as highly cohesive and stand-alone software to only support a specific feature. Modularizing such features, reducing dependencies on other advanced features, and eliminating dependencies on specific implementations of other advanced features is critical and results in a variety of benefits:
The minimum platform serves as a basic enabling vehicle ready to support various roles for a given hardware platform. This yields a minimum platform solution that is open to extension but closed for modification.
System power-on is simplified because unnecessary code paths and silicon paths can be avoided or deferred.
Platforms can be composed in a more modular and portable manner allowing generic advanced features to be readily shared among participants.
Feature adoption benefits from modular design that is simple to maintain.
Organizing advanced features in the platform architecture enables better realization of the benefits in UEFI specification compliant firmware with highly cohesive and lowly coupled component interactions.
This chapter provides guidance on how to design and integrate advanced features. The source code layout and other maintenance details are outside the scope of this specification.
The core advanced feature requirements that must be met:
8.1.1 Major Execution Activities
Stage VI Modules |
---|
Execute the Enabled Advanced Features |
The number of embedded features must be minimized in order to support the broadest compatibility of the minimal platform. Features should be designed to define an API that can be used to integrate the feature into generic platform configurations. The feature source code should never be modified to absorb details of a specific platform or board.
8.2 Firmware Volumes
Stage VI enables advanced features. There is a container FV for adding advanced features:
Name | Content | Compressed | Parent FV |
---|---|---|---|
FvAdvancedPreMemory | Advanced feature drivers that should be dispatched prior to memory initialization | No | None |
FvAdvanced | Advanced feature drivers that should be dispatched after memory initialization | Yes | None |
Table 67 Stage VI Firmware Volumes
Which yields this example extension of the flash map for MMIO storage (append to Stage I-Stage V map):
Binary | FV | Components | Purpose |
---|---|---|---|
Stage VI | FvAdvancedPreMemory.fv | FeatureStack1.fv | Feature 1 |
Additional Feature Stacks | Additional pre-memory advanced features | ||
FvAdvanced.fv | FeatureStack1.fv | Feature 1 | |
FeatureStack2.fv | Feature 2 | ||
FeatureStack3.fv | Feature 3 | ||
Additional Feature Stacks | Additional advanced features |
The modules that constitute a particular feature are not required to be contained within a single firmware volume and this might especially be the case in systems with limited flash storage capacity which could be impacted by firmware volume alignment requirements.
Table 68 Stage VI FV and Component Layout
The PEI core will create a FV HOB for each child firmware volume such that each DXE firmware volume is exposed to the DXE dispatcher.
8.3 Configuration
8.3.1 FV Related Configuration
PCD | Purpose |
---|---|
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemoryBase | Pre-memory advanced features FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemorySize | Pre-memory advanced features FV size. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedBase | Advanced Features FV base address. |
gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedSize | Advanced Features FV size. |
Table 69 Stage VI Flash Map Configuration PCDs
8.4 Advanced Feature Design
Advanced features should be designed such that they are easily portable between minimum platform compliant implementations. In consideration of portability, it is recommended to encapsulate each feature within a dedicated package. Such encapsulation enables rapid integration of the feature and a focused area for feature-related changes. For example, feature declarations for build elements such as GUIDs, PCDs, PPIs, and protocols are scoped within the feature package DEC file. Including the feature and consequently the package imports the feature tokens within the available namespace and changes affecting the feature are localized to the package which in turn exposes the change to all feature consumers.
The Advanced Feature template should be used to describe relevant configuration for integrating the feature into a minimum platform compliant system. Any board or silicon-specific details should be abstracted such that the information is provided to the feature via "feature APIs". Such dependencies are recommended to be exposed via binary interfaces such as PPIs and protocols and can be considered similar in purpose to the architectural PPIs and Protocols defined in the PI specification. Such requirements must be included in the "Required Functions" section of the advanced feature template. Though not required, to increase portability, advanced features should not depend upon deprecated EDK II packages and attempt to reduce exposure to packages other than MdePkg and UefiCpuPkg. In turn, this decreases risk of depending upon deprecated packages in the future.
9.1 Overview
Note: This is a proposed stage in the architecture and this section is reserved for future completion and definition of the stage. Any implementation may ignore this stage until this section is completed and this notice is removed.
It is anticipated that future versions of this architecture specification will provide details for embedded performance tuning, common component tuning, and more invasive customization. The objective for this section is to provide a spectrum of options that keep as many board designs as consistent as possible. Some potential topics follow, but should not be reviewed at this
In Stage VII, the fully featured is tuned for production.
First, it can be worthwhile to look at the embedded features and performance oriented options that have been designed into the core or minimum platform. For example, if you do not support network boot, the PciBus driver provides a PCD to disable dispatching the network option ROM. By default, network option ROM dispatch is enabled. This is a known tunable setting.
Second, it can be worthwhile to strip unused components from the defined FV. For simplicity and consistency of progressing through Stage VI, it is better to use the provided code consistent with the architecture. Once a stable and fully functional system is completed, it is intended that platform architecture compatible systems can still remove unneeded components in order to finely tune the product. The core provides a tool named FMMT that can be used to process the build output and remove unnecessary components. Alternatively, a board can copy and modify the provided Build DSC and FDF files in the MinPlatformPkg and SiliconPkg. The former increases build time. The latter increases integration effort for new core, MinPlatformPkg, and SiliconPkg releases.
Third, it is often necessary to enable and use tools to perform detailed analysis of performance and size to identify hotspots that need to be improved.
Appendix A Full Maps Overview
This appendix section provides full reference maps of concepts covered in the specification.
These maps are maintained in this section as they incorporate information across several sections.
A.1 Firmware Volume Layout
This is a logical firmware volume layout by stage.
Binary | FV | Components | Purpose |
---|---|---|---|
Stage I | FvPreMemory.fv | SecCore.efi |
|
ReportFvPei.efi |
| ||
SiliconPolicyPeiPreMemory.efi |
| ||
PlatformInitPreMemory.efi |
| ||
FvSecurityPreMemory.fv</br>(child FV) | |||
Tcg2Pei.efi |
| ||
Tcg2ConfigPei.efi |
| ||
Tcg2PlatformPei.efi |
| ||
Additional Components |
| ||
Additional Components |
| ||
FvBspPreMemory.fv | FvAdvancedPreMemory.fv</br>(child FV) | ||
Additional Components |
| ||
Additional Components |
| ||
FvFspT.fv | PlatformSec.efi |
| |
Additional Components | |||
FvFspM.fv | PeiCore.efi |
| |
PcdPeim.efi |
| ||
FspPlatform.efi |
| ||
FvPreMemorySilicon.fv</br>(child FV) | |||
Additional Components |
| ||
ReportStatusCodeRouterPei.efi |
| ||
StatusCodeHandlerPei.efi |
| ||
Additional Components | |||
FvFspS.fv | FvPostMemorySilicon.fv</br>(child FV) | ||
Additional Components |
| ||
Additional components | |||
Binary | FV | Components | Purpose |
