

TABLE	OF	CONTENTS
EDK	II	Minimum	Platform	Specification

Tables

Figures

1	Introduction

1.1	Audience	/	Document	scope

1.2	Document	Flow

1.3	Terminology

1.4	Reference	documents

2	Architecture

2.1	Staged	Architecture

2.2	Modularity

2.3	Execution

2.4	Organization

2.5	Platform	and	Board	Layer

3	Stage	I:	Minimal	Debug

3.2	Firmware	Volumes

3.3	Modules

3.4	Required	Functions

3.5	Configuration

3.6	Data	Flows

3.7	Additional	Control	Flows

3.8	Build	Files

3.9	Test	Point	Results

3.10	Functional	Exit	Criteria

3.11	Stage	Enabling	Checklist

4	Stage	II:	Memory	Functional

4.2	Firmware	Volumes

4.3	Modules

4.4	Required	Functions

4.5	Configuration

4.6	Data	Flows

4.7	Additional	Control	Flows

4.8	Build	Files

4.9	Test	Point	Results

4.10	Functional	Exit	Criteria

4.11	Stage	Enabling	Checklist

5	Stage	III:	Boot	to	UEFI	Shell

5.2	Firmware	Volumes

5.3	Modules

EDK	II	Minimum	Platform	Specification[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.4	Required	Functions

5.5	Configuration

5.6	Data	Flows

5.7	Additional	Control	Flows

5.8	Build	Files

5.9	Test	Point	Results

5.10	Functional	Exit	Criteria

5.11	Stage	Enabling	Checklist

6	Stage	IV:	Boot	to	OS

6.2	Firmware	Volumes

6.3	Modules

6.4	Required	Functions

6.5	Configuration

6.6	Data	Flows

6.7	Additional	Control	Flows

6.8	Build	Files

6.9	Test	Point	Results

6.10	Functional	Exit	Criteria

6.11	Stage	Enabling	Checklist

7	Stage	V:	Security	Enable

7.2	Firmware	Volumes

7.3	Modules

7.4	Required	Functions

7.5	Configuration

7.6	Data	Flows

7.7	Additional	Control	Flows

7.8	Build	Files

7.9	Test	Point	Results

7.10	Functional	Exit	Criteria

7.11	Stage	Enabling	Checklist

8	Stage	VI:	Advanced	Feature	Selection

8.2	Firmware	Volumes

8.3	Configuration

8.4	Advanced	Feature	Design

9	Stage	VII:	Tuning

Appendix	A	Full	Maps

A.1	Firmware	Volume	Layout

A.2	Key	Function	Invocation

A.3	BDS	Hook	Points

Appendix	B	Global	Configuration

B.1	Stage	Configuration

B.2	Test	Point	Check	Infrastructure

EDK	II	Minimum	Platform	Specification[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Appendix	C	ACPI

C.1	Layout

C.2	ACPI	Table	Contents

C.3	ACPI	Device	Categorization

C.4	Flow	Diagrams

Appendix	D	Interface	Definitions

D.1	Required	Functions

D.2	BoardInit

D.3	SiliconPolicyInit

D.4	TestPoint

EDK	II	Minimum	Platform	Specification[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

EDK	II	Minimum	Platform	Specification
DRAFT	FOR	REVIEW

12/01/2020	06:42:40

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2019,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

0.7 Initial	release May	2019

EDK	II	Minimum	Platform	SpecificationEDK	II	Minimum	Platform	Specification[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Tables
Table	1	Document	Flow
Table	2	Terminology
Table	3	Reference	Documents
Table	4	Architecture	Stages

Stage	I

Table	5	Stage	I	Firmware	Volumes
Table	6	Stage	I	FV	and	Component	Layout
Table	7	Stage	I	UEFI	Components	Platform	Architecture	Libraries
Table	8	Stage	I	Libraries
Table	9	Stage	I	SEC	Functions
Table	10	Stage	I	PEI	Functions
Table	11	Stage	I	Flash	Map	Configuration	PCDs
Table	12	Stage	I	Debug	Configuration
Table	13	Stage	I	Build	Files
Table	14	Stage	I	Test	Point	Results

Stage	II

Table	15	Stage	II	Firmware	Volumes
Table	16	Stage	II	FV	and	Component	Layout
Table	17	Stage	II	DXE	UEFI	Components
Table	18	Stage	II	PEI	Platform	Architecture	Libraries
Table	19	Stage	II	DXE	Platform	Architecture	Libraries
Table	20	Stage	II	PEI	Functions
Table	21	Stage	II	Interfaces
Table	22	Stage	II	FSP	Related	Configuration
Table	23	Stage	II	FV	Related	Configuration
Table	24	Silicon	Policy	Libraries
Table	25	Stage	II	Build	Files
Table	26	Test	Point	Results

Stage	III

Table	27	Stage	III	Firmware	Volumes
Table	28	Stage	III	FV	and	Component	Layouts
Table	29	Stage	III	DXE	UEFI	Components
Table	30	Stage	III	Platform	Architecture	Libraries
Table	31	Stage	III	Required	PEI	Functions
Table	32	Stage	III	PEI	Functions
Table	33	Stage	III	DXE	Functions
Table	34	Stage	III	DXE	Interfaces
Table	35	Stage	III	Flash	Map	Configuration	PCDs
Table	36	Stage	III	Driver	Configuration
Table	37	Stage	III	Build	Files
Table	38	Stage	III	Test	Point	Results

Stage	IV

Table	39	Stage	IV	Firmware	Volumes
Table	40	Stage	IV	FV	and	Component	Layout
Table	41	Stage	IV	ACPI	DXE	UEFI	Components
Table	42	Stage	IV	DXE	UEFI	Components

TablesEDK	II	Minimum	Platform	Specification[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Table	43	Stage	IV	SMM	UEFI	Components
Table	44	Stage	IV	Platform	Architecture	Libraries
Table	45	Stage	IV	DXE	Functions
Table	46	Stage	IV	DXE	Interfaces
Table	47	Stage	IV	SMM	Functions
Table	48	Stage	IV	SMM	Interfaces
Table	49	Memory	Type	Information	Configuration
Table	50	Flash	Map	Configuration	PCDs
Table	51	Stage	IV	Build	Files
Table	52	Stage	IV	Test	Point	Results

Stage	V

Table	53	Stage	V	Firmware	Volumes
Table	54	Stage	V	FV	and	Components	Layout
Table	55	Stage	V	PEI	UEFI	Components
Table	56	Stage	V	DXE	UEFI	Components
Table	57	Stage	V	SMM	UEFI	Components
Table	58	Stage	V	Platform	Architecture	Libraries
Table	59	Stage	V	PEI	Functions
Table	60	Stage	V	DXE	Functions
Table	61	Stage	V	SMM	Functions
Table	62	Stage	V	Security	Configuration
Table	63	Stage	V	Flash	Map	Configuration	PCDs
Table	64	Stage	V	Feature	Configuration
Table	65	Stage	V	Build	Files
Table	66	Stage	V	Test	Point	Results

Stage	VI

Table	67	Stage	VI	Firmware	Volumes
Table	68	Stage	VI	FV	and	Component	Layout
Table	69	Stage	VI	Flash	Map	Configuration	PCDs
Table	70	Advanced	Feature	Template

Appendix

Table	71	Full	Firmware	Volume	Layout
Table	72	Key	Function	Invocation

TablesEDK	II	Minimum	Platform	Specification[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figures
Figure	1	Minimum	Platform	Architecture	Overview
Figure	2	Minimum	Platform	Architecture	High	Level	Sequence
Figure	3	Example	of	a	Minimal	Platform	Firmware	Stack
Figure	4	Stage	I	Main	Control	Flow
Figure	5	Stage	II	Main	Control	Flow
Figure	6	Non-FSP	Policy	Data	Flow
Figure	7	FSP	Policy	Data	Flow
Figure	8	Stage	III	Main	Control	Flow
Figure	9	Stage	IV	Main	Control	Flow
Figure	10	Full	BDS	Hook	Point	Map
Figure	11	Test	Point	Check	Infrastructure
Figure	12	ACPI	Platform	Flow

FiguresEDK	II	Minimum	Platform	Specification[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

1	INTRODUCTION
This	specification	details	the	required	and	optional	elements	for	an	EDK	II	based	platform	design	with
the	following	objectives:

1.	 Define	a	structure	that	enables	developers	to	consistently	navigate	source	code,	execution	flow,
and	the	functional	results	of	bootstrapping	a	system.

2.	 Enable	a	minimal	platform	where	minimal	is	defined	as	the	minimal	firmware	implementation	required
to	produce	a	basic	solution	that	can	be	further	extended	to	meet	a	multitude	of	client,	server,	and
embedded	market	needs.

3.	 Minimize	coupling	between	common,	silicon,	platform,	and	board	packages.
4.	 Enable	large	granularity	binary	solutions.

A	key	aspect	of	these	objectives	is	to	improve	the	transparency	and	security	quality	across	the	client,
server,	and	embedded	ecosystems.

This	document	assumes	a	working	knowledge	of	the	EDK	II	and	UEFI	Specifications.	The	minimal	platform
defined	supports	the	use	of	Intel®	Firmware	Support	Package	(FSP),	but	does	not	require	usage	of	the
Intel®	FSP	API.	The	minimal	platform	is	binary	component	oriented,	but	designed	to	enable	a	highly
optimized	form	for	embedded	boot	loaders.

1	IntroductionEDK	II	Minimum	Platform	Specification[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

1.1	Audience	/	Document	scope
The	audience	for	this	document	includes	UEFI	firmware	architecture,	development,	validation,	and
enabling	engineers.

The	UEFI	Forum	and	the	TianoCore.org	EDK	II	specifications	provide	tremendous	flexibility	and
extensibility.	The	Minimum	Platform	Architecture	is	intended	to	introduce	interfaces	and	structure	so
that	platforms	are	consistent	and	thus	approachable	by	engineers	from	across	the	ecosystem.	The
minimal	platform	specifically	refers	to	a	platform	layer	within	a	multi-layer	solution;	its	scope	and
therefore	this	specification	defines	this	layer	and	its	dependencies.	The	minimal	platform	is	a	single
code	package	used	as-is	from	open	source	similar	to	MDE	Module	package	usage.	By	using	this
platform	as	a	base,	the	fundamental	boot	flow	is	consistent,	well-documented,	and	visible	across	the
UEFI	community.

This	approach	does	not	rule	out	innovation	and	customization.	The	platform	calls	two	primary	sets	of
external	APIs	throughout	the	boot,	for	board	and	chipset	initialization.	These	APIs	are	considered
dependencies,	and	therefore	are	defined	in	this	specification.	The	implementation	of	these	APIs	is
expected	to	vary	based	on	unique	board	and	chipset	requirements.	Furthermore,	the	minimal	platform
can	be	arbitrarily	extended	through	a	simple	and	modular	advanced	feature	design.

The	Minimum	Platform	Architecture	enables	scalability	from	pre-silicon	validation	activities,	to	final
product	shipment,	to	derivative	product	use.	The	Minimum	Platform	Architecture	should	enable
engineering	activities	from	all	segments:	from	high-touch	Intel	supported	OEMs	to	individual	makers	with
previous	UEFI	experience	but	no	direct	support	from	Intel.

1.1	Audience	/	Document	scopeEDK	II	Minimum	Platform	Specification[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

1.2	Document	Flow
The	document	introduces	the	Minimum	Platform	Architecture,	and	then	details	the	"boot	stages"
through	the	following	subsections.

	Overview	 An	overview	of	the	stage

	Firmware	Volumes	 The	binary	containers	needed	for	each	stage

	Modules	 The	EDK	II	component	binaries	and	static	libraries	required

	Required	Functions	 The	architecturally	defined	functions	for	a	given	stage

	Configuration	 The	defined	configurable	parameters	for	a	given	stage

	Data	Flows	 The	architecturally	defined	data	structures	and	flows	for	a	given	stage

	Control	Flows	 Key	control	flows	for	a	given	stage

	Build	Files	 The	DSC/FDF	for	a	given	stage

	Test	Point	Results	 The	test	that	can	verify	porting	is	complete	for	a	given	stage

	Functional	Exit	Criteria	 The	testable	functionality	for	the	stage

	Stage	Enabling	Checklist	 The	required	activities	to	achieve	desired	functionality	for	a	given	stage

Table	1	Document	Flow

1.2	Document	FlowEDK	II	Minimum	Platform	Specification[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

1.3	Terminology
	Term	 	Definition	

ACM Authenticated	Code	Module

ACPI Advanced	Configuration	and	Power	Interface

BCT Intel	Binary	Configuration	Tool

BFV Boot	Firmware	Volume

BoardPkg The	EDK	II	package	a	developer	creates	to	port	the	Minimum	Platform	for	their
motherboard	or	family	of	motherboards

BSF Boot	Setting	File

CAR Cache-As-RAM

Component
An	executable	binary.	Typically	UEFI	defined,	e.g.	PEIM,	DXE	driver,	SMM	driver,	or
UEFI	application.	Also	used	to	refer	to	other	system	binaries.	Not	appropriate
for	statically	linked	libraries.

DXE Driver	execution	environment.	Role	is	to	load	drivers	for	system	devices.	Finds
and	executes	boot	code.	After	OS	loads,	it	handles	OS	to	UEFI	calls.

DSDT Differentiated	System	Description	Table

EC Embedded	Controller

EDK EFI	Development	Kit

FACS Firmware	ACPI	Control	Structure

FADT Firmware	ACPI	Description	Table

FFS EFI	Firmware	File	System	Specification

FRU Field	Replaceable	Unit,	the	minimal	silicon	that	can	be	added	or	removed	from	a
system,	e.g.

an	SoC,	a	MCP,	a	standalone	processor	or	PCH.

FSP Intel®	Firmware	Support	Package

Full	Platform
A	platform	implementation	that	includes	the	minimal	features,	as	well	as	some
number	of	advanced	features.	(Stage	I-VII).	Note:	most	advanced	features	may
not	be	described	in	this	document.

FV Firmware	Volume,	a	UEFI	Forum	defined	firmware	storage	container

GPIO General	Purpose	Input/Output

GUID Globally	Unique	Identifier(s)

HOB Hand	Off	Blocks(s)

Hybrid	EDKII Any	Module	that	contains	both	EDKII	compliant	wrapper	code,	and	non	EDK
payloads	(e.g.,	CSM-bin	or	FSP-bin)

IBB Initial	Boot	Block

IFWI Integrated	Firmware	Image,	includes	things	like	UEFI	firmware,	microcode,
microcontroller	and	firmware,	configuration	data.

	Term	 	Definition	

IPL Initial	Program	Load

MASM Microsoft	Macro	Assembler

1.3	TerminologyEDK	II	Minimum	Platform	Specification[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Minimum
Platform

A	platform	implementation	that	only	includes	the	minimal	features.	(Stage	I-VII)

MinPlatformPkg The	EDK	II	package	that	contains	common	elements	of	the	platform
architecture.

Module Typically	any	EDK	II	independently	buildable	item,	includes	static	libraries	and
executables.

MOR Memory	Overwrite	Request.	See	Trusted	Computing	Group	documentation.

MTRR Memory	Type	Range	Register

NASM Netwide	Assembler

Native	EDKII All	modules	build	with	only	EDKII	compliant	source	code,	and	no	non-EDK
payloads	(e.g.,	CSM-bin,	LegacyOpRom,	or	FSP-bin)

NVRAM Non-Volatile	Random	Access	Memory

OBB OEM	Boot	Block

OPROM Option	ROM

PCD Platform	Configuration	Database

PEI Pre	EFI	Initialization.	Role	is	to	initialize	memory,	and	also	initialize	enough	of	the
system	to	run	DXE.

PEIM Pre-EFI	Initialization	Module

PI Platform	Initialization

PPI PEIM-to-PEIM	Interface

RSDP Root	System	Description	Pointer

RSDT Root	System	Description	Table

SEC Security	phase.	Role	is	to	initialize	the	system	far	enough	to	find,	validate,	install
and	run	PEI.

SiliconPkg The	EDK	II	Package	that	contains	silicon	support	for	a	system.

SIO Super	I/O	is	a	type	of	I/O	controller	IP.	Typical	functionality	provided	are	one	or
more	serial	port	UARTs,	keyboard	controller,	and	many	others.

SMBIOS System	Management	BIOS

SMM System	Management	Mode

SSDT Secondary	System	Description	Table

T-RAM Temporary	RAM	(memory	used	before	permanent	memory	is	initialized	such	as
CAR)

TPM Trusted	Platform	Module

UEFI Unified	Extensible	Firmware	Interface

UPD Updatable	Product	Data

XSDT Extended	System	Description	Table

Table	2	Terminology

1.3	TerminologyEDK	II	Minimum	Platform	Specification[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

1.4	Reference	documents
The	following	documents	are	referenced	in	this	specification.

	Abbreviation	 	Document	 	Version	

ACPI_SPEC Advanced	Configuration	and	Power	Interface	(ACPI)
Specification

Version	6.3
January
2019

BSF_SPEC Boot	Setting	File	(BSF)	Specification Version	1.0
March	2016

FSP_EAS FSP	2.0	External	Architecture	Specification	(EAS) Version	2.0
May	2016

OpenPlatform_WP Intel®	Open	Platform	White	Paper May	2017

PI_SPECS Platform	Initialization	(PI)	Specification
Version	1.7
January
2019

Volume	I:	PEI

Volume	II:	DXE	CIS

Volume	III:	Shared	Architecture	Elements

Volume	IV:	SMM

Volume	V:	Standards

UEFI_SPEC Unified	Extensible	Firmware	Interface	(UEFI)	Specification Version	2.8
March	2019

Table	3	Reference	Documents

1.4	Reference	documentsEDK	II	Minimum	Platform	Specification[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

http://www.uefi.org/sites/default/files/resources/ACPI%206_2_A_Sept29.pdf
https://firmware.intel.com/sites/default/files/BSF_1_0.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v2.pdf
https://github.com/tianocore/edk2-platforms/blob/devel-MinPlatform/Platform/Intel/MinPlatformPkg/Docs/A_Tour_Beyond_BIOS_Open_Source_IA_Firmware_Platform_Design_Guide_in_EFI_Developer_Kit_II%20-%20V2.pdf
http://www.uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_7_A%20Sept%206.pdf

2	ARCHITECTURE
The	Minimum	Platform	Architecture	is	structured	around	required	functionality	over	time.	As	such,	the
key	elements	of	architecture	and	design	(flows,	interfaces,	etc)	are	organized	into	a	staged
architecture,	where	each	stage	will	have	requirements	and	functionality	that	lead	to	specific	uses.
Stages	build	upon	prior	stages	with	extensibility	to	meet	silicon,	platform,	or	board	requirements.

Early	in	a	development	cycle,	engineering	is	focused	on	creating	the	platform	and	acquiring	basic
functionality.	This	can	be	pursued	within	simulation	and	emulation	environments,	or	on	real	hardware.
This	often	includes	creating	a	new	set	of	silicon	and	platform	source	code	that	handles	the	basic
differences	between	the	new	target	and	prior	solutions.	Often	this	entails	reuse	of	the	prior	generation
silicon	support	and	existing	feature	sets.

Later	development	engineering	effort	is	focused	on	enabling	the	full	range	of	functionality,	supporting
all	deltas	in	the	new	platform	-	typically	in	the	form	of	reference	designs	and	lead	products.	Next,
platform	development	is	focused	on	scaling.	This	involves	customer	enabling	and	aligning	products	for
time-to-market	and	silicon	roadmaps.	Finally,	there	is	sustaining,	maintenance,	and	derivatives	activity.
These	are	characterized	by	smaller	changes	to	existing	production-worthy	solutions,	repurposing	them
opportunistically.

Figure	1	Minimum	Platform	Architecture	Overview

Figure	1	shows	the	basic	Minimum	Platform	Architecture.	The	enabling	steps	for	a	Minimum	Platform
solution	should	occur	in	the	following	order	to	add	complexity	over	time,	and	only	where	it	is	necessary.
This	progression	from	minimum	required	to	more	full-featured	permeates	the	design	of	the	boot	flow,
modules	implemented,	and	collection	of	components	into	firmware	volumes.

1.	 Develop	a	board	solution	around	the	minimum	platform.	This	involves	implementing	the
essential	board	information	and	initialization	defined	in	the	Minimum	Platform	board	API.

2.	 Add	silicon	initialization	support.	For	many	silicon	vendors	this	will	be	accomplished	through	the
use	of	binary	blobs	with	well-defined	interfaces.	In	any	case,	the	silicon	initialization	invocation	is
performed	from	the	board	code.

3.	 Add	advanced	features,	which	are	typically	implemented	in	the	form	of	source	code	designed	to
be	generically	plugged	into	a	large	number	of	diverse	system	types.

4.	 Add	product-specific	features	that	are	required	for	product	initialization.	This	support	is	not	part
of	essential	board	organization	or	maintained	as	a	generic	advanced	feature.	It	is	enabled	in	the
advanced	feature	stage.

2	ArchitectureEDK	II	Minimum	Platform	Specification[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figure	2	Minimum	Platform	Architecture	High	Level	Sequence

Figure	2	shows	the	same	basic	idea	can	be	represented	as	a	Venn	diagram	with	three	fundamental
steps.

This	architecture	is	reflected	in	these	areas:

Source	code	in	modules,	packages,	and	resulting	binary	components
Execution	in	control,	data,	error,	and	debug	flows
Functionality	as	solutions	evolve	from	initial	to	complete
Scaling	from	silicon	development	to	products

2	ArchitectureEDK	II	Minimum	Platform	Specification[DRAFT]

16DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2	ArchitectureEDK	II	Minimum	Platform	Specification[DRAFT]

17DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.1	Staged	Architecture
The	Minimum	Platform	Architecture	defines	a	number	of	stages	that	are	integral	to	the	design	and
implementation	of	conformant	firmware	solutions.	Stages	define	what	code	needs	to	be	built,	what
functionality	is	required,	what	binary	components	are	required	at	the	FV	and	UEFI	PI	Architecture
executables	level,	and	what	the	system	capabilities	are	available	as	a	result	of	successfully	executing
through	a	firmware	stage.

	Stage	
	Functional

Objective	
	Example	Capabilities	

	I	
Minimal
Debug Serial	Port,	Port	80,	External	debuggers	Optional:	Software	debugger

	II	
Memory
Functional Basic	hardware	initialization	including	main	memory

	III	
Boot	to
UEFI	Shell Generic	DXE	driver	execution

	IV	
Boot	to
OS

Boot	a	general	purpose	operating	system	with	the	minimally	required
feature	set.	Publish	a	minimal	set	of	ACPI	tables.

	V	
Security
Enabled UEFI	Secure	Boot,	TCG	trusted	boot,	DMA	protection,	etc.

	VI	

Advanced
Feature
Selection

Firmware	update,	power	management,	networking	support,	manageability,
testability,	reliability,	availability,	serviceability,	non-essential	provisioning
and	resiliency	mechanisms

	VII	 Tuning Size	and	performance	optimizations

Table	4	Architecture	Stages

The	stages	correspond	well	to	bootstrapping	a	system	and	to	developing	a	production-worthy	solution.
The	stages	are	defined	in	order	to	detail	the	minimum	items	required.	It	is	expected	that	there	will	be
more	required	and	more	present	than	what	is	defined	in	this	specification	for	an	end	product.	The
stages	capture	what	is	minimally	required	to	support	the	strategic	objectives	of	transparency	and
quality	as	well	as	the	more	tactical	objectives	of	structure,	consistency,	cohesion,	coupling,	and
compatibility.	Note	that	the	stages	represent	enabling	steps,	not	necessarily	the	order	of	execution.	For
example,	ACPI	initialization	necessary	in	Stage	IV	may	be	performed	before	Stage	III	would	be	considered
complete.	Further,	the	stages	may	not	necessarily	be	strictly	additive	once	enabling	is	complete.	For
example,	the	UEFI	shell	may	not	be	required	in	the	production	firmware	image	based	on	product
requirements,	but	it	must	have	been	enabled	and	therefore	capable	of	being	loaded	in	the	final
firmware	if	chosen	by	a	firmware	engineer	supporting	the	firmware	in	the	final	production	image.

2.1	Staged	ArchitectureEDK	II	Minimum	Platform	Specification[DRAFT]

18DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.2	Modularity
Throughout	the	architecture	you	will	find	a	mix	of	static	and	dynamic	modularity.	Static	libraries	are	used
to	make	the	platform	and	board	code	simpler	and	more	approachable.	Dynamic	linking	in	the	form	of
UEFI	PI	Architecture	components	(PEIM	and	drivers)	as	well	as	large	grain	Firmware	Volume	containers
are	also	used	extensively	in	order	to	increase	leverage,	scalability,	and	large	grain	FV	container
updates.

An	important	concept	is	that	the	minimum	platform	is	defined	with	a	mix	of	solutions	for	modularity,	but
that	said	modularity	will	be	flexible.	It	is	intended	that	products	will	be	able	to	scale	from	fully	statically-
linked	embedded	solutions	to	fully	dynamically-linked	leveraged	validation	solutions	as	they	reach	the
end	of	Stage	VII	optimization	activities.	These	advanced	solutions	can	be	considered	derivatives	of	the
platform	architecture	and	should	not	undermine	the	strategic	objectives	of	transparency	and	quality,
nor	the	more	tactical	objectives	of	structure,	consistency,	cohesion,	coupling,	and	compatibility.

2.2	ModularityEDK	II	Minimum	Platform	Specification[DRAFT]

19DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.3	Execution
To	provide	for	a	simpler	progression	through	functionality,	there	are	controls	that	enable	building	and
executing	the	minimal	code	to	achieve	the	goal	for	a	particular	stage.	There	is	a	PCD	control	that
platform	and	board	code	can	use	to	limit	the	scope	of	what	must	be	functional	at	a	given	state	of
development.	For	example,	if	the	board	is	configured	for	Stage	I	functionality,	developers	should	not	be
burdened	with	errors	because	required	porting	to	make	memory	functional	has	not	been	done	yet.
Similarly,	initializing	memory	should	not	be	burdened	with	the	functionality	for	authenticating
cryptographic	hashes	required	for	Stage	V.

2.3	ExecutionEDK	II	Minimum	Platform	Specification[DRAFT]

20DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.4	Organization
The	architecture	makes	use	of	four	primary	classifications	of	code	that	are	generally	instantiated	in
different	EDK	II	packages.

Common	(EDK	II)	is	code	that	does	not	have	any	direct	HW	requirements	other	than	the	basics
required	to	execute	machine	code	on	the	processor	(stack,	memory,	IA	registers,	etc).

Producer(s):	TianoCore.org

Silicon,	also	often	called	hardware	code,	has	some	tie	to	a	specific	class	of	physical	hardware.
Sometimes	governed	by	industry	standards,	sometimes	proprietary.	Silicon	or	hardware	code	is
usually	not	intended	to	have	multiple	implementations	for	the	same	hardware.

Producer(s):	Silicon	vendor

Platform	defines	the	actions	needed	to	enable	a	specific	platform's	capabilities.	In	this
architecture,	capabilities	are	divided	into	mandatory	and	advanced	features.	Mandatory	features
are	enabled	in	stages	prior	to	Stage	VI.	Advanced	features	are	enabled	in	Stage	VI	and	later.

