

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.9

1.9.1

1.9.2

1.9.3

1.10

1.10.1

1.10.2

1.10.3

1.10.4

TABLE	OF	CONTENTS
EDK	II	Module	Writer's	Guide

Tables

Figures

1	The	Basics	of	EDK	II

1.1	Overview

1.2	Related	References

1.3	Terms

1.4	Target	Audience

2	An	EDK	II	Package

2.1	Introduction

2.2	Manage	Package

3	Module	Development

3.1	What	is	an	EDK	II	module?

3.2	Creating	a	Module

3.3	Additional	Steps	for	Library	Instances

3.4	Additional	Steps	for	Driver

3.5	EDK	II	Common	Library	Class

3.6	Module	using	HII

3.7	Building	the	module

3.8	Debugging	a	Module

4	UEFI	Applications

4.1	Begin	with	INF	file

4.2	Write	UEFI	Application	Entry	Point

4.3	Get	Service	Tables

4.4	Communicating	with	a	UEFI	driver

5	UEFI	Drivers

5.1	Begin	With	INF	File

5.2	Write	the	UEFI	Driver	entry	point

5.3	Get	Service	Tables

5.4	Communication	between	UEFI	Drivers

6	SEC	Module

6.1	Beginning	to	Write	the	INF	File

6.2	Setup	Pre-Memory	Environment

6.3	Prepare	for	Data	PEI	Foundation

7	Pre-EFI	Initialization	Modules

7.1	Introduction

7.2	Beginning	to	Write	a	PEIM	INF	File

7.3	Defining	a	PEIM's	entry	point

7.4	Get	Pei	Services

2

1.10.5

1.10.6

1.10.7

1.10.8

1.10.9

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.8

1.11.9

1.11.10

1.12

7.5	Communicate	between	PEIM	Modules

7.6	Communicate	with	DXE	Modules

7.7	Boot	Mode

7.8	Execution	in	Place	PEIMs

7.9	Dependency	for	PEIMs

8	DXE	Drivers:	non-UEFI	drivers

8.1	Beginning	with	INF	File

8.2	Write	DXE	Driver	Entry	Point

8.3	Obtaining	Services	Tables

8.4	Communication	between	DXE	Drivers

8.5	Communication	with	PEIMs

8.6	Dependency	Expressions

8.7	Handler	for	EVT_SIGNAL_EXIT_BOOT_SERVICES

8.8	DXE	Runtime	Driver

8.9	DXE	SAL	Driver

8.10	DXE	SMM	Driver

Appendix	A	Dynamic	PCD

3

EDK	II	Module	Writer's	Guide
DRAFT	FOR	REVIEW

12/01/2020	06:45:54

Acknowledgments
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2009	-	2010,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision
Number Description Revision

Date

0.01 Initial	creation. April	2007.

0.7 Update	section	8.10	DXE	SMM	Driver March	2010.

Add	note	for	the	usage	of

PI_SPECIFICATION_VERSION/UEFI_SPECIFICATION_VERSI	ON	in
module's	INF

Add	UEFI_HII_RESOURCE_SECTION	usage	in	INF's	[Defines]
section

Add	a	limitation	of	dynamic	PCD	usage

0.71 Convert	to	GitBook September
2018

EDK	II	Module	Writer's	Guide

4

Tables
Table	1	EDK	II	Module	Types
Table	2	Recommended	name	convention	for	module	directory
Table	3	EDK	II	supported	file	extensions
Table	4	INF	PCD	Section	Name
Table	5	PCD	access	functions
Table	6	Commonly	use	library	classes
Table	7	Module	Entry	Point	and	Service	Table	Libraries
Table	8	Global	Symbol	can	be	used	by	UEFI	Application
Table	9	Protocols	Used	to	Separate	the	Loading	and	Starting/Stopping	of	Drivers
Table	10	Table	Global	Variables
Table	11	Reference	to	Services	Tables	for	DXE	Drivers

Tables

5

Figures
Figure	1	Conceptual	workflow
Figure	2	Firmware	Volume
Figure	3	Temporary	Memory	Layout

Figures

6

1	THE	BASICS	OF	EDK	II
This	document	is	a	guideline	for	new	EDK	II	module	developers,	and	provides	detailed	instructions	on
how	to	develop	and	build	a	new	module,	and	how	to	release	with	a	package.	For	information	about
developing	new	modules,	start	with	this	document.

1	The	Basics	of	EDK	II

7

1.1	Overview
This	chapter	also	clarifies	new	concepts	introduced	with	EDK	II.

Reference	the	EDK	II	User	Manual,	to	understand	how	to	obtain	EDK	II	and	how	to	build	existing	modules.

1.1.1	Module,	Package	and	Platform

1.1.1.1	What	is	a	Module?
A	module	is	the	smallest	piece	of	separately	compile-able	code	or	pre-built	binary.	It	contains	a
metadata	file	(INF)	plus	source	code	or	binary.	The	INF	file	is	required	by	the	EDKII	build	system	to
describe	a	module's	behavior,	such	as	produced	or	consumed	library	classes,	ppis,	guids,	protocols,
pcds,	and	other	information.

For	example,	in	$WORKSPACE\MdeModulePkg\Universal\Bus\Pci\UhciDxe,	the	source	files	mentioned	and
the	INF	file	compose	a	module.

,Refer	to	the	EDK	II	Extended	INF	Specification.	for	the	syntax	of	the	INF	file.

1.1.1.2	What	is	a	Package?
A	package	is	a	group	of	zero	or	more	modules.	A	package	must	contain	a	package	metadata	file	(DEC),
and	possibly	a	platform	metadata	file	(DSC).

Functionally,	a	package	is	a	logical	division	of	a	project.	Developers	depend	on	reasonable	judgment,
such	as	license	or	specification	compliance,	to	determine	where	to	place	a	module.	These	metadata
files	and	the	module's	INF	files	are	used	by	the	EDK	II	build	system	to	automatically	generate	makefiles
and	a	single	module	tip	or	whole	flash	tip,	according	to	the	build	options	used.

For	information	regarding	the	syntax	of	DSC	and	DEC	files,	please	refer	to	EDK	II	DSC	File	Specification
and	EDK	II	DEC	File	Specification.

1.1.1.3	What	is	a	Platform?
A	platform	is	a	special	type	of	package	with	additional	metadata	files.	A	package	must	contain	one	DSC
file	and	zero	or	one	FDF	file.	The	FDF	is	only	required	if	flash	output	is	required.

Refer	to	EDK	II	FDF	File	Specification	for	information	regarding	FDF	files..

Refer	to	the	EDK	II	Platform	Port	Guide	for	information	about	platform	porting	between	EDK	and	EDK	II.

1.1.2	Module	Customization
Use	the	EDK	II	User	Manual	to	understand	the	design	purpose	of	the	Library	class/Library	instance	and
PCD	mechanisms.	These	mechanisms	provide	ways	for	developers	to	customize	modules	without
changing	the	source	code.

1.1.2.1	Library	class/Library	instance
Developers	may	choose	a	proper	library	instance	according	to	its	requirements,	such	as	from
performance,	image	size,	or	the	limitation	of	module	type.

In	$WORKSPACE\MdePkg	core	package,	there	are	many	supported	library	classes	and	corresponding
library	instances.	Browse	the	$WORKSPACE\MdePkg	\include\library	directory	for	basic	information
regarding	the	helper	function	API	provided	by	these	library	classes.

1.1	Overview

8

1.1.2.2	PCD
Developers	may	take	advantage	of	the	PCD	mechanism	to	extract	information	from	outside	a	module,
and	control	procedure	behavior	inside	a	module.	The	information	may	be	known	at	compile	time	from
the	platform	DSC	or	the	package	DEC	files,	but	some	files	may	arrive	at	flash	image	generation	time,
and	some	may	be	determined	during	execution.

Example:,	in	the	following	chapter,		PcdDebugPropertyMask		declared	in	MdePkg.dec	file	in
$WORKSPACE\MdePkg	is	used	to	control	DebugLib	behavior.	This	PCD	is	FixedAtBuild	type,	meaning	its
value	is	determined	at	build	time.	The	EDK	II	build	system	converts	this	pcd	to	the	value	configured	in
DEC	or	DSC	to	enable	or	disable	the	print	ability.

1.1.3	EDK	II	Development	Lifecycle
The	lifecycle	of	EDK	II	development	is	divided	into	the	five	phases	which	follow.

1.1.3.1	Phase	1:	Create	a	package
A	package	is	the	container	of	modules.	A	developer	should	first	consider	where	the	module	should	be
placed.	As	a	general	rule,	modules	newly	developed	by	an	IHV/IBV	should	not	be	placed	into	existing	EDK
II	core	packages,	which	include		MdePkg	,

4BThe	Basics	of	EDK	II

	MdeModulePkg	,		IntelFrameworkPkg		and		IntelFrameworkModulePkg	.	One	reason	is	that	these	packages	are	published
as	a	base-supported	package	to	facilitate	module/platform	development.

Note:	These	packages	are	open-source	code	and	compliant	with	the	BSD	license.	If	the	developed
module	is	not	intended	to	be	open	source,	it	should	not	be	put	into	those	core	packages.

To	create	a	new	package,	developers	must	create	the	DEC	file	to	define	the	package's	interfaces,
including:

include	directories	for	modules	from	other	packages

the	value	of	GUIDs

the	value	of	Protocol	GUIDs

the	value	of	PPI	GUIDs

the	declaration	of	the	PCD	entries	published	by	this	package.

1.1.3.2	Phase	2:	Create	module	metadata/Implement	basic
functionality.
After	the	module	to	be	placed	into	a	package	is	determined,	developers	must	create	an	INF	file	to
indicate	the	module's	behavior,	including:

module	type

required	library	classes

required	ppi/protocol/guid/PCD

dependency	relationship	with	other	modules.

1.1	Overview

9

Note:	Dependency	relationships	may	exist	or	not,	depending	on	various	module	types.

Viewing	a	module's	INF	file	provides	a	quick	overview	to	an	unfamiliar	module.

After	finishing	the	INF	file,	developers	should	start	writing	source	code	to	implement	basic	functionality.

Note:	In	$WORKSPACE\MdePkg\Include\Library	directory,	there	are	many	library	classes	to	provide
support	functions.	There	are	also	entry	point	libraries	for	various	module	types.	Developers	should
browse	the	header	files	for	details.

1.1.3.3	Phase	3:	Create	DSC	to	build
In	EDK	II,	the	DSC	file	describes	the	build	behavior	of	the	package,	including:

modules	needed	to	be	built

chosen	library	instances	for	various	module	type

the	configuration	of	the	PCD	entries	used	by	modules.

The	single	platform	DSC	and	each	referenced	package's	DEC	files	cooperate	to	define	a	package.
These	files	and	the	module	INF	files	are	required	to	build	all	modules	in	the	package.

1.1.3.4	Phase	4:	Tune	modules
To	tune	modules

use	EDK	II	libraries	for	code	reuse

use	EDK	II	PCD	mechanism	for	configuration.

The	distinction	between	an	EDK	module	and	an	EDK	II	module	is	that	the	EDK	II	module	can	be
customized	either	statically	or	dynamically,	as	necessary.

Static	customization	is	preferred	to	choose	the	library	instance	or	determine	the	value	of
FeatureFlag/Fixed	type	of	PCD	at	build	time.