Stage II | FvPostMemory.fv | ReadOnlyVariable.efi |
|
SiliconPolicyPeiPostMemory.efi |
| ||
PlatformInitPostMemory.efi |
| ||
DxeIpl.efi |
| ||
ResetSystemRuntimeDxe.efi |
| ||
PciHostBridge.efi |
| ||
Additional Components |
| ||
FvBsp.fv | Additional Components |
| |
Binary | FV | Components | Purpose |
Stage III | FvUefiBoot.fv | DxeCore.efi |
|
PcdDxe.efi |
| ||
ReportStatusCodeRouterDxe.efi |
| ||
StatusCodeHandlerRuntimeDxe.efi |
| ||
BdsDxe.efi |
| ||
CpuDxe.efi |
| ||
Metronome.efi |
| ||
MonotonicCounterRuntimeDxe.efi |
| ||
PcatRealTimeClockRuntimeDxe.efi |
| ||
WatchdogTimer.efi |
| ||
RuntimeDxe.efi |
| ||
Security.efi |
| ||
HpetTimerDxe.efi |
| ||
EmuVariableRuntimeDxe.efi |
| ||
CapsuleRuntimeDxe.efi |
| ||
PciBusDxe.efi |
| ||
GraphicsOutputDxe.efi |
| ||
TerminalDxe.efi |
| ||
GraphicsConsoleDxe.efi |
| ||
ConSplitterDxe.efi |
| ||
EnglishDxe.efi |
| ||
MemoryTest.efi |
| ||
DevicePathDxe.efi |
| ||
DiskIo.efi |
| ||
Partition.efi |
| ||
Fat.efi |
| ||
Additional Components |
| ||
Binary | FV | Components | Purpose |
Stage IV | FvOsBoot.fv | FvLateSilicon.fv (child FV) | |
Additional Components |
| ||
AcpiTable.efi |
| ||
PlatformAcpi.efi |
| ||
BoardAcpi.efi |
| ||
PiSmmIpl.efi |
| ||
PiSmmCore.efi |
| ||
ReportStatusCodeRouterSmm.efi |
| ||
StatusCodeHandlerSmm.efi |
| ||
PiSmmCpu.efi |
| ||
CpuIo2Smm.efi |
| ||
FaultTolerantWriteSmm.efi |
| ||
SpiFvbServiceSmm.efi |
| ||
Additional Components |
| ||
Binary | FV | Components | Purpose |
Stage V | FvSecurity.fv | Tcg2Dxe.efi |
|
Tcg2ConfigDxe.efi |
| ||
Tcg2PlatformDxe.efi |
| ||
Tcg2Smm.efi |
| ||
TcgMor.efi |
| ||
IntelVTdPmrPei.efi |
| ||
IntelVTdDxe.efi |
| ||
SecurityStubDxe.efi |
| ||
FaultTolerantWriteSmm.efi |
| ||
VariableSmm.efi |
| ||
VariableSmmRuntimeDxe.efi |
| ||
SecureBootConfigDxe.efi |
| ||
Additional Components |
| ||
Binary | FV | Components | Purpose |
Stage VI | FvAdvancedPreMemory.fv | FeatureStack1.fv (child FV) |
|
FeatureStack2.fv (child FV) |
| ||
FvAdvanced.fv | FeatureStack1.fv (child FV) |
| |
FeatureStack2.fv (child FV) |
| ||
FeatureStack3.fv (child FV) |
| ||
Additional Feature Stacks |
|
Table 71 Full Firmware Volume Layout
A.2 Key Function Invocation
Name | Purpose |
---|---|
ResetHandler (*) | The reset vector invoked by silicon |
TempRamInit | Silicon initializes temporary memory |
TestPointTempMemoryFunction | Test temporary memory functionality |
SecStartup (*) | First C code execution, constructs PEI input |
TestPointEndOfSec | Verify state before switching to PEI |
PeiCore (*) | PEI entry point |
PeiDispatcher (*) | Calls the entry points of PEIM |
ReportPreMemFv | Installs firmware volumes required in pre-memory |
BoardDetect | Board detection of the motherboard type |
BoardDebugInit | Board specific initialization for debug device |
PlatformHookSerialPortInitialize | Board serial port initialization. Called from SEC or PEI |
TestPointDebugInitDone | Verify debug functionality |
BoardBootModeDetect | Board hook for EFI_BOOT_MODE detection |
BoardInitBeforeMemoryInit | Board specific initialization, e.g. GPIO |
SiliconPolicyInitPreMemory | Silicon pre memory policy initialization |
SiliconPolicyUpdatePreMemory | Board updates silicon policies |
SiliconPolicyDonePreMemory | Complete pre memory silicon policy data collection |
MemoryInit | Silicon initializes permanent memory |
InstallEfiMemory | Install permantent memory to core |
PeiCore (*) | PEI entry point (post memory entry) |
SecTemporaryRamDone (*) | Call SEC to tear down temporary memory |
ReportPostMemFv | Installs firmware volumes required in post-memory |
TestPointPostMemoryFvInfoFunctional | Test for Firmware Volume map |
BoardInitAfterMemoryInit | Board initialization after memory is installed |
SetCacheMtrr | Configure cache map for permanent memory |
TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional | Test post-memory cache map |
TestPointPostMemoryResourceFunctional | Test resources |
TestPointPostMemoryFvInfoFunctional | Test for Firmware Volume map |
BoardInitBeforeSiliconInit | Board initialization hook |
SiliconPolicyInitPostMemory | Silicon post memory policy initialization |
SiliconPolicyUpdatePostMemory | Board updates silicon policies |
SiliconPolicyDonePostMemory | Complete post memory silicon policy data collection |
BoardInitAfterSiliconInit | Board specific initialization after silicon is initialized |
DxeLoadCore (*) | DXE IPL locate and call DXE Core |
SetCacheMtrrAfterEndOfPei | Sets cache map in preparation for DXE |
TestPointEndOfPei | Verify expected state as we exit PEI phase |
TestPointPostMemoryMtrrEndOfPeiFunctional | Basic test for cache configuration before entering DXE |
PeimEntryMA (*) | Entrypoint for TPM2 PEIM |
IntelVTdPmrInitialize (*) | Entrypoint for VT-d PEIM |
DxeMain (*) | DXE entry point |
CoreStartImage (*) | Calls the entry points of DXE drivers |
SiliconPolicyInitLate | Silicon late policy initialization |
SiliconPolicyUpdateLate | Board updates silicon policies |
SiliconPolicyDoneLate | Complete late silicon policy data collection |
CoreAllEfiServicesAvailable (*) | Check if required architectural protocols are installed |
SmmIplEntry (*) | SMM IPL |
SmmMain (*) | SMM Core entrypoint |
PiCpuSmmEntry (*) | SMM CPU driver |
SmmRelocateBases (*) | Relocation |
_SmiEntryPoint (*) | SMI entry point |
SmmEntryPoint (*) | Dispatch SMI handlers |
PchSmmCoreDispatcher | Dispatch PCH child SMI handlers |
InitializeTcgSmm (*) | Entrypoint for TPM2 SMM |
MemoryClearCallback (*) | Callback function for MOR setting |
PlatformCreateAcpiTable | Create the minimum set of platform specific tables |
PlatformUpdateAcpiTable | Update platform specific data in ACPI tables - FADT. |
PlatformInstallAcpiTable | Install platform specific ACPI tables |
DriverEntry (*) | Entrypoint for TPM2 DXE |
IntelVTdInitialize(*) | Entrypoint for VT-d DXE |
UserPhysicalPresent (*) | Return if physical user is present for UEFI secure boot |
ProcessTcgPp | Process TPM PP request |
ProcessTcgMor | Process TPM MOR request |
BdsEntry (*) | BDS entry point |
PlatformBootManagerBeforeConsole (*) | Platform specific BDS functionality before console |
BoardInitAfterPciEnumeration | Board-specific hook on PCI enumeration completion |
TestPointPciEnumerationDone | Verify PCI |
ExitPmAuth | Signal key security events EndOfDxe and SmmReadyToLock |
TestPointEndOfDxe | Verify expected state after EndOfDxe |
TestPointDxeSmmReadyToLock | Verify expected state after SmmReadyToLock |
TestPointSmmEndOfDxe | Verify state after SmmEndOfDxe |
TestPointSmmEndOfDxe | Verify state after SmmEndOfDxe |
TestPointSmmReadyToLock | Verify state after SmmReadyToLock |
EfiBootManagerDispatchDeferredImages (*) | Dispatch deferred third party UEFI driver OPROMs |
PlatformBootManagerAfterConsole (*) | Platform specific BDS functionality after console |
BootBootOptions (*) | Attempt each boot option |
EfiSignalEventReadyToBoot (*) | Signals the ReadyToBoot event group |
BoardInitReadyToBoot | Board hook on ReadyToBoot event |
TestPointReadyToBoot | Verify state after ReadyToBoot event signal |
UefiMain (*) | UEFI Shell entry point |
CoreExitBootServices (*) | Dismantles UEFI boot services and enters runtime |
BoardInitEndOfFirmware | Board hook for ExitBootServices event |
TestPointExitBootServices | Verify state after ExitBootServices has been called |
RuntimeDriverSetVirtualAddressMap (*) | Set virtual address mode |
PlatformEnableAcpiCallback | Switch the system to ACPI mode |
BoardEnableAcpiCallback | Board hook for ACPI mode switch |
Table 72 Key Function Invocation
* In the common EDK II open source code.
A.3 BDS Hook Points
BDS Hook Point Summary
Four new event signal groups are defined that will be signaled at the point shown in Table 16 Event groups as described in the UEFI specification are collections of events identified by a shared EFI_GUID that when one member event group is signaled, all other event groups are signed and their individual notification actions are taken. These event groups should be used in combination with the pre-existing notification mechanisms: signal of gEfiEndOfDxeEventGroupGuid and installation of the gEfiPciEnumerationCompleteProtocolGuid or gEfiDxeSmmReadyToLockProtocolGuid. Preference should always be given to the notification points defined outside this specification to make code dependent upon the notification as portable as possible.