Minimum	Platform	Producer(s):	TianoCore.org
Advance	Feature	Producer(s):	TianoCore.org,	OEM,	BIOS	vendor

Board	packages	contains	board	specific	code	for	one	or	more	motherboards.
Producer(s):	Device	manufacturer,	BIOS	vendor,	Board	user

The	architecture	is	designed	to	support	a	maintainer	ownership	model.	For	example,	board	developers
should	not	directly	modify	(fork)	the	platform,	silicon,	or	common	code.	More	details	on	conventional
usage	of	the	package	classifications	can	be	found	in	supplemental	literature	from	UEFI	Forum,
TianoCore.org,	and	others.

For	the	purposes	of	this	document,	the	board	package	is	considered	an	integration	point	of	the
firmware	image	in	addition	to	providing	board-specific	functionality.	The	silicon	package	provides
supported	silicon	initialization	support	for	one	or	more	silicon	products.	The	minimum	platform	package
represents	common	elements	of	this	architecture	that	may	depend	upon	board	and	silicon	interfaces.
In	order	to	meet	the	security	objectives	of	this	specification,	the	minimum	platform	package	must	not
depend	upon	deprecated	EDK	II	packages.	Other	packages	composed	within	the	firmware	solution
described	in	this	specification	should	consist	of	widely	known	elements	of	the	EDKII	ecosystem	from
TianoCore.org.

An	example	of	a	firmware	stack	compliant	with	this	specification	for	three	classes	of	computer	systems
is	shown	in	the	below	figure.

Figure	3	Example	of	a	Minimal	Platform	Firmware	Stack

2.4	OrganizationEDK	II	Minimum	Platform	Specification[DRAFT]

21DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.4	OrganizationEDK	II	Minimum	Platform	Specification[DRAFT]

22DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

2.5	Platform	and	Board	Layer
The	Minimum	Platform	Architecture	is	designed	to	provide	consistency	across	boot	flows	with	the	control
flows	defined	in	this	specification.	These	control	flows	are	common	to	all	platforms.	Therefore,	a	single
implementation	is	intended	to	serve	all	platforms.	This	implementation	is	maintained	in	the
MinPlatformPkg	on	TianoCore.org.	Throughout	the	standardized	boot	flow,	implementation-specific
details	are	required	including	board	resource	information	for	devices,	buses,	GPIO	settings,	etc.	In
addition,	logic	is	necessary	to	integrate	the	silicon	solution.	For	Intel®	FSP,	this	involves	invoking	the
appropriate	FSP	API	with	the	proper	parameters	at	the	proper	time	in	the	boot	flow.	Such	details	are
implemented	in	the	board	package	behind	the	board	API	defined	in	this	specification.	This	results	in
flexibility	at	the	board	layer	for	a	custom	software	design	that	allows	substitution	of	details	like	silicon
initialization	flow	while	maintaining	a	common	control	flow	with	other	platforms.	The	board	package	is
also	typically	responsible	for	other	implementation-specific	integration	such	as	providing	a	custom	build
environment	that	prepares	a	firmware	image	processed	by	the	tools	required	to	produce	an	image
compatible	for	a	given	board.

2.5	Platform	and	Board	LayerEDK	II	Minimum	Platform	Specification[DRAFT]

23DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.1	Overview
The	objective	of	Stage	I	is	to	provide	a	foundation	for	more	complex	development	in	later	stages.	The
board	should	implement	a	board-specific	minimal	code	path	capable	of	firmware	debug	output.	Basic
debug	capability	serves	as	a	base	for	development	activities	in	later	stages.	As	Stage	I	is	inherently
foundational	to	product	execution	it	may	include	more	content	and	complexity	than	the	functionality
strictly	required	for	debug	output.

3.1.1	Major	Execution	Activities
Establish	temporary	memory.
Perform	pre-memory	board-specific	initialization.
Board	detection
GPIOs
Serial	Port	initialization	(Example:	SIO,	HSUART)

It	is	not	necessary	for	the	developer	to	fully	configure	GPIO	at	this	time.	The	only	required	board
configuration	is	that	necessary	to	reach	system	debug	activities.

3.1.2	Main	Control	Flow
Stage	I	is	contained	within	SEC	and	PEI	phases.	Code	must	not	be	compressed	and	content	must	be
capable	of	being	mapped	to	memory	by	hardware	or	other	firmware.

3	Stage	I:	Minimal	DebugEDK	II	Minimum	Platform	Specification[DRAFT]

24DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

The	high	level	control	flow	is	described	in	the	diagram	below.	

Figure	4	Stage	I	Main	Control	Flow

These	activities	do	not	map	1:1	to	the	required	functions.	Some	of	this	flow	is	already	well	defined	by
UEFI	or	EDK	II	specifications.	The	following	details	are	focused	on	the	Platform,	Silicon,	and	Board
interactions,	and	minimal	requirements	for	structure,	consistency,	and	portability.

3	Stage	I:	Minimal	DebugEDK	II	Minimum	Platform	Specification[DRAFT]

25DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.2	Firmware	Volumes
The	Stage	I	functionality	is	contained	in	these	Firmware	Volumes	with	these	attributes.

	Name	 	Content	 	Compressed	 	Parent	FV	

FvPreMemory SEC	+	StatusCode No None

FvBspPreMemory Pre-memory	board	initialization No None

FvFspT SEC	silicon	initialization No None

FvFspM Memory	initialization No None

FvPreMemorySilicon Pre-memory	silicon	initialization No FvFspM

FvFspS Silicon	initialization No None

FvPostMemorySilicon Post-memory	silicon	initialization Yes FvFspS

Table	5	Stage	I	Firmware	Volumes

As	the	foundational	stage	for	further	functionality,	Stage	I	may	include	additional	content	beyond	what
is	strictly	required	to	meet	the	stage	objective.	Typically	this	will	include	silicon	initialization	code	that
may	be	packaged	in	a	variety	of	mechanisms	including	varying	size	binary	blobs.	In	the	layout	shown	in
Table	5,	the	Intel®	FSP	solution	is	shown	as	an	example.	In	this	case,	the	FSP	binary	can	be	rebased
and	integrated	in	one	step	rather	than	distributing	the	work	for	the	FSP-M	and	FSP-S	rebase
unnecessarily	across	later	stages.	Note	that	a	child	FV	is	a	FV	embedded	within	the	parent	FV.	The	child
FV	is	identified	by	a	file	type	of	EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE.

Combining	the	FVs	with	full	set	of	silicon	binary	components	yields	this	example	flash	map	for	MMIO
storage:

	Binary	 	FV	 	Components	 	Purpose	

Stage
I FvPreMemory.fv SecCore.efi

Reset	Vector
Passes	PEI	core	the
address	of	FvFspM
Passes	PEI	core	the	debug
configuration

ReportFvPei.efi Installs	firmware	volumes

SiliconPolicyPeiPreMemory.efi
Publishes	silicon
initialization	configuration

PlatformInitPreMemory.efi
Performs	pre	memory
initialization

Additional	Components
Additional	pre-memory
components	required	for
Stage	I	boot

FvBspPreMemory.fv Additional	Components
Advanced	pre-memory
board	support	components

FvFspT.fv PlatformSec.efi
Initializes	T-RAM	silicon
functionality

Tests	T-RAM	functionality

3.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

26DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Additional	Components

FvFspM.fv PeiCore.efi
PEI	services	and
dispatcher

PcdPeim.efi PCD	service

FspPlatform.efi Converts	UPD	to	Policy	PPI

FvPreMemorySilicon.fv

(child	FV)

Additional	Components
Pre-memory	silicon
initialization	components

ReportStatusCodeRouterPei.efi
Provide	status	code
infrastructure

StatusCodeHandlerPei.efi
Provide	status	code
listeners

Additional	Components

FvFspS.fv FvPostMemorySilicon.fv

(child	FV)

Additional	Components
Post-memory	silicon
initialization	components

Additional	components

Table	6	Stage	I	FV	and	Component	Layout

Note	that	many	of	the	components	included	above	do	not	actually	participate	in	producing	Stage	I
functionality,	and	will	not	be	executed	when	the	boot	stage	target	is	set	to	Stage	I.	For	systems	that
use	non-volatile	storage	technology	that	does	not	provide	memory	map	capabilities,	this	layout	may	be
modified	where	necessary.	However,	the	firmware	execution	path	must	remain	scoped	to	only	perform
actions	required	to	achieve	the	boot	stage	objective.

See	Appendix:	Full	FV	Map	for	a	more	complete	example	Firmware	Volume	layout.

3.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

27DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.3	Modules
The	architecture	requires	the	following	modules.	Only	modules	found	in	the	BoardPkg	should	be
modified	for	board	porting.	MinPlatformPkg	and	other	common	package	contents	must	not	be	directly
modified.	BoardPkg	and	SiliconPkg	modules	will	have	multiple	instances	to	support	different	boards	and
different	silicon.

3.3.1	UEFI	Components
These	components	are	required.	They	enable	orderly	board	porting	and	add	the	support	for	extensibility
in	later	stages.	The	libraries	consumed	are	the	subset	of	libraries	required	by	this	specification.	Some
libraries	are	defined	in	this	specification,	and	some	are	defined	in	EDK	II	documentation.

	Item	 	Producing	Package	 	Libraries	Consumed	

SecCore.efi UefiCpuPkg PlatformSecLib,	SerialPortLib

PeiCore.efi MdeModulePkg

PcdPeim.efi MdeModulePkg

ReportStatusCodeRouterPei.efi MdeModulePkg

StatusCodeHandlerPei.efi MdeModulePkg SerialPortLib

ReportFvPei.efi MinPlatformPkg ReportFvLib,	TestPointCheckLib

SiliconPolicyPeiPreMemory.efi MinPlatformPkg SiliconPolicyInitLib,

SiliconPolicyUpdateLib

PlatformInitPreMemory.efi MinPlatformPkg BoardInitLib,	TestPointCheckLib

Table	7	Stage	I	UEFI	Components	Platform	Architecture	Libraries

3.3.2	Platform	Architecture	Libraries
Board	porting	will	require	creation	of	libraries	identified	as	produced	by	the	BoardPkg.	Depending	on
the	board,	there	may	be	existing	libraries	that	are	sufficient	for	a	board,	so	it	is	important	to	assess	the
utility	of	existing	library	instances	when	developing	board	support.

	Item	
	API	Definition

Package	
	Producing	Package	 	Description	

BoardInitLib MinPlatformPkg BoardPkg Board	initialization	library.

ReportFvLib MinPlatformPkg MinPlatformPkg Installs	platform	firmware	volumes.

SerialPortLib MdeModulePkg BoardPkg SIO	vendor	specific	initialization	to
enable	serial	port.

SiliconPolicyInitLib IntelSiliconPkg SiliconPkg Provides	default	silicon
configuration	policy	data.

SiliconPolicyUpdateLib IntelSiliconPkg BoardPkg Provides	board	updates	to	silicon
configuration	policy	data.

PlatformSecLib UefiCpuPkg MinPlatformPkg Reset	vector	and	SEC	initialization
code.

TestPointCheckLib MinPlatformPkg MinPlatformPkg
Test	point	check	library.	It	is	called
by	PlatformInit	module	to	perform
stage-specific	checks.

3.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

28DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

TestPointLib MinPlatformPkg MinPlatformPkg Test	point	library.	It	provides
helper	functionality	for
TestPointCheck	lib.

Table	8	Stage	I	Libraries

3.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

29DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.4	Required	Functions
The	following	functions	are	required	to	exist	and	to	execute	in	the	listed	order.	The	component	that
provides	the	function	is	not	specified	because	it	is	not	required	by	the	architecture.

*	In	the	common	EDK	II	open	source	code.

3.4.1	Required	SEC	functions

	Name	 	Purpose	

ResetHandler	(*) The	reset	vector	invoked	by	silicon

TempRamInit Silicon	initializes	temporary	memory

TestPointTempMemoryFunction Test	temporary	memory	functionality

SecStartup	(*) First	C	code	execution,	constructs	PEI	input

TestPointEndOfSec Verify	state	before	switching	to	PEI

Table	9	Stage	I	SEC	Functions

3.4.2	Required	PEI	functions

	Name	 	Purpose	

PeiCore	(*) PEI	entry	point

PeiDispatcher	(*) Calls	the	entry	points	of	PEIM

ReportPreMemFv Installs	firmware	volumes	required	in	pre-memory

BoardDetect Board	detection	of	the	motherboard	type

BoardDebugInit Board	specific	initialization	for	debug	device

PlatformHookSerialPortInitialize Board	serial	port	initialization.	Called	from	SEC	or	PEI

TestPointDebugInitDone Verify	debug	functionality

Table	10	Stage	I	PEI	Functions

3.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

30DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.5	Configuration
This	section	defines	the	configurable	items	that	must	be	available	to	achieve	Stage	I	functionality.

Stage	I	configuration	is	largely	concerned	with	hard-coded	address	space	data	and	serial	port	data.	In
some	platform	architectures,	a	firmware	or	ROM	may	be	responsible	for	handing	off	NEM	configuration
data	to	Stage	I.

3.5.1	Flash	Map	Configuration

	PCD	 	Purpose	

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemoryBase Pre-Memory	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPreMemorySize Pre-Memory	FV	size.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTBase Fsp-T	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspTSize Fsp-T	FV	size.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMBase Fsp-M	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspMSize Fsp-M	FV	size.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSBase Fsp-S	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvFspSSize Fsp-S	FV	size.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeBase Microcode	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvMicrocodeSize Microcode	FV	size.

Table	11	Stage	I	Flash	Map	Configuration	PCDs

3.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

31DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.6	Data	Flows
This	section	defines	key	data	structures	and	the	ways	this	data	flows	through	the	system	over	time.

3.6.1	Serial	Port	Configuration
Serial	port	configuration	spans	build	and	boot.	Serial	port	parameters	come	from	the	board	and	are
used	for	debug	features,	serial	input/output	devices	supporting	local	or	remote	consoles,	and	OS	level
debuggers.

1.	 Serial	port	default	configuration	options	are	defined	in	the	MdePkg.dec.

2.	 Serial	port	configuration	options	may	be	overwritten	by	the	BoardPkg.dsc.

3.	 Serial	port	configuration	options	are	consumed	by	the	SerialPortLib	library	class	implementation.

4.	 SerialPortLib	library	class	is	used	by	the	StatusCodeHandlerPei.inf	component	to	initialize	and
display	messages	to	a	serial	port.

5.	 Serial	port	configuration	options	are	published	via	a	SERIAL_PORT_CONFIGURATION_HOB.

6.	 SERIAL_PORT_CONFIGURATION_HOB	is	consumed	by	MinPlatformSerialDxe.inf	to	produce
EFI_SERIAL_IO_PROTOCOL.

3.6.2	Debug	Configuration

	PCD	 	Purpose	

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialBaudRate Baud	rate	for	the	16550
serial	port

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseMmio Enable	serial	port	MMIO
addressing

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialUseHardwareFlowControl Enable	serial	port	HW
flow	control

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialDetectCable Enable	blocking	Tx	if	no
cable

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialRegisterBase Register	the	serial	port
base	address

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialLineControl Serial	port	line	control
configuration

gEfiMdeModulePkgTokenSpaceGuid.PcdSerialFifoControl Serial	port	FIFO	control

gMinPlatformPkgTokenSpaceGuid.PcdSecSerialPortDebugEnable Enable	serial	port	debug
in	SEC	phase

gEfiMdePkgTokenSpaceGuid.PcdFixedDebugPrintErrorLevel
Control	build	time
optimization	based	on
debug	print	level

gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask Control	DebugLib
behavior

gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel Control	run	time	debug
print	level

gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask Control	display	of	status
codes

Table	12	Stage	I	Debug	Configuration

3.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

32DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

33DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.7	Additional	Control	Flows
None

3.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

34DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.8	Build	Files
UEFI	system	firmware	by	nature	is	often	constructed	with	a	large	number	of	modules	and	components.
EDK	II	modules	are	typically	written	to	be	generic	and	reusable.	As	such,	much	of	the	build	file	content	is
the	same	for	all	platforms.	The	platform	architecture	provides	further	structure	and	consistency	by
defining	dedicated	build	files	that	are	exposed	to	all	consumers	of	the	platform	package.	The	modular
separation	of	the	build	files	is	based	on	the	UEFI	PI	Architecture	phases,	the	platform	architecture
stages,	and	optional	features.	The	board	package	is	ultimately	able	to	leverage	as	much	of	this	content
as	applicable	for	a	given	system.	The	build	is	coordinated	by	the	board	package	which	should	include
standard	build	files	from	the	minimum	platform	package	or	other	dependent	packages	such	as	a	silicon
package.

	Name	 	Consumer	
	Standalone

Buildable	

	FV

Produced	
	Comments	

MinPlatformPkg
\Include\CoreCommonLib.dsc Board No None Stage	I-V	common

libraries

MinPlatformPkg
\Include\CorePeiInclude.dsc Board No None

Combination	of	Stage	I-
V
that	will	be	processed
by	compilation	building

MinPlatformPkg
\Include\CorePeiLib.dsc Board No None

Combination	of	Stage	I-
V
that	will	be	processed
by	compilation	building

BoardPkg
\BoardName\BoardPkg.dsc Build Yes None Primary	build	file.

	Name	 	Consumer	
	Standalone

Buildable	

	FV

Produced	
	Comments	

MinPlatformPkg
\Include\CorePreMemoryInclude.fdf Board No None

Combination	of	Stage	I-
II
that	will	be	processed
by	compilation	building

BoardPkg
\BoardName\BoardPkg.fdf Build Yes Yes

Combination	of	Stage	I-
V
that	will	be	processed
by	compilation	building

Table	13	Stage	I	Build	Files

3.8	Build	FilesEDK	II	Minimum	Platform	Specification[DRAFT]

35DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.9	Test	Point	Results

	Test	Point	Function	
	Test

Subject	
	Test	Overview	

	Reporting

Mechanism	

TestPointTempMemoryFunction
()

Temporary
Memory

Reads/writes	results	on	the
stack	and	heap

Reported
through	PPI

TestPointDebugInitDone	() Debug
Capability

Dumps	a	struct	of	debug
configuration	parameters	to	the
log

Serial	Port
shows	debug
log
Port	80
shows
number

Table	14	Stage	I	Test	Point	Results

3.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

36DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.10	Functional	Exit	Criteria
1.	 Temporary	Memory	is	initialized.

2.	 The	debug	device	is	initialized	and	the	platform	has	written	a	message	to	indicate	Stage	I
termination.

3.10	Functional	Exit	CriteriaEDK	II	Minimum	Platform	Specification[DRAFT]

37DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.11	Stage	Enabling	Checklist
The	following	steps	should	be	followed	to	enable	a	board	for	Stage	I.

1.	 Copy	the	EDK	II	packages	locally	to	the	workspace.

2.	 Select	an	appropriate	silicon	initialization	solution	such	as	Intel®	FSP.

3.	 Review	the	requirements	for	the	silicon	initialization	solution.

4.	 Gather	the	silicon	initialization	requirements	for	the	given	board.

5.	 Customize	the	silicon	initialization	solution	to	configure	the	system	to	the	board-specific
requirements.

i.	 For	Intel®	FSP,	this	includes	setting	minimal	policy	configuration.

ii.	 For	other	silicon	solutions,	similar	parameter	customization	may	be	needed	if	the	silicon	solution
is	not	written	for	a	particular	system	design.

6.	 Determine	other	firmware	and	software	components	required	for	the	system	to	function	properly.

i.	 For	an	Intel	platform,	this	may	include	firmware	images	such	as	the	appropriate	microcode
patch,	EC	firmware	image,	power	management	controller	firmware,	and	others.

ii.	 Additional	third-party	add-in	components	such	as	specific	UEFI	drivers	may	also	be	required.

7.	 Determine	board-specific	information	required	to	fetch	code	and	show	debug	output.

i.	 This	includes	details	such	as	the	NVRAM	layout	and	strap	information.
8.	 Copy	a	reference	GenerationOpenBoardPkg/BoardXXX	and	update	the	board	interfaces	in	Required
Functions.

i.	 Add	serial	port	initialization	code	in		PlatformHookSerialPortInitialize	()		at
BoardPkg/Library/BasePlatformHookLib.

i.	 This	is	SIO	related	code.
ii.	 Add	Board	detection	code	in		BoardDetect	()	,

BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c`

1.	 If	the	project	only	supports	one	board,	this	function	can	return	directly.

2.	 Add	Board	pre-memory	debug	initialization	code	in		BoardDebugInit	()	,
BoardPkg/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.

i.	 This	is	for	debug	channel	related	initialization.
3.	 Audit	BoardPkg/Stage1.dsc,	ensure	all	PCDs	in	the	Configuration	section	are	correct	for	your	board.

i.	 Set		gMinPlatformPkgTokenSpaceGuid.PcdBootStage		=	1

ii.	 Follow	"Debug	Lib	Selection"	to	enable	serial	debug	capability.

4.	 Audit	all	other	PCD	settings	in	the	board	DSC	file	to	verify	the	values	are	correct	for	your	board.

5.	 Verify	the	flash	layout	is	compliant	with	this	specification.

6.	 Verify	the	required	binaries	will	be	included	in	the	image	produced	in	the	build.

7.	 Verify	the	code	execution	path	for	Stage	I	will	only	perform	the	actions	required	to	achieve	debug
output.

8.	 Boot	the	system,	collect	the	debug	log,	and	verify	the	test	point	results	defined	in	the	Test	Point
section	are	correct.

3.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

38DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

3.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

39DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.1	Overview
The	objective	of	Stage	II	is	to	enable	a	minimal	boot	path	memory	initialization	code	execution	that
successfully	installs	permanent	memory.

4.1.1	Major	Execution	Activities
Complete	execution	of	the	memory	initialization	module.
Discover,	train	and	install	permanent	memory.
Migrate	the	temporary	memory/stack	to	permanent	memory.
Migrate	any	code	modules	from	temporary	RAM	to	permanent	memory.
Perform	cache	configuration	for	a	post-memory	environment.
Execute	memory	installed	notification	actions.

	Stage	II	Functionality	

Non-volatile	storage	read-only	access

Pre-memory	silicon	policy	initialization

Basic	services	like	cache	and	CPU	IO

Initialization	of	decompression	capability

Memory	initialization	and	basic	memory	test

4.1.2	Main	Control	Flow
Stage	II	extends	the	Stage	I	control	flow	by	executing	the	platform	and	silicon	initialization	required	for
memory	initialization.	The	stage	is	completed	when	permanent	memory	is	installed.	Since	execution	prior
to	memory	initialization	typically	occurs	in	a	resource-constrained	environment,	the	code	in	this	stage	is
not	compressed.	To	simplify	silicon	enabling	which	may	be	opaque	to	the	board	engineer	in	the	form	of
a	binary	blob,	Stage	II	enabling	does	not	strictly	constrain	the	extent	of	silicon	initialization.	In	particular,
it	is	recommended	to	perform	standard	security	lock	functionality	such	as	register	locks,	privilege	level
changes,	and	other	actions	that	are	in	the	system	requirements	to	reduce	conditional	logic	and
therefore	potential	for	error	in	enabling	those	settings.	This	only	pertains	to	security	settings	within	the
chipset.	This	does	not	include	larger	industry	standard	security	features	such	as	UEFI	Secure	Boot	and
TCG	measured	boot.	Those	features	are	enabled	in	Stage	V	Security	Enable.

4	Stage	II:	Memory	FunctionalEDK	II	Minimum	Platform	Specification[DRAFT]

40DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4	Stage	II:	Memory	FunctionalEDK	II	Minimum	Platform	Specification[DRAFT]

41DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figure	5	Stage	II	Main	Control	Flow

4	Stage	II:	Memory	FunctionalEDK	II	Minimum	Platform	Specification[DRAFT]

42DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.2	Firmware	Volumes
Stage	II	leverages	most	of	the	Stage	I	content.	Additional	firmware	volumes	include:

	Name	 	Content	 	Compressed	 	Parent	FV	

FvPostMemory Post-memory	modules Yes None

FvBsp.fv Post-memory	board	support Yes None

Table	15	Stage	II	Firmware	Volumes

Which	yields	this	example	extension	of	the	flash	map	for	MMIO	storage	(append	to	Stage	I	map):

	Binary	 	FV	 	Components	 	Purpose	

Stage
II FvPostMemory.fv ReadOnlyVariable.efi Common	core	variable	services

SiliconPolicyPeiPostMemory.efi Publishes	silicon	initialization
configuration

PlatformInitPostMemory.efi Performs	post	memory	initialization

DxeIpl.efi Load	and	invoke	DXE

ResetSystemRuntimeDxe.efi Provides	reset	service

PciHostBridge.efi PCI	host	bridge	driver

Additional	Components
Additional	post-memory
components	required	for	Stage	II
boot

FvBsp.fv Additional	Components Post-memory	board	support
components

Table	16	Stage	II	FV	and	Component	Layout

See	Appendix:	Full	FV	Map	for	a	more	complete	example	Firmware	Volume	layout.

4.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

43DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.3	Modules
Only	modules	in	the	board	package	should	be	modified	in	the	process	of	board	porting.	The	minimum
platform	package	and	other	common	package	contents	must	not	be	directly	modified.	The	board
package	and	silicon	package	modules	may	have	multiple	instances	to	support	different	boards	and
different	silicon.	These	components	are	required.	They	enable	orderly	board	porting	and	add	the
support	for	extensibility	in	later	stages.	The	libraries	consumed	are	the	subset	of	libraries	required	by
this	specification.	Some	libraries	are	defined	in	this	specification,	some	are	defined	in	EDK	II
documentation.

4.3.1	UEFI	Components	(DXE)

	Item	 	Producing	Package	 	Libraries	Consumed	

DxeIpl.efi MdeModulePkg

SiliconPolicyPeiPostMemory.efi MinPlatformPkg SiliconPolicyInitLib
SiliconPolicyUpdateLib

PlatformInitPostMemory.efi MinPlatformPkg BoardInitLib
TestPointCheckLib

ResetSystemRuntimeDxe.efi MdeModulePkg ResetSystemLib

PciHostBridge.efi MdeModulePkg PciHostBridgeLib

Table	17	Stage	II	DXE	UEFI	Components

4.3.2	Platform	Architecture	Libraries	(PEI)

	Item	
	API	Definition

Package	
	Producing	Package	 	Description	

BoardInitLib MinPlatformPkg BoardPkg Board	initialization	library.

SiliconPolicyInitLib IntelSiliconPkg SiliconPkg Provides	default	silicon	configuration
policy	data.

SiliconPolicyUpdat
eLib IntelSiliconPkg BoardPkg Provides	board	updates	to	silicon

configuration	policy	data.

TestPointCheckLib MinPlatformPkg MinPlatformPkg
Test	point	check	library.	It	is	called	by
PlatformInit	module	to	perform	stage-
specific	checks.

TestPointLib MinPlatformPkg MinPlatformPkg Test	point	library.	It	provides	helper
functionality	for	TestPointCheck	lib.

Table	18	Stage	II	PEI	Platform	Architecture	Libraries

4.3.3.	Platform	Architecture	Libraries	(DXE)
Stage	II	contains	some	DXE	items	needed	to	enable	Stage	III.	No	board	porting	of	these	libraries	is
required.	Board	integrators	should	ensure	that	their	silicon	package	provides	the	necessary	libraries.
These	libraries	and	the	UEFI	Components	(DXE)	are	functionally	irrelevant	to	Stage	II	functionality.