Dynamic	customization	is	preferred	for	using	Patchable/Dynamic	type	PCD	to	control	procedure
behavior	on	the	fly.

EDK	II	module	developers	should	consider	what	logic	in	the	module	could	be	generalized	as	early	in	the
development	of	the	module	as	possible.	For	example,	if	some	functionality	had	been	implemented	in	a
library	class	of	a	core	package,	the	developer	should	replace	it	by	using	the	library	class.

If	a	segment	of	logic	can	be	extracted	as	common	logic	and	shared	by	various	modules,	the	developer
can	create	a	new	library	class	and	instance.

Note:	In	the	EDK	II	module	development,	developers	are	strongly	discouraged	from	using	a	conditional
macro	to	control	procedure	behavior.	The	PCD	mechanism	provides	a	unified	interface,	and	developers
should	use	it	to	configure	a	module's	behavior.

1.1.4	Build	Infrastructure

1.1	Overview

10

The	EDK	II	build	system	is	based	on	Python	and	portable	C	code	to	provide	crossplatform	build-ability.
Figure	1,	developer	illustrates	the	conceptual	workflow	of	the	EDK	II	build	system	infrastructure.

4BThe	Basics	of	EDK	II

Figure	1	Conceptual	workflow

In	brief,	the	EDK	II	build	tool	parses	the	metadata	files	(DSC,	DECs,	and	INFs)	to	generate	corresponding
one	top-level	makefile	and	a	separate	set	of	makefile	and	autogen.c/autogen.h	files	for	every	module.

In	the	autogen	files,	the	EDK	II	build	tool	generates	all	definitions	of	guids,	protocols,	ppis,	and	PCDs
used	by	the	module,	and	automatically	invokes	all	of	the	constructors	of	used	library	instances	in	the
module's	entry	point	implementations.

1.1	Overview

11

1.2	Related	References
The	following	publications	and	sources	of	information	may	be	useful	or	are	referred	to	by	this	document:

Unified	Extensible	Firmware	Interface	Specification	Version	2.1,	Unified	EFI,	Inc,	2007,
http://www.uefi.org.

Extensible	Firmware	Interface	Specification	Version	1.10,	Intel,	2001,
http://developer.intel.com/technology/efi.

Intel(R)	Platform	Innovation	Framework	for	EFI	Specifications,	Intel,	2006,
http://www.intel.com/technology/framework/.

The	following	publications	are	available	at	edk2.tianocore.org:

EDK	II	MDE	(Module	Development	Environment)	Package	Document,	Version

1.00,	Intel,	2006.

EDK	II	DSC	File	Specification,	Version	0.50,	Intel,	2007.

EDK	II	DEC	File	Specification,	Version	0.50,	Intel,	2007.

EDK	II	Extended	INF	Specification,	Version	0.50,	Intel,	2007.

EDK	II	FDF	(Flash	Description	File)	File	Specification,	Version	0.50,	Intel,	2007.

EDK	II	Build	Specification,	Version	1.00,	Intel,	2008.

1.2	Related	References

12

http://www.uefi.org
http://developer.intel.com/technology/efi
http://www.intel.com/technology/framework/

1.3	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

EDK

EFI	Developer's	kit;	the	open	source	project	of	the	Intel	Platform	Innovation	Framework	for	EFI	that	can
be	found	at	http://edk.tianocore.org.

EDK	II

A	generic	term	to	describe	the	open	source	project	found	at

http://edk2.tianocore.org.	In	this	document,	it	refers	to	the	new	release	of	EDK	II	that	supports	a	build
infrastructure	that	makes	use	of	the	Extended	INF,	DEC	and	Extended	DSC.

EDK	II	Module

A	generic	term	to	describe	a	module	that	is	developed	using	the	new	release	of	EDK	II	project	that
supports	the	library	class,	library	instances,	packaging	concept	and	Extended	INF,	DEC	and	Extended
DSC	files.

1.3	Terms

13

http://edk.tianocore.org/
http://edk2.tianocore.org/

1.4	Target	Audience
This	document	is	intended	for	the	following	readers:

Developers	from	IBVs	and	OEMs	who	will	be	implementing	UEFI/PI	drivers	or	other	firmware	products
based	on	EDK	II.

Developers	from	IHVs	who	will	be	creating	UEFI	Driver	Model	drivers	for	hardware	devices.

Platform	integrators	using	EDK	II	components	and	modules	to	build	platform	firmware.

1.4	Target	Audience

14

2	AN	EDK	II	PACKAGE

2	An	EDK	II	Package

15

2.1	Introduction
Each	EDK	II	Package	is	a	container	that	includes	a	set	of	modules	and	their	related	definitions.	Each
Package	is	an	EDK	II	distribution	unit.	It	can	be	used	to	manage	and	release	the	big	project	to	facilitate
a	user's	distribution	and	reuse.	Entire	project	sources	can	be	split	into	different	packages	to	reduce
the	release	granularity.	The	new	project	can	also	be	made	from	released	packages	from	different
sources.

2.1.1	EDK	II	Packages
A	Package	is	a	directory	that	organizes	a	group	of	modules	with	a	single	package	declaration	file	(DEC).

EDK	II	provides	UEFI	and	PI	compliant	packages:	MdePkg,	MdeModulePkg,	etc.

The	MdePkg	contains	the	complete	definitions	in	EFI1.1,	UEFI2.0,	UEFI2.1,	PI1.0

Specifications	and	all	library	classes	and	instances	defined	in	EDK	II	MDE	(Module	Development
Environment)	Library	Specification.	UEFI	and	PI	drivers	can	be	developed	based	solely	on	this	package.

The	MdeModulePkg	contains	a	group	of	cross-platform	drivers	that	conform	to	UEFI	and	PI
specifications.	They	can	be	referred	to	when	developing	new	UEFI	and	PI	drivers.

Detailed	information	of	EDK	II	packages	can	be	found	in	EDK	II	User	Guide,	section	2.2	and	in	the
package	specification	for	each	package.

2.1.2	The	Package	Directory
Each	package	has	a	unified	directory	structure	that	separate	the	different	source	files.	The	root
directories	in	each	package	are:	Include,	Library,	Application	and	Drivers.

The	include	directory	contains	all	public	header	files	that	are	exposed	by	this	package	and	are	used
by	this	package	and	other	packages.	Below	the	Include	directory,	subdirectories	may	be	created	to
include	Ppi,	Protocol,	Guid,	Industry	Standard	and	library	class	header	files	(when	these	header	files
become	public).

The	library	directory	contains	directories	for	each	library	instance	module	included.

The	application	directory	contains	directories	for	each	UEFI	applications	module	included.

The	driver	directory	contains	directories	for	each	driver	group	and	for	each	driver.

Each	module	(library	instance,	application	and	driver)	has	its	own	directory	in	which	to	group	its	source
files.	A	module	may	only	depend	on	files	under	its	directory	or	on	public	header	files.	A	module	is	not
permitted	to	depend	on	source	files	from	another	module	directory.

2.1.2.1	Sample	directories	and	sub-directories	in	a	package
Package.dec	Package	declaration	file

Package.dsc	Platform	Package	build	description	file

Include	Public	header	files

Protocol\	Public	Protocol	header	files	o	Ppi\	Public	PPI	header	files	o	Guid\	Public	GUID	header
files

IndustryStandard\	Public	Industry	Standard	header	files	o	Library\	Public	Library	class	header
files

2.1	Introduction

16

Library\	Libraries	instances

NameOneLib\	Library	instance	NameOne	source	files	and	INF	o	NameTwoLib\	Library	instance
NameTwo	source	files	and	INF

Application\	Uefi	Applications	o	NameOneApp\	Application	NameOne	source	files	and	INF	o
NameTwoApp\	Application	NameTwo	source	files	and	INF		NameOneDxe\	Dxe	Driver	NameOne	source
files	and	INF.

NameTwoPei\	Pei	Driver	NameTwo	source	files	and	INF.

If	no	related	source	files	exist	in	a	package,	the	corresponding	directory	may	not	be	created.	For
example,	if	no	application	is	provided	in	a	package,	a	blank	Application	directory	is	not	required.

2.1.3	Package	Declaration	File
Each	package	has	a	single	package	declaration	file	(DEC)	to	define	the	package's	public	interfaces.	The
public	interfaces	are	the	package's	public	header	files,	GUIDs,	and	PCDs.

The	DEC	has	Defines,	Includes,	LibraryClasses,	Guids,	Ppis,	Protocols	and	Pcds	sections.

The	[Defines]	section	defines	the	package	name	and	package	GUID.

The	[Includes]	section	must	list	the	root	directory	of	public	header	file	directory.

The	[LibraryClasses]	section	contains	every	library	class	header	file	in	the	Package\Include\Library
directory.

The	[Guids]	section	specifies	the	Guid	value	for	each	Guid	in	the	Package\Include\Guid	directory.

The	[Ppis]	section	specifies	the	Guid	value	for	each	PPI	in	the	Package\Include\Ppi	directory.

The	[Protocols]	section	specifies	the	Guid	for	each	Protocol	in	the	Package\Include\Protocol	directory.

The	PCDs	are	declared	in	different	PCD	sections	according	to	their	type	(FeatureFlag,	FixedAtBuild,
PatchableInModule,	Dynamic,	and	DynamicEx).	If	a	PCD	supports	multiple	PCD	types,	it	must	be	declared
in	all	supported	type	sections.	When	a	PCD	is	declared,	its	data	type	and	default	value	must	also	be
specified.

The	following	is	a	sample	DEC	file,	additional	package	public	information	may	be	added.

2.1.3.1	Example:	Package.dec

[Defines]

		DEC_SPECIFICATION	=	0x00010005

		PACKAGE_NAME						=	PackageName

		PACKAGE_GUID						=	xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

		PACKAGE_VERSION			=	0.1

[Includes]

		Include	#Package	Include	directory

[LibraryClasses]

		##	Library	class	name	is	same	to	library	header	file	name

		OneClassLib|Include/Library/OneClassLib.h

[Guids]

#GuidCName	=	{xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},

[Ppis]

#PpiGuidCName	=	{xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},

[Protocols]

#ProtocolGuidCName	=	{xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},

[PcdsFeatureFlag]	#FeatureFlag	PCD	is	BOOLEAN	type,	the	value	is	TRUR	or	FALSE.

2.1	Introduction

17

#PcdTokenSpaceCGuidName.PcdName|TRUE|BOOLEAN|TokenNumber

#PcdTokenSpaceCGuidName.PcdName|FALSE|BOOLEAN|TokenNumber

[PcdsFixedAtBuild]

#PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsPatchableInModule]

#PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsDynamic]

#PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsDynamicEx]

		#PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

Refer	to	the	EDK	II	DEC	File	Specification	for	a	detailed	description	of	the	DEC	file	format.

2.1.4	Package	DSC	File
Each	package	usually	creates	another	build	description	file	(DSC).	All	modules	can	be	added	into	DSC	to
be	compiled	and	verified.	DSC	has	the	following	sections:

Defines

LibraryClass

PCD

Components.

The	[Defines]	section	sets	build	related	information,	such	as	the	build	output	directory,	build	target,
Guid,	and	build	ARCHs.

The	[Components]	section	lists	all	modules	(Drivers,	Application,	and	Library	Instances)	in	the	platform.

The	[LibraryClasses]	section	specifies	the	chosen	library	instance	for	every	library	class,	which	is
consumed	by	the	drivers	and	applications	in	the	[Components]	section.