PlatformBootManagerBeforeConsole () [1] Event: PCI enumeration complete - Install gEfiPciEnumerationCompleteProtocolGuid
* Minimum Platform action(s) performed:
* Trusted consoles added
[2] Event: SignalBeforeConsoleAfterTrustedConsole
* Minimum Platform action(s) performed:
* Enumerate USB keyboard
* Connect controller for trusted graphics console
* Register default boot option (UEFI shell)
* Register static hot keys (F2/F7)
* Process TCG Physical Presence
* Process TCG MOR
* Perform memory test
[3] Event: SignalBeforeConsoleBeforeEndOfDxe
* Minimum Platform action(s) performed:
* None
[4] Event: End of DXE - Signal gEfiEndOfDxeEventGroupGuid
* Minimum Platform action(s) performed:
* None
[5] Event: SmmReadyToLock: Signal gEfiDxeSmmReadyToLockProtocolGuid
* Minimum Platform action(s) performed:
* Dispatch deferred 3rd party images (e.g. UEFI OPROMs)
PlatformBootManagerAfterConsole () [1] Invoke ConnectSequence ()
[2] Event: Signal AfterConsoleReadyBeforeBootOption
* Minimum Platform action(s) performed:
* Print hot key message to output console ("Press F7 for BootMenu!")
* Refresh all boot options
* Sort load option variables
Figure 10 Full BDS Hook Point Map
Appendix B Global Configuration Overview
This appendix section provides configuration mechanisms that are global and therefore are not constrained to any particular stage section.
B.1 Stage Configuration
[PcdsFeatureFlag]
Stage I - Boot to Debug Enabled
Stage II - Boot to Memory Initialization
Stage III - Boot to UEFI Shell
Stage IV - Boot to Operating System
Stage V - Boot to Operating System with Security Enabled
gMinPlatformPkgTokenSpaceGuid.PcdBootStage|5|UINT8|0xF00000A0
The default value of PcdBootStage should be Stage V Boot to Operating System with Security Enabled. The stage selection PCD might influence code paths within shared modules between stages or add and remove stages from the build.
B.2 Test Point Check Infrastructure
Today's platforms are tested against several test suites such as Chipsec, Windows Hardware Security Test Infrastructure (HSTI), Windows Hardware Logo Kit (HLK), Linux UEFI Validation (LUV), and others. However, platforms may have platform-specific requirements not covered by test suites enforcing specification or general hardware compliance. The Test Point Check infrastructure is intended to test that actions such as MTRRs are configured correctly, FV HOBs are reported properly, no 3rd party options ROMs are executed before allowed, MemoryTypeInformation is reported correctly, and any other custom logic that platform implementer considers appropriate based on the platform requirements.
The Test Point infrastructure is supported by two primary libraries, TestPointLib and TestPointCheckLib. TestPointLib reports test results via the ADAPTER_INFO_PLATFORM_TEST_POINT structure defined below. The test result is validated in the TestPointCheckLib.
typedef struct {
UINT32 Version;
UINT32 Role;
CHAR16 ImplementationID[256];
UINT32 FeaturesSize;
//UINT8 FeaturesImplemented[]; <- PCD set to define features
//UINT8 FeaturesVerified[]; <- PCD read and set to determine features verified
//CHAR16 ErrorString[];
} ADAPTER_INFO_PLATFORM_TEST_POINT;
Figure 11 Test Point Check Infrastructure
Appendix C Advanced Configuration and Power Interface (ACPI) Overview
This section documents the layout and implementation guidelines of the ACPI tables generated for the platform. The implementation guidelines for ACPI code will focus on coding practices for ASL irrespective of platform code details.
C.1 Layout
ACPI tables will be organized into a set of mandatory tables defined in this section and optional tables provided in the form of an SSDT.
C.1.1 Mandatory Tables
The mandatory tables are composed of the minimum set of tables required to boot an ACPI compliant OS. These tables are intended to be present in Stage IV and later stages. The contents of these tables might differ based on build stage, it is described in the Table Contents sub-section.
The following tables fall under the mandatory tables list:
C.2 ACPI Table Contents
There are three types of tables supported. Standard Static Tables, Differentiated System Description Table (DSDT), Secondary System Description Table (SSDT). The standard static tables have a defined structure in the ACPI specification. The contents of the DSDT and SSDT are described in this specification.
C.2.1 DSDT Contents
DSDT is a mandatory fixed table that is pointed to by the FADT (Fixed ACPI Description Table).
C.2.1.1 Stage IV Build
Stage IV is intended to have the minimum configuration to boot a platform with basic features and minimal set of devices enabled. Similarly ACPI implementation should have a minimal framework implemented for ACPI compliant OS.
The DSDT in this case should have a root and system bus defined. In addition to that, the DSDT will have device scopes for all the devices present in the minimum platform required packages (Section 8.1.1).
C.2.1.2 Stage VI Build
In this case, DSDT will include the following Device scopes and objects:
C.3 ACPI Device Categorization
ACPI device description tables such as DSDT and SSDT are comprised of device scopes and methods that define the capabilities and resources of an ACPI device. For scalability purposes, the ACPI devices are categorized in a manner that they can be easily plugged in and out of UEFI FW.
C.3.1 Silicon Specific Devices
These devices are silicon specific and are assumed to not change with different SKUs and stepping of the silicon. These devices will become part of DSDT as it is a mandatory table containing the fixed devices for the systems.
The number of silicon devices present in the DSDT will be decided by the scope of minimum and full build.
C.3.2 SKU Specific Devices
These devices are SKU specific and are assumed to change based on various SKUs. They are considered to be dynamic as they can be enabled/disabled/modified based on setup knobs or softstraps etc.
Because of their dynamic nature, these devices are added in the Platform SSDT. Every SKU will have a unique Platform SSDT installed. It will only contain devices present on that platform.
C.3.3 Board Specific Devices
These devices are board specific and are assumed to change based on the various board SKUs. These devices will also become part of SSDTs. These devices can have an SSDT of their own or get added to the platform SSDT depending on their availability on multiple SKUs. A fairly common board device will be added to the platform SSDT and the other devices can have a SSDT of their own.
C.3.4 Feature Specific Devices/Methods
These devices or methods are optional as they are exposed to handle certain advanced features. They will be added to DSDT or SSDT depending on the device they are being added for. For example a special DSM (device specific method) is to be added for an Audio codec, then it will fall under the Platform/Board SSDT.
C.4 Flow Diagrams
This section describes the flow for table integration and installing during boot. Device nodes will be generated and added to DSDT or SSDT by the device modules. Once the DSDT and SSDT are complete, they will be installed and published by the ACPI DXE driver.
Figure 12 ACPI Platform Flow
Appendix D Interface Definitions Overview
This section contains interface definitions defined in the Minimum Platform architecture.
D.1 Required Functions
D.1.1 BoardPorting.SEC
D.1.1.1 ResetHandler (*)
; For IA32, the reset vector must be at 0xFFFFFFF0, i.e., 4G-16 byte
; Execution starts here upon power-on/platform-reset.
;
ResetHandler:
nop
nop
ApStartup:
;
; Jmp Rel16 instruction
; Use machine code directly in case of the assembler optimization
; SEC entry point relative address will be fixed up by some build tool.
;
; Typically, SEC entry point is the function _ModuleEntryPoint() defined in
; SecEntry.asm
;
DB 0e9h
DW -3
D.1.2 BoardPorting.PEI
D.1.2.1 ReportPreMemFv
VOID
ReportPreMemFv (
VOID
);
D.1.2.2 BoardDetect
EFI_STATUS
EFIAPI
BoardDetect (
VOID
);
D.1.2.3 BoardDebugInit
EFI_STATUS
EFIAPI
BoardDebugInit (
VOID
);
D.1.2.4 PlatformHookSerialPortInitialize
/**
Performs platform specific initialization required for the CPU to access
the hardware associated with a SerialPortLib instance. This function does
not initialize the serial port hardware itself. Instead, it initializes
hardware devices that are required for the CPU to access the serial port
hardware. This function may be called more than once.
@retval RETURN_SUCCESS The platform specific initialization succeeded.
@retval RETURN_DEVICE_ERROR The platform specific initialization could not be completed.