	Item	 	API	Definition	Package	 	Producing	Package	 	Description	

ResetSystemLib MdeModulePkg SiliconPkg For	DXE	reset	architecture	protocol

PciHostBridgeLib MdeModulePkg SiliconPkg For	DXE	PCI	host	bridge	driver

4.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

44DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Table	19	Stage	II	DXE	Platform	Architecture	Libraries

4.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

45DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.4	Required	Functions
The	following	functions	are	required	to	exist	and	to	execute	in	the	listed	order.	The	component	that
provides	the	function	is	not	specified	because	it	is	not	required	by	the	architecture.

4.4.1	Required	PEI	functions
*	In	the	common	EDK	II	open	source	code.

	Name	 	Purpose	

BoardBootModeDetect Board	hook	for	EFI_BOOT_MODE
detection

BoardInitBeforeMemoryInit
Board	specific	initialization	prior	to
permanent	memory	initialization
(e.g.	GPIO	configuration)

SiliconPolicyInitPreMemory Pre-memory	silicon	policy	default
initialization

SiliconPolicyUpdatePreMemory Pre-memory	silicon	policy	update
logic

SiliconPolicyDonePreMemory
Opportunity	to	implement	a	board-
specific	indicator	that	silicon	policy
initialization	is	done

MemoryInit Permanent	memory	initialization

InstallEfiMemory Install	permanent	memory	to	core

PeiCore	(*) PEI	entry	point	(post-memory	entry)

SecTemporaryRamDone	(*)
Optional	API	defined	in	the	PI
specification	to	disabled	temporary
RAM

ReportPostMemFv Firmware	volume	installation	in	post-
memory

TestPointPostMemoryFvInfoFunctional
Test	to	verify	correctness	of	the
firmware	volume	map	in	post-
memory

BoardInitAfterMemoryInit Board	initialization	after	memory	is
installed

SetCacheMtrr Configuration	of	MTRR	settings	for
post-memory

TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional Test	to	verify	the	correctness	of	the
MTRR	settings	in	post-memory

TestPointPostMemoryResourceFunctional Test	to	verify	correctness	of
permanent	memory

Table	20	Stage	II	PEI	Functions

4.4.2	Interfaces
*	In	the	common	EDK	II	open	source	code.

	Component	 	Name	 	Consumer	 	Purpose	

BoardInitLib BoardBootModeDetect Platform Board-specific	boot	mode

4.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

46DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

BoardInitLib BoardBootModeDetect Platform detection

BoardInitAfterMemoryInit Platform Board	specific	initialization
after	memory	initialization

BoardInitBeforeTempRamExit Platform Board	specific	hook
before	temporary	RAM	exit

BoardInitAfterTempRamExit Platform Board	specific	hook	after
temporary	RAM	exit

SiliconPolicyInitLib SiliconPolicyInitPreMemory Platform Initialize	silicon	policy
default	values

SiliconPolicyDonePreMemory Platform
Platform-specific	behavior
to	indicate	the	policy
update	is	done

SiliconPolicyUpdateLib SiliconPolicyUpdatePreMemory Platform Board	updates	default
policy

Table	21	Stage	II	Interfaces

4.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

47DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.5	Configuration
This	section	defines	the	configurable	items	that	must	be	available	to	achieve	Stage	II	functionality.

4.5.1	Intel®	FSP	Related	Configuration

	PCD	 	Purpose	

gIntelFsp2WrapperTokenSpaceGuid.PcdFspmBaseAddress FSP-M	FV	base	address

gIntelFsp2WrapperTokenSpaceGuid.PcdPeiMinMemorySize Indicates	the	PEI	memory	size
reported	by	the	platform

gIntelFsp2WrapperTokenSpaceGuid.PcdPeiRecoveryMinMemorySize
Indicates	the	PEI	recovery
memory	size	reported	by	the
platform

Table	22	Stage	II	FSP	Related	Configuration

4.5.2	FV	Related	Configuration
	PCD	 	Purpose	

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemoryBase Post-memory	FV	base	address

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvPostMemorySize Post-memory	FV	size

Table	23	Stage	II	FV	Related	Configuration

4.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

48DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.6	Data	Flows
This	section	defines	architectural	data	structures	and	the	flows	in	which	these	structures	move	through
the	boot	over	time.

4.6.1	Silicon	Policy	Flow	and	Rules

4.6.1.1	Silicon	Module	Provides	Default	Silicon	Policy	Data
One	silicon	policy	data	structure	is	created	per	silicon	module.	The	data	structure	should	only	contain
data.	Functions	should	not	be	used	in	silicon	policy	data.

When	a	silicon	module	installs	this	policy	data,	it	should	consider	the	most	common	usage	as	the
default	policy	data.	Therefore,	a	board	module	must	only	update	non-default	values	instead	of	all	fields.

This	silicon	code	may	expose	the	APIs	below.

An	API	to	initialize	all	policy	data	to	the	default	value,	based	upon	the	current	silicon.

An	API	to	tell	silicon	code	that	all	policy	data	have	been	updated,	and	they	are	ready	to	consume.

	Library	 	Interface	
	Definition

Location	
	Producer	

	Consumer	in

FSP	Boot	Path	

	Consumer

in	EDK	II

Path	

SiliconPolicyInitLib SiliconPolicy
InitPreMemory Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicy
DonePreMemory Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicy
InitPostMemory Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicy
DonePostMemory Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicy
InitLate Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicy
DoneLate Silicon Silicon FspWrapper

PlatformLib Platform

SiliconPolicyUpdateLib SiliconPolicy
UpdatePreMemory

Minimum
Platform	/
Silicon

Board FspWrapper
PlatformLib Platform

SiliconPolicy
Update
PostMemory

Minimum
Platform	/
Silicon

Board FspWrapper
PlatformLib Platform

SiliconPolicy
UpdateLate

Minimum
Platform	/
Silicon

Board FspWrapper
PlatformLib Platform

Table	24	Silicon	Policy	Libraries

NOTE:	A	general	guideline	is	that	pointers	should	not	be	used	in	policies	that	persist	across	the	CAR	to
permanent	memory	boundary	as	the	pointer	addresses	will	become	invalid.	Pre-memory	only	and	post-
memory	only	policies	are	not	affected	by	the	memory	transition.	A	pre-memory	policy	installation	PEIM

4.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

49DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

should	only	be	used	for	policies	that	must	be	updated	in	pre-memory	for	early	use	by	silicon	code.	The
post-memory	policy	installation	PEIM	can	be	compressed	and	does	risk	pointers	becoming	invalidated
due	to	the	memory	transition.

The	policy	configuration	HOBs	are	inherently	passed	to	DXE,	so	a	silicon	DXE	module	can	locate	and
install	a	policy	protocol	for	a	particular	policy	if	it	is	used	in	DXE.

4.6.1.2	Board	Module	Silicon	Policy	Data
Using	the	SiliconPolicyUpdateLib,	the	board	package	may	reference	a	variety	of	sources	to	obtain	the
board-specific	policy	values,	including	but	limited	to	the	following	common	sources.

1.	 PCD	database

2.	 UEFI	Variable

3.	 Binary	Blob

4.	 Built-in	C	structure

5.	 Hardware	information

4.6.1.3	Board	Module	Silicon	Policy	Update	Completion
After	policy	configuration	is	completed,	the	board	may	indicate	that	the	policy	is	configured	with	board-
specific	actions	in	the	SiliconPolicyDonePreMemory	()	API	in	SiliconPolicyInitLib.

4.6.1.4	Non-Intel®	FSP	Policy	Data	Flow
The	SiliconPolicyPeiPreMemory	module	in	the	minimum	platform	package	will	invoke	the	following	policy
configuration	functions	in	the	given	order.

BoardPreMemoryInit	()
SiliconPolicyInitPreMemory	()
SiliconPolicyUpdatePreMemory	()

Minimum	platform:	Minor	update	of	relevant	options
Fully	featured	platform	(Stage	VI	and	greater):	Full	update	for	all	platform	features

SiliconPolicyDonePreMemory	()

Figure	6	Non-FSP	Policy	Data	Flow

4.6.1.5	Intel®	FSP	Policy	Data	Flow

4.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

50DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

UpdateFspmUpdData	(Upd)
SiliconPolicyInitPreMemory	()
SiliconPolicyUpdatePreMemory	()
Minimum	platform:	Minor	update	of	relevant	options
Fully	featured	platform	(Stage	VI	and	greater):	Full	update	for	all	platform	features
SiliconPolicyDonePreMemory	()

Figure	7	FSP	Policy	Data	Flow

4.6.2	HOB	Output
1.	 Intel®	FSP	HOB	to	PEI	HOB	transition

In	an	Intel®	FSP	API	mode	boot	with	an	EDK	II	wrapper,	the	system	will	have	two	HOB	lists	-	one
maintained	in	the	FSP	PEI	environment	and	the	other	in	the	FSP	wrapper	PEI	environment.	The	FSP
wrapper	environment	is	responsible	for	converting	data	from	the	FSP	HOB	to	a	PEI	HOB.	These	HOBs
are	platform-specific;	examples	include	the	SmbiosHob	and	GraphicInfoHob.

2.	 PEI	HOBs	for	Phase	Handoff	to	DXE

4.6.3	MTRR	Configuration	Settings	in	Post-Memory
The	system	MTRR	settings	are	typically	configured	in	two	locations	after	permanent	memory	initialization.

1.	 After	permanent	memory	installation

At	this	point,	cache	attributes	are	set	for	PEI	memory	usage.	This	specification	does	not	require	any
particular	MTRR	configuration,	as	it	is	ultimately	dependent	upon	platform	goals	such	as
functionality	and	performance	given	the	device	and	storage	technologies	present	on	the	platform.
The	most	common	ranges	configured	are	the	default	memory	setting	as	UC,	the	DRAM	region	as	WB,
and	the	SPI	flash	MMIO	region	as	WP.	These	settings	are	usually	applied	in	a	memory	installation
notification	function	or	a	PEIM	shadow.	The	architecture	requires	that	the	settings	be	applied	in	the
board	package.

2.	 Prior	to	DXE	IPL

4.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

51DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

At	this	point	PEI	execution	has	completed	and	control	is	transitioning	to	the	DXE	phase.	The	MTRR
settings	are	typically	modified	to	prepare	for	the	DXE	environment.	The	most	common	ranges
configured	are	the	default	memory	as	WB,	the	TSEG	(SMRAM)	region	as	UC,	and	MMIO	as	UC.	These
settings	are	usually	applied	in	an	end	of	PEI	notification	function.	The	architecture	requires	that	the
settings	be	applied	in	the	board	package.

4.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

52DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.7	Additional	Control	Flows
None

4.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

53DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.8	Build	Files
This	is	appended	to	previous	Build	Files	section.

	Name	 	Consumer	 	Standalone	Buildable	 	FV	Produced	 	Comments	

MinPlatformPkg
\Include\CorePostMemoryInclude.fdf Board No None

Table	25	Stage	II	Build	Files

4.8	Build	FilesEDK	II	Minimum	Platform	Specification[DRAFT]

54DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.9	Test	Point	Results
	Test	Point	 	Test	Subject	 	Test	Overview	 	Reporting	Mechanism	

TestPointMemory
DiscoveredMtrr
Functional	()

MTRR	after
memory
discovered

Verifies	MTRR	settings.

(No	overlap,	PEI	memory	WB,
Flash	region	is	WP,	MMIO	UC)

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPointMemory
DiscoveredMemory
Resource
Functional	()

Resource
description	HOB No	memory	resource	overlap.

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPointMemory
DiscoveredFvInfo
Functional	()

FV	HOB	and	FV
info	PPI FV	HOB	and	FV	info	PPI.

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table	26	Test	Point	Results

NOTE:	ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT	can	be	updated	by	TestPointCheckLib.	The	format
is	similar	to	the	HSTI.	See	Appendix	-	Interface	TestPoint.

4.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

55DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.10	Functional	Exit	Criteria
1.	 Permanent	memory	is	initialized.

2.	 Temporary	memory	is	disabled.

3.	 PEI	phase	MTRR	configuration	settings	are	applied.

4.	 Resource	description	HOB	is	built.

4.10	Functional	Exit	CriteriaEDK	II	Minimum	Platform	Specification[DRAFT]

56DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

4.11	Stage	Enabling	Checklist
The	following	steps	should	be	followed	to	enable	a	platform	for	Stage	II.

1.	 Update	GenerationOpenBoardPkg/BoardXXX

i.	 Add	Board	boot	mode	detection	code	in		BoardBootModeDetect	()	,
BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemoryLib.c.

i.	 The	boot	mode	can	be	hardcoded.	It	should	reflect	actual	functionality	based	upon	the
feature,	such	as	S3	(silicon	register),	Capsule	(variable),	Recovery	(GPIO).

ii.	 Add	Board	pre-memory	initialization	code	in		BoardInitBeforeMemoryInit	()		and		BoardInitAfterMemoryInit	()	,
BoardXXX/BoardInitLib/PeiBoardXXXInitPreMemLib.c.

i.	 It	initializes	board	specific	hardware	devices,	such	as	GPIO.

ii.	 It	also	updates	pre-memory	policy	configuration	by	using	PCD

iii.	 Add	Board	policy	update	code	in		SiliconPolicyUpdatePreMemory	()	,
BoardXXX/PeiSiliconPolicyUpdateLib/PeiBoardXXXInitPreMemoryLib.c.

i.	 The	PCD	updated	in		BoardInitBeforeMemoryInit	()		might	be	used	here.
2.	 Ensure	all	PCDs	in	the	configuration	section	(DSC	files)	are	correct	for	your	board.

i.	 Set		gMinPlatformPkgTokenSpaceGuid.PcdBootStage		=	2
3.	 Ensure	all	required	binaries	in	the	flash	file	(FDF	files)	are	correct	for	your	board.

4.	 Boot,	collect	log,	verify	test	point	results	defined	in	section	4.9	are	correct.

4.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

57DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.1	Overview
The	primary	objective	of	Stage	III	is	to	enable	a	minimal	boot	path	that	successfully	loads	the	UEFI	Shell.
A	secondary	objective	for	Stage	III	is	to	be	silicon	and	board	agnostic.	All	silicon	and	board	specific
details	should	be	leveraged	from	Stages	I	and	II.	Demonstrating	the	capability	to	load	the	UEFI	shell
does	not	imply	that	the	UEFI	shell	is	a	required	component	in	the	end	product	firmware.	It	does	ensure
that	the	platforms	with	a	terminal	boot	stage	target	greater	than	Stage	II	can	load	the	UEFI	shell	so	the
system	can	be	analyzed	and	configured	in	the	UEFI	boot	services	environment	with	well-defined	behavior
in	a	consistent	manner	with	other	Minimum	Platform	specification-compliant	systems.

The	minimal	UI	capability	that	is	required	is	serial	console.	UEFI	variables	must	be	supported	with	at
least	emulated	variable	behavior.	UEFI	variable	storage	to	a	non-volatile	media	such	as	SPI	NOR	flash	is
acceptable	if	the	platform	requirements	mandate	such	support.	Additional	capabilities	are	optional	and
must	not	be	assumed.	These	include	USB	input	devices,	graphics	devices,	and	other	storage	devices.

5.1.1	Major	Execution	Activities
DXE	Initial	Program	Load	(IPL)

DXE	Core	initialization	and	dispatcher	execution

Initialize	the	generic	infrastructure	required	for	the	DXE	environment	o	Installation	of	DXE
architectural	protocols	o	Initialization	of	architecturally	required	hardware	such	as	timers

Post-memory	silicon	policy	initialization

Serial	console	input	and	output	capabilities

	Stage	III	Functionality	

Universally	usable	infrastructure:	DXE	Core,	Minimal	BDS,	console	infrastructure

Silicon	agnostic	architectural	protocol	producing	hardware	modules

UEFI	Variable	support	(emulation	allowed)

UEFI	Shell

Tests	for	Memory	Map,	Cache	Map,	architectural	hardware

5.1.2	Main	Control	Flow
Stage	III	extends	Stage	II	control	flow	by	executing	Driver	Execution	Environment	(DXE),	executing	Boot
Device	Selection	(BDS)	and	invoking	the	UEFI	Shell.

5	Stage	III:	Boot	to	UEFI	ShellEDK	II	Minimum	Platform	Specification[DRAFT]

58DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5	Stage	III:	Boot	to	UEFI	ShellEDK	II	Minimum	Platform	Specification[DRAFT]

59DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figure	8	Stage	III	Main	Control	Flow

After	memory	is	installed	during	Stage	II,	the	remaining	silicon	and	platform	initialization	must	take	place
in	the	PEI	phase	only.	All	silicon	initialization	tasks	should	have	been	completed	in	Stage	II,	and	there
should	be	no	silicon-specific	initialization	required	in	the	DXE	phase.	The	default	console	information
should	be	transferred	via	a	HOB	and	initialized	and	used	in	Stage	III.

5	Stage	III:	Boot	to	UEFI	ShellEDK	II	Minimum	Platform	Specification[DRAFT]

60DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.2	Firmware	Volumes
Stage	III	finalizes	silicon	and	prepares	DXE/BDS	services.	Additional	firmware	volumes	include:

	Name	 	Content	 	Compressed	 	Parent	FV	

FvUefiBoot Common	DXE/BDS	Services Yes None

Table	27	Stage	III	Firmware	Volumes

Which	yields	this	example	extension	of	the	flash	map	for	MMIO	storage	(add	to	Stage	I	+	II	map):

	Binary	 	FV	 	Components	 	Purpose	

Stage
III FvUefiBoot.fv DxeCore.efi DXE	services	and	dispatcher

PcdDxe.efi Provides	PCD	services

ReportStatusCodeRouterDxe.efi Provides	status	code
infrastructure

StatusCodeHandlerRuntimeDxe.efi Provides	status	code	listeners

BdsDxe.efi Provides	Boot	Device	Selection
phase

CpuDxe.efi Provides	processor	services

Metronome.efi Provides	metronome	HW
abstraction

MonotonicCounterRuntimeDxe.efi Provides	monotonic	counter
service

PcatRealTimeClockRuntimeDxe.efi Provides	RTC	abstraction

WatchdogTimer.efi Provides	watchdog	timer	service

RuntimeDxe.efi Provides	UEFI	runtime	service
functionality

HpetTimerDxe.efi Provide	timer	service

EmuVariableRuntimeDxe.efi Provides	UEFI	variable	service

CapsuleRuntimeDxe.efi Provides	capsule	service

PciBusDxe.efi PCI	bus	driver

GraphicsOutputDxe.efi Provides	graphics	support

TerminalDxe.efi Provides	terminal	services

GraphicsConsoleDxe.efi Provides	graphics	console

ConSplitterDxe.efi Provides	multi	console	support

EnglishDxe.efi Provides	Unicode	collation
services

GenericMemoryTestDxe.efi Provide	memory	test

DevicePathDxe.efi Provides	device	path	services

DiskIo.efi Provides	disk	IO	services

Partition.efi Provides	disk	partition	services

Fat.efi Provides	FAT	filesystem	services

5.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

61DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Additional	Components
Additional	post-memory
components	required	for	Stage	III
boot

Table	28	Stage	III	FV	and	Component	Layout

See	Appendix:	Full	FV	Map	for	a	more	complete	example	Firmware	Volume	layout.

5.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

62DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.3	Modules
Only	modules	in	the	board	package	should	be	modified	in	the	process	of	board	porting.	The	minimum
platform	package	and	other	common	package	contents	must	not	be	directly	modified.	The	board
package	and	silicon	package	modules	may	have	multiple	instances	to	support	different	boards	and
different	silicon.	These	components	are	required.	They	enable	orderly	board	porting	and	add	the
support	for	extensibility	in	later	stages.	The	libraries	consumed	are	the	subset	of	libraries	required	by
this	specification.	Some	libraries	are	defined	in	this	specification,	some	are	defined	in	EDK	II
documentation.

5.3.1	UEFI	Components	(DXE)

	Item	 	Producing	Package	 	Libraries	Consumed	 	Comments	

DxeCore.efi MdeModulePkg

PcdDxe.efi MdeModulePkg

BdsDxe.efi MdeModulePkg PlatformBootManagerLib

CpuDxe.efi UefiCpuPkg Architecture
Protocol

Metronome.efi MdeModulePkg Architecture
Protocol

MonotonicCounterRuntimeDxe.efi MdeModulePkg Architecture
Protocol

PcatRealTimeClockRuntimeDxe.efi PcAtChipsetPkg Architecture
Protocol

WatchdogTimer.efi MdeModulePkg Architecture
Protocol

RuntimeDxe.efi MdeModulePkg Architecture
Protocol

SecurityStubDxe.efi SecurityPkg Architecture
Protocol

HpetTimerDxe.efi	(*) PcAtChipsetPkg Architecture
Protocol

VariableRuntimeDxe.efi	/ MdeModulePkg Architecture
Protocol

VariableSmmRuntimeDxe.efi

CapsuleRuntimeDxe.efi MdeModulePkg Architecture
Protocol

PciBusDxe.efi MdeModulePkg PCI

TerminalDxe.efi MdeModulePkg Terminal

ConSplitterDxe.efi MdeModulePkg Console

EnglishDxe.efi MdeModulePkg Localization

DevicePathDxe.efi MdeModulePkg Other

	Optional	drivers	

GraphicsOutputDxe.efi MdeModulePkg Graphics

GraphicsConsoleDxe.efi MdeModulePkg Console

5.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

63DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

MemoryTest.efi MdeModulePkg Other

ReportStatusCodeRouterDxe.efi MdeModulePkg Status	code

StatusCodeHandlerRuntimeDxe.efi MdeModulePkg SerialPortLib Status	code

Table	29	Stage	III	DXE	UEFI	Components

*	An	alternative	timer	module	may	be	used	to	produce	an	instance	of	gEfiTimerArchProtocolGuid.

5.3.2	Platform	Architecture	Libraries
No	board	porting	of	these	libraries	is	required.

	Item	
	API	Definition

Package	
	Producing	Package	 	Description	

SerialPortLib MdeModulePkg MinPlatformPkg Serial	port	leveraging	PEI	and	HOB
initialization.

PlatformBoot
ManagerLib MdeModulePkg MinPlatformPkg Basic	platform	boot	manager	port.

Table	30	Stage	III	Platform	Architecture	Libraries

5.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

64DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.4	Required	Functions
The	following	functions	are	required	to	exist	and	to	execute	in	the	listed	order.	The	component	that
provides	the	function	is	not	specified	because	it	is	not	required	by	the	architecture.

5.4.1	Required	PEI	functions

	Name	 	Purpose	

BoardInitBeforeSiliconInit Board	initialization	hook

SiliconPolicyInitPostMemory Silicon	post	memory	policy	initialization

SiliconPolicyUpdatePostMemory Board	updates	silicon	policies

SiliconPolicyDonePostMemory Complete	post	memory	silicon	policy	data
collection

BoardInitAfterSiliconInit Board	specific	initialization	after	silicon	is	initialized

DxeLoadCore	(*) DXE	IPL	locate	and	call	DXE	Core

SetCacheMtrrAfterEndOfPei Sets	cache	map	in	preparation	for	DXE

TestPointEndOfPei Verify	expected	state	as	we	exit	PEI	phase

TestPointPostMemoryMtrrEndOfPeiFunctional Basic	test	for	cache	configuration	before	entering
DXE

Table	31	Stage	III	Required	PEI	Functions

*	In	the	common	EDK	II	open	source	code.

5.4.2	PEI	Interfaces

	Component	 	Name	 	Consumer	 	Purpose	

BoardInitLib BoardInitBeforeSiliconInit Platform
Board	specific
initialization	before
silicon	initialization

BoardInitAfterSiliconInit Platform
Board	specific
initialization	after	silicon
initialization

SiliconPolicyInitLib SiliconPolicyInitPostMemory Platform Silicon	provides	default
policy

SiliconPolicyDonePostMemory Platform Platform	to	indicate	the
policy	update	is	done

SiliconGetPolicySubData Board Return	policy	data	for
update.

SiliconPolicyUpdateLib SiliconPolicyUpdatePostMemory Platform
Board	updates	default
policy

Table	32	Stage	III	PEI	Functions

5.4.3	Required	DXE	functions
	Name	 	Purpose	

DxeMain	(*) DXE	entry	point

5.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

65DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

CoreStartImage	(*) DXE	driver	entry	point

SiliconPolicyInitLate Silicon	policy	late	(DXE)	initialization

SiliconPolicyUpdateLate Silicon	policy	late	(DXE)	update	from	the	board
package

SiliconPolicyDoneLate Silicon	policy	late	(DXE)	indication	policy	initialization	is
done

CoreAllEfiServicesAvailable	(*) Verify	all	architectural	protocols	are	installed

BdsEntry	(*) BDS	entry	point

PlatformBootManagerBeforeConsole	(*) Platform-specific	BDS	functionality	before	console

BoardInitAfterPciEnumeration Board-specific	hook	after	PCI	enumeration	completion

TestPointPciEnumerationDone Test	to	verify	PCI	enumeration	assignment

ExitPmAuth Signal	key	security	events	EndOfDxe	and
SmmReadyToLock

TestPointEndOfDxe Test	to	verify	expected	state	after	EndOfDxe

TestPointDxeSmmReadyToLock Test	to	verify	expected	state	after	SmmReadyToLock

EfiBootManagerDispatchDeferredImages
(*) Dispatch	deferred	third	party	UEFI	driver	OPROMs

PlatformBootManagerAfterConsole	(*) Platform	specific	BDS	functionality	after	console

BootBootOptions	(*) Attempt	each	boot	option

EfiSignalEventReadyToBoot	(*) Signals	the	ReadyToBoot	event	group

BoardInitReadyToBoot Board	hook	on	ReadyToBoot	event

TestPointReadyToBoot Test	to	verify	expected	state	after	ReadyToBoot	event
signal

UefiMain	(*) UEFI	Shell	entry	point

Table	33	Stage	III	DXE	Functions

5.4.4	DXE	Interfaces

	Component	 	Name	 	Consumer	 	Purpose	

BoardInitLib BoardNotificationInit Platform Board	specific	initialization	hook	at	DXE	phase

Table	34	Stage	III	DXE	Interfaces

5.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

66DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.5	Configuration
This	section	defines	the	configurable	items	that	must	be	available	to	achieve	Stage	III	functionality.

These	definitions	may	be	both	source	and	binary	in	nature.

5.5.1	FV	Related	Configuration

	PCD	 	Purpose	

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootBase UefiBoot	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvUefiBootSize UefiBoot	FV	size.

Table	35	Stage	III	Flash	Map	Configuration	PCDs

5.5.2	Driver	Related	Configuration

	PCD	 	Purpose	

gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvModeEnable Enables	UEFI	variable
emulation	mode.

Table	36	Stage	III	Driver	Configuration

5.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

67DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.6	Data	Flows
This	section	defines	the	architecturally	defined	data	structures	and	the	ways	this	data	flows	through
the	system	over	time.	In	addition	to	the	definition	and	lifecycle	for	important	pieces	of	data.

5.6.1	Memory	Map	Flow
The	detailed	description	on	memory	map	can	be	found	in	the	whitepaper	A	Tour	Beyond	BIOS	Memory
Map	and	Practices	in	UEFI	BIOS.

5.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

68DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Memory_Map_And_Practices_in_UEFI_BIOS_V2.pdf

5.7	Additional	Control	Flows
None

5.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

69DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.8	Build	Files
This	is	appended	to	previous	Build	files	section.