The	[PCDs]	section	configures	PCD	type	and	value	for	those	PCDs	used	by	the	modules	in	the
[Components]	section.	If	the	PCD	value	is	same	as	the	default	value	in	DEC,	and	the	PCD	type	has	no
specific	requirement,	the	PCD	may	not	be	configured	in	the	DSC.	Its	value	and	type	will	be	the	default
setting	in	DEC.	If	all	PCDs	are	not	required	in	the	DSC	file,	the	[PCDs]	section	may	be	not	created.

Note:	Only	the	DSC	file	for	the	active	platform	is	used	in	a	build.

The	following	is	a	sample	DSC	file.	More	modules	may	be	added.

2.1.4.1	Example:	Package.dsc

[Defines]

		PLATFORM_NAME											=	PacakgeName

		PLATFORM_GUID											=	xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

		PLATFORM_VERSION								=	0.1

		DSC_SPECIFICATION							=	0x00010005

		OUTPUT_DIRECTORY								=	Build/PackageName

		SUPPORTED_ARCHITECTURES	=	IA32|IPF|X64|EBC

		BUILD_TARGETS											=	DEBUG|RELEASE

		SKUID_IDENTIFIER								=	DEFAULT

[SkuIds]	0|DEFAULT	#The	entry:	0|DEFAULT	is	reserved	and	required.

2.1	Introduction

18

[LibraryClasses]

		##	More	library	instances	need	to	be	added	if	more	library	classes	are	used

		##	by	the	components	in	the	following	[Components]	section.

		##	library	class	name	|	library	instance	INF	file	path	from	package

		DebugLib	|	MdePkg/Library/UefiDebugLibStdErr/UefiDebugLibStdErr.inf

		BaseLib	|	MdePkg/Library/BaseLib/BaseLib.inf

		BaseMemoryLib	|	MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

	

##PCDs	sections	are	not	specified.

##All	PCDs	value	are	from	their	Default	value	in	DEC.

##[PcdsFeatureFlag]

##[PcdsFixedAtBuild]

[Components]

		#	All	libraries,	drivers	and	applications	are	added	here	to	be	compiled

		#

		#	Module	INF	file	path	are	specified	from	package	directory.

		PackageNamePkg/Library/NameOneLib/NameOneLib.inf

		PackageNamePkg/NameOneDxe/NameOneDxe.inf

		PackageNamePkg/NameTwoPei/NameTwoPei.inf

A	detailed	description	of	the	DSC	file	form	is	given	in	the	DSC	Specification.

2.1	Introduction

19

2.2	Manage	Package

2.2.1	Create	Package
When	current	packages	do	not	satisfy	a	requirement,	or	the	original	code	base	is	split	into	EDK	II
packages,	new	packages	need	to	be	created.	Following	are	the	recommended	rules	for	defining	the
new	package:

All	modules	related	to	the	same	functionality	should	go	in	the	same	package.	For	example,	different
packages	should	be	created	for	different	chipsets.

Generic	modules	shared	between	different	platforms	should	be	in	another	package.	For	example,
the	MdePkg	and	MdeModulePkg	are	shared.

Modules	should	go	in	packages	according	to	their	release	requirements.	If	modules	are	released
only	to	specific	customers,	they	should	go	in	specific	packages.

Note:	There	is	no	limitation	for	source	files	in	a	new	package.	Even	if	only	one	file	is	in	a	package,	this
package	will	be	valid.

According	to	the	rules	given	immediately	above,	the	EDK	II	project	provides	several	packages	for	user
reference.

When	a	new	package	is	added,	the	following	steps	are	used	to	create	it.

Give	the	meaningful	package	name	as	the	package	directory	name	and	create	a	package	directory,
such	PackageNamePkg.

Create	package	DEC	and	DSC	files	in	the	package	root	directory	to	describe	this	package.

Create	package	sub-directories	to	contain	the	different	source	files.

2.2.2	Using	a	Package
A	package	provides	public	header	files,	library	classes,	PCDs	and	modules,	which	are	required	to
develop	other	modules	and	platforms.

A	module	is	dependent	on	the	package	that	it	resides	in	and	may	be	dependent	on	other	packages.

A	platform	is	made	from	the	modules	contained	in	its	own	package,	and	from	other	packages.

The	EDK	II	package	is	the	basic	development	unit.	It	can	be	used	to	configure	the	development
workspace.	According	to	development	requirements,	the	workspace	can	integrate	different	packages
from	the	EDK	II	project	and	other	sources.	To	develop	a	module	or	a	platform,	their	dependent	packages
need	to	be	integrated	into	the	workspace.	For	example,	to	develop	UEFI	and	PI	driver,	the	MdePkg,
which	contains	all	UEFI/PI	definitions,	is	required	in	the	workspace.

The	following	show	how	to	develop	modules	and	platforms	based	on	packages.

Each	package	DEC	file	and	Include	directory	lists	package	public	header	files,	library	classes	and
PCDs.	When	a	new	module	is	developed,	it	can	include	information	from	the	DECs	of	all	packages	in
current	workspaces	If	it	needs	information	from	a	package	that	is	not	in	the	current	workspace,	this
package	needs	to	be	added.

2.2	Manage	Package

20

Each	package	DSC	file	lists	all	modules	provided	by	this	package.	The	developer	can	search	the
DSCs	of	all	packages	in	the	current	workspace	to	obtain	the	required	modules	(and	move	their
information	into	the	platform	DSC	file).	Then	it	specifies	those	modules	in	the	platform	DSC	and	FDF
file.	If	a	new	platform	still	requires	the	modules	from	a	packages	that	are	not	in	the	current
workspace,	this	package	needs	to	be	added.

2.2.3	Updating	a	Package
The	package	DEC	and	DSC	files	describe	the	package	capability,	which	should	be	created	according	to
source	files	of	this	package.	If	source	files	are	changed,	removed,	or	added,	the	package	DEC	and	DSC
file	must	be	updated	to	match	their	change.

All	changes	to	source	code	that	affect	the	DEC	and	DSC	file	are	introduced	one	by	one.

2.2.3.1	Updating	Package	Include	Directories
When	a	package	Include	directory	is	changed,	added,	or	removed,	the	[Includes]	a	section	of	the	DEC
must	be	updated.

2.2.3.1.1	Example:	Include	section	of	Package.dec

[Includes]

		Include	#	Package	Include	path

		LocalInclude	#	Add	new	include	path

2.2.3.2	Updating	Guids/Ppis/Protocols
When	a	Guid	value	or	Guid	global	CName	defined	in	the	package	public	Guid	header	file	changes,	the
[Guids]	section	of	the	DEC	must	be	updated	to	the	new	Guid	value	or	Guid	CName.	If	a	public	Guid
header	file	is	removed,	the	Guid	defined	in	this	file	must	be	removed	from	the	[Guids]	section	of	the
DEC.	If	a	new	guid	header	file	is	added	in	the	package	public	include	directory,	the	new	declared	Guid
and	its	value	must	be	added	to	the	[Guids]	section	of	the	DEC.	Like	the	Guid	header	file,	any	change	to
Guid	values	defined	in	the	Ppi	and	Protocol	header	files	also	requires	the	[Ppis]	or	the	[Protocols]
section	to	be	updated.

2.2.3.2.1	Example:	Guid	section	of	Package.dec

[Guids]

		#gGuidCName	=	{00000000,0000,0000,{00,00,00,00,00,00,00,00}}

		#updated	to

		gNewGuidCName	=	{00000000,0000,0000,{00,00,00,00,00,00,00,01}}

2.2.3.3	Updating	Library	Classes
When	the	library	class	name	is	changed,	the	library	class	header	file	name	needs	to	update	the
[LibraryClasses]	section	of	the	DEC	to	map	the	new	library	class	name	to	the	(new?)	header	file.	The
change	to	the	library	class	name	will	also	require	the	[LibraryClasses]	section	(of	the	DSC	to	be
updated)	to	map	the	new	library	class	name	and	the	library	instance.	When	a	new	library	class	is
introduced,	its	name	and	its	header	file	will	be	specified	in	the	DEC	[LibraryClasses]	section.

2.2.3.3.1	Example:	LibraryClasses	section	of	Package.dsc

[LibraryClasses]

		#OneClassLib|Include/Library/OneClassLib.inf	updated	to

		BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

2.2	Manage	Package

21

2.2.3.4	Updating	PCDs
PCDs	are	declared	in	the	package	DEC	and	are	not	related	to	any	header	file.	However,	module	source
files	use	them.	If	a	PCD	does	not	exist	in	any	module,	its	declaration	should	be	removed	from	the	DEC
file.	The	setting	for	this	PCD	in	DSC	file	should	also	be	removed.

When	a	module	requires	a	new	PCD,	it	needs	to	define	this	PCD	in	the	DEC	file	for	the	package	where
the	module	is	located.	Then	the	DEC	file	will	specify	the	PCD	type	and	default	value.

2.2.3.4.1	Example:	Package.dec

[PcdsFixedAtBuild]

		#Add	new	FixedAtBuild	PCD

		#PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

		gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldTimes|1|UINT32|0x40000005

2.2.3.5	Updating	Modules
Changes	to	modules	(Library	instance,	drivers	and	applications)	cause	the	dependent	header	file,
library	class	and	PCDs	be	modified,	which	requires	the	DSC	file	to	be	updated.

If	a	module	INF	file	name	is	changed,	the	DSC	files	that	refer	to	this	module	are	updated	to	new	file
name.	If	a	module	is	completely	removed,	it	will	not	be	compiled	any	more,	and	is	removed	from	the
package	DSC.	When	a	new	module	is	added	to	a	package,	it	should	be	added	to	the	package	DSC	to	be
compiled	and	verified.

2.2.3.5.1	Example:	Package.dsc

[Components]	#Module	INF	file	path	are	specified	from	package	directory.

		#	PackageNamePkg/NameTwoPei/NameTwoDxe.inf

		#	updated	to

		MdeModulePkg/Application/HelloWorld/HelloWorld.inf

2.2	Manage	Package

22

3	MODULE	DEVELOPMENT

3	Module	Development

23

3.1	What	is	an	EDK	II	module?
An	EDK	II	module	consists	of	source	files	or	binary	files	and	a	module	definition	file	(INF	file).	An	INF	file
describes	a	module's	basic	information	and	interfaces	such	as	consumed/produced	library
class/PCD/Protocol/Ppi/Guid.	(Please	refer	to	the	EDK	II	Extended	INF	Specification

A	typical	EDK	II	module	is	a	firmware	component	that	is	built,	put	in	an	FFS	file	and	then	put	into	a	FV
image.	The	component	may	be:

	A	driver	or	application	which	is	built	to	*.efi	binary	file	and	put	into	FFS	file	as	EFI_PE_SECTION:

Figure	2	Firmware	Volume

Raw	data	binary.	For	example,	$(WORKSPACE)\MdeModulePkg\Logo\Logo.inf	is	a	raw	binary	module
which	contains	logo	bitmap	image.

An	option	ROM	driver	that	is	put	into	a	device's	option	ROM.

A	standalone	UEFI	driver

A	standalone	UEFI	application.

A	library	instance	that	is	built	to	a	library	object	file	(.lib)	and	statically	linked	to	another	module.

Note:	A	module	can	be	released	in	source	code	or	in	EFI	binary	format.