**/
RETURN_STATUS
EFIAPI
PlatformHookSerialPortInitialize (
VOID
);
D.1.2.5 BoardBootModeDetect
EFI_BOOT_MODE
EFIAPI
BoardBootModeDetect (
VOID
);
D.1.2.6 BoardInitBeforeMemoryInit
EFI_STATUS
EFIAPI
BoardInitBeforeMemoryInit (
VOID
);
D.1.2.7 SiliconPolicyUpdatePreMemory
/**
Performs silicon pre-memory policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The input Policy must be returned by SiliconPolicyDonePreMemory().
1) In FSP path, the input Policy should be FspmUpd.
A platform may use this API to update the FSPM UPD policy initialized
by the silicon module or the default UPD data.
The output of FSPM UPD data from this API is the final UPD data.
2) In non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePreMemory (
IN OUT VOID *Policy
);
D.1.2.8 ReportPostMemFv
VOID
ReportPostMemFv (
VOID
);
D.1.2.9 BoardInitAfterMemoryInit
EFI_STATUS
EFIAPI
BoardInitAfterMemoryInit (
VOID
);
D.1.2.10 SetCacheMtrrAfterMemoryDiscovered
TODO: Add prototype
D.1.2.11 BoardInitBeforeSiliconInit
EFI_STATUS
EFIAPI
BoardInitBeforeSiliconInit (
VOID
);
D.1.2.12 SiliconPolicyUpdatePostMemory
/**
Performs silicon post-memory policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The input Policy must be returned by SiliconPolicyDonePostMemory().
1) In FSP path, the input Policy should be FspsUpd.
A platform may use this API to update the FSPS UPD policy initialized
by the silicon module or the default UPD data.
The output of FSPS UPD data from this API is the final UPD data.
2) In non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePostMemory (
IN OUT VOID *Policy
);
D.1.2.13 BoardInitAfterSiliconInit
EFI_STATUS
EFIAPI
BoardInitAfterSiliconInit (
VOID
);
D.1.2.14 SetCacheMtrrAfterEndOfPei
/**
Update MTRR setting and set write back as default memory attribute.
@retval EFI_SUCCESS The function completes successfully.
@retval Others Some error occurs.
**/
EFI_STATUS
EFIAPI
SetCacheMtrrAfterEndOfPei (
VOID
)
D.1.3 BoardPorting.DXE
D.1.3.1 SiliconPolicyUpdateLate
/**
Performs silicon late policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a Protocol, etc.
The input Policy must be returned by SiliconPolicyDoneLate().
In FSP or non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdateLate (
IN OUT VOID *Policy
);
D.1.3.2 PlatformBootManagerBeforeConsole (*)
/**
Do the platform specific action before the console is connected.
Such as:
Update console variable;
Register new Driver#### or Boot####;
Signal ReadyToLock event.
**/
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
VOID
);
D.1.3.3 BoardInitAfterPciEnumeration
EFI_STATUS
EFIAPI
BoardInitAfterPciEnumeration (
VOID
);
D.1.3.4 PlatformBootManagerAfterConsole(*)
/**
Do the platform specific action after the console is connected.
Such as:
Dynamically switch output mode;
Signal console ready platform customized event;
Run diagnostics like memory testing;
Connect certain devices;
Dispatch additional option roms.
**/
VOID
EFIAPI
PlatformBootManagerAfterConsole (
VOID
);
D.1.3.5 BoardInitReadyToBoot
EFI_STATUS
EFIAPI
BoardInitReadyToBoot (
VOID
);
D.1.3.6 PlatformCreateAcpiTable
TODO: Add prototype
D.1.3.7 PlatformUpdateAcpiTable
TODO: Add prototype
D.1.3.8 PlatformInstallAcpiTable
TODO: Add prototype
D.1.3.9 BoardInitEndOfFirmware
EFI_STATUS
EFIAPI
BoardInitEndOfFirmware (
VOID
);
D.1.4 BoardPorting.SMM
D.1.4.1 BoardEnableAcpiCallback
TODO: Add prototype
D.1.5 SiliconPorting.SEC
D.1.5.1 TempRamInit
TODO: Add prototype
D.1.6 SiliconPorting.PEI
D.1.6.1 SiliconPolicyInitPreMemory
/**
Performs silicon pre-memory policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The returned data must be used as input data for SiliconPolicyDonePreMemory(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().
1) In FSP path, the input Policy should be FspmUpd.
Value of FspmUpd has been initialized by FSP binary default value.
Only a subset of FspmUpd needs to be updated for different silicon sku.
The return data is same FspmUpd.
2) In non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPreMemory (
IN OUT VOID *Policy OPTIONAL
);
D.1.6.2 SiliconPolicyDonePreMemory
/*
The silicon pre-memory policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitPreMemory().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePreMemory (
IN VOID *Policy
);
D.1.6.3 MemoryInit
/**
This function
1. Calling MRC to initialize memory.
2. Install EFI Memory.
3. Capsule coalesce if capsule boot mode.
4. Create HOB of system memory.
@param PeiServices Pointer to the PEI Service Table
@retval EFI_SUCCESS If it completes successfully.
**/
EFI_STATUS
MemoryInit (
IN EFI_PEI_SERVICES **PeiServices
);
D.1.6.4 SiliconPolicyInitPostMemory
/**
Performs silicon post-memory policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The returned data must be used as input data for SiliconPolicyDonePostMemory(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().
1) In FSP path, the input Policy should be FspsUpd.
Value of FspsUpd has been initialized by FSP binary default value.
Only a subset of FspsUpd needs to be updated for different silicon sku.
The return data is same FspsUpd.
2) In non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPostMemory (
IN OUT VOID *Policy OPTIONAL
);
D.1.6.5 SiliconPolicyDonePostMemory
/*
The silicon post-mem policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitPostMemory().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePostMemory (
IN VOID *Policy
);
D.1.6.6 SiliconInit
TODO: Add prototype
D.1.7 SiliconPorting.DXE
D.1.7.1 SiliconPolicyInitLate
/**
Performs silicon late policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a protocol, etc.
The returned data must be used as input data for SiliconPolicyDoneLate(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().
In FSP or non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitLate (
IN OUT VOID *Policy
);
D.1.7.2 SiliconPolicyDoneLate
/*
The silicon late policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitLate().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDoneLate (
IN VOID *Policy
);
D.1.7.3 SiliconInitAfterPciEnumeration
TODO: Add prototype
D.1.8 SiliconPorting.SMM
D.1.8.1 PchSmmCoreDispatcher
/**
The callback function to handle subsequent SMIs. This callback will be called by SmmCoreDispatcher.
@param[in] SmmImageHandle Not used
@param[in] PchSmmCore Not used
@param[in, out] CommunicationBuffer Not used
@param[in, out] SourceSize Not used
@retval EFI_SUCCESS Function successfully completed
**/
EFI_STATUS
EFIAPI
PchSmmCoreDispatcher (
IN EFI_HANDLE SmmImageHandle,
IN CONST VOID *PchSmmCore,
IN OUT VOID *CommunicationBuffer,
IN OUT UINTN *SourceSize
);
D.1.9 Test.DXE
D.1.9.1 ExitPmAuth
VOID
ExitPmAuth (
VOID
);
D.1.10 Debug.SEC
D.1.10.1 SecStartup (*)
/**
Entry point to the C language phase of SEC. After the SEC assembly
code has initialized some temporary memory and set up the stack,
the control is transferred to this function.
@param SizeOfRam Size of the temporary memory available for use.
@param TempRamBase Base address of temporary ram
@param BootFirmwareVolume Base address of the Boot Firmware Volume.
**/
VOID
EFIAPI
SecStartup (
IN UINT32 SizeOfRam,
IN UINT32 TempRamBase,
IN VOID *BootFirmwareVolume
);
D.1.10.2 SecStartupPhase2 (*)
/**
Caller provided function to be invoked at the end of InitializeDebugAgent().
Entry point to the C language phase of SEC. After the SEC assembly
code has initialized some temporary memory and set up the stack,
the control is transferred to this function.
@param[in] Context The first input parameter of InitializeDebugAgent().
**/
VOID
NORETURN
EFIAPI
SecStartupPhase2 (
IN VOID *Context
);
D.1.11 Debug.PEI
D.1.11.1 PeiCore (*)
/**
This routine is invoked by main entry of PeiMain module during transition
from SEC to PEI. After switching stack in the PEI core, it will restart
with the old core data.
@param SecCoreDataPtr Points to a data structure containing information about the PEI core's operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location.
@param PpiList Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs
@param Data Pointer to old core data that is used to initialize the
core's data areas.