	Name	 	Consumer	 	Standalone	Buildable	 	FV	Produced	 	Comments	

MinPlatformPkg
\Include\CoreUefiBootInclude.fdf Board No None

Table	37	Stage	III	Build	Files

5.8	Build	FilesEDK	II	Minimum	Platform	Specification[DRAFT]

70DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.9	Test	Point	Results
	Test	Point	 	Test	Subject	 	Test	Overview	 	Reporting	Mechanism	

TestPoint
EndOfPeiMtrr
Functional	()

MTRR	after
EndOfPei

Confirm	MTRR	settings.

Example:
No	overlap
DXE	memory	is	WB
MMIO	is	UC
Flash	region	is	UC

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
EndOfPei
SystemResource
Functional	()

Resource
HOB

SMRAM
HOB

SMRAM

No	system	resource	overlap

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
EndOfPei
PciBusMaster
Disabled	()

PCI	device

BME
Check	if	BME	is	cleared

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
PciEnumerationDone
PciResource
Allocated	()

PCI	device
resource

Check	if	all	PCI	devices	have
been	assigned	proper	resources.

Dump	PCI
resource
assignment.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
PciEnumerationDone
PciBusMaster
Disabled	()

PCI	device

BME
Check	if	BME	is	cleared

Dump	result	to
serial	log.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
EndOfDxe
NoThirdParty
PciOptionRom	()

3rd	party
PCI	option
ROMs

Check	if	any	3rd	party	PCI	option
ROMs	have	been	dispatched	before
EndOfDxe.

Dump
LoadedImage.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
UefiMemoryAttribute
TableFunctional	()

UEFI
memory
attribute
table

Table	is	reported.

Image	code	and	data	is	consistent
with	the	table.

Dump	UEFI	Table
and	UEFI
Image	Info.

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
MemoryTypeInformation
Functional	()

Memory
type
information

Inspect	and	verify	memory	type
information	is	correct.

Confirm	no	fragmentation	exists	in
the	ACPI/Reserved/Runtime	memory

Dump	the
memory	type
information
settings	to	the
debug	log.

Set

5.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

71DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

regions. ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
UefiConsoleVariable
Functional	()

Console Inspect	and	verify	console	variable
information	is	correct.

Dump	the
variable
information	to
the	serial	log

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
UefiBootVariable
Functional	()

Boot
Option

Inspect	and	verify	boot	option
information	is	correct.

Dump	the
variable
information	to
the
serial	log

Set
ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table	38	Stage	III	Test	Point	Results

5.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

72DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.10	Functional	Exit	Criteria
1.	 UEFI	Shell	can	be	loaded	and	invoked	by	the	platform	firmware.

2.	 The	DXE	MTRRs	are	set	correctly	and	verified	in	the	test	point	results.

5.10	Functional	Exit	CriteriaEDK	II	Minimum	Platform	Specification[DRAFT]

73DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

5.11	Stage	Enabling	Checklist
The	following	steps	should	be	followed	to	enable	a	platform	for	Stage	III.

1.	 Add	board	post-memory	initialization	code	in		BoardInitBeforeSiliconInit	()		and		BoardInitAfterSiliconInit	()	,
BoardPkg/BoardInitLib/PeiBoardXXXInitPostMemoryLib.c.

i.	 Initialize	board-specific	hardware	device,	such	as	GPIO.
ii.	 Update	post-memory	policy	configuration	by	using	PCD.

2.	 Add	board	policy	update	code	in		SiliconPolicyUpdatePostMemory	()	,	BoardPkg\PeiSiliconPolicyUpdateLib
\PeiBoardXXXInitLib.c.

i.	 The	PCD	updated	in		BoardInitBeforeSiliconInit	()		might	be	used	here.
3.	 Add	board	initialization	DXE	code	in		BoardInitAfterPciEnumeration	()	,		BoardInitReadyToBoot	()	,

	BoardInitEndOfFirmware	()	.

i.	 NOTE:	The	functions	may	be	empty	if	nothing	needs	to	be	updated.
4.	 Ensure	all	PCDs	in	the	configuration	section	(DSC	files)	are	correct	for	your	board.

i.	 Set		gMinPlatformPkgTokenSpaceGuid.PcdBootStage		=	2
5.	 Ensure	all	required	binaries	in	the	flash	file	(FDF	files)	are	correct	for	your	board.

6.	 Boot,	collect	debug	log,	and	verify	the	test	point	results	defined	in	section	5.9	are	correct.

5.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

74DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.1	Overview
The	objective	of	Stage	IV	is	to	enable	a	minimal	boot	path	that	successfully	boots	a	commercial
operating	system	such	as	Linux	or	Windows,	with	UEFI	interfaces	exposed	to	the	OS	implemented	in
compliance	with	the	UEFI	specification.	The	minimal	boot	path	only	involves	functionality	necessary	to
load	the	OS	to	a	state	where	a	user	may	begin	performing	more	complex	interactions.	This	involves
successfully	reaching	an	environment	that	allows	the	user	to	launch	applications.	The	stage	does	not
include	support	for	all	applications	that,	for	example,	may	require	certain	CPU	or	GPU	features	enabled.
Nor	does	it	require	any	further	support,	including	but	not	limited	to	device	and	system	power
management,	full	hardware	performance	support	enabled,	system	reset	support,	etc.

Any	additional	functionality	is	classified	as	an	advanced	feature.	Those	features	are	collectively	enabled
in	Stage	VI.

6.1.1	Major	Execution	Activities

	Stage	IV	Modules	

Minimum	ACPI	table	initialization

Additional	input,	output,	and	storage	support	based	on	platform	and	operating	system
requirements

SMM

Perform	ACPI	enable/disable

Kernel	debug	support

UEFI	variable	support

6.1.2	Main	Control	Flow
Stage	IV	introduces	additional	functionality	to	meet	the	minimal	requirements	for	a	UEFI-compliant
operating	system.	Much	of	the	support	required	will	be	performed	during	the	DXE	phase	interleaving
Stage	IV	control	flows	with	pre-existing	control	flows	from	Stage	III.	A	minimum	set	of	ACPI	tables,	namely
RSDT,	FACP,	FACS,	FADT,	MADT,	HPET	and	DSDT,	need	to	be	initialized	and	published.	If	there	are
alternative	and/or	additional	operating	system	expectations	such	as	full	DeviceTree	support,	that	should
be	enabled	to	allow	the	operating	system	to	be	loaded.

It	is	recommended	that	only	the	mandatory	boot	option	devices	are	connected	in	BDS	to	minimize
complexity	and	boot	time	in	the	minimal	execution	path	to	the	operating	system.	In	the	flow	diagram
below,	the	left	half	is	identical	to	the	functionality	enabled	by	Stage	III	prior	to	entering	the	BDS	phase.
It	is	expected	that	the	Stage	III	components	are	reused	to	complete	Stage	IV	tasks.

The	green	blocks	in	Figure	9	Stage	IV	Control	Flow	reuse	the	existing	blocks	from	Stage	III.

6	Stage	IV:	Boot	to	OSEDK	II	Minimum	Platform	Specification[DRAFT]

75DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figure	9	Stage	IV	Main	Control	Flow

6	Stage	IV:	Boot	to	OSEDK	II	Minimum	Platform	Specification[DRAFT]

76DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.2	Firmware	Volumes
Stage	IV	finalizes	silicon	initialization,	adds	basic	operating	system	required	interfaces,	and	supports
minimally	featured	operating	system	boot.	The	new	components	are	support	in	a	dedicated	firmware
volume.

	Name	 	Content	 	Compressed	 	Parent	FV	

FvOsBoot DXE/BDS	Services Yes None

FvLateSilicon ACPI	and	SMM	silicon	support No FvOsBoot

Table	39	Stage	IV	Firmware	Volumes

Which	yields	this	example	extension	of	the	flash	map	for	MMIO	storage	(add	to	Stage	I	+	II	+	III	map):

	Binary	 	FV	 	Components	 	Purpose	

Stage
IV FvOsBoot.fv FvLateSilicon.fv	(child	FV)

Additional	Components
Additional	silicon	initialization
support	that	is	performed	late	in	the
boot

AcpiTable.efi Provides	common	ACPI	services

PlatformAcpi.efi Provides	MinPlatform	ACPI	content

BoardAcpi.efi Provides	board	ACPI	content

PiSmmIpl.efi SMM	initial	loader

PiSmmCore.efi SMM	core	services

ReportStatusCodeRouterSmm.efi SMM	status	code	infrastructure

StatusCodeHandlerSmm.efi SMM	status	code	handlers

PiSmmCpu.efi SMM	CPU	services

CpuIo2Smm.efi SMM	CPU	IO	services

FaultTolerantWriteSmm.efi SMM	fault	tolerant	write	services

SpiFvbServiceSmm.efi SMM	SPI	FLASH	services

Additional	Components Additional	post-memory	components
required	for	Stage	IV	boot

Table	40	Stage	IV	FV	and	Component	Layout

See	Appendix:	Full	FV	Map	for	a	more	complete	example	Firmware	Volume	layout.

6.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

77DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.3	Modules
Only	modules	in	the	board	package	should	be	modified	in	the	process	of	board	porting.	The	minimum
platform	package	and	other	common	package	contents	must	not	be	directly	modified.	The	board
package	and	silicon	package	modules	may	have	multiple	instances	to	support	different	boards	and
different	silicon.	These	components	are	required.	They	enable	orderly	board	porting	and	add	the
support	for	extensibility	in	later	stages.	The	libraries	consumed	are	the	subset	of	libraries	required	by
this	specification.	Some	libraries	are	defined	in	this	specification,	some	are	defined	in	EDK	II
documentation.

6.3.1	UEFI	Components	(DXE)
These	components	are	required.	They	enable	orderly	board	porting	and	orderly	extensibility	to	add
functionality	over	time.

The	libraries	consumed	are	the	subset	of	libraries	required	by	this	specification.	Some	libraries	are
defined	in	this	specification,	some	are	defined	in	EDK	II	documentation.

	Item	 	Producing	Package	 	Libraries	Consumed	

AcpiTable.efi MdeModulePkg

PlatformAcpi.efi MinPlatformPkg BoardAcpiLib

Table	41	Stage	IV	ACPI	DXE	UEFI	Components

6.3.2	UEFI	Components	(DXE)

	Item	 	Producing	Package	 	Libraries	Consumed	

SataControllerDxe.efi MdeModulePkg

AtaAtapiPassThru.efi MdeModulePkg

AtaBusDxe.efi MdeModulePkg

UhciDxe.efi MdeModulePkg

EhciDxe.efi MdeModulePkg

XhciDxe.efi MdeModulePkg

UsbBusDxe.efi MdeModulePkg

UsbMassStorageDxe.efi MdeModulePkg

UsbKbDxe.efi MdeModulePkg

Table	42	Stage	IV	DXE	UEFI	Components

6.3.3	UEFI	Components	(SMM)

	Item	 	Producing	Package	 	Libraries	Consumed	

PiSmmIpl.efi MdeModulePkg

PiSmmCore.efi MdeModulePkg

ReportStatusCodeRouterSmm.e	fi MdeModulePkg

StatusCodeHandlerSmm.efi MdeModulePkg SerialPortLib

6.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

78DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

PiSmmCpu.efi UefiCpuPkg

CpuIo2Smm.efi UefiCpuPkg

FaultTolerantWriteSmm.efi MdeModulePkg

SpiFvbServiceSmm.efi MinPlatformPkg

Table	43	Stage	IV	SMM	UEFI	Components

6.3.4	Platform	Architecture	Libraries
Board	porting	will	require	creation	of	libraries	identified	as	produced	by	the	BoardPkg.	Depending	on
the	board,	there	may	be	existing	libraries	that	are	sufficient	for	a	board,	so	it	is	important	to	assess	the
utility	of	existing	library	instances	when	developing	board	support.

	Item	 	API	Definition	Package	 	Producing	Package	 	Description	

BoardAcpiLib MinPlatformPkg BoardPkg Services	for	ACPI	table	creation

Table	44	Stage	IV	Platform	Architecture	Libraries

6.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

79DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.4	Required	Functions
The	following	functions	are	required	to	exist	and	to	execute	in	the	given	order.	The	component	that
provides	the	function	is	not	specified	because	it	is	not	required	by	the	architecture.

The	required	functions	for	Stage	IV	are	organized	by	phase	and	subsystem	(e.g.	ACPI,	SMM,	etc).	See
Appendix:	Full	Functions	Map	for	a	complete	ordering	for	all	stages.

6.4.1	Required	DXE	Functions

	Name	 	Purpose	

PlatformCreateAcpiTable Create	the	minimum	set	of	platform-specific	ACPI	tables

PlatformUpdateAcpiTable Update	data	in	platform-specific	in	ACPI	tables

PlatformInstallAcpiTable Install	platform-specific	ACPI	tables

CoreExitBootServices	(*) Dismantles	UEFI	boot	services	and	enter	UEFI	run	time

BoardInitEndOfFirmware Board	hook	for	the	ExitBootServices	event

TestPointExitBootServices Test	to	verify	state	after	ExitBootServices	has	been
invoked

RuntimeDriverSetVirtualAddressMap
(*) Sets	virtual	address	mode

Table	45	Stage	IV	DXE	Functions

*	In	the	common	EDK	II	open	source	code.

6.4.2	DXE	Interfaces

	Component	 	Name	 	Consumer	 	Purpose	

BoardInitLib BoardNotificationInit Platform Board	specific	initialization	hook	at	DXE	phase

Table	46	Stage	IV	DXE	Interfaces

6.4.3	Required	SMM	Functions

	Name	 	Purpose	

SmmIplEntry	(*) SMM	IPL

SmmMain	(*) SMM	Core	entry	point

PiCpuSmmEntry	(*) SMM	CPU	driver

SmmRelocateBases	(*) Relocation

_SmiEntryPoint	(*) SMI	entry	point

SmmEntryPoint	(*) Dispatch	SMI	handlers

PchSmmCoreDispatcher Dispatch	PCH	child	SMI	handlers

TestPointSmmEndOfDxe Verify	state	after	SmmEndOfDxe

TestPointSmmEndOfDxe Verify	state	after	SmmEndOfDxe

TestPointSmmReadyToLock Verify	state	after	SmmReadyToLock

6.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

80DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

PlatformEnableAcpiCallback Switch	the	system	to	ACPI	mode

BoardEnableAcpiCallback Board	hook	for	ACPI	mode	switch

Table	47	Stage	IV	SMM	Functions

*	In	the	common	EDK	II	open	source	code.

6.4.4	SMM	Interfaces

	Component	 	Name	 	Consumer	 	Purpose	

BoardAcpiLib BoardEnableEcAcpiMode
() Platform Board	specific	ENABLE_ACPI_MODE

action

BoardDisableEcAcpiMode
() Platform Board	specific	DISABLE_ACPI_MODE

action

Table	48	Stage	IV	SMM	Interfaces

6.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

81DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.5	Configuration
This	section	defines	the	configurable	items	that	must	be	available	to	achieve	Stage	IV	functionality.

These	definitions	may	be	both	source	and	binary	in	nature.

6.5.1	Memory	Type	Information	Related	Configuration

	PCD	 	Purpose	

gMinPlatformPkgTokenSpaceGuid. Memory	size	reserved	for	ACPI	reclaim
memory

PcdPlatformEfiAcpiReclaimMemorySize

gMinPlatformPkgTokenSpaceGuid.
PcdPlatformEfiAcpiNvsMemorySize

Memory	size	reserved	for	ACPI	NVS
memory

gMinPlatformPkgTokenSpaceGuid. Memory	size	reserved	for	EFI	reserved
memory

PcdPlatformEfiReservedMemorySize

gMinPlatformPkgTokenSpaceGuid.
PcdPlatformEfiRtDataMemorySize

Memory	size	reserved	for	EFI	runtime
data	memory

gMinPlatformPkgTokenSpaceGuid.
PcdPlatformEfiRtCodeMemorySize

Memory	size	reserved	for	EFI	runtime
code	memory

Table	49	Memory	Type	Information	Configuration

6.5.2	FV	Related	Configuration

	PCD	 	Purpose	

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootBase	 OsBoot	FV	base	address

	gMinPlatformPkgTokenSpaceGuid.PcdFlashFvOsBootSize	 OsBoot	FV	size

Table	50	Flash	Map	Configuration	PCDs

6.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

82DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.6	Data	Flows
This	section	defines	the	architecturally	defined	data	structures	and	the	ways	this	data	flows	through
the	system	over	time.	In	addition	to	the	definition	and	lifecycle	for	important	pieces	of	data.

ACPI	tables	in	this	stage	are	located	using	AcpiSdtProtocol	supplied	by	MdeModulePkg.	These	tables
are	updated	with	the	help	existing	HOBs,	policies	for	different	silicon	components.	APIs	to	update	these
tables	are	located	in	the	AcpiPlatfrom	DXE	driver.

6.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

83DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.7	Additional	Control	Flows
None

6.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

84DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.8	Build	Files
This	is	appended	to	previous	Build	files	section.

	Name	 	Consumer	
	Standalone

Buildable	

	FV

Produced	
	Comments	

MinPlatformPkg
\Include\CoreOsBootInclude.fdf Board No None Stage	IV	required

components

Table	51	Stage	IV	Build	Files

6.8	Build	FilesEDK	II	Minimum	Platform	Specification[DRAFT]

85DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.9	Test	Point	Results
	Test	Point	 	Test	Subject	 	Test	Overview	 	Reporting	Mechanism	

TestPoint
ReadyToBoot
AcpiTable
Functional	()

ACPI	table(s)

Table	is	reported.
MADT	is
consistent	with
MP	services.

Dump	ACPI	tables.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
SmmReadyToLock
SecureSmmCommunication
Buffer	()

SMM
communication
buffer

Only	CommBuffer(s)
and	MMIO
are	mapped	in	the
page	table.

Dump	memory	map
and
GCD	map	at
SmmReadyToLock
and
check	at
SmmReadyToBoot.

TestPoint
SmmReadyToLock
SmmMemoryAttributeTable
Functional	()

SMM	memory
page	attribute
table

Table	is	reported.
Image	code/data
mapping	is	accurate.

GDT,	IDT,	and
page	table	are	RO
Data	is	NX
Code	is	RO

Dump	SMM	table
and	SMM	Image
Info.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
SmmEndOfDxe
Smrr
Functional	()

SMRR
SMRR	is	aligned.
SMRR	matches
SMRAM_INFO

Dump	SMRR	and
SMRAM_INFO.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
SmmReadyToBoot
SmmPageProtection	()

SMM	page	table
SMM	page	table
matches
SmmMemoryAttribute
table.

Report	error	based
upon	check.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
DxeSmmReadyToLock
SmramAligned	()

SMRAM	info SMRAM	is	aligned.

Dump	SMRAM
region	table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
DxeSmmReadyToLock
WsmtTable
Functional	()

WSMT	table WSMT	is	reported.

Dump	WSMT	table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
DxeSmmReadyToBoot
SmiHandlerInstrument	()

SmiHandler
profile SmiHandler	profile.

Dump	SMI	Handler
profile.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table	52	Stage	IV	Test	Point	Results

6.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

86DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.10	Functional	Exit	Criteria
1.	 Successfully	load	a	UEFI	compatible	operating	system	such	that	all	firmware	interfaces	required	for
the	OS	to	load	are	satisfied	(optional	interfaces	not	necessary	for	loading	are	not	required).

2.	 On	an	x86	compatible	system	which	supports	SMM,	SMM	is	initialized.

Core/CPU
CPU	code	relocates	SMM	base.
CPU	code	sets	SMRR	correctly.
CPU	sets	SMM_CODE_CHECK.

3.	 Silicon

Silicon	provides	software	SMI	registration	capability.
Silicon	provides	capability	Sx	SMI	registration	capability.

4.	 The	minimum	ACPI	tables	described	in	this	section	are	installed.

6.10	Functional	Exit	CriteriaEDK	II	Minimum	Platform	Specification[DRAFT]

87DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

6.11	Stage	Enabling	Checklist
The	following	steps	should	be	followed	to	enable	a	platform	for	Stage	IV.

1.	 Install	the	minimal	DSDT

i.	 In	rare	cases:	Install	board-specific	SSDT
2.	 Ensure	all	PCDs	in	the	configuration	section	(DSC	files)	are	correct	for	your	board.

i.	 Set		gMinPlatformPkgTokenSpaceGuid.PcdBootStage		=	4
3.	 Ensure	all	required	binaries	in	the	flash	file	(FDF	files)	are	correct	for	your	board.

4.	 Boot,	collect	log,	verify	test	point	results	defined	in	section	6.9	Test	Point	Results	are	correct

6.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

88DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.1	Overview
The	objective	of	Stage	V	is	to	establish	the	basic	system	security	foundation	for	a	production
environment.	Given	the	importance	of	security	for	all	connected	systems,	the	platform	architecture
considers	the	following	basic	security	features	as	minimum	requirements	for	any	product	and	thus	an
important	part	of	the	effort	to	produce	a	minimal	platform.	This	stage	is	concerned	with	enabling
security	technologies	described	in	industry	specifications.	Lower-level	chipset-specific	security
technologies	such	as	register	locks	may	exist	and	those	should	be	enabled	during	standard	silicon
initialization	flows	in	earlier	stages.

7.1.1	Major	Execution	Activities

	Stage	V	Modules	

Full	UEFI	variable	services	support	(i.e.	non-volatile,	volatile,	and	authenticated)

Authenticated	boot	(HW	and	UEFI)

TCG	trusted	boot	(if	TPM	HW	is	present)

DMA	protection

7.1.2	Main	Control	Flow
Stage	V	introduces	new	modules	and	requirements	to	the	boot	incrementally	over	Stage	IV.	The	key
requirement	is	to	satisfy	industry	standard	security	specifications	applicable	to	the	platform.	The
security	technologies	enabled	in	this	stage	are	not	strictly	bound	to	the	definition	in	this	specification
and	may	consist	of	a	subset	or	superset	of	the	content	described	in	this	section.	However,	the	only
case	in	which	a	modern	production	system	should	not	implement	a	form	of	any	of	these	technologies	is
if	the	necessary	hardware	is	not	available.	In	all	other	cases,	the	system	must	at	least	implement	a	form
of	the	following:

Hardware	rooted	authenticated	boot	that	can	establish	a	Static	Root	of	Trust	for	Verification	(S-RTV)
and	continue	an	authenticated	chain	of	verification	throughout	the	boot	process.

System	measurement	capability	that	allows	the	firmware	to	serve	as	a	Static	Root	of	Trust	for
Measurement	(S-RTM).

Protection	from	Direct	Memory	Access	(DMA)	attacks.

The	TCG	measured	boot	chain	of	trust	is	should	be	enabled	in	this	stage.	At	this	point,	Authenticated
UEFI	Variable	support	must	be	completely	functional.	This	is	a	basic	requirement	for	secure
authentication	and	management	of	the	UEFI	Secure	Boot	keys.

7	Stage	V:	Security	EnableEDK	II	Minimum	Platform	Specification[DRAFT]

89DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.2	Firmware	Volumes
Stage	V	supports	key	security	features.	Additional	FV	are:

	Name	 	Content	 	Compressed	 	Parent	FV	

FvSecurity Security	related	modules No None

NvStorage Real	NV	storage	on	flash No None

Table	53	Stage	V	Firmware	Volumes

Which	yields	this	example	extension	of	the	flash	map	for	MMIO	storage	(add	to	Stage	I	-	IV	map):

	Binary	 	FV	 	Components	 	Purpose	

Stage
V FvSecurity.fv Tcg2Dxe.efi TPM2	services

Tcg2ConfigDxe.efi TPM2	configuration	UI.

Tcg2PlatformDxe.efi TPM2	platform	module.

Tcg2Smm.efi TPM2	ACPI	services.

TcgMor.efi TCG	Memory	Override	support

IntelVTdPmrPei.efi IOMMU	PEI	services.

IntelVTdDxe.efi IOMMU	DXE	services.

SecurityStubDxe.efi Provide	security	architecture	protocol.

FaultTolerantWriteSmm.efi Fault-tolerant	services	in	SMM.

VariableSmm.efi Provide	Variable	service	in	SMM.

VariableSmmRuntimeDxe.efi Provide	Variable	service	in	UEFI.

SecureBootConfigDxe.efi SecureBoot	configuration	UI.

Additional	Components Additional	post-memory	components
required	for	Stage	V	boot

Table	54	Stage	V	FV	and	Components	Layout

See	Appendix:	Full	FV	Map	for	a	more	complete	example	Firmware	Volume	layout.

7.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

90DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.3	Modules
Only	modules	in	the	board	package	should	be	modified	in	the	process	of	board	porting.	The	minimum
platform	package	and	other	common	package	contents	must	not	be	directly	modified.	The	board
package	and	silicon	package	modules	may	have	multiple	instances	to	support	different	boards	and
different	silicon.	These	components	are	required.	They	enable	orderly	board	porting	and	add	the
support	for	extensibility	in	later	stages.	The	libraries	consumed	are	the	subset	of	libraries	required	by
this	specification.	Some	libraries	are	defined	in	this	specification,	some	are	defined	in	EDK	II
documentation.

7.3.1	UEFI	Components	(PEI)
These	components	are	required.	They	enable	orderly	board	porting	and	orderly	extensibility	to	add
functionality	over	time.

The	libraries	consumed	are	the	subset	of	libraries	required	by	this	specification.	Some	libraries	are
defined	in	this	specification,	some	are	defined	in	EDK	II	documentation.

	Item	 	Producing	Package	 	Libraries	Consumed	

Tcg2Pei.efi SecurityPkg

Tcg2ConfigPei.efi SecurityPkg

Tcg2PlatformPei.efi MinPlatformPkg

IntelVTdPmrPei.efi IntelSiliconPkg

Table	55	Stage	V	PEI	UEFI	Components

7.3.2	UEFI	Components	(DXE)
These	components	are	required.	They	enable	orderly	board	porting	and	orderly	extensibility	to	add
functionality	over	time.

The	libraries	consumed	are	the	subset	of	libraries	required	by	this	specification.	Some	libraries	are
defined	in	this	specification,	some	are	defined	in	EDK	II	documentation.

	Item	 	Producing	Package	 	Libraries	Consumed	

TcgMor.efi SecurityPkg

Tcg2Dxe.efi SecurityPkg

Tcg2ConfigDxe.efi SecurityPkg

Tcg2PlatformDxe.efi MinPlatformPkg

VariableSmmRuntimeDxe.efi MdeModulePkg

SecureBootConfigDxe.efi SecurityPkg

SecurityStubDxe.efi MdeModulePkg

IntelVTdDxe.efi

Table	56	Stage	V	DXE	UEFI	Components

7.3.3	UEFI	Components	(SMM)

7.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

91DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

These	components	are	required.	They	enable	orderly	board	porting	and	orderly	extensibility	to	add
functionality	over	time.

The	libraries	consumed	are	the	subset	of	libraries	required	by	this	specification.	Some	libraries	are
defined	in	this	specification,	some	are	defined	in	EDK	II	documentation.

	Item	 	Producing	Package	 	Libraries	Consumed	

Tcg2Smm.efi SecurityPkg

FaultTolerantWriteSmm.efi MdeModulePkg

VariableSmm.efi MdeModulePkg

Table	57	Stage	V	SMM	UEFI	Components

7.3.4	Platform	Architecture	Libraries
Board	porting	will	require	creation	of	libraries	identified	as	produced	by	the	BoardPkg.	Depending	on
the	board,	there	may	be	existing	libraries	that	are	sufficient	for	a	board,	so	it	is	important	to	assess	the
utility	of	existing	library	instances	when	developing	board	support.