3.1.1	Module	Type
EDK	II	defines	many	module	types.	The	module	type	is	used	to:

Indicate	the	lifecycle	for	different	types	of	modules.	For	example,	PEIM	is	dispatched	in	PEI	phase
and	DXE_DRIVER	orUEFI_DRIVER	is	dispatched	at	DXE	phase;

Indicate	the	binary	image	generation	for	different	types	of	modules.	For	example,	a
PEIM/DXE_DRIVER	type	module	can	have	"depex"	section	in	.efi	binary	image;	a	UEFI_DRIVER	can	have
.ui	or	.ver	section	in	.efi	binary	image;

3.1	What	is	an	EDK	II	module?

24

Indicate	EntryPoint()	or	Constructor()	API	for	different	types	of	modules.

Indicate	the	suitable	library	instance	for	different	types	of	modules.	A	library	instance	will	point	out
what	module	types	are	supported	in	INF	file.

Table	1	EDK	II	Module	Types

	MODULE_TYPE	 	Description	

SEC

Modules	of	this	type	are	designed	to	start	execution	at	the	reset	vector
of	a	CPU.	They	are	responsible	for	preparing	the	platform	for	the	PEI
Phase.	Since	there	are	no	standard	services	defined	for	SEC,	modules	of
this	type	follow	the	same	rules	as	modules	of	type	Base	and	typically
include	some	amount	of	CPU	specific	assembly	code	to	establish
temporary	memory	for	a	stack.	Modules	of	this	type	may	optionally
produce	services	that	are	passed	to	the	PEI	Phase	in	HOBs	and	those
services	must	be	compliant	with	the	PI	specification.

PEI_CORE This	module	type	is	used	by	PEI	Core	implementations	that	are	complaint
with	the	PI	specification.

PEIM This	module	type	is	used	by	PEIMs	that	are	compliant	with	the	PI
specification.

DXE_CORE This	module	type	is	used	by	DXE	Core	implementations	that	are	compliant
with	the	PI	specification.

DXE_DRIVER This	module	type	is	used	by	DXE	Drivers	that	are	complaint	with	the	PI
specification.	These	modules	only	execute	in	the

boot	services	environment	and	are	destroyed	when	ExitBootServices()	is
called.

DXE_RUNTIME_DRIVER

This	module	type	is	used	by	DXE	Drivers	that	are	complaint	with	the	PI
specification.	These	modules	execute	in	both	boot	services	and	runtime
services	environments.	This	means	the	services	that	these	modules
produce	are	available	after	ExitBootServices()	is	called.	If
SetVirtualAddressMap()	is	called,	then	modules	of	this	type	are	relocated
according	to	virtual	address	map	provided	by	the	operating	system.

DXE_SAL_DRIVER
This	module	type	is	used	by	DXE	Drivers	that	can	be	called	in	physical
mode	before	SetVirtualAddressMap()	is	called	and	either	physical	mode	or
virtual	mode	after

SetVirtualAddressMap()	is	called.	This	module	type	is	only	available	to	IPF
CPUs.	This	means	the	services	that	these	modules	produce	are	available
after	ExitBootServices().

DXE_SMM_DRIVER This	module	type	is	used	by	DXE	Drivers	that	are	loaded	into

SMRAM.	As	a	result,	this	module	type	is	only	available	for	IA32	and	x64
CPUs.	These	modules	only	execute	in	physical	mode,	and	are	never
destroyed.	This	means	the	services	that	these	modules	produce	are
available	after	ExitBootServices().

UEFI_DRIVER

This	module	type	is	used	by	UEFI	Drivers	that	are	compliant	with	the	UEFI
Specification.	These	modules	provide	services	in	the	boot	services
execution	environment.	UEFI	Drivers	that	return	EFI_SUCCESS	are	not
unloaded	from	memory.	UEFI	Drivers	that	return	an	error	are	unloaded
from	memory.

UEFI_APPLICATION This	module	type	is	used	by	UEFI	Applications	that	are	compliant	with	the
UEFI	Specification.	UEFI	Applications	are	always	unloaded	when	they	exit.

3.1	What	is	an	EDK	II	module?

25

3.2	Creating	a	Module
Driver	and	Library	modules	follows	similar	steps	for	creation:

1.	 Create	or	select	the	package	in	which	the	module	will	be	located.

2.	 Create	a	directory	for	the	module	and	put	the	INF	file	in	the	directory.

3.	 Add	package	dependencies	to	the	INF	file.

4.	 Add	PPI,.Protocol,	Guid,	PCD,or	Library	Class	dependencies	to	the	INF	file.

5.	 Add	[depex]	section	to	the	INF	file	if	this	module	depends	on	a	PPI,	Protocol,	or	Guid	and	the	module
type	supports	this	section.

6.	 Create	source	file(s)	and	add	relative	path	of	source	file(s)	to	the	INF	file

3.2.1	Location
A	module	is	released	and	distributed	within	a	package,	so	creating	or	selecting	the	appropriate
package	for	the	new	module	is	the	first	step.

3.2.1.1	Choosing	the	Package
A	Package	in	EDK	II	is	used	to	contain	similar	definitions	and	modules.	The	"similar"	is	recommended	to
be	determined	by	following	rules:

Industry	standard

For	example,	MdePkg	package	contains	the	definitions	from	PIWG,	UEFI,	SMBIOS,	USB,	PCI,	etc,	which	are
all	industry	standards.

Similar	technology

For	example,	OptionRomPkg	groups	the	definitions	and	modules	related	to	Option	Rom	technology.

Business	reason

For	example,	IntelFrameworkPkg	groups	the	definitions	and	modules	for	Intel	framework	implementation.

Platform

For	example,	Nt32Pkg	groups	the	definitions	and	modules	required	by	Nt32	platform.	In	addition,	a
platform	package	also	will	provide	a	DSC	and	FDF	file	for	platform	building.

At	the	beginning	of	developing	a	module,	the	module	developers	need	to	consider	the	purpose	and
release	process	for	the	module	to	select	the	appropriate	package.

Note:	The	packages	in	https://edk2.tianocore.org	are	basic	core	packages.

Generally,	a	new	module	should	not	be	created	in	them.

3.2.1.2	Adding	a	Module	Directory
A	module	directory	should	be	added	to	the	proper	package	with	the	following	recommendations:

Put	a	library	module	to	"	<Package	Root	Path>	/Library"	directory.

3.2	Creating	a	Module

26

https://edk2.tianocore.org/

Put	PROTOCOL,	PPI,	GUID,	or	Library	Class	definitions	in	"	<Package	Root	Path>	/Include/Protocol"	or
"	<Package	Root	Path>	/Include/Ppi"	or	"	<Package	Root	Path>	/Include/Guid"	or	"	<Package	Root
Path>	/Include/Library"	directory	respectively.

Put	a	driver	module	in	"	<Package	Root	Path>	"	directory.

Put	an	application	module	in	"	<Package	Root	Path>	/Application"	directory		Use	recommend	directory
name	for	module	as	follows:

Table	2	Recommended	name	convention	for	module	directory

	Recommended	directory	name	convention	 	Module	Type	

XxxPei PEIM,	PEI_CORE

XxxDxe DXE_DRIVER,	UEFI_DRIVER

XxxRuntimeDxe DXE_RUNTIME_DRIVER

XxxxDxeSal DXE_SAL_DRIVER

XxxxLib Library	Instance

3.2.2	Sample:	Module	Meta	File	-	INF
Each	module	requires	a	module	INF	file	in	the	root	directory	of	the	module.

A	module	is	INF	file	(sometimes	referred	to	as	the	module	meta-file)	includes	the	following	items:

The	module's	basic	information,	such	as	name,	GUID,	module	type,	etc.

The	path	to	any	packages	the	module	is	dependent	on.

The	path	to	binary	files	or	source	files	included	in	the	module.

A	list	of	all	interfaces	required	by	the	module,	i.e.	Protocol,	Ppi,	Guid.

A	list	of	all	PCDs	and	Library	classes	required	by	the	module.

Others,	such	as	dependency	section	depending	on	the	module	type.

3.2.2.1	Example:	Application	Module	INF

##

[Defines]

		INF_VERSION																=	0x00010005

		BASE_NAME																		=	HelloWorld

		FILE_GUID																		=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE																=	UEFI_APPLICATION

		VERSION_STRING													=	1.0

		UEFI_SPECIFICATION_VERSION	=	0x0002001E

		ENTRY_POINT																=	UefiMain

#

#	The	following	information	is	for	reference	only	and	not	required	by	the

#	build	tools.

#

#	VALID_ARCHITECTURES	=	IA32	X64	IPF	EBC

#

##

[Sources.common]

		HelloWorld.c

##

[Packages]

		MdePkg/MdePkg.dec

3.2	Creating	a	Module

27

##

[LibraryClasses]

		UefiBootServicesTableLib

		UefiApplicationEntryPoint

		UefiLib

		DebugLib

3.2.2.2	Example:	Library	Module	INF
Following	is	a	sample	INF	file	for	PeiSevicesTablePointerLib.inf	library	instance:

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	PeiServicesTablePointerLib

		FILE_GUID						=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE				=	PEIM

		VERSION_STRING	=	1.0

		LIBRARY_CLASS		=	PeiServicesTablePointerLib|PEIM

		PEI_CORE	SEC

		CONSTRUCTOR				=	PeiServicesTablePointerLibConstructor

#

#	VALID_ARCHITECTURES	=	IA32	X64	IPF	EBC	(EBC	is	for	build

#only)

#

[Sources.common]

		PeiServicesTablePointer.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		DebugLib

Note:	if	the	library	supports	the	cross	module	types	PEIM,	UEFI_DIRVER,	DXE_DRIVER.	Its	module	type	can
be	PEIM	or	UEFI_DRIVER	or	DXE_DRIVER.	If	it	has	the	library	constructor,	its	module	type	must	be	BASE.
BASE	type	library	constructor	has	no	input	parameter	that	can	link	to	any	driver	type.

3.2.3	Adding	a	Package	Dependency
The	[Packages]	section	of	the	INF	file	describes	all	packages	dependencies	of	this	module.	The	EDK	II
relative	path	of	dependent	package	DEC	file	is	described	in	INF's	[Packages]	section	as	follows:

[Packages]

		MdePkg/MdePkg.dec

		IntelFrameworkPkg/IntelFrameworkPkg.dec

Note:	The	path	is	from	the	root	of	the	$workspace,	not	from	the	module	directory.

A	module	should	use	the	following	rules	for	determining	package	dependency:

The	MdePkg	package	is	required	for	all	modules

If	using	definitions	from	Intel	framework	specification,	dependency	on	the	IntelFrameworkPkg	is
required.

Beyond	the	preceding	rules,	more	package	dependencies	are	introduced	by	referencing	or	using
surface	items,	such	as	Protocol,	Ppi,	Guid,	PCD,	Library	Class,	etc.	For	example,	if	a	module	uses
definitions	or	interfaces	from	the	library	class	"HiiLib"	that	is	defined	in	MdeModulePkg	package,	it

3.2	Creating	a	Module

28

would	need	to	be	dependent	on	the	MdeModulePkg.

3.2.4	Adding	Source	Files
All	module	source	code	is	described	in	the	INF	[sources]	section,	and	is	based	on	following	rules:

Note:	The	UNIX-style	path	separator	"/"	should	be	used,	not	the	Windows*-style	"\".

	Different	architecture	sources	are	put	in	different	source	sections.