If NULL, it is first PeiCore entering.
**/
VOID
EFIAPI
PeiCore (
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreDataPtr,
IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList,
IN VOID *Data
);
D.1.11.2 PeiDispatcher (*)
/**
Conduct PEIM dispatch.
@param SecCoreData Pointer to the data structure containing SEC to PEI handoff data
@param PrivateData Pointer to the private data passed in from caller
**/
VOID
PeiDispatcher (
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
IN PEI_CORE_INSTANCE *PrivateData
);
D.1.11.3 SecTemporaryRamDone(*)
/**
TemporaryRamDone() disables the use of Temporary RAM. If present, this service is invoked
by the PEI Foundation after the EFI_PEI_PERMANANT_MEMORY_INSTALLED_PPI is installed.
@retval EFI_SUCCESS Use of Temporary RAM was disabled.
@retval EFI_INVALID_PARAMETER Temporary RAM could not be disabled.
**/
EFI_STATUS
EFIAPI
SecTemporaryRamDone (
VOID
);
D.1.11.4 DxeLoadCore (*)
/**
Main entry point to last PEIM
@param This Entry point for DXE IPL PPI
@param PeiServices General purpose services available to every PEIM.
@param HobList Address to the Pei HOB list
@return EFI_SUCCESS DXE core was successfully loaded.
@return EFI_OUT_OF_RESOURCES There are not enough resources to load DXE core.
**/
EFI_STATUS
EFIAPI
DxeLoadCore (
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
);
D.1.12 Debug.DXE
D.1.12.1 DxeMain (*)
```c
/**
Main entry point to DXE Core.
@param HobStart Pointer to the beginning of the HOB List from PEI.
@return This function should never return.
**/
VOID
EFIAPI
DxeMain (
IN VOID *HobStart
);
D.1.12.2 CoreStartImage (*)
/**
Transfer control to a loaded image's entry point.
@param ImageHandle Handle of image to be started.
@param ExitDataSize Pointer of the size to ExitData
@param ExitData Pointer to a pointer to a data buffer that
includes a Null-terminated string,
optionally followed by additional binary data.
The string is a description that the caller may
use to further indicate the reason for the
image's exit.
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_OUT_OF_RESOURCES No enough buffer to allocate
@retval EFI_SECURITY_VIOLATION The current platform policy specifies that the image should not be started.
@retval EFI_SUCCESS Successfully transfer control to the image's
entry point.
**/
EFI_STATUS
EFIAPI
CoreStartImage (
IN EFI_HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHAR16 **ExitData OPTIONAL
);
D.1.12.3 CoreAllEfiServicesAvailable (*)
/**
Return TRUE if all AP services are available.
@retval EFI_SUCCESS All AP services are available
@retval EFI_NOT_FOUND At least one AP service is not available
**/
EFI_STATUS
CoreAllEfiServicesAvailable (
VOID
);
D.1.12.4 BdsEntry (*)
/**
Service routine for BdsInstance->Entry(). Devices are connected, the
consoles are initialized, and the boot options are tried.
@param This Protocol Instance structure.
**/
VOID
EFIAPI
BdsEntry (
IN EFI_BDS_ARCH_PROTOCOL *This
);
IN EFI_BDS_ARCH_PROTOCOL ``*This
);
D.1.12.5 EfiBootManagerDispatchDeferredImages (*)
/**
Dispatch the deferred images that are returned from all DeferredImageLoad instances.
@retval EFI_SUCCESS At least one deferred image is loaded successfully and started.
@retval EFI_NOT_FOUND There is no deferred image.
@retval EFI_ACCESS_DENIED There are deferred images but all of them are failed to load.
**/
EFI_STATUS
EFIAPI
EfiBootManagerDispatchDeferredImages (
VOID
);
D.1.12.6 BootBootOptions(*)
/**
Attempt to boot each boot option in the BootOptions array.
@param BootOptions Input boot option array.
@param BootOptionCount Input boot option count.
@param BootManagerMenu Input boot manager menu.
@retval TRUE Successfully boot one of the boot options.
@retval FALSE Failed boot any of the boot options.
**/
BOOLEAN
BootBootOptions (
IN EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions,
IN UINTN BootOptionCount,
IN EFI_BOOT_MANAGER_LOAD_OPTION *BootManagerMenu OPTIONAL
);
D.1.12.7 EfiSignalEventReadyToBoot (*)
/**
Create, Signal, and Close the Ready to Boot event using EfiSignalEventReadyToBoot().
This function abstracts the signaling of the Ready to Boot Event. The Framework moved
from a proprietary to UEFI 2.0 based mechanism. This library abstracts the caller
from how this event is created to prevent to code form having to change with the
version of the specification supported.
**/
VOID
EFIAPI
EfiSignalEventReadyToBoot (
VOID
);
D.1.12.8 UefiMain (*)
/**
The entry point for the application.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
UefiMain (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
D.1.12.9 CoreExitBootServices (*)
/**
Terminates all boot services.
@param ImageHandle Handle that identifies the exiting image.
@param MapKey Key to the latest memory map.
@retval EFI_SUCCESS Boot Services terminated
@retval EFI_INVALID_PARAMETER MapKey is incorrect.
**/
EFI_STATUS
EFIAPI
CoreExitBootServices (
IN EFI_HANDLE ImageHandle,
IN UINTN MapKey
);
D.1.12.10 RuntimeDriverSetVirtualAddressMap (*)
/**
Changes the runtime addressing mode of EFI firmware from physical to virtual.
@param MemoryMapSize The size in bytes of VirtualMap.
@param DescriptorSize The size in bytes of an entry in the VirtualMap.
@param DescriptorVersion The version of the structure entries in VirtualMap.
@param VirtualMap An array of memory descriptors which contain new virtual
address mapping information for all runtime ranges.
@retval EFI_SUCCESS The virtual address map has been applied.
@retval EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.
@retval EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is invalid.
@retval EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
map that requires a mapping.
@retval EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.
**/
EFI_STATUS
EFIAPI
RuntimeDriverSetVirtualAddressMap (
IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI_MEMORY_DESCRIPTOR *VirtualMap
);
D.1.13 Debug.SMM
D.1.13.1 SmmIplEntry (*)
/**
The Entry Point for SMM IPL
Load SMM Core into SMRAM, register SMM Core entry point for SMIs, install
SMM Base 2 Protocol and SMM Communication Protocol, and register for the
critical events required to coordinate between DXE and SMM environments.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval Other Some error occurred when executing this entry point.
**/
EFI_STATUS
EFIAPI
SmmIplEntry (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
D.1.D.1 SmmMain (*)
/**
The Entry Point for SMM Core
Install DXE Protocols and reload SMM Core into SMRAM and register SMM Core
EntryPoint on the SMI vector.
Note: This function is called for both DXE invocation and SMRAM invocation.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval Other Some error occurred when executing this entry point.
**/
EFI_STATUS
EFIAPI
SmmMain (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
D.1.13.3 PiCpuSmmEntry (*)
/**
The module Entry Point of the CPU SMM driver.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval Other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
PiCpuSmmEntry (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
D.1.13.4 SmmRelocateBases (*)
/**
Relocate SmmBases for each processor.
Execute on first boot and all S3 resumes
**/
VOID
EFIAPI
SmmRelocateBases (
VOID
);
D.1.13.5 _SmiEntryPoint (*)
TODO: Add prototype
D.1.13.6 SmmEntryPoint (*)
/**
The main entry point to SMM Foundation.
Note: This function is only used by SMRAM invocation. It is never used by DXE invocation.
@param SmmEntryContext Processor information and functionality
needed by SMM Foundation.