	Item	 	API	Definition	Package	 	Producing	Package	 	Description	

Table	58	Stage	V	Platform	Architecture	Libraries

7.3	ModulesEDK	II	Minimum	Platform	Specification[DRAFT]

92DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.4	Required	Functions
The	following	functions	are	required	to	exist	and	to	execute	in	the	given	order.	The	component	that
provides	the	function	is	not	specified	because	it	is	not	required	by	the	architecture.

*	In	the	common	EDK	II	open	source	code.

The	required	functions	for	Stage	IV	are	presented	organized	by	phase	and	subsystem	(e.g.	ACPI,	SMM,
etc).	See	Appendix:	Full	Functions	Map	for	a	complete	ordering	for	all	stages.

7.4.1	Required	PEI	functions

Name Purpose

PeimEntryMA	(*) Entry	point	for	the	TPM2	PEIM

IntelVTdPmrInitialize	(*) Entry	point	for	the	VT-d	PEIM

Table	59	Stage	V	PEI	Functions

*	In	the	common	EDK	II	open	source	code.

7.4.2	Required	DXE	functions

Name Purpose

DriverEntry	(*) Entry	point	for	the	TPM2	DXE	module

IntelVTdInitialize(*) Entry	point	for	the	VT-d	DXE	module

UserPhysicalPresent	(*) Indicates	whether	a	physical	user	is	present	for	UEFI	secure	boot

ProcessTcgPp Process	the	TPM	physical	presence	(PP)	request

ProcessTcgMor Process	the	TPM	memory	overwrite	request	(MOR)

Table	60	Stage	V	DXE	Functions

*	In	the	common	EDK	II	open	source	code.

7.4.3	Required	SMM	functions

Name Purpose

InitializeTcgSmm	(*) Entry	point	for	the	TPM2	SMM	module

MemoryClearCallback	(*) Callback	function	for	setting	the	MOR	variable

Table	61	Stage	V	SMM	Functions

*	In	the	common	EDK	II	open	source	code.

7.4	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

93DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.5	Configuration
This	section	defines	the	configurable	items	that	must	be	available	to	achieve	Stage	IV	functionality.

These	definitions	may	be	both	source	and	binary	in	nature.

7.5.1	Security	Related	Configuration

	Component	 	Name	 	Producer	 	Consumer	 	Purpose	
	Porting

Category	

Post	Build PK Board Core PK	variable

Platform
Policy:
UEFI
Secure
Boot

KEK Board Core KEK	variable

Platform
Policy:
UEFI
Secure
Boot

db Board Core db	variable

Platform
Policy:
UEFI
Secure
Boot

dbx Board Core dbx	variable

Platform
Policy:
UEFI
Secure
Boot

PcdTpmInstance
Guid GUID Board Core Select	TPM	instance

Platform
Policy:
TCG
trusted
boot

PcdTpm2
InitializationPolicy UINT8 Board Core Choose	if	TPM	driver

need	send	Tpm2Init.

Platform
Policy:
TCG
trusted
boot

PcdTpm2Self
TestPolicy UINT8 Board Core

Choose	if	TPM	driver
need	send
Tpm2SelfTest

Platform
Policy:
TCG
trusted
boot

PRE_MEM_SILICON_POLICY MOR
data Board Silicon

The	board	code
consumes	the	MOR
variable	and	pass	it
to	MemoryInit
module	as	policy

Platform
Policy:
TCG
MOR

L"MemoryOverwrite
RequestControl"

MOR
Variable OS Board OS	indicates	to	UEFI

FW	the	MOR	request.

Platform
Policy:
TCG
MOR

PcdVTdPolicy
PropertyMask

VTd
policy
mask

Platform Core VTd	policy
Platform
Policy:
DMA

7.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

94DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Table	62	Stage	V	Security	Configuration

7.5.2	FV	Related	Configuration

	PCD	 	Purpose	

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageVariableBase Base	address	of	the	NV	variable	range	in	flash	device.

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageVariableSize

Size	of	the	non-volatile	variable	range.	Note	that	this	value
should	less	than	or	equal	to
PcdFlashNvStorageFtwSpareSize.

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageFtwWorkingBase

Base	address	of	the	FTW	working	block	range	in	flash
device.

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageFtwWorkingSize Size	of	the	FTW	working	block	range.

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageFtwSpareBase

Base	address	of	the	FTW	spare	block	range	in	flash	device.
Note	that	this	value	should	be	block	size	aligned.

gEfiMdeModulePkgTokenSpaceGuid.
PcdFlashNvStorageFtwSpareSize

Size	of	the	FTW	spare	block	range.	Note	that	this	value
should	larger	than	PcdFlashNvStorageVariableSize	and
block	size	aligned.

gMinPlatformPkgTokenSpaceGuid.
PcdFlashFvSecurityBase Security	FV	base	address.

gMinPlatformPkgTokenSpaceGuid.
PcdFlashFvSecuritySize Security	FV	size.

Table	63	Stage	V	Flash	Map	Configuration	PCDs

7.5.3	Feature	Related	Configuration
	PCD	 	Purpose	

gMinPlatformModuleTokenSpaceGuid.PcdSmiHandlerProfileEnable Enable	SMI	handler	profile.

gMinPlatformModuleTokenSpaceGuid.PcdTpm2Enable Enable	TPM2.

gMinPlatformModuleTokenSpaceGuid.PcdUefiSecureBootEnable Enable	UEFI	Secure	Boot.

Table	64	Stage	V	Feature	Configuration

7.5	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

95DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.6	Data	Flows
This	section	defines	the	architecturally	defined	data	structures	and	the	ways	this	data	flows	through
the	system	over	time.	In	addition	to	the	definition	and	lifecycle	for	important	pieces	of	data.

7.6	Data	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

96DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.7	Additional	Control	Flows
This	section	describes	how	the	security	features	are	embedded	in	the	control	flows.	PSCS/ChipSec
required	features	should	be	enabled	in	this	stage	in	addition	to	other	general	security	flow.	This	section
will	also	elaborate	on	each	security	feature	and	the	platform	code	implementation	required	to	enable
the	feature.

Note:	Some	of	these	features	can	be	treated	as	an	advanced	feature	and	can	be	turned	on	or	off
based	on	system-specific	usage.	However,	this	section	serves	as	a	guideline	to	develop	platform	code
for	security	features.

7.7.1	UEFI	Secure	Boot
Refer	to	the	UEFI	specification	and	the	whitepaper	A	Tour	Beyond	BIOS	-	Implementing	UEFI
Authenticated	Variables	in	SMM	with	EDK	II

7.7.2	Hardware	Authenticated	Boot
UEFI	Secure	boot	provides	verification	of	3rd	party	drivers,	such	as	the	OS	loader	or	PCI	option	ROMs.

A	platform	may	provide	additional	authentication	for	firmware	volume.

For	example:	Intel	Boot	Guard,	or	PI	signed	FV.

Intel®	Boot	Guard	provides	a	hardware	way	to	verify	the	initial	boot	block	(IBB)	code.	After	power	on,
the	CPU	Microcode	finds	a	Boot	Guard	ACM	and	executes	the	Boot	Guard	ACM,	which	is	signed	by
Intel.	Then	the	Boot	Guard	ACM	takes	the	Boot	Guard	manifest	and	verifies	the	IBB	code.

The	PI	specification	also	provides	the	verification	for	the	system	firmware	code	on	the	board.	Refer
to	PI	specification,	EFI	Signed	Firmware	Volumes	and	EFI	Signed	Sections.

The	whole	hardware	based	secure	boot	flow	on	an	Intel	Boot	Guard	platform	is:

1.	 Startup	ACM	or	some	equivalent	module	verifies	the	initial	boot	block	of	the	system	firmware.
Intel®	Boot	Guard	Technology	is	one	possible	implementation

2.	 The	initial	boot	block	verifies	the	rest	of	the	system	firmware.
PI	signed	FV	is	one	possible	implementation.	An	implementation	may	choose	PKCS7	or
RSA2048_SHA256	based	signing	verification.
The	other	option	is	just	to	use	the	HASH	for	the	rest	of	the	system	firmware.	In	PEI	phase,	the
code	who	installs	the	addition	FV	for	the	post	memory	phase	need	verify	the	HASH	of	the	system
firmware.

3.	 The	system	firmware	verifies	3rd	party	code.
UEFI	secure	boot	is	the	implementation.

7.7.3	TCG	Trusted	Boot	and	Memory	Overwrite	Request	(MOR)
Refer	to	TCG	platform	specification	and	the	white	paper	A	Tour	Beyond	BIOS	-	Implementing	TPM	Support
in	EDK	II

7.7.4	DMA	(VT-d)	Protection
Refer	to	Intel®	VT-d	specification	and	the	white	paper	Using	IOMMU	for	DMA	Protection	in	UEFI

7.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

97DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

https://github.com/tianocore-docs/Docs/raw/master/White_Papers/A_Tour_Beyond_BIOS_Implementing_UEFI_Authenticated_Variables_in_SMM_with_EDKII_V2.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Implementing_TPM2_Support_in_EDKII.pdf
https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf

7.7	Additional	Control	FlowsEDK	II	Minimum	Platform	Specification[DRAFT]

98DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.8	Build	Files
This	is	appended	to	the	previous	Build	files	section.

	Name	 	Consumer	
	Standalone

Buildable	

	FV

Produced	

MinPlatformPkg\Include\CoreSecurityPreMemoryInclude.fdf Board No None

MinPlatformPkg\Include\CoreSecurityPostMemoryInclude.fdf Board No None

MinPlatformPkg\Include\CoreSecurityLateInclude.fdf Board No None

Table	65	Stage	V	Build	Files

7.8	Build	FilesEDK	II	Minimum	Platform	Specification[DRAFT]

99DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.9	Test	Point	Results

	Test	Point	
	Test

Subject	
	Test	Overview	 	Reporting	Mechanism	

TestPoint
EndOfDxe
DmarTable
Funtional	()

DMAR
table DMAR	table	is	reported.

Dump	DMAR	table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
AcpiTable
Functional	()

ACPI	table ACPI	tables	are	valid.

Dump	installed	ACPI
tables.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
GcdResource
Functional	()

GCD
resource

Memory	resources	are	described
consistently	in	ACPI	tables	and	GDT.

Dump	installed	ACPI
tables	and	GDT.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
HstiTable
Functional	()

HSTI	table HSTI	table	is	reported.

Dump	HSTI	table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
EsrtTable
Functional	()

ESRT
table ESRT	table	is	reported.

Dump	ESRT	table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
PiSignedFvBoot
Enabled	()

PI	signed
FV	boot Verify	PI	signed	FV	boot	is	enabled.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
UefiSecureBoot
Enabled	()

UEFI
Secure
Boot

SecureBoot	variable	is	set.

Dump	the
SecureBoot
variable.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
TcgTrustedBoot
Enabled	()

TCG
trusted
boot

TCG	protocol	is	installed.

Dump	TCG	protocol
capability.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
ReadyToBoot
TcgMor
Enabled	()

TCG	MOR MOR	variable	is	set.

Dump	the	MOR	UEFI
variable.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
DiscoveredDma
Protection
Enabled	()

DMA
protection DMA	protection	in	PEI.

Dump	DMA	ACPI
table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

7.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

100DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

TestPoint
EndOfDxe
DmaAcpiTable
Functional	()

DMA
protection DMA	ACPI	table	is	reported.

Dump	DMA	ACPI
table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

TestPoint
EndOfDxe
DmaProtection
Enabled()

DMA
protection DMA	protection	in	DXE.

Dump	DMA	ACPI
table.

Set	ADAPTER_INFO_
PLATFORM_TEST_
POINT_STRUCT

Table	66	Stage	V	Test	Point	Results

7.9	Test	Point	ResultsEDK	II	Minimum	Platform	Specification[DRAFT]

101DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.10	Functional	Exit	Criteria
1.	 UEFI	secure	boot	is	enabled.

2.	 TCG	trusted	boot	is	enabled.

3.	 TCG	MOR	is	enabled.

7.10	Functional	Exit	CriteriaEDK	II	Minimum	Platform	Specification[DRAFT]

102DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

7.11	Stage	Enabling	Checklist
The	following	steps	should	be	followed	to	enable	a	platform	for	Stage	V.

1.	 Update	BoardPkg/Board.

i.	 Deploy	the	UEFI	secure	boot	variables	(PK/KEK/db/dbx)

ii.	 Configure		PcdTpmInstanceGuid		to	select	TPM	hardware.	Default	of		gEfiTpmDeviceInstanceTpm20DtpmGuid	value
is	usually	correct.

2.	 UEFI	secure	boot

i.	 Update		PlatformSecureLib	:	UserPhysicalPresent	()	,	to	check	if	a	user	is	physically	present	to	authorize
change	of	authenticated	variables

3.	 For	TCG	trusted	boot

i.	 May	select	TPM2	instance		PcdTpmInstanceGuid	.

ii.	 May	set		PcdFirmwareDebuggerInitialized		based	on	whether	or	not	a	Firmware	Debugger	is	attached	to
the	platform

4.	 For	DMA	Protection

i.	 May	include	IOMMU	driver	to	do	DMA	protection,	if	the	silicon	supports	IOMMU.
5.	 Ensure	all	PCDs	in	the	configuration	section	(DSC	files)	are	correct	for	your	board.

i.	 Set		gMinPlatformPkgTokenSpaceGuid.PcdBootStage		=	5
6.	 Ensure	all	required	binaries	in	the	flash	file	(FDF	files)	are	correct	for	your	board.

7.	 Boot,	collect	log,	verify	test	point	results	defined	in	section	7.9	Test	Point	Results	are	correct

7.11	Stage	Enabling	ChecklistEDK	II	Minimum	Platform	Specification[DRAFT]

103DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

8.1	Overview
Advanced	features	are	non-essential	features.	Essential	features	are	defined	as	being	support	required
to	meet	earlier	stage	boot	objectives.	An	advanced	feature	must	be	implemented	as	highly	cohesive
and	stand-alone	software	to	only	support	a	specific	feature.	Modularizing	such	features,	reducing
dependencies	on	other	advanced	features,	and	eliminating	dependencies	on	specific	implementations
of	other	advanced	features	is	critical	and	results	in	a	variety	of	benefits:

The	minimum	platform	serves	as	a	basic	enabling	vehicle	ready	to	support	various	roles	for	a	given
hardware	platform.	This	yields	a	minimum	platform	solution	that	is	open	to	extension	but	closed	for
modification.

System	power-on	is	simplified	because	unnecessary	code	paths	and	silicon	paths	can	be	avoided	or
deferred.

Platforms	can	be	composed	in	a	more	modular	and	portable	manner	allowing	generic	advanced
features	to	be	readily	shared	among	participants.

Feature	adoption	benefits	from	modular	design	that	is	simple	to	maintain.

Organizing	advanced	features	in	the	platform	architecture	enables	better	realization	of	the	benefits	in
UEFI	specification	compliant	firmware	with	highly	cohesive	and	lowly	coupled	component	interactions.

This	chapter	provides	guidance	on	how	to	design	and	integrate	advanced	features.	The	source	code
layout	and	other	maintenance	details	are	outside	the	scope	of	this	specification.

The	core	advanced	feature	requirements	that	must	be	met:

Cohesive,	the	feature	should	not	contain	any	functionality	unrelated	to	the	feature.
Complete,	the	feature	must	have	a	complete	design	that	minimizes	dependencies.	A	feature
package	cannot	directly	depend	on	another	feature	package.
Easy	to	Integrate,	the	feature	should	expose	well-defined	software	interfaces	to	use	and	configure
the	feature.

It	should	also	present	a	set	of	simple	and	well-documented	standard	EDK	II	configuration
options	such	as	PCDs	to	configure	the	feature.
In	general,	features	should	be	self-contained	and	started	by	the	dispatcher.	The	board	firmware
should	be	required	to	perform	as	few	steps	as	possible	to	enable	the	feature.
All	features	are	required	to	have	a	feature	enable	PCD	(PcdFeatureEnable).	Any	effort	to	enable	the
feature	besides	this	PCD	should	be	carefully	considered.	Default	configuration	values	should
apply	to	the	common	case.

Portable,	the	feature	is	not	allowed	to	depend	on	other	advanced	feature	or	board	source	code
packages.	For	example,	if	Feature	A	depends	on	output	Feature	B,	a	board	integration	module
should	use	a	generic	interface	in	Feature	A	to	get	the	output	and	pass	it	to	a	generic	interface	in
Feature	B.	Structures	should	not	be	shared	between	feature	packages.	Most	structures	should	be
defined	in	a	common	package	such	as	MdePkg	if	the	structure	is	industry	standard,	IntelSiliconPkg	if
the	structure	is	specific	to	Intel	silicon	initialization,	etc.	Feature-specific	structures	are	of	course
allowed	to	be	defined	within	a	feature	package	and	used	by	libraries	and	modules	in	that	package.
Self	Documenting,	the	feature	should	follow	software	best	practices	to	allow	others	to	debug	the
code	and	contribute	changes.	In	addition	to	source	code,	advanced	features	must	have	a
Readme.md	with	sufficient	information	for	a	newcomer	to	understand	the	feature.
Single	Instance,	the	feature	should	not	have	more	than	one	instance	of	a	source	solution.	If	an
existing	feature	package	does	not	solve	a	specific	instance	of	a	problem	for	the	feature,	the	feature
package	should	be	re-worked	to	consider	new	requirements	instead	of	duplicating	feature	code.

8.1.1	Major	Execution	Activities

8	Stage	VI:	Advanced	Feature	SelectionEDK	II	Minimum	Platform	Specification[DRAFT]

104DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

	Stage	VI	Modules	

Execute	the	Enabled	Advanced	Features

The	number	of	embedded	features	must	be	minimized	in	order	to	support	the	broadest	compatibility	of
the	minimal	platform.	Features	should	be	designed	to	define	an	API	that	can	be	used	to	integrate	the
feature	into	generic	platform	configurations.	The	feature	source	code	should	never	be	modified	to
absorb	details	of	a	specific	platform	or	board.

8	Stage	VI:	Advanced	Feature	SelectionEDK	II	Minimum	Platform	Specification[DRAFT]

105DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

8.2	Firmware	Volumes
Stage	VI	enables	advanced	features.	There	is	a	container	FV	for	adding	advanced	features:

	Name	 	Content	 	Compressed	
	Parent

FV	

FvAdvancedPreMemory Advanced	feature	drivers	that	should	be
dispatched	prior	to	memory	initialization No None

FvAdvanced Advanced	feature	drivers	that	should	be
dispatched	after	memory	initialization Yes None

Table	67	Stage	VI	Firmware	Volumes

Which	yields	this	example	extension	of	the	flash	map	for	MMIO	storage	(append	to	Stage	I-Stage	V	map):

	Binary	 	FV	 	Components	 	Purpose	

Stage
VI FvAdvancedPreMemory.fv FeatureStack1.fv Feature	1

Additional	Feature
Stacks

Additional	pre-memory	advanced
features

FvAdvanced.fv FeatureStack1.fv Feature	1

FeatureStack2.fv Feature	2

FeatureStack3.fv Feature	3

Additional	Feature
Stacks Additional	advanced	features

The	modules	that	constitute	a	particular	feature	are	not	required	to	be	contained	within	a	single
firmware	volume	and	this	might	especially	be	the	case	in	systems	with	limited	flash	storage	capacity
which	could	be	impacted	by	firmware	volume	alignment	requirements.

Table	68	Stage	VI	FV	and	Component	Layout

The	PEI	core	will	create	a	FV	HOB	for	each	child	firmware	volume	such	that	each	DXE	firmware	volume	is
exposed	to	the	DXE	dispatcher.

8.2	Firmware	VolumesEDK	II	Minimum	Platform	Specification[DRAFT]

106DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

8.3	Configuration

8.3.1	FV	Related	Configuration
	PCD	 	Purpose	

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemoryBase
Pre-memory	advanced
features	FV	base
address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedPreMemorySize Pre-memory	advanced
features	FV	size.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedBase Advanced	Features	FV
base	address.

gMinPlatformPkgTokenSpaceGuid.PcdFlashFvAdvancedSize Advanced	Features	FV
size.

Table	69	Stage	VI	Flash	Map	Configuration	PCDs

8.3	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

107DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

8.4	Advanced	Feature	Design
Advanced	features	should	be	designed	such	that	they	are	easily	portable	between	minimum	platform
compliant	implementations.	In	consideration	of	portability,	it	is	recommended	to	encapsulate	each
feature	within	a	dedicated	package.	Such	encapsulation	enables	rapid	integration	of	the	feature	and	a
focused	area	for	feature-related	changes.	For	example,	feature	declarations	for	build	elements	such	as
GUIDs,	PCDs,	PPIs,	and	protocols	are	scoped	within	the	feature	package	DEC	file.	Including	the	feature
and	consequently	the	package	imports	the	feature	tokens	within	the	available	namespace	and	changes
affecting	the	feature	are	localized	to	the	package	which	in	turn	exposes	the	change	to	all	feature
consumers.

The	Advanced	Feature	template	should	be	used	to	describe	relevant	configuration	for	integrating	the
feature	into	a	minimum	platform	compliant	system.	Any	board	or	silicon-specific	details	should	be
abstracted	such	that	the	information	is	provided	to	the	feature	via	"feature	APIs".	Such	dependencies
are	recommended	to	be	exposed	via	binary	interfaces	such	as	PPIs	and	protocols	and	can	be
considered	similar	in	purpose	to	the	architectural	PPIs	and	Protocols	defined	in	the	PI	specification.
Such	requirements	must	be	included	in	the	"Required	Functions"	section	of	the	advanced	feature
template.	Though	not	required,	to	increase	portability,	advanced	features	should	not	depend	upon
deprecated	EDK	II	packages	and	attempt	to	reduce	exposure	to	packages	other	than	MdePkg	and
UefiCpuPkg.	In	turn,	this	decreases	risk	of	depending	upon	deprecated	packages	in	the	future.

8.4	Advanced	Feature	DesignEDK	II	Minimum	Platform	Specification[DRAFT]

108DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

9.1	Overview

Note:	This	is	a	proposed	stage	in	the	architecture	and	this	section	is	reserved	for	future	completion
and	definition	of	the	stage.	Any	implementation	may	ignore	this	stage	until	this	section	is	completed
and	this	notice	is	removed.

It	is	anticipated	that	future	versions	of	this	architecture	specification	will	provide	details	for	embedded
performance	tuning,	common	component	tuning,	and	more	invasive	customization.	The	objective	for	this
section	is	to	provide	a	spectrum	of	options	that	keep	as	many	board	designs	as	consistent	as	possible.
Some	potential	topics	follow,	but	should	not	be	reviewed	at	this

In	Stage	VII,	the	fully	featured	is	tuned	for	production.

First,	it	can	be	worthwhile	to	look	at	the	embedded	features	and	performance	oriented	options	that
have	been	designed	into	the	core	or	minimum	platform.	For	example,	if	you	do	not	support	network
boot,	the	PciBus	driver	provides	a	PCD	to	disable	dispatching	the	network	option	ROM.	By	default,
network	option	ROM	dispatch	is	enabled.	This	is	a	known	tunable	setting.

Second,	it	can	be	worthwhile	to	strip	unused	components	from	the	defined	FV.	For	simplicity	and
consistency	of	progressing	through	Stage	VI,	it	is	better	to	use	the	provided	code	consistent	with	the
architecture.	Once	a	stable	and	fully	functional	system	is	completed,	it	is	intended	that	platform
architecture	compatible	systems	can	still	remove	unneeded	components	in	order	to	finely	tune	the
product.	The	core	provides	a	tool	named	FMMT	that	can	be	used	to	process	the	build	output	and
remove	unnecessary	components.	Alternatively,	a	board	can	copy	and	modify	the	provided	Build	DSC
and	FDF	files	in	the	MinPlatformPkg	and	SiliconPkg.	The	former	increases	build	time.	The	latter	increases
integration	effort	for	new	core,	MinPlatformPkg,	and	SiliconPkg	releases.

Third,	it	is	often	necessary	to	enable	and	use	tools	to	perform	detailed	analysis	of	performance	and	size
to	identify	hotspots	that	need	to	be	improved.

9	Stage	VII:	TuningEDK	II	Minimum	Platform	Specification[DRAFT]

109DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Appendix	A	Full	Maps	Overview
This	appendix	section	provides	full	reference	maps	of	concepts	covered	in	the	specification.

These	maps	are	maintained	in	this	section	as	they	incorporate	information	across	several	sections.

Appendix	A	Full	MapsEDK	II	Minimum	Platform	Specification[DRAFT]

110DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

A.1	Firmware	Volume	Layout
This	is	a	logical	firmware	volume	layout	by	stage.