[Sources.common]	#	source	in	this	section	is	suitable	for	all	arch

		CheckSum.c	...

[Sources.Ia32]	#	source	in	this	section	is	suitable	for	IA32	arch

		Ia32/Wbinvd.c	|	MSFT	...

		Ia32/WriteMm7.S	|	GCC	...

[Sources.X64]	#	source	in	this	section	is	suitable	for	X64	arch	X64/Thunk16.asm	...

[Sources.IPF]	#	source	in	this	section	is	suitable	for	IPF	arch	Ipf/AsmCpuMisc.s	...

[Sources.EBC]	#	source	in	this	section	is	suitable	for	EBC	arch	Synchronization.c	...

Tool	Tags	are	used	describe	the	sources	for	different	tool	chains.

[Sources.Ia32]

		Ia32/Wbinvd.c	|	MSFT	#	source	is	built	when	MSFT	tool	is	used	...

		Ia32/WriteMm7.S	|	GCC	#	source	is	built	when	GCC	tool	is	used	...

		"$(CC)"	-o	${dst}	$(CC_FLAGS)	$(INC)	${src}

All	files	should	be	put	under	the	module's	main	folder.	Do	not	use	".	/"		All	C	include	files	should	also
be	listed	in	the	sources	section.

3.2.4.1	Supported	Tool	Tag
The	following	tool	tag	name	is	supported	by	edk2.

Table	3	EDK	II	supported	file	extensions

	Tool	Tag	 	Description	

MSFT Microsoft	Family	Tool	Chain

INTEL INTEL	Tool	Chain

GCC GCC	Tool	Chain

3.2.5	Add	Library	Class	References
The	library	class	abstracts	some	macro	or	structure	definitions	and	function	declarations.	The	library
instance,	which	is	the	implementation	of	a	given	library	class,	can	be	different	for	different	platform	or
for	different	phases	(SEC	,PEI,	DXE)	in	one	platform.	Therefore,	a	module	will	be	dependent	on	a	library
class	for	platform	or	phase	specific	behavior.

The	steps	of	using	a	library	class	in	a	module	are:

1.	 Add	a	dependency	for	the	package	containing	the	library	class	in	INF	file

3.2	Creating	a	Module

29

2.	 Add	a	dependency	for	the	library	class	in	the	INF	file

3.	 Include	the	library	class	header	file	in	source	code.

To	include	the	library	class	header	in	C	source	code	use	the	following	syntax:

	#include	<Library/OemHookStatusCodeLib.h>	

The	header	including	path	is	relative	to	the	package's	public	include	path,	which	is	defined	in	the
package	(containing	the	library	class,	not	necessarily	the	module)	DEC's	[include]	section.

Note:	Rememberr	to	use	"/"	for	the	path	separator.

3.2.6	Adding	PCD	References
MACRO	and	global	variables	are	widely	used	to	make	modules	customizable	in	different	architectures
and	different	platforms.	The	EDK	II	introduces	the	PCD	concept	to	replace	these	methods.	For	example,
a	"FeatureFlag"	type	PCD	is	similar	to	a	project	MACRO	in	that	some	feature	or	functionality	will	be
enabled	if	the	PCD's	value	is	TRUE,	and	vice	versa.

A	PCD	entry	is	defined	by	the	PCD's	Token	Space	Guid	C	name,	followed	by	a	period	"."	character	and	the
PCD's	C	name.	In	one	PCD's	token	space,	each	PCD's	C	name	is	unique.

For	example,	for	PCD	gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel,	gEfiMdePkgTokenSpaceGuid	is	the	token	space	name

and	PcdDebugPrintErrorLevel	is	the	PCD	name,	and	gEfiMdePkgTokenSpaceGuid	is	mapped	to	a	GUID	defined	in	MdePkg	:

gEfiMdePkgTokenSpaceGuid	=	{	0x914AEBE7,	0x4635,	0x459b,	{	0xAA,	0x1C,	0x11,	0xE2,	0x19,	0xB0,	0x3A,	0x10	}}

3.2.6.1	PCD	Types
EDK	II	provides	the	following	types	of	PCDs:

Feature	flag	type	PCD

This	PCD	type	replaces	a	switch	MACRO	to	enable	or	disable	a	feature.	This	is	a	Boolean	value,	and	is
either	TRUE	or	FALSE.

Fixed	at	build	type	PCD

This	PCD	type	replaces	a	macro	that	produced	a	customizable	value,	such	as	the	PCI	Express	base
address.	The	value	of	this	PCD	type	is	determined	at	build	time	and	is	stored	in	the	code	section	of	a
module's	PE	image.

Patchable	in	module	type	PCD

This	PCD	type	is	very	similar	to	the	fixed	at	build	PCD	type,	but	the	value	is	stored	in	the	data	section,
rather	than	the	code	section,	of	the	module's	PE	image.

Dynamic	type	PCD

This	PCD	type	is	different	from	the	other	PCD	types	listed.	The	value	is	assigned	by	one	module	and	is
accessed	by	other	modules	in	execution	time.	The	PEIM	PcdPeim	and	the	DXE	Driver	PcdDXE	each
maintain	a	PCD	database	that	contains	all	dynamic	PCD	information	used	by	platform	in	their	respective
phase.

3.2.6.2	Add	the	Package	Dependency

3.2	Creating	a	Module

30

When	using	a	PCD	in	a	module,	package	dependencies	must	be	added	to	INF's	[Packages]	section.	Two
packages	are	required:	the	package	containing	the	PCD	being	used,	and	the	MdePkg.	The	MdePkg	is
required	because	the	library	class	"PcdLib"	in	MdePkg	provides	PCD	accessing	functions	and	macros.

3.2.6.3	Adding	PCDs	to	module's	INF	file
To	reference	a	PCD	entry,	the	token	space	guid	name	and	PCD	name	must	be	added	into	the	INF's
[PCD]	section:

[PCD.common]

		gEfiMdePkgTokenSpaceGuid.PcdMaximumLinkedListLength	gEfiMdePkgTokenSpaceGuid.PcdMaximumAsciiStringLength	gEfiMdePkgTokenSpac

eGuid.PcdMaximumUnicodeStringLength

We	recommended	using	a	general	type	"PCD"	in	the	module's	INF,	so	that	it	allows	platform	integrators
to	choose	any	PCD	type	for	different	usage	cases.	For	example,	in	a	desktop	platform,	memory	length
can	be	designated	as	a	"Dynamic"	PCD,	and	its	value	is	produced	by	the	memory	discovery	driver.
However,	in	some	special	embedded	systems,	memory	length	is	designed	as	a	"FixedAtBuild"	type	PCD,
and	its	value	is	always	fixed.

There	are	limitations	for	selecting	PCD	types:

	If	a	PCD	value	is	used	as	constant	value	such	as	array's	length,	this	PCD's	type	should	be	"FixedPcd".
For	example:

	UINT8	MySampleArray[FixedPcdGet16(PcdArrayLength)]	=	{0};	

Note:	Avoid	using	"FixedPcd"	in	the	library	instance	modules,	because	the	library	instance	can	link	to
different	modules,	and	the	same	PCD	may	have	a	different	value	in	different	modules.

Note:	In	a	single	module,	avoid	using	two	PCDs	with	same	name	but	in	different	token	spaces.

Table	4	INF	PCD	Section	Name

	PCD	Type	 	INF	File	Section	Name	

General	type	that	can	be	mapped	in	any	PCD	type PCD

Feature	Flag FeaturePcd

Fixed	At	Build FixedPcd

Patchable	In	Module PatchPcd

Dynamic PCD

3.2.6.4	Accessing	a	PCD	value	from	C	source	code
To	obtain	or	set	a	PCD's	value	from	source	code,	the	following	steps	should	be	taken:

1.	 Add	the	dependency	for	PcdLib	to	the	module	INF	file.

2.	 Add	the	dependency	for	MdePkg.

3.	 Add	the	include	for		<Library/PcdLib.h>		in	source	code.

4.	 Use	the	PcdLib	interface	to	access	the	PCD's	value.

3.2	Creating	a	Module

31

Table	5	PCD	access	functions

	Function	name	 	INF	PCD	Section	Name	

PcdGetx()/PcdSetx() Common	get/set	function	for	all	PCDs	type

FeaturePcdGet()/FeaturePcdSet() Get/set	function	for	"FeaturePcd"

FixedPcdGetx() Get	function	for	"FixedPcd"

PatchPcdGetx()/PatchPcdSetx Get/Set	function	for	"PatchPcd"

For	example,	the	PcdGet32	macro	is	used	to	obtain	the	32-bit	value	for	all	types	of	PCDs:

//

//	Check	driver	debug	mask	value	and	global	mask

//

if	((ErrorLevel	&PcdGet32	(PcdDebugPrintErrorLevel))	==	0)

{

		return;

}

3.2.7	Referencing	a	Protocol,	PPI,	or	GUID
A	Protocol,	PPI,	or	a	Guid	is	a	UEFI	architecture	interface	item	and	abstract	firmware	component's
interface.	This	section	introduces	how	to	reference	one	of	these	interfaces	from	a	module.

3.2.7.1	Adding	Protocol,	PPI,	or	GUID	to	INF	file
The	name	of	Protocol,	PPI,	or	GUID	must	be	added	into	the	corresponding	section	in	the	module	INF	file:
[Protocol],	[Ppi],	and	[Guid].	For	example:

	[Protocol]	gEfiSampleProtocol	

3.2.7.2	Including	the	header	file	in	source	code
The	Protocol,	PPI,	or	GUID	header	file	may	define	related	structures.	Use	the	following	procedure	to	find
the	header	file	path:

The	header	file	for	a	Ppi	is	in		<PackagePath>	\Include\Ppi.

The	header	file	for	a	Protocol	is	in		<PackagePath>	\Include\Protocol.

The	header	file	for	a	Guid	is	in		<PackagePath>	\Include\Guid.

Header	files	must	be	explicitly	included	in	the	module	source	code.	For	example:

#include	<Protocol/DeviceIo.h>

#include	<Ppi/Reset.h>

#include	<Guid/GlobalVariable.h>

3.2.8	Adding	a	Dependency	to	a	Module
The	dependency	expression	gives	the	conditions	for	executing	or	dispatching	a	driver's	entry	point.	This
helps	determine	the	dispatch	order	for	PEIM	and	DXE	modules.

An	expression	consists	of	one	or	more	Protocol,	PPI,	or	GUID	with	operators	such	as	"AND",	"OR",
"TRUE",	"FALSE",	"NOT"	etc.

The	Platform	Initialization	Specification	gives	detailed	syntax	for	PEIM's	dependency	expression	in	the
"Dependency	Expressions"	chapter,	and	details	for	the	DXE	module's	dependency	expression	in	the
"Dependency	Expression	Grammar"	chapter.

3.2	Creating	a	Module

32

The	expression	should	be	put	in	the	INF's	depex	section	as	follows:

[depex]

gEfiSampleGuid	AND	gEfiSamplePpiGuid

3.2	Creating	a	Module

33

3.3	Additional	Steps	for	Library	Instances

3.3.1	Define	Produced	Library	Class
A	library	instance	is	always	related	to	a	single	library	class	and	implements	all	interfaces	defined	in	the
library	class.	Therefore,	the	library	class	name	must	be	specified	in	the	[Defines]	section	of	the	library
instance	INF	file	as	follows:

[Defines]

		LIBRARY_CLASS	=	UefiDriverEntryPoint|DXE_DRIVER	DXE_RUNTIME_DRIVER

In	above	sample,	UefiDriverEntryPoint	is	the	library	class	name	produced	by	the	library	instance.	In
addition,	following	"	DXE_DRIVER	DXE_RUNTIME_DRIVER	"	are	the	type	of	modules	to	the	library	instance	supports.