**/
VOID
EFIAPI
SmmEntryPoint (
IN CONST EFI_SMM_ENTRY_CONTEXT *SmmEntryContext
);
D.1.13.7 PlatformEnableAcpiCallback
TODO: Add prototype
D.2 BoardInit
D.2.1 BoardInitSupportLib
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _BOARD_INIT_LIB_H_
#define _BOARD_INIT_LIB_H_
#include <PiPei.h>
#include <Uefi.h>
EFI_STATUS
EFIAPI
BoardDetect (
VOID
);
EFI_STATUS
EFIAPI
BoardDebugInit (
VOID
);
EFI_BOOT_MODE
EFIAPI
BoardBootModeDetect (
VOID
);
EFI_STATUS
EFIAPI
BoardInitBeforeMemoryInit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitAfterMemoryInit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitBeforeTempRamExit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitAfterTempRamExit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitBeforeSiliconInit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitAfterSiliconInit (
VOID
);
EFI_STATUS
EFIAPI
BoardInitAfterPciEnumeration (
VOID
);
EFI_STATUS
EFIAPI
BoardInitReadyToBoot (
VOID
);
EFI_STATUS
EFIAPI
BoardInitEndOfFirmware (
VOID
);
#endif
D.2.2 MultiBoardInitSupportLib
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _MULTI_BOARD_INIT_SUPPORT_LIB_H_
#define _MULTI_BOARD_INIT_SUPPORT_LIB_H_
#include <Library/BoardInitLib.h>
typedef
EFI_STATUS
(EFIAPI *BOARD_DETECT) (
VOID
);
typedef
EFI_STATUS
(EFIAPI *BOARD_INIT) (
VOID
);
typedef
EFI_BOOT_MODE
(EFIAPI *BOARD_BOOT_MODE_DETECT) (
VOID
);
typedef struct {
BOARD_DETECT BoardDetect;
} BOARD_DETECT_FUNC;
typedef struct {
BOARD_INIT BoardDebugInit;
BOARD_BOOT_MODE_DETECT BoardBootModeDetect;
BOARD_INIT BoardInitBeforeMemoryInit;
BOARD_INIT BoardInitAfterMemoryInit;
BOARD_INIT BoardInitBeforeTempRamExit;
BOARD_INIT BoardInitAfterTempRamExit;
} BOARD_PRE_MEM_INIT_FUNC;
typedef struct {
BOARD_INIT BoardInitBeforeSiliconInit;
BOARD_INIT BoardInitAfterSiliconInit;
} BOARD_POST_MEM_INIT_FUNC;
typedef struct {
BOARD_INIT BoardInitAfterPciEnumeration;
BOARD_INIT BoardInitReadyToBoot;
BOARD_INIT BoardInitEndOfFirmware;
} BOARD_NOTIFICATION_INIT_FUNC;
EFI_STATUS
EFIAPI
RegisterBoardDetect (
IN BOARD_DETECT_FUNC *BoardDetect
);
EFI_STATUS
EFIAPI
RegisterBoardPreMemoryInit (
IN BOARD_PRE_MEM_INIT_FUNC *BoardPreMemoryInit
);
EFI_STATUS
EFIAPI
RegisterBoardPostMemoryInit (
IN BOARD_POST_MEM_INIT_FUNC *BoardPostMemoryInit
);
EFI_STATUS
EFIAPI
RegisterBoardNotificationInit (
IN BOARD_NOTIFICATION_INIT_FUNC *BoardNotificationInit
);
#endif
D.3 SiliconPolicyInit
D.3.1 SiliconPolicyInitLib
The SiliconPolicyInitLib provides functions that silicon code initializes the default policy.
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _SILICON_POLICY_INIT_LIB_H_
#define _SILICON_POLICY_INIT_LIB_H_
/**
Performs silicon pre-memory policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The returned data must be used as input data for SiliconPolicyDonePreMemory(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().
1) In FSP path, the input Policy should be FspmUpd.
Value of FspmUpd has been initialized by FSP binary default value.
Only a subset of FspmUpd needs to be updated for different silicon sku.
The return data is same FspmUpd.
2) In non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPreMemory (
IN OUT VOID *Policy OPTIONAL
);
/*
The silicon pre-mem policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitPreMemory().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePreMemory (
IN VOID *Policy
);
/**
Performs silicon post-memory policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The returned data must be used as input data for SiliconPolicyDonePostMemory(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().
1) In FSP path, the input Policy should be FspsUpd.
Value of FspsUpd has been initialized by FSP binary default value.
Only a subset of FspsUpd needs to be updated for different silicon sku.
The return data is same FspsUpd.
2) In non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitPostMemory (
IN OUT VOID *Policy OPTIONAL
);
/*
The silicon post-memory policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitPostMemory().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDonePostMemory (
IN VOID *Policy
);
/**
Performs silicon late policy initialization.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a protocol, etc.
The returned data must be used as input data for SiliconPolicyDoneLate(),
and SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().
In FSP or non-FSP path, the input policy could be NULL.
The return data is the initialized policy.
@param[in, out] Policy Pointer to policy.
@return the initialized policy.
**/
VOID *
EFIAPI
SiliconPolicyInitLate (
IN OUT VOID *Policy OPTIONAL
);
/*
The silicon late policy is finalized.
Silicon code can do initialization based upon the policy data.
The input Policy must be returned by SiliconPolicyInitLate().
@param[in] Policy Pointer to policy.
@retval RETURN_SUCCESS The policy is handled consumed by silicon code.
*/
RETURN_STATUS
EFIAPI
SiliconPolicyDoneLate (
IN VOID *Policy
);
#endif
D.3.2 SiliconPolicyUpdateLib
The SiliconPolicyUpdateLib provides functions that board code overrides the default policy.
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _SILICON_POLICY_UPDATE_LIB_H_
#define _SILICON_POLICY_UPDATE_LIB_H_
/**
Performs silicon pre-memory policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The input Policy must be returned by SiliconPolicyDonePreMemory().
1) In FSP path, the input Policy should be FspmUpd.
A platform may use this API to update the FSPM UPD policy initialized
by the silicon module or the default UPD data.
The output of FSPM UPD data from this API is the final UPD data.
2) In non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePreMemory (
IN OUT VOID *Policy
);
/**
Performs silicon post-memory policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a PPI, etc.
The input Policy must be returned by SiliconPolicyDonePostMemory().
1) In FSP path, the input Policy should be FspsUpd.
A platform may use this API to update the FSPS UPD policy initialized
by the silicon module or the default UPD data.
The output of FSPS UPD data from this API is the final UPD data.
2) In non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdatePostMemory (
IN OUT VOID *Policy
);
/**
Performs silicon late policy update.
The meaning of Policy is defined by silicon code.
It could be the raw data, a handle, a Protocol, etc.
The input Policy must be returned by SiliconPolicyDoneLate().
In FSP or non-FSP path, the board may use additional way to get
the silicon policy data field based upon the input Policy.
@param[in, out] Policy Pointer to policy.
@return the updated policy.
**/
VOID *
EFIAPI
SiliconPolicyUpdateLate (
IN OUT VOID *Policy
);
#endif
D.4 TestPoint
D.4.1 TestPointLib
The TestPointLib provides helper functions for implementing test points. This library is optional.
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _TEST_POINT_LIB_H_
#define _TEST_POINT_LIB_H_
#include <PiPei.h>
#include <Uefi.h>
//
// Below is Test Point report definition.
//
//
// We reuse HSTI stype definition.
// ADAPTER_INFO_PLATFORM_TEST_POINT is similar to ADAPTER_INFO_PLATFORM_SECURITY.
//
#define PLATFORM_TEST_POINT_VERSION 0x00000001
#define PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE 0x00000001
#define PLATFORM_TEST_POINT_ROLE_PLATFORM_IBV 0x00000002
#define PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_OEM 0x00000003
#define PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_ODM 0x00000004
#define TEST_POINT_FEATURES_ITEM_NUMBER 2
D.4.1.1 ADAPTER_INFO_PLATFORM_TEST_POINT
typedef struct {
UINT32 Version;
UINT32 Role;
CHAR16 ImplementationID[256];
UINT32 FeaturesSize;
//UINT8 FeaturesImplemented[];
//UINT8 FeaturesVerified[];
//CHAR16 ErrorString[];
} ADAPTER_INFO_PLATFORM_TEST_POINT;
//
// Below is test point report library
//
D.4.1.2 TestPointLibSetTable
/**
Publish TestPoint table in AIP protocol.
One system should have only one PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE.
@param TestPoint TestPoint data
@param TestPointSize TestPoint size
@retval EFI_SUCCESS The TestPoint data is published in AIP protocol.
@retval EFI_ALREADY_STARTED There is already TestPoint table with Role and ImplementationID published in system.
@retval EFI_VOLUME_CORRUPTED The input TestPoint data is invalid.
@retval EFI_OUT_OF_RESOURCES There is not enough system resource to publish TestPoint data in AIP protocol.
**/
EFI_STATUS
EFIAPI
TestPointLibSetTable (
IN VOID *TestPoint,
IN UINTN TestPointSize
);
D.4.1.3 TestPointLibGetTable
/**
Search TestPoint table in AIP protocol, and return the data.
This API will return the TestPoint table with indicated Role and ImplementationID,
NULL ImplementationID means to find the first TestPoint table with indicated Role.