	Binary	 	FV	 	Components	 	Purpose	

	Stage

I	
	FvPreMemory.fv	 SecCore.efi

Reset	Vector
Passes	PEI	core
the	address	of
FvFspmM
Passes	PEI	core
the	debug
configuration

ReportFvPei.efi
Installs	firmware
volumes

SiliconPolicyPeiPreMemory.efi
Publishes	silicon
initialization
configuration

PlatformInitPreMemory.efi
Performs	pre
memory
initialization

FvSecurityPreMemory.fv</br>(child
FV)

				Tcg2Pei.efi TPM2	initialization

				Tcg2ConfigPei.efi TPM2	selection

				Tcg2PlatformPei.efi
TPM2	platform
module

				Additional	Components

Additional	pre-
memory
components
required	for
Stage	V	boot

Additional	Components

Additional	pre-
memory
components
required	for
Stage	I	boot

	FvBspPreMemory.fv	
FvAdvancedPreMemory.fv</br>(child
FV)

				Additional	Components
Advanced	feature
pre-memory
stacks

Additional	Components

Additional	pre-
memory	board
support
components

Initializes	T-RAM
silicon

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

111DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

	FvFspT.fv	 PlatformSec.efi Tests	T-RAM
functionality

Additional	Components

	FvFspM.fv	 PeiCore.efi
PEI	services	and
dispatcher

PcdPeim.efi PCD	service

FspPlatform.efi
Converts	UPD	to
Policy	PPI

FvPreMemorySilicon.fv</br>(child
FV)

				Additional	Components

Pre-memory
silicon
initialization
components

ReportStatusCodeRouterPei.efi
Provide	status
code
infrastructure

StatusCodeHandlerPei.efi
Provide	status
code	listeners

Additional	Components

	FvFspS.fv	
FvPostMemorySilicon.fv</br>(child
FV)

				Additional	Components

Post-memory
silicon
initialization
components

Additional	components

	Binary	 	FV	 	Components	 	Purpose	

	Stage

II	
	FvPostMemory.fv	 ReadOnlyVariable.efi

Common	core
variable	services

SiliconPolicyPeiPostMemory.efi
Publishes	silicon
initialization
configuration

PlatformInitPostMemory.efi
Performs	post
memory
initialization

DxeIpl.efi
Load	and	invoke
DXE

ResetSystemRuntimeDxe.efi
Provides	reset
service

PciHostBridge.efi
PCI	host	bridge
driver

Additional	post-

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

112DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Additional	Components components
required	for
Stage	II	boot

	FvBsp.fv	 Additional	Components
Post-memory
board	support
components

	Binary	 	FV	 	Components	 	Purpose	

	Stage

III	
	FvUefiBoot.fv	 DxeCore.efi

DXE	services	and
dispatcher

PcdDxe.efi
Provides	PCD
services

ReportStatusCodeRouterDxe.efi
Provides	status
code
infrastructure

StatusCodeHandlerRuntimeDxe.efi
Provides	status
code	listeners

BdsDxe.efi
Provides	Boot
Device	Selection
phase

CpuDxe.efi
Provides
processor
services

Metronome.efi
Provides
metronome	HW
abstraction

MonotonicCounterRuntimeDxe.efi
Provides
monotonic
counter	service

PcatRealTimeClockRuntimeDxe.efi
Provides	RTC
abstraction

WatchdogTimer.efi
Provides
watchdog	timer
service

RuntimeDxe.efi
Provides	UEFI
runtime	service
functionality

Security.efi
Provides	security
services	to	core

HpetTimerDxe.efi
Provide	timer
service

EmuVariableRuntimeDxe.efi
Provides	UEFI
variable	service

CapsuleRuntimeDxe.efi
Provides	capsule
service

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

113DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

PciBusDxe.efi PCI	bus	driver

GraphicsOutputDxe.efi
Provides	graphics
support

TerminalDxe.efi
Provides	terminal
services

GraphicsConsoleDxe.efi
Provides	graphics
console

ConSplitterDxe.efi
Provides	multi
console	support

EnglishDxe.efi
Provides	Unicode
collation	services

MemoryTest.efi
Provide	memory
test

DevicePathDxe.efi
Provides	device
path	services

DiskIo.efi
Provides	disk	IO
services

Partition.efi
Provides	disk
partition	services

Fat.efi
Provides	FAT
filesystem
services

Additional	Components

Additional	post-
memory
components
required	for
Stage	III	boot

	Binary	 	FV	 	Components	 	Purpose	

	Stage

IV	
	FvOsBoot.fv	

FvLateSilicon.fv
(child	FV)

				Additional	Components

Additional	silicon
initialization
support	that	is
performed	late	in
the	boot

AcpiTable.efi
Provides	common
ACPI	services

PlatformAcpi.efi
Provides
MinPlatform	ACPI
content

BoardAcpi.efi
Provides	board
ACPI	content

PiSmmIpl.efi SMM	initial	loader

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

114DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

PiSmmCore.efi
SMM	core
services

ReportStatusCodeRouterSmm.efi
SMM	status	code
infrastructure

StatusCodeHandlerSmm.efi
SMM	status	code
handlers

PiSmmCpu.efi SMM	CPU	services

CpuIo2Smm.efi
SMM	CPU	IO
services

FaultTolerantWriteSmm.efi
SMM	fault
tolerant	write
services

SpiFvbServiceSmm.efi
SMM	SPI	FLASH
services

Additional	Components

Additional	post-
memory
components
required	for
Stage	IV	boot

	Binary	 	FV	 	Components	 	Purpose	

	Stage

V	
	FvSecurity.fv	 Tcg2Dxe.efi TPM2	services

Tcg2ConfigDxe.efi
TPM2
configuration	UI

Tcg2PlatformDxe.efi
TPM2	platform
module

Tcg2Smm.efi
TPM2	ACPI
services

TcgMor.efi
TCG	Memory
Override	support

IntelVTdPmrPei.efi
IOMMU	PEI
services

IntelVTdDxe.efi
IOMMU	DXE
services

SecurityStubDxe.efi
Provide	security
architecture
protocol.

FaultTolerantWriteSmm.efi
Fault-tolerant
services	in	SMM.

VariableSmm.efi
Provide	Variable
service	in	SMM.

VariableSmmRuntimeDxe.efi
Provide	Variable

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

115DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

VariableSmmRuntimeDxe.efi service	in	UEFI.

SecureBootConfigDxe.efi
SecureBoot
configuration	UI.

Additional	Components

Additional	post-
memory
components
required	for
Stage	V	boot

	Binary	 	FV	 	Components	 	Purpose	

	Stage

VI	
	FvAdvancedPreMemory.fv	 FeatureStack1.fv	(child	FV) Feature	1

FeatureStack2.fv	(child	FV) Feature	2

	FvAdvanced.fv	 FeatureStack1.fv	(child	FV) Feature	1

FeatureStack2.fv	(child	FV) Feature	2

FeatureStack3.fv	(child	FV) Feature	3

Additional	Feature	Stacks Features

Table	71	Full	Firmware	Volume	Layout

A.1	Firmware	Volume	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

116DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

A.2	Key	Function	Invocation

Name Purpose

ResetHandler	(*) The	reset	vector	invoked	by	silicon

TempRamInit Silicon	initializes	temporary	memory

TestPointTempMemoryFunction Test	temporary	memory	functionality

SecStartup	(*) First	C	code	execution,	constructs
PEI	input

TestPointEndOfSec Verify	state	before	switching	to	PEI

PeiCore	(*) PEI	entry	point

PeiDispatcher	(*) Calls	the	entry	points	of	PEIM

ReportPreMemFv Installs	firmware	volumes	required	in
pre-memory

BoardDetect Board	detection	of	the	motherboard
type

BoardDebugInit Board	specific	initialization	for	debug
device

PlatformHookSerialPortInitialize Board	serial	port	initialization.	Called
from	SEC	or	PEI

TestPointDebugInitDone Verify	debug	functionality

BoardBootModeDetect Board	hook	for	EFI_BOOT_MODE
detection

BoardInitBeforeMemoryInit Board	specific	initialization,	e.g.	GPIO

SiliconPolicyInitPreMemory Silicon	pre	memory	policy
initialization

SiliconPolicyUpdatePreMemory Board	updates	silicon	policies

SiliconPolicyDonePreMemory Complete	pre	memory	silicon	policy
data	collection

MemoryInit Silicon	initializes	permanent	memory

InstallEfiMemory Install	permantent	memory	to	core

PeiCore	(*) PEI	entry	point	(post	memory	entry)

SecTemporaryRamDone	(*) Call	SEC	to	tear	down	temporary
memory

ReportPostMemFv Installs	firmware	volumes	required	in
post-memory

TestPointPostMemoryFvInfoFunctional Test	for	Firmware	Volume	map

BoardInitAfterMemoryInit Board	initialization	after	memory	is
installed

SetCacheMtrr Configure	cache	map	for	permanent
memory

TestPointPostMemoryMtrrAfterMemoryDiscoveredFunctional Test	post-memory	cache	map

TestPointPostMemoryResourceFunctional Test	resources

TestPointPostMemoryFvInfoFunctional Test	for	Firmware	Volume	map

A.2	Key	Function	InvocationEDK	II	Minimum	Platform	Specification[DRAFT]

117DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

BoardInitBeforeSiliconInit Board	initialization	hook

SiliconPolicyInitPostMemory Silicon	post	memory	policy
initialization

SiliconPolicyUpdatePostMemory Board	updates	silicon	policies

SiliconPolicyDonePostMemory Complete	post	memory	silicon	policy
data	collection

BoardInitAfterSiliconInit Board	specific	initialization	after
silicon	is	initialized

DxeLoadCore	(*) DXE	IPL	locate	and	call	DXE	Core

SetCacheMtrrAfterEndOfPei Sets	cache	map	in	preparation	for
DXE

TestPointEndOfPei Verify	expected	state	as	we	exit	PEI
phase

TestPointPostMemoryMtrrEndOfPeiFunctional Basic	test	for	cache	configuration
before	entering	DXE

PeimEntryMA	(*) Entrypoint	for	TPM2	PEIM

IntelVTdPmrInitialize	(*) Entrypoint	for	VT-d	PEIM

DxeMain	(*) DXE	entry	point

CoreStartImage	(*) Calls	the	entry	points	of	DXE	drivers

SiliconPolicyInitLate Silicon	late	policy	initialization

SiliconPolicyUpdateLate Board	updates	silicon	policies

SiliconPolicyDoneLate Complete	late	silicon	policy	data
collection

CoreAllEfiServicesAvailable	(*) Check	if	required	architectural
protocols	are	installed

SmmIplEntry	(*) SMM	IPL

SmmMain	(*) SMM	Core	entrypoint

PiCpuSmmEntry	(*) SMM	CPU	driver

SmmRelocateBases	(*) Relocation

_SmiEntryPoint	(*) SMI	entry	point

SmmEntryPoint	(*) Dispatch	SMI	handlers

PchSmmCoreDispatcher Dispatch	PCH	child	SMI	handlers

InitializeTcgSmm	(*) Entrypoint	for	TPM2	SMM

MemoryClearCallback	(*) Callback	function	for	MOR	setting

PlatformCreateAcpiTable Create	the	minimum	set	of	platform
specific	tables

PlatformUpdateAcpiTable Update	platform	specific	data	in
ACPI	tables	-	FADT.

PlatformInstallAcpiTable Install	platform	specific	ACPI	tables

DriverEntry	(*) Entrypoint	for	TPM2	DXE

IntelVTdInitialize(*) Entrypoint	for	VT-d	DXE

Return	if	physical	user	is	present	for

A.2	Key	Function	InvocationEDK	II	Minimum	Platform	Specification[DRAFT]

118DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

UEFI	secure	boot

ProcessTcgPp Process	TPM	PP	request

ProcessTcgMor Process	TPM	MOR	request

BdsEntry	(*) BDS	entry	point

PlatformBootManagerBeforeConsole	(*) Platform	specific	BDS	functionality
before	console

BoardInitAfterPciEnumeration Board-specific	hook	on	PCI
enumeration	completion

TestPointPciEnumerationDone Verify	PCI

ExitPmAuth Signal	key	security	events	EndOfDxe
and	SmmReadyToLock

TestPointEndOfDxe Verify	expected	state	after	EndOfDxe

TestPointDxeSmmReadyToLock Verify	expected	state	after
SmmReadyToLock

TestPointSmmEndOfDxe Verify	state	after	SmmEndOfDxe

TestPointSmmEndOfDxe Verify	state	after	SmmEndOfDxe

TestPointSmmReadyToLock Verify	state	after	SmmReadyToLock

EfiBootManagerDispatchDeferredImages	(*) Dispatch	deferred	third	party	UEFI
driver	OPROMs

PlatformBootManagerAfterConsole	(*) Platform	specific	BDS	functionality
after	console

BootBootOptions	(*) Attempt	each	boot	option

EfiSignalEventReadyToBoot	(*) Signals	the	ReadyToBoot	event
group

BoardInitReadyToBoot Board	hook	on	ReadyToBoot	event

TestPointReadyToBoot Verify	state	after	ReadyToBoot	event
signal

UefiMain	(*) UEFI	Shell	entry	point

CoreExitBootServices	(*) Dismantles	UEFI	boot	services	and
enters	runtime

BoardInitEndOfFirmware Board	hook	for	ExitBootServices
event

TestPointExitBootServices Verify	state	after	ExitBootServices
has	been	called

RuntimeDriverSetVirtualAddressMap	(*) Set	virtual	address	mode

PlatformEnableAcpiCallback Switch	the	system	to	ACPI	mode

BoardEnableAcpiCallback Board	hook	for	ACPI	mode	switch

Table	72	Key	Function	Invocation

*	In	the	common	EDK	II	open	source	code.

A.2	Key	Function	InvocationEDK	II	Minimum	Platform	Specification[DRAFT]

119DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

A.3	BDS	Hook	Points
BDS	Hook	Point	Summary

Four	new	event	signal	groups	are	defined	that	will	be	signaled	at	the	point	shown	in	Table	16	Event
groups	as	described	in	the	UEFI	specification	are	collections	of	events	identified	by	a	shared	EFI_GUID
that	when	one	member	event	group	is	signaled,	all	other	event	groups	are	signed	and	their	individual
notification	actions	are	taken.	These	event	groups	should	be	used	in	combination	with	the	pre-existing
notification	mechanisms:	signal	of	gEfiEndOfDxeEventGroupGuid	and	installation	of	the
gEfiPciEnumerationCompleteProtocolGuid	or	gEfiDxeSmmReadyToLockProtocolGuid.	Preference	should
always	be	given	to	the	notification	points	defined	outside	this	specification	to	make	code	dependent
upon	the	notification	as	portable	as	possible.

PlatformBootManagerBeforeConsole	()	[1]	Event:	PCI	enumeration	complete	-	Install
gEfiPciEnumerationCompleteProtocolGuid

*	Minimum	Platform	action(s)	performed:

				*	Trusted	consoles	added

[2]	Event:	SignalBeforeConsoleAfterTrustedConsole

*	Minimum	Platform	action(s)	performed:

				*	Enumerate	USB	keyboard

				*	Connect	controller	for	trusted	graphics	console

				*	Register	default	boot	option	(UEFI	shell)

				*	Register	static	hot	keys	(F2/F7)

				*	Process	TCG	Physical	Presence

				*	Process	TCG	MOR

				*	Perform	memory	test

[3]	Event:	SignalBeforeConsoleBeforeEndOfDxe

*	Minimum	Platform	action(s)	performed:

				*	None

[4]	Event:	End	of	DXE	-	Signal	gEfiEndOfDxeEventGroupGuid

*	Minimum	Platform	action(s)	performed:

				*	None

[5]	Event:	SmmReadyToLock:	Signal	gEfiDxeSmmReadyToLockProtocolGuid

*	Minimum	Platform	action(s)	performed:

				*	Dispatch	deferred	3rd	party	images	(e.g.	UEFI	OPROMs)

PlatformBootManagerAfterConsole	()	[1]	Invoke	ConnectSequence	()

[2]	Event:	Signal	AfterConsoleReadyBeforeBootOption

*	Minimum	Platform	action(s)	performed:

				*	Print	hot	key	message	to	output	console	("Press	F7	for	BootMenu!")

				*	Refresh	all	boot	options

				*	Sort	load	option	variables

A.3	BDS	Hook	PointsEDK	II	Minimum	Platform	Specification[DRAFT]

120DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Figure	10	Full	BDS	Hook	Point	Map

A.3	BDS	Hook	PointsEDK	II	Minimum	Platform	Specification[DRAFT]

121DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Appendix	B	Global	Configuration	Overview
This	appendix	section	provides	configuration	mechanisms	that	are	global	and	therefore	are	not
constrained	to	any	particular	stage	section.

Appendix	B	Global	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

122DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

B.1	Stage	Configuration

[PcdsFeatureFlag]

		#	Stage	I	-	Boot	to	Debug	Enabled

		#	Stage	II	-	Boot	to	Memory	Initialization

		#	Stage	III	-	Boot	to	UEFI	Shell

		#	Stage	IV	-	Boot	to	Operating	System

		#	Stage	V	-	Boot	to	Operating	System	with	Security	Enabled

		gMinPlatformPkgTokenSpaceGuid.PcdBootStage|5|UINT8|0xF00000A0

The	default	value	of		PcdBootStage		should	be	Stage	V	Boot	to	Operating	System	with	Security	Enabled.	The
stage	selection	PCD	might	influence	code	paths	within	shared	modules	between	stages	or	add	and
remove	stages	from	the	build.

B.1	Stage	ConfigurationEDK	II	Minimum	Platform	Specification[DRAFT]

123DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

B.2	Test	Point	Check	Infrastructure
Today's	platforms	are	tested	against	several	test	suites	such	as	Chipsec,	Windows	Hardware	Security
Test	Infrastructure	(HSTI),	Windows	Hardware	Logo	Kit	(HLK),	Linux	UEFI	Validation	(LUV),	and	others.
However,	platforms	may	have	platform-specific	requirements	not	covered	by	test	suites	enforcing
specification	or	general	hardware	compliance.	The	Test	Point	Check	infrastructure	is	intended	to	test
that	actions	such	as	MTRRs	are	configured	correctly,	FV	HOBs	are	reported	properly,	no	3rd	party
options	ROMs	are	executed	before	allowed,	MemoryTypeInformation	is	reported	correctly,	and	any	other
custom	logic	that	platform	implementer	considers	appropriate	based	on	the	platform	requirements.

The	Test	Point	infrastructure	is	supported	by	two	primary	libraries,	TestPointLib	and	TestPointCheckLib.
TestPointLib	reports	test	results	via	the		ADAPTER_INFO_PLATFORM_TEST_POINT		structure	defined	below.	The	test
result	is	validated	in	the	TestPointCheckLib.

typedef	struct	{

		UINT32	Version;

		UINT32	Role;

		CHAR16	ImplementationID[256];

		UINT32	FeaturesSize;

		//UINT8	FeaturesImplemented[];	<-	PCD	set	to	define	features

		//UINT8	FeaturesVerified[];	<-	PCD	read	and	set	to	determine	features	verified

		//CHAR16	ErrorString[];

}	ADAPTER_INFO_PLATFORM_TEST_POINT;

Figure	11	Test	Point	Check	Infrastructure

B.2	Test	Point	Check	InfrastructureEDK	II	Minimum	Platform	Specification[DRAFT]

124DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Appendix	C	Advanced	Configuration	and	Power
Interface	(ACPI)	Overview
This	section	documents	the	layout	and	implementation	guidelines	of	the	ACPI	tables	generated	for	the
platform.	The	implementation	guidelines	for	ACPI	code	will	focus	on	coding	practices	for	ASL	irrespective
of	platform	code	details.

Appendix	C	ACPIEDK	II	Minimum	Platform	Specification[DRAFT]

125DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

C.1	Layout
ACPI	tables	will	be	organized	into	a	set	of	mandatory	tables	defined	in	this	section	and	optional	tables
provided	in	the	form	of	an	SSDT.

C.1.1	Mandatory	Tables
The	mandatory	tables	are	composed	of	the	minimum	set	of	tables	required	to	boot	an	ACPI	compliant
OS.	These	tables	are	intended	to	be	present	in	Stage	IV	and	later	stages.	The	contents	of	these	tables
might	differ	based	on	build	stage,	it	is	described	in	the	Table	Contents	sub-section.

The	following	tables	fall	under	the	mandatory	tables	list:

1.	 RSDP
2.	 RSDT/XSDT
3.	 FADT/FACS
4.	 DSDT
5.	 MADT
6.	 MCFG
7.	 HPET

C.1	LayoutEDK	II	Minimum	Platform	Specification[DRAFT]

126DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

C.2	ACPI	Table	Contents
There	are	three	types	of	tables	supported.	Standard	Static	Tables,	Differentiated	System	Description
Table	(DSDT),	Secondary	System	Description	Table	(SSDT).	The	standard	static	tables	have	a	defined
structure	in	the	ACPI	specification.	The	contents	of	the	DSDT	and	SSDT	are	described	in	this
specification.

C.2.1	DSDT	Contents
DSDT	is	a	mandatory	fixed	table	that	is	pointed	to	by	the	FADT	(Fixed	ACPI	Description	Table).

C.2.1.1	Stage	IV	Build
Stage	IV	is	intended	to	have	the	minimum	configuration	to	boot	a	platform	with	basic	features	and
minimal	set	of	devices	enabled.	Similarly	ACPI	implementation	should	have	a	minimal	framework
implemented	for	ACPI	compliant	OS.

The	DSDT	in	this	case	should	have	a	root	and	system	bus	defined.	In	addition	to	that,	the	DSDT	will	have
device	scopes	for	all	the	devices	present	in	the	minimum	platform	required	packages	(Section	8.1.1).

C.2.1.2	Stage	VI	Build
In	this	case,	DSDT	will	include	the	following	Device	scopes	and	objects:

1.	 Device	scopes	for	all	PCI	devices	that	need	an	ACPI	component
2.	 Global	NVS	area	region	defined
3.	 Interrupt	routing	(_PRT	method)

C.2	ACPI	Table	ContentsEDK	II	Minimum	Platform	Specification[DRAFT]

127DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

C.3	ACPI	Device	Categorization
ACPI	device	description	tables	such	as	DSDT	and	SSDT	are	comprised	of	device	scopes	and	methods
that	define	the	capabilities	and	resources	of	an	ACPI	device.	For	scalability	purposes,	the	ACPI	devices
are	categorized	in	a	manner	that	they	can	be	easily	plugged	in	and	out	of	UEFI	FW.

C.3.1	Silicon	Specific	Devices
These	devices	are	silicon	specific	and	are	assumed	to	not	change	with	different	SKUs	and	stepping	of
the	silicon.	These	devices	will	become	part	of	DSDT	as	it	is	a	mandatory	table	containing	the	fixed
devices	for	the	systems.

The	number	of	silicon	devices	present	in	the	DSDT	will	be	decided	by	the	scope	of	minimum	and	full
build.

C.3.2	SKU	Specific	Devices
These	devices	are	SKU	specific	and	are	assumed	to	change	based	on	various	SKUs.	They	are
considered	to	be	dynamic	as	they	can	be	enabled/disabled/modified	based	on	setup	knobs	or
softstraps	etc.

Because	of	their	dynamic	nature,	these	devices	are	added	in	the	Platform	SSDT.	Every	SKU	will	have	a
unique	Platform	SSDT	installed.	It	will	only	contain	devices	present	on	that	platform.

C.3.3	Board	Specific	Devices
These	devices	are	board	specific	and	are	assumed	to	change	based	on	the	various	board	SKUs.	These
devices	will	also	become	part	of	SSDTs.	These	devices	can	have	an	SSDT	of	their	own	or	get	added	to
the	platform	SSDT	depending	on	their	availability	on	multiple	SKUs.	A	fairly	common	board	device	will	be
added	to	the	platform	SSDT	and	the	other	devices	can	have	a	SSDT	of	their	own.

C.3.4	Feature	Specific	Devices/Methods
These	devices	or	methods	are	optional	as	they	are	exposed	to	handle	certain	advanced	features.	They
will	be	added	to	DSDT	or	SSDT	depending	on	the	device	they	are	being	added	for.	For	example	a	special
DSM	(device	specific	method)	is	to	be	added	for	an	Audio	codec,	then	it	will	fall	under	the
Platform/Board	SSDT.

C.3	ACPI	Device	CategorizationEDK	II	Minimum	Platform	Specification[DRAFT]

128DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

C.4	Flow	Diagrams
This	section	describes	the	flow	for	table	integration	and	installing	during	boot.	Device	nodes	will	be
generated	and	added	to	DSDT	or	SSDT	by	the	device	modules.	Once	the	DSDT	and	SSDT	are	complete,
they	will	be	installed	and	published	by	the	ACPI	DXE	driver.

Figure	12	ACPI	Platform	Flow

C.4	Flow	DiagramsEDK	II	Minimum	Platform	Specification[DRAFT]

129DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

C.4	Flow	DiagramsEDK	II	Minimum	Platform	Specification[DRAFT]

130DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

Appendix	D	Interface	Definitions	Overview
This	section	contains	interface	definitions	defined	in	the	Minimum	Platform	architecture.

Appendix	D	Interface	DefinitionsEDK	II	Minimum	Platform	Specification[DRAFT]

131DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

D.1	Required	Functions

D.1.1	BoardPorting.SEC

D.1.1.1	ResetHandler	(*)

;	For	IA32,	the	reset	vector	must	be	at	0xFFFFFFF0,	i.e.,	4G-16	byte

;	Execution	starts	here	upon	power-on/platform-reset.

;

ResetHandler:

				nop

				nop

ApStartup:

				;

				;	Jmp	Rel16	instruction

				;	Use	machine	code	directly	in	case	of	the	assembler	optimization

				;	SEC	entry	point	relative	address	will	be	fixed	up	by	some	build	tool.

				;

				;	Typically,	SEC	entry	point	is	the	function	_ModuleEntryPoint()	defined	in

				;	SecEntry.asm

				;

				DB						0e9h

				DW						-3

D.1.2	BoardPorting.PEI

D.1.2.1	ReportPreMemFv

VOID

ReportPreMemFv	(

		VOID

);

D.1.2.2	BoardDetect

EFI_STATUS

EFIAPI

BoardDetect	(

		VOID

);

D.1.2.3	BoardDebugInit

EFI_STATUS

EFIAPI

BoardDebugInit	(

		VOID

);

D.1.2.4	PlatformHookSerialPortInitialize

/**

		Performs	platform	specific	initialization	required	for	the	CPU	to	access

		the	hardware	associated	with	a	SerialPortLib	instance.		This	function	does

		not	initialize	the	serial	port	hardware	itself.		Instead,	it	initializes

		hardware	devices	that	are	required	for	the	CPU	to	access	the	serial	port

		hardware.		This	function	may	be	called	more	than	once.

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

132DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		@retval	RETURN_SUCCESS							The	platform	specific	initialization	succeeded.

		@retval	RETURN_DEVICE_ERROR		The	platform	specific	initialization	could	not	be	completed.

**/

RETURN_STATUS

EFIAPI

PlatformHookSerialPortInitialize	(

		VOID

);

D.1.2.5	BoardBootModeDetect

EFI_BOOT_MODE

EFIAPI

BoardBootModeDetect	(

		VOID

);

D.1.2.6	BoardInitBeforeMemoryInit

EFI_STATUS

EFIAPI

BoardInitBeforeMemoryInit	(

		VOID

);

D.1.2.7	SiliconPolicyUpdatePreMemory

/**

		Performs	silicon	pre-memory	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDonePreMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspmUpd.

		A	platform	may	use	this	API	to	update	the	FSPM	UPD	policy	initialized

		by	the	silicon	module	or	the	default	UPD	data.

		The	output	of	FSPM	UPD	data	from	this	API	is	the	final	UPD	data.

		2)	In	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdatePreMemory	(

		IN	OUT	VOID	*Policy

);

D.1.2.8	ReportPostMemFv

VOID

ReportPostMemFv	(

		VOID

);

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

133DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

D.1.2.9	BoardInitAfterMemoryInit

EFI_STATUS

EFIAPI

BoardInitAfterMemoryInit	(

		VOID

);

D.1.2.10	SetCacheMtrrAfterMemoryDiscovered
TODO:	Add	prototype

D.1.2.11	BoardInitBeforeSiliconInit

EFI_STATUS

EFIAPI

BoardInitBeforeSiliconInit	(

		VOID

);

D.1.2.12	SiliconPolicyUpdatePostMemory

/**

		Performs	silicon	post-memory	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDonePostMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspsUpd.

		A	platform	may	use	this	API	to	update	the	FSPS	UPD	policy	initialized

		by	the	silicon	module	or	the	default	UPD	data.

		The	output	of	FSPS	UPD	data	from	this	API	is	the	final	UPD	data.

		2)	In	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdatePostMemory	(

		IN	OUT	VOID	*Policy

);

D.1.2.13	BoardInitAfterSiliconInit

EFI_STATUS

EFIAPI

BoardInitAfterSiliconInit	(

		VOID

);

D.1.2.14	SetCacheMtrrAfterEndOfPei

/**

		Update	MTRR	setting	and	set	write	back	as	default	memory	attribute.

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

134DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		@retval		EFI_SUCCESS		The	function	completes	successfully.

		@retval		Others							Some	error	occurs.

**/

EFI_STATUS

EFIAPI

SetCacheMtrrAfterEndOfPei	(

		VOID

)

D.1.3	BoardPorting.DXE

D.1.3.1	SiliconPolicyUpdateLate

/**

		Performs	silicon	late	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	Protocol,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDoneLate().

		In	FSP	or	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdateLate	(

		IN	OUT	VOID	*Policy

);

D.1.3.2	PlatformBootManagerBeforeConsole	(*)

/**

		Do	the	platform	specific	action	before	the	console	is	connected.

		Such	as:

				Update	console	variable;

				Register	new	Driver####	or	Boot####;

				Signal	ReadyToLock	event.

**/

VOID

EFIAPI

PlatformBootManagerBeforeConsole	(

		VOID

);

D.1.3.3	BoardInitAfterPciEnumeration

EFI_STATUS

EFIAPI

BoardInitAfterPciEnumeration	(

		VOID

);

D.1.3.4	PlatformBootManagerAfterConsole(*)

/**

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

135DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		Do	the	platform	specific	action	after	the	console	is	connected.