3.3.2	Define	a	Library	Constructor	(Optional)
The	library	instance	module	can	define	a	library	constructor	function	that	is	invoked	by	the	entry	point
of	each	linked	module.	In	a	library	constructor	function,	some	initialization	work	can	be	done	before	any
library	interface	is	used:

[Defines]

	

		CONSTRUCTOR	=	HobLibConstructor

3.3.2.1	Types	of	library	constructor	functions
There	are	three	types	of	library	constructor	functions,	according	to	the	different	module	type	of	library
instance:

Library	instance	in	BASE	module	type:

EFI_STATUS

EFIAPI

BaseConstructor	(

VOID

)

Library	instance	in	PEIM,	PEI_CORE	module	type:

EFI_STATUS

EFIAPI

PeiServicesTablePointerLibConstructor	(

IN	EFI_PEI_FILE_HANDLE	FileHandle,

IN	CONST	EFI_PEI_SERVICES	**PeiServices

)

Library	instance	in	DXE_DRIVER,	DXE_CORE,	DXE_RUNTIME_DRIVER,	UEFI_APPLICATION,	UEFI_DRIVER
module	type:

EFI_STATUS

EFIAPI

DxeCorePerformanceLibConstructor	(

IN	EFI_HANDLE	ImageHandle,

IN	EFI_SYSTEM_TABLE	*SystemTable

)

3.3	Additional	Steps	for	Library	Instances

34

3.3.3	Define	a	Library	Destructor	(Optional)
The	library	instance	module	can	define	a	library	destructor	function	that	is	invoked	by		ExitDriver()		for
	DXE_DRIVER	,		UEFI_DRIVER		etc.	In	a	library	destructor	function,	some	un-initialization	works	can	be	done.

The	destructor	function	should	be	declared	in	an	INF	file	explicitly,	as	follows:

[Defines]

	

		DESTRUCTOR	=	HobLibDestructor

The	prototype	of	the	destructor	function	is	the	same	as	the	constructor	function	mentioned	above.

3.3	Additional	Steps	for	Library	Instances

35

3.4	Additional	Steps	for	Driver

3.4.1	Define	a	Driver	Entry	Point
PEIM	or	DXE	drivers	expose	the	entry	point	function,	which	is	defined	in	the	INF	file	[Defines]	section	as
follows:

[Defines]

	

		ENTRY_POINT	=	PcdDxeInit

The	prototype	of	the	module	entry	point	function	differs	according	to	module	type.

See	Table	7	for	details.

3.4	Additional	Steps	for	Driver

36

3.5	EDK	II	Common	Library	Class
	Library	Name	 	Concept	 	Description	

BaseLib Base	Library Provides	string	functions,	linked	list	functions,	math
functions,	and	CPU	architecture	specific	functions.

SynchronizationLib Synchronization
Library Provides	synchronization	functions

PrintLib Print	Library
Provides	services	to	print	a	formatted	string	to	a	buffer.
All	combinations	of	Unicode	and	ASCII	strings	are
supported.

BaseMemoryLib Base	Memory
Library

Provides	copy	memory,	fill	memory,	zero	memory,	and
GUID	functions.

MemoryAllocationL
Memory
Allocation
Library

Provides	services	to	allocate	and	free	memory	buffers	of
various	memory	types	and	alignments.

ib

DebugLib Debug	Library Provides	ser	vices	to	print	debug	and	assert	messages
to	a	debug	output	device.

PostCodeLib Post	Code
Library

Provides	services	to	send	progress/error	codes	to	a
POST	card.

StatusCodeLib Report	Status
Code	Library Provides	services	to	log	status	code	records

IoLib I/O	Library Provide	services	to	access	I/O	Ports	and	MMIO	registers.

PciExpressLib PCI	Express
Library

Provides	services	to	access	PCI	Configuration	Space
using	the	MMIO	PCI	Express	window.

PciLib PCI	Library Provides	services	to	access	PCI	Configuration	Space.

TimerLib Timer	Library Provides	calibrated	delay	and	performance	counter
services.

PcdLib PCD	Library Provides	library	services	to	get	and	set	Platform
Configuration	Database	entries.

The	MdePkg	provides	many	library	classes	for	developing	firmware	components	based	on	the	UEFI	and
PI	specifications.	These	library	classes	are	often	used	in	module	development	and	detailed	in	the
MdePkg	documentation.

Table	6	Commonly	use	library	classes

Table	7	Module	Entry	Point	and	Service	Table	Libraries

	Concept	 	Description	

PEIM	Entry	Point
Library Module	entry	point	library	for	PEIM.

UEFI	Driver	Entry
Point	Library

Module	entry	point	library	for	UEFI	drivers,	DXE	Drivers,	DXE	Runtime
Drivers,	and	DXE	SMM	Drivers.

UEFI	Application
Entry	Point	Library Module	entry	point	library	for	UEFI	Applications.

PEI	Services	Table
Pointer	Library Provides	a	service	to	retrieve	a	pointer	to	the	PEI	Services	Table.

UEFI	Boot	Services Provides	a	service	to	retrieve	a	pointer	to	the	EFI	Boot	Services	Table.	Only

3.5	EDK	II	Common	Library	Class

37

Table	Library available	to	DXE	and	UEFI	module	types.

UEFI	Runtime
Services	Table
Library

Provides	a	service	to	retrieve	a	pointer	to	the	EFI	Runtime	Services	Table.
Only	available	to	DXE	and	UEFI	module	types.

DXE	Services	Table
Library

Provides	a	service	to	retrieve	a	pointer	to	the	DXE	Services	Table.	Only
available	to	DXE	module	types.

3.5	EDK	II	Common	Library	Class

38

3.6	Module	using	HII
DXE	Modules	can	publish	or	update	the	following	resources	used	in	the	browser	during	the	BDS	phase:

Forms

Describes	what	type	of	content	needs	to	be	displayed	to	the	user.

Strings

The	text-based	(UCS-2	encoded)	representations	of	the	information	typically	being	referenced	by	the
forms.

Font/Image

The	contents	rendered	on	a	local	system.

Please	refer	to	the	UEFI	Specification,	Chapter	27,	Human	Interface	Infrastructure	Overview.

3.6.1	Forms

3.6.1.1	Create	VFR	resource	file
The	VFR	file	is	used	to	describe	form	resources,	per	the	example	below.	A	VFR	file	is	put	into	a	module's
directory	and	referenced	in	the	INF	file	[Sources]	section,	just	as	with	other	source	code.

Example:

VFR	file

#define	FORMSET_GUID	{	0x9e0c30bc,	0x3f06,	0x4ba6,	0x82,	0x88,	0x9,

0x17,	0x9b,	0x85,	0x5d,	0xbe

}

#define	FRONT_PAGE_CLASS	0x0000

#define	FRONT_PAGE_SUBCLASS	0x0002

#define	FRONT_PAGE_FORM_ID	0x1000

#define	FRONT_PAGE_ITEM_ONE	0x0001

#define	FRONT_PAGE_ITEM_TWO	0x0002

#define	FRONT_PAGE_ITEM_THREE	0x0003

#define	FRONT_PAGE_ITEM_FOUR	0x0004

#define	FRONT_PAGE_ITEM_FIVE	0x0005

#define	FRONT_PAGE_KEY_CONTINUE	0x1000

#define	FRONT_PAGE_KEY_LANGUAGE	0x1234

#define	FRONT_PAGE_KEY_BOOT_MANAGER	0x1064

#define	FRONT_PAGE_KEY_DEVICE_MANAGER	0x8567

#define	FRONT_PAGE_KEY_BOOT_MAINTAIN	0x9876

#define	LABEL_SELECT_LANGUAGE	0x1000

#define	LABEL_TIMEOUT	0x2000

#define	LABEL_END	0xffff

formset	guid	=	FORMSET_GUID,	title	=	STRING_TOKEN	(

																																							STR_FRONT_PAGE_TITLE),

																																							help	=	STRING_TOKEN	(STR_NULL_STRING),

																																							classguid	=	EFI_HII_PLATFORM_SETUP_FORMSET_GUID,

																																							form	formid	=	FRONT_PAGE_FORM_ID,	title	=	STRING_TOKEN	(STR_FRONT_PAGE_TITLE

);

banner	title	=	STRING_TOKEN	(STR_FRONT_PAGE_COMPUTER_MODEL),	line	0,	align	left;

banner	title	=	STRING_TOKEN	(STR_FRONT_PAGE_CPU_MODEL),	line	1,	align	left;

banner	title	=	STRING_TOKEN	(STR_FRONT_PAGE_CPU_SPEED),	line	1,	align	right;

banner	title	=	STRING_TOKEN	(STR_FRONT_PAGE_BIOS_VERSION),	line	2,	align	left;

banner	title	=	STRING_TOKEN	(STR_FRONT_PAGE_MEMORY_SIZE),	line	2,	align	right;

goto	FRONT_PAGE_ITEM_ONE,	prompt	=	STRING_TOKEN	(STR_CONTINUE_PROMPT),	help	=	STRING_TOKEN	(STR_CONTINUE_HELP),

																										flags	=	INTERACTIVE,

																										key	=	FRONT_PAGE_KEY_CONTINUE;

label	LABEL_SELECT_LANGUAGE;

//

//	This	is	where	we	will	dynamically	add	a	OneOf	type	op-code	to	select

//	Languages	from	the	currently	available	choices

3.6	Module	using	HII

39

//

label	LABEL_END;

goto	FRONT_PAGE_ITEM_THREE,	prompt	=	STRING_TOKEN	(STR_BOOT_MANAGER),	help	=	STRING_TOKEN	(STR_BOOT_MANAGER_HELP),

																												flags	=	INTERACTIVE,	key	=	FRONT_PAGE_KEY_BOOT_MANAGER;

goto	FRONT_PAGE_ITEM_FOUR,	prompt	=	STRING_TOKEN	(STR_DEVICE_MANAGER),	help	=	STRING_TOKEN	(STR_DEVICE_MANAGER_HELP),

																											flags	=	INTERACTIVE,	key	=	FRONT_PAGE_KEY_DEVICE_MANAGER;

goto	FRONT_PAGE_ITEM_FIVE,	prompt	=	STRING_TOKEN	(STR_BOOT_MAINT_MANAGER),

																											help	=	STRING_TOKEN	(STR_BOOT_MAINT_MANAGER_HELP),	flags	=	INTERACTIVE,	key	=	FRONT_PAGE_KEY_BOOT_M

AINTAIN;

endform;

endformset;

3.6.1.2	Publish	the	Form	data
When	building,	VfrCompile	will	"build"	a	.vfr	file	into	the	IFR	binary	as	a	global	array	variable	in	the	module
image.	The	name	of	the	global	array	variable	is		<VfrFileName>		+	Bin.

For	example,	the	content	of	Inventory.vfr	in	the

MdeModulePkg\Universal\DriverSampleDxe	driver	is	compiled	into	the	global	array	variable	InventoryBin.