@param Role Role of TestPoint data.
@param ImplementationID ImplementationID of TestPoint data.
NULL means find the first one match Role.
@param TestPoint TestPoint data. This buffer is allocated by callee, and it
is the responsibility of the caller to free it after
using it.
@param TestPointSize TestPoint size
@retval EFI_SUCCESS The TestPoint data in AIP protocol is returned.
@retval EFI_NOT_FOUND There is not TestPoint table with the Role and ImplementationID published in system.
**/
EFI_STATUS
EFIAPI
TestPointLibGetTable (
IN UINT32 Role,
IN CHAR16 *ImplementationID OPTIONAL,
OUT VOID **TestPoint,
OUT UINTN *TestPointSize
);
D.4.1.4 TestPointLibSetFeaturesVerified
/**
Set FeaturesVerified in published TestPoint table.
This API will update the TestPoint table with indicated Role and ImplementationID,
NULL ImplementationID means to find the first TestPoint table with indicated Role.
@param Role Role of TestPoint data.
@param ImplementationID ImplementationID of TestPoint data.
NULL means find the first one match Role.
@param ByteIndex Byte index of FeaturesVerified of TestPoint data.
@param BitMask Bit mask of FeaturesVerified of TestPoint data.
@retval EFI_SUCCESS The FeaturesVerified of TestPoint data updated in AIP protocol.
@retval EFI_NOT_STARTED There is not TestPoint table with the Role and ImplementationID published in system.
@retval EFI_UNSUPPORTED The ByteIndex is invalid.
**/
EFI_STATUS
EFIAPI
TestPointLibSetFeaturesVerified (
IN UINT32 Role,
IN CHAR16 *ImplementationID, OPTIONAL
IN UINT32 ByteIndex,
IN UINT8 BitMask
);
D.4.1.5 TestPointLibClearFeaturesVerified
/**
Clear FeaturesVerified in published TestPoint table.
This API will update the TestPoint table with indicated Role and ImplementationID,
NULL ImplementationID means to find the first TestPoint table with indicated Role.
@param Role Role of TestPoint data.
@param ImplementationID ImplementationID of TestPoint data.
NULL means find the first one match Role.
@param ByteIndex Byte index of FeaturesVerified of TestPoint data.
@param BitMask Bit mask of FeaturesVerified of TestPoint data.
@retval EFI_SUCCESS The FeaturesVerified of TestPoint data updated in AIP protocol.
@retval EFI_NOT_STARTED There is not TestPoint table with the Role and ImplementationID published in system.
@retval EFI_UNSUPPORTED The ByteIndex is invalid.
**/
EFI_STATUS
EFIAPI
TestPointLibClearFeaturesVerified (
IN UINT32 Role,
IN CHAR16 *ImplementationID, OPTIONAL
IN UINT32 ByteIndex,
IN UINT8 BitMask
);
D.4.1.6 TestPointLibAppendErrorString
/**
Append ErrorString in published TestPoint table.
This API will update the TestPoint table with indicated Role and ImplementationID,
NULL ImplementationID means to find the first TestPoint table with indicated Role.
@param Role Role of TestPoint data.
@param ImplementationID ImplementationID of TestPoint data.
NULL means find the first one match Role.
@param ErrorString ErrorString of TestPoint data.
@retval EFI_SUCCESS The ErrorString of TestPoint data is updated in AIP protocol.
@retval EFI_NOT_STARTED There is not TestPoint table with the Role and ImplementationID published in system.
@retval EFI_OUT_OF_RESOURCES There is not enough system resource to update ErrorString.
**/
EFI_STATUS
EFIAPI
TestPointLibAppendErrorString (
IN UINT32 Role,
IN CHAR16 *ImplementationID, OPTIONAL
IN CHAR16 *ErrorString
);
D.4.1.7 TestPointLibSetErrorString
/**
Set a new ErrorString in published TestPoint table.
This API will update the TestPoint table with indicated Role and ImplementationID,
NULL ImplementationID means to find the first TestPoint table with indicated Role.
@param Role Role of TestPoint data.
@param ImplementationID ImplementationID of TestPoint data.
NULL means find the first one match Role.
@param ErrorString ErrorString of TestPoint data.
@retval EFI_SUCCESS The ErrorString of TestPoint data is updated in AIP protocol.
@retval EFI_NOT_STARTED There is not TestPoint table with the Role and ImplementationID published in system.
@retval EFI_OUT_OF_RESOURCES There is not enough system resource to update ErrorString.
**/
EFI_STATUS
EFIAPI
TestPointLibSetErrorString (
IN UINT32 Role,
IN CHAR16 *ImplementationID, OPTIONAL
IN CHAR16 *ErrorString
);
//
// TEST POINT SMM Communication command
//
#define SMI_HANDLER_TEST_POINT_COMMAND_GET_INFO 0x1
#define SMI_HANDLER_TEST_POINT_COMMAND_GET_DATA_BY_OFFSET 0x2
typedef struct {
UINT32 Command;
UINT32 DataLength;
UINT64 ReturnStatus;
} SMI_HANDLER_TEST_POINT_PARAMETER_HEADER;
typedef struct {
SMI_HANDLER_TEST_POINT_PARAMETER_HEADER Header;
UINT64 DataSize;
} SMI_HANDLER_TEST_POINT_PARAMETER_GET_INFO;
typedef struct {
SMI_HANDLER_TEST_POINT_PARAMETER_HEADER Header;
//
// On input, data buffer size.
// On output, actual data buffer size copied.
//
UINT64 DataSize;
PHYSICAL_ADDRESS DataBuffer;
//
// On input, data buffer offset to copy.
// On output, next time data buffer offset to copy.
//
UINT64 DataOffset;
} SMI_HANDLER_TEST_POINT_PARAMETER_GET_DATA_BY_OFFSET;
extern EFI_GUID gAdapterInfoPlatformTestPointGuid;
#endif
D.4.2 TestPointCheckLib
/** @file
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _TEST_POINT_CHECK_LIB_H_
#define _TEST_POINT_CHECK_LIB_H_
#include <PiPei.h>
#include <Uefi.h>
D.4.2.1 Test Point Hook Points
//
// Below is Test Point Hook Point.