		Such	as:

				Dynamically	switch	output	mode;

				Signal	console	ready	platform	customized	event;

				Run	diagnostics	like	memory	testing;

				Connect	certain	devices;

				Dispatch	additional	option	roms.

**/

VOID

EFIAPI

PlatformBootManagerAfterConsole	(

		VOID

);

D.1.3.5	BoardInitReadyToBoot

EFI_STATUS

EFIAPI

BoardInitReadyToBoot	(

		VOID

);

D.1.3.6	PlatformCreateAcpiTable

TODO:	Add	prototype

D.1.3.7	PlatformUpdateAcpiTable

TODO:	Add	prototype

D.1.3.8	PlatformInstallAcpiTable

TODO:	Add	prototype

D.1.3.9	BoardInitEndOfFirmware

EFI_STATUS

EFIAPI

BoardInitEndOfFirmware	(

		VOID

);

D.1.4	BoardPorting.SMM
D.1.4.1	BoardEnableAcpiCallback

TODO:	Add	prototype

D.1.5	SiliconPorting.SEC
D.1.5.1	TempRamInit

TODO:	Add	prototype

D.1.6	SiliconPorting.PEI

D.1.6.1	SiliconPolicyInitPreMemory

/**

		Performs	silicon	pre-memory	policy	initialization.

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

136DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDonePreMemory(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspmUpd.

		Value	of	FspmUpd	has	been	initialized	by	FSP	binary	default	value.

		Only	a	subset	of	FspmUpd	needs	to	be	updated	for	different	silicon	sku.

		The	return	data	is	same	FspmUpd.

		2)	In	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitPreMemory	(

		IN	OUT	VOID	*Policy	OPTIONAL

);

D.1.6.2	SiliconPolicyDonePreMemory

/*

		The	silicon	pre-memory	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitPreMemory().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

RETURN_STATUS

EFIAPI

SiliconPolicyDonePreMemory	(

		IN	VOID	*Policy

);

D.1.6.3	MemoryInit

/**

		This	function

				1.	Calling	MRC	to	initialize	memory.

				2.	Install	EFI	Memory.

				3.	Capsule	coalesce	if	capsule	boot	mode.

				4.	Create	HOB	of	system	memory.

		@param		PeiServices	Pointer	to	the	PEI	Service	Table

		@retval	EFI_SUCCESS	If	it	completes	successfully.

**/

EFI_STATUS

MemoryInit	(

		IN	EFI_PEI_SERVICES										**PeiServices

);

D.1.6.4	SiliconPolicyInitPostMemory

/**

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

137DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		Performs	silicon	post-memory	policy	initialization.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDonePostMemory(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspsUpd.

		Value	of	FspsUpd	has	been	initialized	by	FSP	binary	default	value.

		Only	a	subset	of	FspsUpd	needs	to	be	updated	for	different	silicon	sku.

		The	return	data	is	same	FspsUpd.

		2)	In	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitPostMemory	(

		IN	OUT	VOID	*Policy	OPTIONAL

);

D.1.6.5	SiliconPolicyDonePostMemory

/*

		The	silicon	post-mem	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitPostMemory().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

RETURN_STATUS

EFIAPI

SiliconPolicyDonePostMemory	(

		IN	VOID	*Policy

);

D.1.6.6	SiliconInit

TODO:	Add	prototype

D.1.7	SiliconPorting.DXE

D.1.7.1	SiliconPolicyInitLate

/**

		Performs	silicon	late	policy	initialization.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	protocol,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDoneLate(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().

		In	FSP	or	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

138DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitLate	(

		IN	OUT	VOID	*Policy

);

D.1.7.2	SiliconPolicyDoneLate

/*

		The	silicon	late	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitLate().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

RETURN_STATUS

EFIAPI

SiliconPolicyDoneLate	(

		IN	VOID	*Policy

);

D.1.7.3	SiliconInitAfterPciEnumeration

TODO:	Add	prototype

D.1.8	SiliconPorting.SMM

D.1.8.1	PchSmmCoreDispatcher

/**

		The	callback	function	to	handle	subsequent	SMIs.		This	callback	will	be	called	by	SmmCoreDispatcher.

		@param[in]	SmmImageHandle													Not	used

		@param[in]	PchSmmCore																	Not	used

		@param[in,	out]	CommunicationBuffer			Not	used

		@param[in,	out]	SourceSize												Not	used

		@retval	EFI_SUCCESS																			Function	successfully	completed

**/

EFI_STATUS

EFIAPI

PchSmmCoreDispatcher	(

		IN							EFI_HANDLE									SmmImageHandle,

		IN	CONST	VOID															*PchSmmCore,

		IN	OUT			VOID															*CommunicationBuffer,

		IN	OUT			UINTN														*SourceSize

);

D.1.9	Test.DXE

D.1.9.1	ExitPmAuth

VOID

ExitPmAuth	(

		VOID

);

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

139DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

D.1.10	Debug.SEC

D.1.10.1	SecStartup	(*)

/**

		Entry	point	to	the	C	language	phase	of	SEC.	After	the	SEC	assembly

		code	has	initialized	some	temporary	memory	and	set	up	the	stack,

		the	control	is	transferred	to	this	function.

		@param	SizeOfRam											Size	of	the	temporary	memory	available	for	use.

		@param	TempRamBase									Base	address	of	temporary	ram

		@param	BootFirmwareVolume		Base	address	of	the	Boot	Firmware	Volume.

**/

VOID

EFIAPI

SecStartup	(

		IN	UINT32																			SizeOfRam,

		IN	UINT32																			TempRamBase,

		IN	VOID																					*BootFirmwareVolume

);

D.1.10.2	SecStartupPhase2	(*)

/**

		Caller	provided	function	to	be	invoked	at	the	end	of	InitializeDebugAgent().

		Entry	point	to	the	C	language	phase	of	SEC.	After	the	SEC	assembly

		code	has	initialized	some	temporary	memory	and	set	up	the	stack,

		the	control	is	transferred	to	this	function.

		@param[in]	Context				The	first	input	parameter	of	InitializeDebugAgent().

**/

VOID

NORETURN

EFIAPI

SecStartupPhase2	(

		IN	VOID																					*Context

);

D.1.11	Debug.PEI

D.1.11.1	PeiCore	(*)

/**

		This	routine	is	invoked	by	main	entry	of	PeiMain	module	during	transition

		from	SEC	to	PEI.	After	switching	stack	in	the	PEI	core,	it	will	restart

		with	the	old	core	data.

		@param	SecCoreDataPtr		Points	to	a	data	structure	containing	information	about	the	PEI	core's	operating

																									environment,	such	as	the	size	and	location	of	temporary	RAM,	the	stack	location	and

																									the	BFV	location.

		@param	PpiList									Points	to	a	list	of	one	or	more	PPI	descriptors	to	be	installed	initially	by	the	PEI	core.

																									An	empty	PPI	list	consists	of	a	single	descriptor	with	the	end-tag

																									EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST.	As	part	of	its	initialization

																									phase,	the	PEI	Foundation	will	add	these	SEC-hosted	PPIs	to	its	PPI	database	such

																									that	both	the	PEI	Foundation	and	any	modules	can	leverage	the	associated	service

																									calls	and/or	code	in	these	early	PPIs

		@param	Data												Pointer	to	old	core	data	that	is	used	to	initialize	the

																									core's	data	areas.

																									If	NULL,	it	is	first	PeiCore	entering.

**/

VOID

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

140DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]

EFIAPI

PeiCore	(

		IN	CONST	EFI_SEC_PEI_HAND_OFF								*SecCoreDataPtr,

		IN	CONST	EFI_PEI_PPI_DESCRIPTOR						*PpiList,

		IN	VOID																														*Data

);

D.1.11.2	PeiDispatcher	(*)

/**

		Conduct	PEIM	dispatch.

		@param	SecCoreData					Pointer	to	the	data	structure	containing	SEC	to	PEI	handoff	data

		@param	PrivateData					Pointer	to	the	private	data	passed	in	from	caller

**/

VOID

PeiDispatcher	(

		IN	CONST	EFI_SEC_PEI_HAND_OFF		*SecCoreData,

		IN	PEI_CORE_INSTANCE											*PrivateData

);

D.1.11.3	SecTemporaryRamDone(*)

/**

		TemporaryRamDone()	disables	the	use	of	Temporary	RAM.	If	present,	this	service	is	invoked

		by	the	PEI	Foundation	after	the	EFI_PEI_PERMANANT_MEMORY_INSTALLED_PPI	is	installed.

		@retval	EFI_SUCCESS											Use	of	Temporary	RAM	was	disabled.

		@retval	EFI_INVALID_PARAMETER	Temporary	RAM	could	not	be	disabled.

**/

EFI_STATUS

EFIAPI

SecTemporaryRamDone	(

		VOID

);

D.1.11.4	DxeLoadCore	(*)

/**

			Main	entry	point	to	last	PEIM

			@param	This										Entry	point	for	DXE	IPL	PPI

			@param	PeiServices			General	purpose	services	available	to	every	PEIM.

			@param	HobList							Address	to	the	Pei	HOB	list

			@return	EFI_SUCCESS														DXE	core	was	successfully	loaded.

			@return	EFI_OUT_OF_RESOURCES					There	are	not	enough	resources	to	load	DXE	core.

**/

EFI_STATUS

EFIAPI

DxeLoadCore	(

		IN	CONST	EFI_DXE_IPL_PPI	*This,

		IN	EFI_PEI_SERVICES						**PeiServices,

		IN	EFI_PEI_HOB_POINTERS		HobList

);