Module	developers	should	use	the	following	code	to	publish	the	VFR	global	array	variable	into	the	HII
database:

//

//	Create	HII	driver	handle,	paramter	DriverHandle	will	hold	the

//	returned	new	handle.

//	HiiLibCreateHiiDriverHandle	defined	in	UefiHiiLib	library	class.

//

Status	=	HiiLibCreateHiiDriverHandle	(&DriverHandle);

//

//	Prepare	HII	package	list,	parameter	InventoryBin	is	the	VFR	form	data

//	HiiLibPreparePackageList	defined	in	UefiHiiLib	library	class

//

PackageList	=	HiiLibPreparePackageList	(

																2,

																&mInventoryGuid,

																InventoryBin,

																DriverSampleStrings

);

ASSERT	(PackageList	!=	NULL);

//

//	Create	package	into	HII	database	via	EFI_HII_PROTOCOL-

>	NewPackageList

//

Status	=	gHiiDatabase->NewPackageList	(

																									gHiiDatabase,

																									PackageList,

																									DriverHandle,

																									&HiiHandle

);

When	a	driver	only	produces	one		formset		in	a	VFR	file,	the	IFR	binary	could	be	put	into	a	driver's	binary
as	a	PE	resource	section	by	setting	UEFI_HII_RESOURCE_SECTION	to	TRUE	in	the	driver's	INF	file:

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	HiiResourcesSample

		FILE_GUID						=	D49D2EB0-44D5-4621-9FD6-1A92C9109B99

		MODULE_TYPE				=	UEFI_DRIVER

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	HiiResourcesSampleInit

		UNLOAD_IMAGE			=	HiiResourcesSampleUnload

		#

		#	This	flag	specifies	whether	HII	resource	section	is	generated	into	PE	image.

		#

		UEFI_HII_RESOURCE_SECTION	=	TRUE

3.6	Module	using	HII

40

Module	developers	should	use	the	following	code	to	publish	HII	package	data	into	the	HII	database:

//

//	Retrieve	HII	package	list	from	ImageHandle

//

Status	=	gBS->OpenProtocol	(

																ImageHandle,

																&gEfiHiiPackageListProtocolGuid,

																(VOID	**)	&PackageList,

																ImageHandle,

																NULL,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

//

//	Publish	sample	Fromset

//

Status	=	gBS->InstallProtocolInterface	(

																&mDriverHandle,

																&gEfiDevicePathProtocolGuid,

																EFI_NATIVE_INTERFACE,

																&mHiiVendorDevicePath

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

//

//	Publish	HII	package	list	to	HII	Database.

//

Status	=	gHiiDatabase->NewPackageList	(

																									gHiiDatabase,

																									PackageList,

																									mDriverHandle,

																									&mHiiHandle

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

3.6.2	Using	Unicode	Strings

3.6.2.1	Create	.uni	file
The	Unicode	strings	are	put	into	the	.uni	file	and	referenced	in	the	module's	INF	[Sources]	section	like
others	C	files.	The	.uni	file	is	encoding	UCS-2	with	a	0xFFFE	BOM	header.	For	example:

/=#	

#langdef	en-US	"English"	

#langdef	fr-FR	"Francais"	

#string	STR_INV_FORM_SET_TITLE	#language	en-US	"Network	

Controller	Information"	

#language	fr-FR	"Mi	motor	Español	de	arreglo"

#string	STR_INV_FORM_SET_HELP	#language	en-US	"The	ABC	Network	Controller

version	information,	which	includes	Firmware	versions	as	well	as	supported

characteristics"

3.6	Module	using	HII

41

#language	fr-FR	"The	ABC	Network	Controller	version	information,	which

includes	Firmware	versions	as	well	as	supported	characteristics"

#string	STR_INV_FORM1_TITLE	#language	en-US	"ABC	Network

Controller	Version	Data"

#language	fr-FR	"Mi	Primero

Arreglo	Página"

#string	STR_INV_VERSION_TEXT	#language	en-US	"Firmware

Revision	Date:	02/03/2002"

#language	fr-FR	"Firmware

Revision	Date:	02/03/2002"

#string	STR_INV_VERSION_HELP	#language	en-US	"The	date	of	the	revision	of	the

Firmware	being	used."

#language	fr-FR	"The	date	of	the	revision	of	the	Firmware	being	used."

3.6.2.2	Publish	the	Unicode	String	file

The	file	content	in	.uni	file	will	be	parsed

and	compiled	by	build	tool	to	a	binary	string	package	array	for	a	module.	The	name	of	binary	array	is	constructed	as

<ModuleName>	{	+	"Strings".	For	example,	the	inventorystring.uni	defined	in	MdeModulePkg\Universal\DriverSampleDxe	is	compiled

	to	binary	array:	extern	UINT8	DriverSampleStrings[];	}

Module	developers	should	use	the	following	codes	to	publish	the	strings	array	variable	into	the	HII
database:

//

//	Create	HII	driver	handle,	paramter	DriverHandle	will	hold	the

//	returned	new	handle.

//	HiiLibCreateHiiDriverHandle	defined	in	UefiHiiLib	library	class.

//

Status	=	HiiLibCreateHiiDriverHandle	(&DriverHandle);

//

//	Prepare	HII	package	list,	parameter	DriverSampleStrings	is	the

//	strings	binary	data.

//	HiiLibPreparePackageList	defined	in	UefiHiiLib	library	class

//

PackageList	=	HiiLibPreparePackageList	(

																2,

																&mFormSetGuid,

																DriverSampleStrings,

																VfrBin

);

if	(PackageList	==	NULL)

{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Create	package	into	HII	database	via	EFI_HII_PROTOCOL-

>	NewPackageList

//

Status	=	HiiDatabase->NewPackageList	(

																								HiiDatabase,

																								PackageList,

																								DriverHandle[0],

																								&HiiHandle[0]

);

3.6	Module	using	HII

42

As	with	other	types	HII	resources,	if	a	module	publishs	the	HII	data	into	a	PE	resource	section,
UEFI_HII_RESOURCE_SECTION	is	set	to	TRUE	in	the	module's	INF	file	and	the	following	code	is	used:

//

//	Retrieve	HII	package	list	from	ImageHandle

//

Status	=	gBS->OpenProtocol	(

																ImageHandle,

																&gEfiHiiPackageListProtocolGuid,

																(VOID	**)	&PackageList,

																ImageHandle,

																NULL,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

//

//	Publish	sample	Fromset

//

Status	=	gBS->InstallProtocolInterface	(

																&mDriverHandle,

																&gEfiDevicePathProtocolGuid,

																EFI_NATIVE_INTERFACE,

																&mHiiVendorDevicePath

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

//

//	Publish	HII	package	list	to	HII	Database.

//

Status	=	gHiiDatabase->NewPackageList	(

																									gHiiDatabase,

																									PackageList,

																									mDriverHandle,

																									&mHiiHandle

);

if	(EFI_ERROR	(Status))

{

		return	Status;

}

3.6	Module	using	HII

43

3.7	Building	the	module
After	the	module	source	is	finished,	the	module	INF	is	added	into	the	DSC	file	to	be	built	to	the	expected
binary	image.	Library,	EFI	and	OptionRom	images	are	supported	by	the	EDK	II	build	system.

3.7.1	Add	the	module	INF	in	package	DSC
To	build	a	module,	the	module	INF	file	is	specified	in	DSC	[Components]	section.	Its	relative	file	path	from
the	workspace	(beginning	from	the	package	directory),	up	to	and	including	the	INF	file	name,	is	added
per	the	following	example.	Some	module	may	be	required	to	be	built	for	the	specific	ARCH.

The	DSC	[Defines]	section	lists	all	supported	architectures	for	this	platform.	The	[Components.ARCH]
section	lists	the	modules	for	this	architecture.	The	ARCH	must	be	on	the	list	of	all	ARCHs	from	the
[Defines]	section.	The	separate	[Components]	section	can	be	created	for	the	modules	that	support	the
different	architectures.

3.7.1.1	Example:	Package.dsc	Components

[Defines]

	

		SUPPORTED_ARCHITECTURES	=	IA32|IPF|X64|EBC

	

[Components]	##	All	libraries,	drivers	and	applications	may	be	added	here	to	be	built.

		##	this	library	will	be	built	to	the	IA32,	IPF,	X64	and	EBC	arch	version.

		PackageNamePkg/Library/NameOneLib/NameOneLib.inf

[Components.IA32]	##	This	PEI	driver	will	be	built	to	the	IA32	arch	version.

		PackageNamePkg/NameTwoPei/NameTwoPei.inf

[Components.X64,	Components.EBC]	##	This	DXE	driver	will	be	built	to	the	X64	and	EBC	arch	version.

		PackageNamePkg/NameOneDxe/NameOneDxe.inf

3.7.2	Select	Library	Instances

Note:	Skip	this	step	if	the	module	is	a	library	instance.

For	drivers	and	applications,	a	library	instance	for	each	library	class	dependency	must	be	selected	and
linked	to	its	binary	EFI	image.

The	module	INF	[LibraryClasses]	section	lists	all	required	library	classes,	which	are	produced	by	library
instances.

Library	instances	are	implemented	for	the	different	purposes.	Most	of	them	abstract	the	generic	logic
as	the	common	interfaces	for	the	crossing	platform	modules.	Some	are	for	performance	and	size
optimization.

For	example,	in	the	MdePkg	the	BaseMemoryLibOptDxe	instances	produce	the	"good	performance"
BaseMemory	library	class	implementation	based	on	the	registers	to	perform	a	memory	operation.
Another	example,	in	the	MdePkg	the	PeiIoLibCpuIo	library	instance	implements	the	Io	library	class	by
using	the	services	of	CpuIo	PPI	to	reduce	code	size.

3.7	Building	the	module

44

Depending	on	platform	requirements,	different	library	instances	can	be	set	in	the	DSC	[LibraryClasses]
section.	In	the	initial	development,	the	generic	library	instances	without	any	optimization	are	often	used
to	reduce	the	development	risk.	After	the	module	basic	functionality	is	finished,	it	can	be	further	tuned
for	size	and	performance.

The	EDK	II	MdePkg	provides	many	common	library	instances	for	user	selection.	The	details	for	each
library	instance	are	found	in	its	INF	file	or	in	the	MdePkg	specification.

The	following	example	lists	the	most	basic	library	instances.