//
// Naming: TestPoint<Phase/Event><Function>
//
// Phase/Event(PEI) = MemoryDiscovered|EndOfPei
// Phase/Event(DXE) = PciEnumerationDone|EndOfDxe|DxeSmmReadyToLock|ReadyToBoot
// Phase/Event(SMM) = SmmEndOfDxe|SmmReadyToLock|SmmReadyToBoot
//
EFI_STATUS
EFIAPI
TestPointTempMemoryFunction (
IN VOID *TempRamStart,
IN VOID *TempRamEnd
);
EFI_STATUS
EFIAPI
TestPointDebugInitDone (
VOID
);
EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredMtrrFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredMemoryResourceFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredFvInfoFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointMemoryDiscoveredDmaProtectionEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfPeiSystemResourceFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfPeiMtrrFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfPeiPciBusMasterDisabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointPciEnumerationDonePciBusMasterDisabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointPciEnumerationDonePciResourceAllocated (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfDxeNoThirdPartyPciOptionRom (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfDxeDmaAcpiTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointEndOfDxeDmaProtectionEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToLockSmramAligned (
VOID
);
EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToLockWsmtTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmReadyToBootSmmPageProtection (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootAcpiTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootGcdResourceFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootMemoryTypeInformationFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootUefiMemoryAttributeTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootUefiBootVariableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootUefiConsoleVariableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootHstiTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootEsrtTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootUefiSecureBootEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootPiSignedFvBootEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootTcgTrustedBootEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointReadyToBootTcgMorEnabled (
VOID
);
EFI_STATUS
EFIAPI
TestPointDxeSmmReadyToBootSmiHandlerInstrument (
VOID
);
EFI_STATUS
EFIAPI
TestPointExitBootServices (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmEndOfDxeSmrrFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmReadyToLockSmmMemoryAttributeTableFunctional (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmReadyToLockSecureSmmCommunicationBuffer (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmReadyToBootSmmPageProtection (
VOID
);
EFI_STATUS
EFIAPI
TestPointSmmExitBootServices (
VOID
);
D.4.2.2 MinPlatformPkg Macro Definitions
//
// Below is detail definition for MinPlatform implementation
//
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM L"Intel MinPlatform TestPoint"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_PEI TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (PEI)"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_DXE TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (DXE)"
#define TEST_POINT_IMPLEMENTATION_ID_PLATFORM_SMM TEST_POINT_IMPLEMENTATION_ID_PLATFORM L" (SMM)"
#define TEST_POINT_FEATURE_SIZE 0x10
#define TEST_POINT_ERROR L"Error "
#define TEST_POINT_PLATFORM_TEST_POINT L" Platform TestPoint"
// Byte 0 - SEC/PEI
#define TEST_POINT_TEMP_MEMORY_INIT_DONE L" - Temp Memory Init Done - "
#define TEST_POINT_DEBUG_INIT_DONE L" - Debug Init Done - "
#define TEST_POINT_BYTE0_TEMP_INIT_DONE BIT0
#define TEST_POINT_BYTE0_DEBUG_INIT_DONE BIT1
// Byte 1/2 - PEI
#define TEST_POINT_MEMORY_DISCOVERED L" - Memory Discovered - "
#define TEST_POINT_END_OF_PEI L" - End Of PEI - "
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL BIT0
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL BIT1
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL BIT2
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED BIT3
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_CODE L"0x01000000"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_STRING L"Invalid MTRR Setting\r\n"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_CODE L"0x01010000"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_STRING L"Invalid Memory Resource\r\n"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_CODE L"0x01020000"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_STRING L"Invalid FV Information\r\n"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_CODE L"0x01030000"
#define TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_STRING L"DMA protection disabled\r\n"
#define TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL BIT0
#define TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL BIT1
#define TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED BIT2
#define TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_CODE L"0x02000000"
#define TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_STRING L"Invalid System Resource\r\n"
#define TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_CODE L"0x02010000"
#define TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_STRING L"Invalid MTRR Setting\r\n"
#define TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_CODE L"0x02020000"
#define TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_STRING L"PCI Bus Master Enabled\r\n"
// Byte 3/4/5 - DXE
#define TEST_POINT_PCI_ENUMERATION_DONE L" - PCI Enumeration Done - "
#define TEST_POINT_END_OF_DXE L" - End Of DXE - "
#define TEST_POINT_DXE_SMM_READY_TO_LOCK L" - DXE SMM Ready To Lock - "
#define TEST_POINT_READY_TO_BOOT L" - Ready To Boot - "
#define TEST_POINT_EXIT_BOOT_SERVICES L" - Exit Boot Services - "
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED BIT0
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED BIT1
#define TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM BIT2
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL BIT3
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED BIT4
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_CODE L"0x03000000"
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_STRING L"Invalid PCI Resource\r\n"
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_CODE L"0x03010000"
#define TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_STRING L"PCI Bus Master Enabled\r\n"
#define TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_CODE L"0x03020000"
#define TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_STRING L"Third Party Option ROM dispatched\r\n"
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_CODE L"0x03030000"
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_STRING L"No DMA ACPI table\r\n"
#define TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED_ERROR_CODE L"0x03040000"
#define TEST_POINT_BYTE3_END_OF_DXE_DXE_DMA_PROTECTION_ENABLED_ERROR_STRING L"DMA protection disabled\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL BIT0
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL BIT1
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL BIT2
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL BIT3
#define TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL BIT4
#define TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL BIT5
#define TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_CODE L"0x04000000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_STRING L"Invalid Memory Type Information\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE L"0x04010000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING L"Invalid Memory Attribute Table\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_CODE L"0x04020000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_STRING L"Invalid Boot Variable\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_CODE L"0x04030000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_STRING L"Invalid Console Variable\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_CODE L"0x04040000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_STRING L"Invalid ACPI Table\r\n"
#define TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_CODE L"0x04050000"
#define TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_STRING L"Invalid GCD Resource\r\n"
#define TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED BIT0
#define TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED BIT1
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED BIT2
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED BIT3
#define TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_CODE L"0x05000000"
#define TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_STRING L"UEFI Secure Boot Disable\r\n"
#define TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_CODE L"0x05010000"
#define TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_STRING L"PI Signed FV Boot Disable\r\n"
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_CODE L"0x05020000"
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_STRING L"TCG Trusted Boot Disable\r\n"
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_CODE L"0x05030000"
#define TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_STRING L"TCG MOR not enabled\r\n"
// Byte 6/7 - SMM
#define TEST_POINT_SMM_END_OF_DXE L" - SMM End Of DXE - "
#define TEST_POINT_SMM_READY_TO_LOCK L" - SMM Ready To Lock - "
#define TEST_POINT_SMM_READY_TO_BOOT L" - SMM Ready To Boot - "
#define TEST_POINT_SMM_EXIT_BOOT_SERVICES L" - SMM Exit Boot Services - "
#define TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL BIT0
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL BIT1
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER BIT2
#define TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION BIT3
#define TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_CODE L"0x06000000"
#define TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_STRING L"Invalid SMRR\r\n"
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE L"0x06010000"
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING L"Invalid SMM Memory Attribute Table\r\n"
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_CODE L"0x06020000"
#define TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_STRING L"Unsecure SMM communication buffer\r\n"
#define TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_CODE L"0x06030000"
#define TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_STRING L"SMM page level protection disabled\r\n"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED BIT0
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL BIT1
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT BIT2
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_CODE L"0x07000000"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_STRING L"Invalid SMRAM Information\r\n"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_CODE L"0x07010000"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_STRING L"No WSMT table\r\n"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_CODE L"0x07020000"
#define TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_STRING L"No SMI Instrument\r\n"
// Byte 8 - Advanced
#define TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL BIT0
#define TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL BIT1
#define TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_CODE L"0x08000000"
#define TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_STRING L"No ESRT\r\n"
#define TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_CODE L"0x08010000"
#define TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_STRING L"No HSTI\r\n"
D.4.2.3 ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT
#pragma pack (1)
typedef struct {
UINT32 Version;
UINT32 Role;
CHAR16 ImplementationID[256];
UINT32 FeaturesSize;
UINT8 FeaturesImplemented[TEST_POINT_FEATURE_SIZE];
UINT8 FeaturesVerified[TEST_POINT_FEATURE_SIZE];
CHAR16 End;
} ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT;
#pragma pack ()
#endif
Table of Contents
EDK II Minimum Platform Specification
1.1 Audience / Document scope
1.2 Document Flow
1.3 Terminology
1.4 Reference documents
2.1 Staged Architecture
2.2 Modularity
2.3 Execution
2.4 Organization
2.5 Platform and Board Layer
3.2 Firmware Volumes
3.3 Modules
3.4 Required Functions
3.5 Configuration
3.6 Data Flows
3.7 Additional Control Flows
3.8 Build Files
3.9 Test Point Results
3.10 Functional Exit Criteria
3.11 Stage Enabling Checklist
4.2 Firmware Volumes
4.3 Modules
4.4 Required Functions
4.5 Configuration
4.6 Data Flows
4.7 Additional Control Flows
4.8 Build Files
4.9 Test Point Results
4.10 Functional Exit Criteria
4.11 Stage Enabling Checklist
5 Stage III: Boot to UEFI Shell
5.2 Firmware Volumes
5.3 Modules
5.4 Required Functions
5.5 Configuration
5.6 Data Flows
5.7 Additional Control Flows
5.8 Build Files
5.9 Test Point Results
5.10 Functional Exit Criteria
5.11 Stage Enabling Checklist
6.2 Firmware Volumes
6.3 Modules
6.4 Required Functions
6.5 Configuration
6.6 Data Flows
6.7 Additional Control Flows
6.8 Build Files
6.9 Test Point Results
6.10 Functional Exit Criteria
6.11 Stage Enabling Checklist
7.2 Firmware Volumes
7.3 Modules
7.4 Required Functions
7.5 Configuration
7.6 Data Flows
7.7 Additional Control Flows
7.8 Build Files
7.9 Test Point Results
7.10 Functional Exit Criteria
7.11 Stage Enabling Checklist
8 Stage VI: Advanced Feature Selection
8.2 Firmware Volumes
8.3 Configuration
8.4 Advanced Feature Design
A.1 Firmware Volume Layout
A.2 Key Function Invocation
A.3 BDS Hook Points
Appendix B Global Configuration
B.1 Stage Configuration
B.2 Test Point Check Infrastructure
C.1 Layout
C.2 ACPI Table Contents
C.3 ACPI Device Categorization
C.4 Flow Diagrams
Appendix D Interface Definitions
D.1 Required Functions
D.2 BoardInit
D.3 SiliconPolicyInit
D.4 TestPoint