D.1.12	Debug.DXE

####	D.1.12.1	DxeMain	(*)

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

141DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]


```c

/**

		Main	entry	point	to	DXE	Core.

		@param		HobStart															Pointer	to	the	beginning	of	the	HOB	List	from	PEI.

		@return	This	function	should	never	return.

**/

VOID

EFIAPI

DxeMain	(

		IN		VOID	*HobStart

		);

D.1.12.2	CoreStartImage	(*)

/**

		Transfer	control	to	a	loaded	image's	entry	point.

		@param		ImageHandle													Handle	of	image	to	be	started.

		@param		ExitDataSize												Pointer	of	the	size	to	ExitData

		@param		ExitData																Pointer	to	a	pointer	to	a	data	buffer	that

																																		includes	a	Null-terminated	string,

																																		optionally	followed	by	additional	binary	data.

																																		The	string	is	a	description	that	the	caller	may

																																		use	to	further	indicate	the	reason	for	the

																																		image's	exit.

		@retval	EFI_INVALID_PARAMETER			Invalid	parameter

		@retval	EFI_OUT_OF_RESOURCES				No	enough	buffer	to	allocate

		@retval	EFI_SECURITY_VIOLATION		The	current	platform	policy	specifies	that	the	image	should	not	be	started.

		@retval	EFI_SUCCESS													Successfully	transfer	control	to	the	image's

																																		entry	point.

**/

EFI_STATUS

EFIAPI

CoreStartImage	(

		IN	EFI_HANDLE		ImageHandle,

		OUT	UINTN						*ExitDataSize,

		OUT	CHAR16					**ExitData		OPTIONAL

		);

D.1.12.3	CoreAllEfiServicesAvailable	(*)

/**

		Return	TRUE	if	all	AP	services	are	available.

		@retval	EFI_SUCCESS				All	AP	services	are	available

		@retval	EFI_NOT_FOUND		At	least	one	AP	service	is	not	available

**/

EFI_STATUS

CoreAllEfiServicesAvailable	(

		VOID

		);

D.1.12.4	BdsEntry	(*)

/**

		Service	routine	for	BdsInstance->Entry().	Devices	are	connected,	the

		consoles	are	initialized,	and	the	boot	options	are	tried.

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

142DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		@param	This												Protocol	Instance	structure.

**/

VOID

EFIAPI

BdsEntry	(

		IN		EFI_BDS_ARCH_PROTOCOL	*This

		);

IN	EFI_BDS_ARCH_PROTOCOL	``*This

	);	

D.1.12.5	EfiBootManagerDispatchDeferredImages	(*)

/**

		Dispatch	the	deferred	images	that	are	returned	from	all	DeferredImageLoad	instances.

		@retval	EFI_SUCCESS							At	least	one	deferred	image	is	loaded	successfully	and	started.

		@retval	EFI_NOT_FOUND					There	is	no	deferred	image.

		@retval	EFI_ACCESS_DENIED	There	are	deferred	images	but	all	of	them	are	failed	to	load.

**/

EFI_STATUS

EFIAPI

EfiBootManagerDispatchDeferredImages	(

		VOID

		);

D.1.12.6	BootBootOptions(*)

/**

		Attempt	to	boot	each	boot	option	in	the	BootOptions	array.

		@param	BootOptions							Input	boot	option	array.

		@param	BootOptionCount			Input	boot	option	count.

		@param	BootManagerMenu			Input	boot	manager	menu.

		@retval	TRUE		Successfully	boot	one	of	the	boot	options.

		@retval	FALSE	Failed	boot	any	of	the	boot	options.

**/

BOOLEAN

BootBootOptions	(

		IN	EFI_BOOT_MANAGER_LOAD_OPTION				*BootOptions,

		IN	UINTN																											BootOptionCount,

		IN	EFI_BOOT_MANAGER_LOAD_OPTION				*BootManagerMenu	OPTIONAL

		);

D.1.12.7	EfiSignalEventReadyToBoot	(*)

/**

		Create,	Signal,	and	Close	the	Ready	to	Boot	event	using	EfiSignalEventReadyToBoot().

		This	function	abstracts	the	signaling	of	the	Ready	to	Boot	Event.	The	Framework	moved

		from	a	proprietary	to	UEFI	2.0	based	mechanism.	This	library	abstracts	the	caller

		from	how	this	event	is	created	to	prevent	to	code	form	having	to	change	with	the

		version	of	the	specification	supported.

**/

VOID

EFIAPI

EfiSignalEventReadyToBoot	(

		VOID

		);

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

143DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



D.1.12.8	UefiMain	(*)

/**

		The	entry	point	for	the	application.

		@param[in]	ImageHandle				The	firmware	allocated	handle	for	the	EFI	image.

		@param[in]	SystemTable				A	pointer	to	the	EFI	System	Table.

		@retval	EFI_SUCCESS							The	entry	point	is	executed	successfully.

		@retval	other													Some	error	occurs	when	executing	this	entry	point.

**/

EFI_STATUS

EFIAPI

UefiMain	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

		);

D.1.12.9	CoreExitBootServices	(*)

/**

		Terminates	all	boot	services.

		@param		ImageHandle												Handle	that	identifies	the	exiting	image.

		@param		MapKey																	Key	to	the	latest	memory	map.

		@retval	EFI_SUCCESS												Boot	Services	terminated

		@retval	EFI_INVALID_PARAMETER		MapKey	is	incorrect.

**/

EFI_STATUS

EFIAPI

CoreExitBootServices	(

		IN	EFI_HANDLE			ImageHandle,

		IN	UINTN								MapKey

		);

D.1.12.10	RuntimeDriverSetVirtualAddressMap	(*)

/**

		Changes	the	runtime	addressing	mode	of	EFI	firmware	from	physical	to	virtual.

		@param		MemoryMapSize			The	size	in	bytes	of	VirtualMap.

		@param		DescriptorSize		The	size	in	bytes	of	an	entry	in	the	VirtualMap.

		@param		DescriptorVersion	The	version	of	the	structure	entries	in	VirtualMap.

		@param		VirtualMap						An	array	of	memory	descriptors	which	contain	new	virtual

																									address	mapping	information	for	all	runtime	ranges.

		@retval		EFI_SUCCESS												The	virtual	address	map	has	been	applied.

		@retval		EFI_UNSUPPORTED								EFI	firmware	is	not	at	runtime,	or	the	EFI	firmware	is	already	in

																																		virtual	address	mapped	mode.

		@retval		EFI_INVALID_PARAMETER		DescriptorSize	or	DescriptorVersion	is	invalid.

		@retval		EFI_NO_MAPPING									A	virtual	address	was	not	supplied	for	a	range	in	the	memory

																																		map	that	requires	a	mapping.

		@retval		EFI_NOT_FOUND										A	virtual	address	was	supplied	for	an	address	that	is	not	found

																																		in	the	memory	map.

**/

EFI_STATUS

EFIAPI

RuntimeDriverSetVirtualAddressMap	(

		IN	UINTN																		MemoryMapSize,

		IN	UINTN																		DescriptorSize,

		IN	UINT32																	DescriptorVersion,

		IN	EFI_MEMORY_DESCRIPTOR		*VirtualMap

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

144DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		);

D.1.13	Debug.SMM

D.1.13.1	SmmIplEntry	(*)

/**

		The	Entry	Point	for	SMM	IPL

		Load	SMM	Core	into	SMRAM,	register	SMM	Core	entry	point	for	SMIs,	install

		SMM	Base	2	Protocol	and	SMM	Communication	Protocol,	and	register	for	the

		critical	events	required	to	coordinate	between	DXE	and	SMM	environments.

		@param		ImageHandle				The	firmware	allocated	handle	for	the	EFI	image.

		@param		SystemTable				A	pointer	to	the	EFI	System	Table.

		@retval	EFI_SUCCESS				The	entry	point	is	executed	successfully.

		@retval	Other										Some	error	occurred	when	executing	this	entry	point.

**/

EFI_STATUS

EFIAPI

SmmIplEntry	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

		);

D.1.D.1	SmmMain	(*)

/**

		The	Entry	Point	for	SMM	Core

		Install	DXE	Protocols	and	reload	SMM	Core	into	SMRAM	and	register	SMM	Core

		EntryPoint	on	the	SMI	vector.

		Note:	This	function	is	called	for	both	DXE	invocation	and	SMRAM	invocation.

		@param		ImageHandle				The	firmware	allocated	handle	for	the	EFI	image.

		@param		SystemTable				A	pointer	to	the	EFI	System	Table.

		@retval	EFI_SUCCESS				The	entry	point	is	executed	successfully.

		@retval	Other										Some	error	occurred	when	executing	this	entry	point.

**/

EFI_STATUS

EFIAPI

SmmMain	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

		);

D.1.13.3	PiCpuSmmEntry	(*)

/**

		The	module	Entry	Point	of	the	CPU	SMM	driver.

		@param		ImageHandle				The	firmware	allocated	handle	for	the	EFI	image.

		@param		SystemTable				A	pointer	to	the	EFI	System	Table.

		@retval	EFI_SUCCESS				The	entry	point	is	executed	successfully.

		@retval	Other										Some	error	occurs	when	executing	this	entry	point.

**/

EFI_STATUS

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

145DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



EFIAPI

PiCpuSmmEntry	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

		);

D.1.13.4	SmmRelocateBases	(*)

/**

		Relocate	SmmBases	for	each	processor.

		Execute	on	first	boot	and	all	S3	resumes

**/

VOID

EFIAPI

SmmRelocateBases	(

		VOID

		);

D.1.13.5	_SmiEntryPoint	(*)
TODO:	Add	prototype

D.1.13.6	SmmEntryPoint	(*)

/**

		The	main	entry	point	to	SMM	Foundation.

		Note:	This	function	is	only	used	by	SMRAM	invocation.		It	is	never	used	by	DXE	invocation.

		@param		SmmEntryContext											Processor	information	and	functionality

																																				needed	by	SMM	Foundation.

**/

VOID

EFIAPI

SmmEntryPoint	(

		IN	CONST	EFI_SMM_ENTRY_CONTEXT		*SmmEntryContext

		);

D.1.13.7	PlatformEnableAcpiCallback
TODO:	Add	prototype

D.1	Required	FunctionsEDK	II	Minimum	Platform	Specification[DRAFT]

146DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



D.2	BoardInit

D.2.1	BoardInitSupportLib

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_BOARD_INIT_LIB_H_

#define	_BOARD_INIT_LIB_H_

#include	<PiPei.h>

#include	<Uefi.h>

EFI_STATUS

EFIAPI

BoardDetect	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardDebugInit	(

		VOID

		);

EFI_BOOT_MODE

EFIAPI

BoardBootModeDetect	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitBeforeMemoryInit	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitAfterMemoryInit	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitBeforeTempRamExit	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitAfterTempRamExit	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitBeforeSiliconInit	(

D.2	BoardInitEDK	II	Minimum	Platform	Specification[DRAFT]

147DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		VOID

		);

EFI_STATUS

EFIAPI

BoardInitAfterSiliconInit	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitAfterPciEnumeration	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitReadyToBoot	(

		VOID

		);

EFI_STATUS

EFIAPI

BoardInitEndOfFirmware	(

		VOID

		);

#endif

D.2.2	MultiBoardInitSupportLib

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_MULTI_BOARD_INIT_SUPPORT_LIB_H_

#define	_MULTI_BOARD_INIT_SUPPORT_LIB_H_

#include	<Library/BoardInitLib.h>

typedef

EFI_STATUS

(EFIAPI	*BOARD_DETECT)	(

		VOID

		);

typedef

EFI_STATUS

(EFIAPI	*BOARD_INIT)	(

		VOID

		);

typedef

EFI_BOOT_MODE

(EFIAPI	*BOARD_BOOT_MODE_DETECT)	(

		VOID

		);

typedef	struct	{

		BOARD_DETECT		BoardDetect;

}	BOARD_DETECT_FUNC;

D.2	BoardInitEDK	II	Minimum	Platform	Specification[DRAFT]

148DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



typedef	struct	{

		BOARD_INIT														BoardDebugInit;

		BOARD_BOOT_MODE_DETECT		BoardBootModeDetect;

		BOARD_INIT														BoardInitBeforeMemoryInit;

		BOARD_INIT														BoardInitAfterMemoryInit;

		BOARD_INIT														BoardInitBeforeTempRamExit;

		BOARD_INIT														BoardInitAfterTempRamExit;

}	BOARD_PRE_MEM_INIT_FUNC;

typedef	struct	{

		BOARD_INIT														BoardInitBeforeSiliconInit;

		BOARD_INIT														BoardInitAfterSiliconInit;

}	BOARD_POST_MEM_INIT_FUNC;

typedef	struct	{

		BOARD_INIT														BoardInitAfterPciEnumeration;

		BOARD_INIT														BoardInitReadyToBoot;

		BOARD_INIT														BoardInitEndOfFirmware;

}	BOARD_NOTIFICATION_INIT_FUNC;

EFI_STATUS

EFIAPI

RegisterBoardDetect	(

		IN	BOARD_DETECT_FUNC		*BoardDetect

		);

EFI_STATUS

EFIAPI

RegisterBoardPreMemoryInit	(

		IN	BOARD_PRE_MEM_INIT_FUNC		*BoardPreMemoryInit

		);

EFI_STATUS

EFIAPI

RegisterBoardPostMemoryInit	(

		IN	BOARD_POST_MEM_INIT_FUNC		*BoardPostMemoryInit

		);

EFI_STATUS

EFIAPI

RegisterBoardNotificationInit	(

		IN	BOARD_NOTIFICATION_INIT_FUNC		*BoardNotificationInit

		);

#endif

D.2	BoardInitEDK	II	Minimum	Platform	Specification[DRAFT]

149DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



D.3	SiliconPolicyInit

D.3.1	SiliconPolicyInitLib
The	SiliconPolicyInitLib	provides	functions	that	silicon	code	initializes	the	default	policy.

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_SILICON_POLICY_INIT_LIB_H_

#define	_SILICON_POLICY_INIT_LIB_H_

/**

		Performs	silicon	pre-memory	policy	initialization.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDonePreMemory(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdatePreMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspmUpd.

		Value	of	FspmUpd	has	been	initialized	by	FSP	binary	default	value.

		Only	a	subset	of	FspmUpd	needs	to	be	updated	for	different	silicon	sku.

		The	return	data	is	same	FspmUpd.

		2)	In	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitPreMemory	(

		IN	OUT	VOID	*Policy	OPTIONAL

		);

/*

		The	silicon	pre-mem	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitPreMemory().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

RETURN_STATUS

EFIAPI

SiliconPolicyDonePreMemory	(

		IN	VOID	*Policy

		);

/**

		Performs	silicon	post-memory	policy	initialization.

D.3	SiliconPolicyInitEDK	II	Minimum	Platform	Specification[DRAFT]

150DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDonePostMemory(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdatePostMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspsUpd.

		Value	of	FspsUpd	has	been	initialized	by	FSP	binary	default	value.

		Only	a	subset	of	FspsUpd	needs	to	be	updated	for	different	silicon	sku.

		The	return	data	is	same	FspsUpd.

		2)	In	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitPostMemory	(

		IN	OUT	VOID	*Policy	OPTIONAL

		);

/*

		The	silicon	post-memory	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitPostMemory().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

RETURN_STATUS

EFIAPI

SiliconPolicyDonePostMemory	(

		IN	VOID	*Policy

		);

/**

		Performs	silicon	late	policy	initialization.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	protocol,	etc.

		The	returned	data	must	be	used	as	input	data	for	SiliconPolicyDoneLate(),

		and	SiliconPolicyUpdateLib.SiliconPolicyUpdateLate().

		In	FSP	or	non-FSP	path,	the	input	policy	could	be	NULL.

		The	return	data	is	the	initialized	policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	initialized	policy.

**/

VOID	*

EFIAPI

SiliconPolicyInitLate	(

		IN	OUT	VOID	*Policy	OPTIONAL

		);

/*

		The	silicon	late	policy	is	finalized.

		Silicon	code	can	do	initialization	based	upon	the	policy	data.

		The	input	Policy	must	be	returned	by	SiliconPolicyInitLate().

		@param[in]	Policy							Pointer	to	policy.

		@retval	RETURN_SUCCESS	The	policy	is	handled	consumed	by	silicon	code.

*/

D.3	SiliconPolicyInitEDK	II	Minimum	Platform	Specification[DRAFT]

151DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



RETURN_STATUS

EFIAPI

SiliconPolicyDoneLate	(

		IN	VOID	*Policy

		);

#endif

D.3.2	SiliconPolicyUpdateLib
The	SiliconPolicyUpdateLib	provides	functions	that	board	code	overrides	the	default	policy.

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_SILICON_POLICY_UPDATE_LIB_H_

#define	_SILICON_POLICY_UPDATE_LIB_H_

/**

		Performs	silicon	pre-memory	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDonePreMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspmUpd.

		A	platform	may	use	this	API	to	update	the	FSPM	UPD	policy	initialized

		by	the	silicon	module	or	the	default	UPD	data.

		The	output	of	FSPM	UPD	data	from	this	API	is	the	final	UPD	data.

		2)	In	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdatePreMemory	(

		IN	OUT	VOID	*Policy

		);

/**

		Performs	silicon	post-memory	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	PPI,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDonePostMemory().

		1)	In	FSP	path,	the	input	Policy	should	be	FspsUpd.

		A	platform	may	use	this	API	to	update	the	FSPS	UPD	policy	initialized

		by	the	silicon	module	or	the	default	UPD	data.

		The	output	of	FSPS	UPD	data	from	this	API	is	the	final	UPD	data.

		2)	In	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

D.3	SiliconPolicyInitEDK	II	Minimum	Platform	Specification[DRAFT]

152DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdatePostMemory	(

		IN	OUT	VOID	*Policy

		);

/**

		Performs	silicon	late	policy	update.

		The	meaning	of	Policy	is	defined	by	silicon	code.

		It	could	be	the	raw	data,	a	handle,	a	Protocol,	etc.

		The	input	Policy	must	be	returned	by	SiliconPolicyDoneLate().

		In	FSP	or	non-FSP	path,	the	board	may	use	additional	way	to	get

		the	silicon	policy	data	field	based	upon	the	input	Policy.

		@param[in,	out]	Policy							Pointer	to	policy.

		@return	the	updated	policy.

**/

VOID	*

EFIAPI

SiliconPolicyUpdateLate	(

		IN	OUT	VOID	*Policy

		);

#endif

D.3	SiliconPolicyInitEDK	II	Minimum	Platform	Specification[DRAFT]

153DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



D.4	TestPoint

D.4.1	TestPointLib
The	TestPointLib	provides	helper	functions	for	implementing	test	points.	This	library	is	optional.

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_TEST_POINT_LIB_H_

#define	_TEST_POINT_LIB_H_

#include	<PiPei.h>

#include	<Uefi.h>

//

//	Below	is	Test	Point	report	definition.

//

//

//	We	reuse	HSTI	stype	definition.

//	ADAPTER_INFO_PLATFORM_TEST_POINT	is	similar	to	ADAPTER_INFO_PLATFORM_SECURITY.

//

#define	PLATFORM_TEST_POINT_VERSION															0x00000001

#define	PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE	0x00000001

#define	PLATFORM_TEST_POINT_ROLE_PLATFORM_IBV							0x00000002

#define	PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_OEM				0x00000003

#define	PLATFORM_TEST_POINT_ROLE_IMPLEMENTOR_ODM				0x00000004

#define	TEST_POINT_FEATURES_ITEM_NUMBER	2

D.4.1.1	ADAPTER_INFO_PLATFORM_TEST_POINT

typedef	struct	{

		UINT32		Version;

		UINT32		Role;

		CHAR16		ImplementationID[256];

		UINT32		FeaturesSize;

//UINT8			FeaturesImplemented[];

//UINT8			FeaturesVerified[];

//CHAR16		ErrorString[];

}	ADAPTER_INFO_PLATFORM_TEST_POINT;

//

//	Below	is	test	point	report	library

//

D.4.1.2	TestPointLibSetTable

/**

		Publish	TestPoint	table	in	AIP	protocol.

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

154DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		One	system	should	have	only	one	PLATFORM_TEST_POINT_ROLE_PLATFORM_REFERENCE.

		@param	TestPoint						TestPoint	data

		@param	TestPointSize		TestPoint	size

		@retval	EFI_SUCCESS										The	TestPoint	data	is	published	in	AIP	protocol.

		@retval	EFI_ALREADY_STARTED		There	is	already	TestPoint	table	with	Role	and	ImplementationID	published	in	system.

		@retval	EFI_VOLUME_CORRUPTED	The	input	TestPoint	data	is	invalid.

		@retval	EFI_OUT_OF_RESOURCES	There	is	not	enough	system	resource	to	publish	TestPoint	data	in	AIP	protocol.

**/

EFI_STATUS

EFIAPI

TestPointLibSetTable	(

		IN	VOID																					*TestPoint,

		IN	UINTN																				TestPointSize

		);

D.4.1.3	TestPointLibGetTable

/**

		Search	TestPoint	table	in	AIP	protocol,	and	return	the	data.

		This	API	will	return	the	TestPoint	table	with	indicated	Role	and	ImplementationID,

		NULL	ImplementationID	means	to	find	the	first	TestPoint	table	with	indicated	Role.

		@param	Role													Role	of	TestPoint	data.

		@param	ImplementationID	ImplementationID	of	TestPoint	data.

																										NULL	means	find	the	first	one	match	Role.

		@param	TestPoint								TestPoint	data.	This	buffer	is	allocated	by	callee,	and	it

																										is	the	responsibility	of	the	caller	to	free	it	after

																										using	it.

		@param	TestPointSize				TestPoint	size

		@retval	EFI_SUCCESS										The	TestPoint	data	in	AIP	protocol	is	returned.

		@retval	EFI_NOT_FOUND								There	is	not	TestPoint	table	with	the	Role	and	ImplementationID	published	in	system.

**/

EFI_STATUS

EFIAPI

TestPointLibGetTable	(

		IN	UINT32																			Role,

		IN	CHAR16																			*ImplementationID	OPTIONAL,

		OUT	VOID																				**TestPoint,

		OUT	UINTN																			*TestPointSize

		);

D.4.1.4	TestPointLibSetFeaturesVerified

/**

		Set	FeaturesVerified	in	published	TestPoint	table.

		This	API	will	update	the	TestPoint	table	with	indicated	Role	and	ImplementationID,

		NULL	ImplementationID	means	to	find	the	first	TestPoint	table	with	indicated	Role.

		@param	Role													Role	of	TestPoint	data.

		@param	ImplementationID	ImplementationID	of	TestPoint	data.

																										NULL	means	find	the	first	one	match	Role.

		@param	ByteIndex								Byte	index	of	FeaturesVerified	of	TestPoint	data.

		@param	BitMask										Bit	mask	of	FeaturesVerified	of	TestPoint	data.

		@retval	EFI_SUCCESS										The	FeaturesVerified	of	TestPoint	data	updated	in	AIP	protocol.

		@retval	EFI_NOT_STARTED						There	is	not	TestPoint	table	with	the	Role	and	ImplementationID	published	in	system.

		@retval	EFI_UNSUPPORTED						The	ByteIndex	is	invalid.

**/

EFI_STATUS

EFIAPI

TestPointLibSetFeaturesVerified	(

		IN	UINT32																			Role,

		IN	CHAR16																			*ImplementationID,	OPTIONAL

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

155DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		IN	UINT32																			ByteIndex,

		IN	UINT8																				BitMask

		);

D.4.1.5	TestPointLibClearFeaturesVerified

/**

		Clear	FeaturesVerified	in	published	TestPoint	table.

		This	API	will	update	the	TestPoint	table	with	indicated	Role	and	ImplementationID,

		NULL	ImplementationID	means	to	find	the	first	TestPoint	table	with	indicated	Role.

		@param	Role													Role	of	TestPoint	data.

		@param	ImplementationID	ImplementationID	of	TestPoint	data.

																										NULL	means	find	the	first	one	match	Role.

		@param	ByteIndex								Byte	index	of	FeaturesVerified	of	TestPoint	data.

		@param	BitMask										Bit	mask	of	FeaturesVerified	of	TestPoint	data.

		@retval	EFI_SUCCESS										The	FeaturesVerified	of	TestPoint	data	updated	in	AIP	protocol.

		@retval	EFI_NOT_STARTED						There	is	not	TestPoint	table	with	the	Role	and	ImplementationID	published	in	system.

		@retval	EFI_UNSUPPORTED						The	ByteIndex	is	invalid.

**/

EFI_STATUS

EFIAPI

TestPointLibClearFeaturesVerified	(

		IN	UINT32																			Role,

		IN	CHAR16																			*ImplementationID,	OPTIONAL

		IN	UINT32																			ByteIndex,

		IN	UINT8																				BitMask

		);

D.4.1.6	TestPointLibAppendErrorString

/**

		Append	ErrorString	in	published	TestPoint	table.

		This	API	will	update	the	TestPoint	table	with	indicated	Role	and	ImplementationID,

		NULL	ImplementationID	means	to	find	the	first	TestPoint	table	with	indicated	Role.

		@param	Role													Role	of	TestPoint	data.

		@param	ImplementationID	ImplementationID	of	TestPoint	data.

																										NULL	means	find	the	first	one	match	Role.

		@param	ErrorString						ErrorString	of	TestPoint	data.

		@retval	EFI_SUCCESS										The	ErrorString	of	TestPoint	data	is	updated	in	AIP	protocol.

		@retval	EFI_NOT_STARTED						There	is	not	TestPoint	table	with	the	Role	and	ImplementationID	published	in	system.

		@retval	EFI_OUT_OF_RESOURCES	There	is	not	enough	system	resource	to	update	ErrorString.

**/

EFI_STATUS

EFIAPI

TestPointLibAppendErrorString	(

		IN	UINT32																			Role,

		IN	CHAR16																			*ImplementationID,	OPTIONAL

		IN	CHAR16																			*ErrorString

		);

D.4.1.7	TestPointLibSetErrorString

/**

		Set	a	new	ErrorString	in	published	TestPoint	table.

		This	API	will	update	the	TestPoint	table	with	indicated	Role	and	ImplementationID,

		NULL	ImplementationID	means	to	find	the	first	TestPoint	table	with	indicated	Role.

		@param	Role													Role	of	TestPoint	data.

		@param	ImplementationID	ImplementationID	of	TestPoint	data.

																										NULL	means	find	the	first	one	match	Role.

		@param	ErrorString						ErrorString	of	TestPoint	data.

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

156DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



		@retval	EFI_SUCCESS										The	ErrorString	of	TestPoint	data	is	updated	in	AIP	protocol.

		@retval	EFI_NOT_STARTED						There	is	not	TestPoint	table	with	the	Role	and	ImplementationID	published	in	system.

		@retval	EFI_OUT_OF_RESOURCES	There	is	not	enough	system	resource	to	update	ErrorString.

**/

EFI_STATUS

EFIAPI

TestPointLibSetErrorString	(

		IN	UINT32																			Role,

		IN	CHAR16																			*ImplementationID,	OPTIONAL

		IN	CHAR16																			*ErrorString

		);

//

//	TEST	POINT	SMM	Communication	command

//

#define	SMI_HANDLER_TEST_POINT_COMMAND_GET_INFO											0x1

#define	SMI_HANDLER_TEST_POINT_COMMAND_GET_DATA_BY_OFFSET	0x2

typedef	struct	{

		UINT32																												Command;

		UINT32																												DataLength;

		UINT64																												ReturnStatus;

}	SMI_HANDLER_TEST_POINT_PARAMETER_HEADER;

typedef	struct	{

		SMI_HANDLER_TEST_POINT_PARAMETER_HEADER				Header;

		UINT64																																					DataSize;

}	SMI_HANDLER_TEST_POINT_PARAMETER_GET_INFO;

typedef	struct	{

		SMI_HANDLER_TEST_POINT_PARAMETER_HEADER				Header;

		//

		//	On	input,	data	buffer	size.

		//	On	output,	actual	data	buffer	size	copied.

		//

		UINT64																																					DataSize;

		PHYSICAL_ADDRESS																											DataBuffer;

		//

		//	On	input,	data	buffer	offset	to	copy.

		//	On	output,	next	time	data	buffer	offset	to	copy.

		//

		UINT64																																					DataOffset;

}	SMI_HANDLER_TEST_POINT_PARAMETER_GET_DATA_BY_OFFSET;

extern	EFI_GUID	gAdapterInfoPlatformTestPointGuid;

#endif

D.4.2	TestPointCheckLib

/**	@file

Copyright	(c)	2017,	Intel	Corporation.	All	rights	reserved.<BR>

This	program	and	the	accompanying	materials	are	licensed	and	made	available	under

the	terms	and	conditions	of	the	BSD	License	that	accompanies	this	distribution.

The	full	text	of	the	license	may	be	found	at

http://opensource.org/licenses/bsd-license.php.

THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

**/

#ifndef	_TEST_POINT_CHECK_LIB_H_

#define	_TEST_POINT_CHECK_LIB_H_

#include	<PiPei.h>

#include	<Uefi.h>

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

157DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



D.4.2.1				Test	Point	Hook	Points

//

//	Below	is	Test	Point	Hook	Point.

//

//	Naming:	TestPoint<Phase/Event><Function>

//

//	Phase/Event(PEI)	=	MemoryDiscovered|EndOfPei

//	Phase/Event(DXE)	=	PciEnumerationDone|EndOfDxe|DxeSmmReadyToLock|ReadyToBoot

//	Phase/Event(SMM)	=	SmmEndOfDxe|SmmReadyToLock|SmmReadyToBoot

//

EFI_STATUS

EFIAPI

TestPointTempMemoryFunction	(

		IN	VOID			*TempRamStart,

		IN	VOID			*TempRamEnd

		);

EFI_STATUS

EFIAPI

TestPointDebugInitDone	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointMemoryDiscoveredMtrrFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointMemoryDiscoveredMemoryResourceFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointMemoryDiscoveredFvInfoFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointMemoryDiscoveredDmaProtectionEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfPeiSystemResourceFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfPeiMtrrFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfPeiPciBusMasterDisabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointPciEnumerationDonePciBusMasterDisabled	(

		VOID

		);

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

158DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



EFI_STATUS

EFIAPI

TestPointPciEnumerationDonePciResourceAllocated	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfDxeNoThirdPartyPciOptionRom	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfDxeDmaAcpiTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointEndOfDxeDmaProtectionEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointDxeSmmReadyToLockSmramAligned	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointDxeSmmReadyToLockWsmtTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointSmmReadyToBootSmmPageProtection	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootAcpiTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootGcdResourceFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootMemoryTypeInformationFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootUefiMemoryAttributeTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootUefiBootVariableFunctional	(

		VOID

		);

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

159DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



EFI_STATUS

EFIAPI

TestPointReadyToBootUefiConsoleVariableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootHstiTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootEsrtTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootUefiSecureBootEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootPiSignedFvBootEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootTcgTrustedBootEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointReadyToBootTcgMorEnabled	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointDxeSmmReadyToBootSmiHandlerInstrument	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointExitBootServices	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointSmmEndOfDxeSmrrFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointSmmReadyToLockSmmMemoryAttributeTableFunctional	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointSmmReadyToLockSecureSmmCommunicationBuffer	(

		VOID

		);

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

160DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



EFI_STATUS

EFIAPI

TestPointSmmReadyToBootSmmPageProtection	(

		VOID

		);

EFI_STATUS

EFIAPI

TestPointSmmExitBootServices	(

		VOID

		);

D.4.2.2	MinPlatformPkg	Macro	Definitions

//

//	Below	is	detail	definition	for	MinPlatform	implementation

//

#define	TEST_POINT_IMPLEMENTATION_ID_PLATFORM									L"Intel	MinPlatform	TestPoint"

#define	TEST_POINT_IMPLEMENTATION_ID_PLATFORM_PEI					TEST_POINT_IMPLEMENTATION_ID_PLATFORM	L"	(PEI)"

#define	TEST_POINT_IMPLEMENTATION_ID_PLATFORM_DXE					TEST_POINT_IMPLEMENTATION_ID_PLATFORM	L"	(DXE)"

#define	TEST_POINT_IMPLEMENTATION_ID_PLATFORM_SMM					TEST_POINT_IMPLEMENTATION_ID_PLATFORM	L"	(SMM)"

#define	TEST_POINT_FEATURE_SIZE											0x10

#define	TEST_POINT_ERROR																		L"Error	"

#define	TEST_POINT_PLATFORM_TEST_POINT				L"	Platform	TestPoint"

//	Byte	0	-	SEC/PEI

#define	TEST_POINT_TEMP_MEMORY_INIT_DONE		L"	-	Temp	Memory	Init	Done	-	"

#define	TEST_POINT_DEBUG_INIT_DONE								L"	-	Debug	Init	Done	-	"

#define	TEST_POINT_BYTE0_TEMP_INIT_DONE			BIT0

#define	TEST_POINT_BYTE0_DEBUG_INIT_DONE		BIT1

//	Byte	1/2	-	PEI

#define	TEST_POINT_MEMORY_DISCOVERED						L"	-	Memory	Discovered	-	"

#define	TEST_POINT_END_OF_PEI													L"	-	End	Of	PEI	-	"

#define	TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL																												BIT0

#define	TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL																	BIT1

#define	TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL																									BIT2

#define	TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED																					BIT3

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_CODE															L"0x01000000"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_MTRR_FUNCTIONAL_ERROR_STRING													L"Invalid	MTRR	Setting\r\n"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_CODE				L"0x01010000"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_MEMORY_RESOURCE_FUNCTIONAL_ERROR_STRING		L"Invalid	Memory	Resource\r\n"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_CODE												L"0x01020000"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_FV_INFO_FUNCTIONAL_ERROR_STRING										L"Invalid	FV	Information\r\n"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_CODE								L"0x01030000"

#define			TEST_POINT_BYTE1_MEMORY_DISCOVERED_DMA_PROTECTION_ENABLED_ERROR_STRING						L"DMA	protection	disabled\r\n"

#define	TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL																																			BIT0

#define	TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL																																														BIT1

#define	TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED																																						BIT2

#define			TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_CODE																						L"0x02000000"

#define			TEST_POINT_BYTE2_END_OF_PEI_SYSTEM_RESOURCE_FUNCTIONAL_ERROR_STRING																				L"Invalid	System	Resource\r\n"

#define			TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_CODE																																	L"0x02010000"

#define			TEST_POINT_BYTE2_END_OF_PEI_MTRR_FUNCTIONAL_ERROR_STRING																															L"Invalid	MTRR	Setting\r\n"

#define			TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_CODE																									L"0x02020000"

#define			TEST_POINT_BYTE2_END_OF_PEI_PCI_BUS_MASTER_DISABLED_ERROR_STRING																							L"PCI	Bus	Master	Enabled\r\n"

//	Byte	3/4/5	-	DXE

#define	TEST_POINT_PCI_ENUMERATION_DONE																																																										L"	-	PCI	Enumeration	Done	-	"

#define	TEST_POINT_END_OF_DXE																																																																				L"	-	End	Of	DXE	-	"

#define	TEST_POINT_DXE_SMM_READY_TO_LOCK																																																									L"	-	DXE	SMM	Ready	To	Lock	-	"

#define	TEST_POINT_READY_TO_BOOT																																																																	L"	-	Ready	To	Boot	-	"

#define	TEST_POINT_EXIT_BOOT_SERVICES																																																												L"	-	Exit	Boot	Services	-	"

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

161DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



#define	TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED																																	BIT0

#define	TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED																																BIT1

#define	TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM																																BIT2

#define	TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL																																				BIT3

#define	TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED																																							BIT4

#define			TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_CODE																				L"0x03000000"

#define			TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_RESOURCE_ALLOCATED_ERROR_STRING																		L"Invalid	PCI	Resource\r\n"

#define			TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_CODE																			L"0x03010000"

#define			TEST_POINT_BYTE3_PCI_ENUMERATION_DONE_BUS_MASTER_DISABLED_ERROR_STRING																	L"PCI	Bus	Master	Enabled\r\n"

#define			TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_CODE																			L"0x03020000"

#define			TEST_POINT_BYTE3_END_OF_DXE_NO_THIRD_PARTY_PCI_OPTION_ROM_ERROR_STRING																	L"Third	Party	Option	ROM	disp

atched\r\n"

#define			TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_CODE																							L"0x03030000"

#define			TEST_POINT_BYTE3_END_OF_DXE_DMA_ACPI_TABLE_FUNCTIONAL_ERROR_STRING																					L"No	DMA	ACPI	table\r\n"

#define			TEST_POINT_BYTE3_END_OF_DXE_DMA_PROTECTION_ENABLED_ERROR_CODE																										L"0x03040000"

#define			TEST_POINT_BYTE3_END_OF_DXE_DXE_DMA_PROTECTION_ENABLED_ERROR_STRING																				L"DMA	protection	disabled\r\n"

#define	TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL																								BIT0

#define	TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL																				BIT1

#define	TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL																													BIT2

#define	TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL																										BIT3

#define	TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL																																					BIT4

#define	TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL																																			BIT5

#define			TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_CODE											L"0x04000000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_MEMORY_TYPE_INFORMATION_FUNCTIONAL_ERROR_STRING									L"Invalid	Memory	Type	Informa

tion\r\n"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE							L"0x04010000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING					L"Invalid	Memory	Attribute	Ta

ble\r\n"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_CODE																L"0x04020000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_BOOT_VARIABLE_FUNCTIONAL_ERROR_STRING														L"Invalid	Boot	Variable\r\n"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_CODE													L"0x04030000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_UEFI_CONSOLE_VARIABLE_FUNCTIONAL_ERROR_STRING											L"Invalid	Console	Variable\r\

n"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_CODE																								L"0x04040000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_ACPI_TABLE_FUNCTIONAL_ERROR_STRING																						L"Invalid	ACPI	Table\r\n"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_CODE																						L"0x04050000"

#define			TEST_POINT_BYTE4_READY_TO_BOOT_GCD_RESOURCE_FUNCTIONAL_ERROR_STRING																				L"Invalid	GCD	Resource\r\n"

#define	TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED																																		BIT0

#define	TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED																																	BIT1

#define	TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED																																		BIT2

#define	TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED																																											BIT3

#define			TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_CODE																					L"0x05000000"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_UEFI_SECURE_BOOT_ENABLED_ERROR_STRING																			L"UEFI	Secure	Boot	Disable\r\

n"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_CODE																				L"0x05010000"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_PI_SIGNED_FV_BOOT_ENABLED_ERROR_STRING																		L"PI	Signed	FV	Boot	Disable\r

\n"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_CODE																					L"0x05020000"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_TCG_TRUSTED_BOOT_ENABLED_ERROR_STRING																			L"TCG	Trusted	Boot	Disable\r\

n"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_CODE																														L"0x05030000"

#define			TEST_POINT_BYTE5_READY_TO_BOOT_TCG_MOR_ENABLED_ERROR_STRING																												L"TCG	MOR	not	enabled\r\n"

//	Byte	6/7	-	SMM

#define	TEST_POINT_SMM_END_OF_DXE																																																																L"	-	SMM	End	Of	DXE	-	"

#define	TEST_POINT_SMM_READY_TO_LOCK																																																													L"	-	SMM	Ready	To	Lock	-	"

#define	TEST_POINT_SMM_READY_TO_BOOT																																																													L"	-	SMM	Ready	To	Boot	-	"

#define	TEST_POINT_SMM_EXIT_BOOT_SERVICES																																																								L"	-	SMM	Exit	Boot	Services	-

	"

#define	TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL																																										BIT0

#define	TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL																	BIT1

#define	TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER																							BIT2

#define	TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION																													BIT3

#define			TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_CODE																													L"0x06000000"

#define			TEST_POINT_BYTE6_SMM_END_OF_DXE_SMRR_FUNCTIONAL_ERROR_STRING																											L"Invalid	SMRR\r\n"

#define			TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_CODE				L"0x06010000"

#define			TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SMM_MEMORY_ATTRIBUTE_TABLE_FUNCTIONAL_ERROR_STRING		L"Invalid	SMM	Memory	Attribut

e	Table\r\n"

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

162DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]



#define			TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_CODE										L"0x06020000"

#define			TEST_POINT_BYTE6_SMM_READY_TO_LOCK_SECURE_SMM_COMMUNICATION_BUFFER_ERROR_STRING								L"Unsecure	SMM	communication	

buffer\r\n"

#define			TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_CODE																L"0x06030000"

#define			TEST_POINT_BYTE6_SMM_READY_TO_BOOT_SMM_PAGE_LEVEL_PROTECTION_ERROR_STRING														L"SMM	page	level	protection	d

isabled\r\n"

#define	TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED																																					BIT0

#define	TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL																													BIT1

#define	TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT																												BIT2

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_CODE																								L"0x07000000"

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_SMRAM_ALIGNED_ERROR_STRING																						L"Invalid	SMRAM	Information\r

\n"

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_CODE																L"0x07010000"

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_LOCK_WSMT_TABLE_FUNCTIONAL_ERROR_STRING														L"No	WSMT	table\r\n"

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_CODE															L"0x07020000"

#define			TEST_POINT_BYTE7_DXE_SMM_READY_TO_BOOT_SMI_HANDLER_INSTRUMENT_ERROR_STRING													L"No	SMI	Instrument\r\n"

//	Byte	8	-	Advanced

#define	TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL																																					BIT0

#define	TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL																																					BIT1

#define			TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_CODE																								L"0x08000000"

#define			TEST_POINT_BYTE8_READY_TO_BOOT_ESRT_TABLE_FUNCTIONAL_ERROR_STRING																						L"No	ESRT\r\n"

#define			TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_CODE																								L"0x08010000"

#define			TEST_POINT_BYTE8_READY_TO_BOOT_HSTI_TABLE_FUNCTIONAL_ERROR_STRING																						L"No	HSTI\r\n"

D.4.2.3	ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT

#pragma	pack	(1)

typedef	struct	{

		UINT32		Version;

		UINT32		Role;

		CHAR16		ImplementationID[256];

		UINT32		FeaturesSize;

		UINT8			FeaturesImplemented[TEST_POINT_FEATURE_SIZE];

		UINT8			FeaturesVerified[TEST_POINT_FEATURE_SIZE];

		CHAR16		End;

}	ADAPTER_INFO_PLATFORM_TEST_POINT_STRUCT;

#pragma	pack	()

#endif

D.4	TestPointEDK	II	Minimum	Platform	Specification[DRAFT]

163DRAFT	FOR	REVIEW	[12/01/2020	06:42:40]


	EDK II Minimum Platform Specification
	Tables
	Figures
	1 Introduction
	1.1 Audience / Document scope
	1.2 Document Flow
	1.3 Terminology
	1.4 Reference documents

	2 Architecture
	2.1 Staged Architecture
	2.2 Modularity
	2.3 Execution
	2.4 Organization
	2.5 Platform and Board Layer

	3 Stage I: Minimal Debug
	3.2 Firmware Volumes
	3.3 Modules
	3.4 Required Functions
	3.5 Configuration
	3.6 Data Flows
	3.7 Additional Control Flows
	3.8 Build Files
	3.9 Test Point Results
	3.10 Functional Exit Criteria
	3.11 Stage Enabling Checklist

	4 Stage II: Memory Functional
	4.2 Firmware Volumes
	4.3 Modules
	4.4 Required Functions
	4.5 Configuration
	4.6 Data Flows
	4.7 Additional Control Flows
	4.8 Build Files
	4.9 Test Point Results
	4.10 Functional Exit Criteria
	4.11 Stage Enabling Checklist

	5 Stage III: Boot to UEFI Shell
	5.2 Firmware Volumes
	5.3 Modules
	5.4 Required Functions
	5.5 Configuration
	5.6 Data Flows
	5.7 Additional Control Flows
	5.8 Build Files
	5.9 Test Point Results
	5.10 Functional Exit Criteria
	5.11 Stage Enabling Checklist

	6 Stage IV: Boot to OS
	6.2 Firmware Volumes
	6.3 Modules
	6.4 Required Functions
	6.5 Configuration
	6.6 Data Flows
	6.7 Additional Control Flows
	6.8 Build Files
	6.9 Test Point Results
	6.10 Functional Exit Criteria
	6.11 Stage Enabling Checklist

	7 Stage V: Security Enable
	7.2 Firmware Volumes
	7.3 Modules
	7.4 Required Functions
	7.5 Configuration
	7.6 Data Flows
	7.7 Additional Control Flows
	7.8 Build Files
	7.9 Test Point Results
	7.10 Functional Exit Criteria
	7.11 Stage Enabling Checklist

	8 Stage VI: Advanced Feature Selection
	8.2 Firmware Volumes
	8.3 Configuration
	8.4 Advanced Feature Design

	9 Stage VII: Tuning
	Appendix A Full Maps
	A.1 Firmware Volume Layout
	A.2 Key Function Invocation
	A.3 BDS Hook Points

	Appendix B Global Configuration
	B.1 Stage Configuration
	B.2 Test Point Check Infrastructure

	Appendix C ACPI
	C.1 Layout
	C.2 ACPI Table Contents
	C.3 ACPI Device Categorization
	C.4 Flow Diagrams

	Appendix D Interface Definitions
	D.1 Required Functions
	D.2 BoardInit
	D.3 SiliconPolicyInit
	D.4 TestPoint