3.7.2.1	Example	Package.dsc	LibraryClasses
3.7.2.1.1	Example	1:	Generic	library	instances

[LibraryClasses]

		##	Basic	Library

		BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

		DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

		SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizat	ionLib.inf

		CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf

		BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

		PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

		##	Pci	Library

		PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf

		PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf

		PciLib|MdePkg/Library/BasePciLibCf8/BasePciLibCf8.inf

		##	Entry	Point	Library

		PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf

		UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryP	oint.inf

		UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiAp	plicationEntryPoint.inf

		##	PEI	service	library

		PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf

		PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLib/PeiS	ervicesTablePointerLib.inf

		##	UEFI	and	DXE	service	library

		UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBoot

		ServicesTableLib.inf

		DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLi	b.inf

		UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/Ue	fiRuntimeServicesTableLib.inf

		DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf

		UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf

		UefiLib|MdePkg/Library/UefiLib/UefiLib.inf

		DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

		##	This	library	instance	should	be	provide	by	chipset.

		TimerLib|MdePkg/Library/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate

		.inf

The	library	instances	given	above	are	generic	ones	for	use	in	all	drivers.	However,	according	to	the
module	type	and	CPU	architecture,	more	suitable	library	instances	can	be	added	into
[LibraryClass.ARCHs.ModuleType]	section	to	override	the	common	setting,	per	the	following	example:

3.7.2.1.2	Example	2:	library	instances	per	module	type	and	CPU	architecture

[Defines]

	

[LibraryClasses]

	

[LibraryClasses.IA32,	LibraryClasses.X64]

		##	these	two	optimized	library	istances	only	for	X86	arch.

		##	they	will	override	the	above	common	base	memory	instance.

		MdePkg/Library/BaseMemoryLibOptDxe/BaseMemoryLibOptDxe.inf

		MdePkg/Library/BaseMemoryLibOptPei/BaseMemoryLibOptPei.inf

[LibraryClasses.common.UEFI_DRIVER]

3.7	Building	the	module

45

		#	these	two	library	intances	are	set	for	UEFI	driver	type	module.

		#

		#	Debug	library	instance	will	override	the	above	NULL	instance.

		MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllo	cationLib.inf	DebugLib|MdePkg/Library/UefiDebugLib

ConOut/UefiDebugLibConOut.inf

For	the	specific	requirement,	a	driver	may	select	its	library	instances	to	override	all	library	instances
specified	in	the	[LibraryClasses]	section.	This	chosen	library	instance	is	set	only	for	this	driver.	Such
usage	is	also	supported	in	the	DSC	as	follows:

3.7.2.1.3	Example	3:	library	instances	for	a	specific	driver

[Defines]

	

[LibraryClasses]

	

[Components]

		##	For	NameOnDxe	driver,	its	linked	PCD	library	instance	is	DxePcdLib,	not

		##	the	above	BasePcdLibNull	instance.

		PackageNamePkg/NameOneDxe/NameOneDxe.inf	{

		<LibraryClasses>

		PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf

		}

3.7.3	Configure	PCDs

Note:	Skip	this	step	for	library	modules

Modules	that	consume	PCDs	(including	those	consumed	by	linked	libraries)	need	to	have	those	PCDs
configured	in	the	DSC.	The	configured	PCDs	will	be	applied	both	to	the	module	and	to	its	linked	library
instances.	PCDs	are	declared	in	package	DEC	file.	When	the	PCD's	value	is	the	same	as	the	default
value	defined	in	the	DEC,	those	PCDs	need	not	be	specified	in	DSC	again.

In	the	DSC,	the	PCD	type	and	value	can	be	configured	according	to	the	platform	requirements.	The	PCD
type	must	be	set	to	single	type	in	a	DSC	file.	If	not	specified	in	DSC,	the	PCD	type	will	be	same	as	its
declaration	PCD	type	in	the	package	DEC	file.	If	a	PCD	is	declared	to	support	multiple	PCD	types,	the
default	PCD	type	is	a	fixed	PCD.

The	PCD	value	may	set	the	different	values	for	the	different	drivers.	If	its	value	is	not	specified,	the	value
will	be	from	its	declaration	default	value	to	the	chosen	PCD	type	in	the	package	DEC	file.

3.7.3.1	PCD	types
PcdsFeatureFlag,

PcdsFixedAtBuild,		PcdsPatchableInModule,		PcdsDynamic.

3.7.3.2	Feature	Flag	PCD
If	a	PCD	is	declared	as	PcdsFeatureFlag,	it	must	be	of	the	FeatureFlag	PCD	type	and	BOOLEAN	data	type.
When	this	type	of	PCD	is	used	in	a	module,	it	must	be	specified	in	the	[FeaturePcd]	section	of	the
module	INF.

3.7	Building	the	module

46

Note:	Only	FeaturePcdGet	API	can	access	this	PCD	type.

3.7.3.3	Fixed	PCD
If	a	PCD	value	is	decided	during	the	build	time,	its	type	can	be	set	to

PcdsFixedAtBuild.	When	this	PCD	type	is	used	in	module,	it	can	be	specified	in	the	[FixedPcd]	or	[PCD]
section	of	the	module	INF.	In	addition,	FixedPcdGet	and	PcdGet	API	can	be	used	to	access	this	type	PCD
in	the	module	source	code.

When	FixedPcdGet	API	is	used,	this	type	PCD	can	be	used	as	the	array	index	in	a	driver.

Note:	For	a	library,	no	such	usage	is	supported.

3.7.3.4	Patchable	PCD
If	the	PCD	value	needs	to	be	modified	in	the	binary	image,	its	type	will	be

PcdsPatchableInModule.	When	this	type	PCD	is	used	in	module,	it	can	be	specified	in	the	[FatchPcd]	or
[PCD]	section	of	the	module	INF.	In	addition,

PatchPcdGet/PatchPcdSet	and	PcdGet/PcdSet	API	can	be	used	to	access	this	type	PCD	in	the	module
source	code.

3.7.3.5	Dynamic	PCD
If	PCD	value	is	obtained	from	the	runtime	environment,	its	type	must	be	Dynamic.	If	a	dynamic	PCD	is
from	a	PCD	database	that	shares	data	between	drives,	its	type	will	be	PcdsDynamicDefault.	If	a	dynamic
PCD	is	related	to	a	UEFI	variable,	its	type	will	be	PcdsDynamicHII.

When	this	type	PCD	is	used	in	a	module,	it	must	be	specified	in	the	[PCD]	section	of	the	module	INF.	Only
PcdGet/PcdSet	API	can	be	used	to	access	this	type	PCD	in	module	source	code.

Dynamic	type	PCDs	must	be	configured	in	the	DSC	file	to	set	the	dynamic	type	and	the	initial	value	for
the	whole	platform,	which	cannot	inherit	from	its	declaration	DEC	file	and	cannot	be	overridden	by	a
driver.

The	following	example	gives	each	type	of	PCD	setting:

3.7.3.5.1	Package.dsc	PCDs	showing	each	type	of	PCD	setting

[PcdsFeatureFlag]

		#PcdName	|	Pcdvalue

		gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintEnable|TRUE

[PcdsFixedAtBuild]

		#StringPcdName	|	StringValue|	StringType|	StringMaxSize

		gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintString	|L"UEFI	Hello

		World!n"|VOID*|100

[PcdsPatchableInModule]

		#Pring	level	can	be	modifed	in	binary	image

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000046

[PcdsDynamicDefault]

		#Default	print	times	is	1,	its	can	be	modifed	in	runtime.

		gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintTimes|0x1

3.7	Building	the	module

47

[PcdsDynamicHii]

		#time	out

		#PcdName	|	Uefi	Variable	name	|	Uefi	Variable	Guid	|	Offset	|	Default	value

		gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|L"Timeou	t"|gEfiGlobalVariableGuid|0x0|5

PCD	section	also	supports	ARCH	option	to	set	PCDs	value	only	for	a	specific	ARCH	image.	It	can	be	set	in
[PcdsType.ARCHs]	section.	For	example:

3.7.3.5.2	Example:	Package.dsc	PCDs	for	a	specific	ARCH	image

[PcdsFixedAtBuild.IPF]

gEfiMdePkgTokenSpaceGuid.PcdIoBlockBaseAddressForIpf|0x0ffffc000000

PCD	value	can	be	also	set	only	for	a	driver	to	override	the	PCD	section	setting.	However,	Dynamic	type
PCD	must	be	set	as	the	global	value,	which	cannot	be	overridden	by	a	driver.	Such	usage	is	also
supported	in	DSC	like:

3.7.3.5.3	Example:	Package.dsc	dynamic	PCDs

[Components]

		#	For	NameOnDxe	driver,	its	print	level	PCD	value	is	0x80000000,	not	same	to

		#	the	above	setting	0x80000046.

		PackageNamePkg/NameOneDxe/NameOneDxe.inf	{

		<PcdsPatchableInModule>

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000	}

3.7.4	Customize	Build	Options
Build	options	are	the	different	compiler	options	to	build	the	image	under	the	different	tool	chain.	They
are	defined	in	$(WORKSPACE)/Conf/toolsdef.txt	file.	This	file	provides	the	common	compiler	options	for
each	tool	chain	tag.	The	compiler	options	are	grouped	into	two	main	types:	compile	option	and	link
option.	The	full	option	list	can	refer	to	tools_def.txt	and	_EDK	II	Build	Specification.

The	following	example	lists	the	usual	compiler	and	link	option.

3.7.4.1	Example:	Tools_def.txt
When	the	common	build	options	in	tools_def.txt	do	not	satisfy	the	development	requirement,	they	can
be	extended	or	replaced.

		#

		#	Build	option	syntax

		#	TARGET_TOOLCHAIN_ARCH_COMMANDTYPE_ATTRIBUTE	=	build	option

		#

		#	TARGET	is	RELEASE	or	DEBUG

		#	TOOLCHAIN	is	tool	tag	name,	MYTOOLS	is	a	tag	with	VS2005	tool	chain

		#	ARCH	is	the	tool	cpu	family	architecture.

		#	COMMANDTYPE	is	the	build	option	name.	CC	is	compile,	DLINK	is	link.

		#	ATTRIBUTE	is	FLAGS	for	the	build	option.

		#

		#	Debug	related	options	of	VS2005	compiler

		DEBUG_MYTOOLS_IA32_CC_FLAGS				=	...	/Zi	/Gm

		DEBUG_MYTOOLS_IA32_DLINK_FLAGS	=	...	/DEBUG

The	EDK	II	build	system	provides	four	levels	of	override	mechanisms	to	customize	the	compiler	options.
The	options	override	each	other	in	the	order	given.

3.7.4.2	Modifying	Tools_def.txt

3.7	Building	the	module

48

Directly	modify	build	options	in	tool_def.txt,	which	changes	the	compiler	options	and	affects	all	modules
and	platforms	in	same	workspace.

3.7.4.3	Modifying	an	INF	file
Add	the	additional	compiler	option	in	module	INF	[BuildOptions],	which	applies	for	this	module	to	be	built
in	any	build	DSC.

3.7.4.3.1	Example:	Module.inf

[BuildOptions]

		#

		#	Tool	Chain	Family:	MSFT,	INTEL,	GCC	for	the	different	compiler	tools.

		#	The	different	compiler	tools	have	the	different	compiler	options.

		#	*	is	not	specific	TARGET,	TOOLTAGNAME,	ARCHs.

		#

		#	'='	append	the	additional	option	to	the	tail.

		#	Append	/FAsc	compile	option	only	for	this	module

		#

		MSFT:*_*_*_CC_FLAGS	=	/FAsc

		#

		#	'=='	replace	all	options	by	using	new	setting

		#

		MSFT:*_*_*_DLINK_FLAGS	=	=	/DEBUG

3.7.4.4	Modifying	DSC	platform	options
Add	the	additional	compiler	option	in	build	DSC	[BuildOptions]	section,	which	will	update	the	compiler
options	for	all	modules	described	in	same	DSC.

3.7.4.4.1	Example:	Package.dsc	BuildOptions	-compler	options	for	all	modules

[BuildOptions]

		#

		#	Append	/Od	Compile	option	in	DSC	to	disable	optimiaztion	for	all	modules

		#

		MSFT:*_*_*_CC_FLAGS	=	/Od

3.7.4.5	Modifying	a	DSC	for	a	single	module
Add	the	additional	compiler	option	in	the	build	DSC	[Components]	section	for	a	module,	which	applies
for	it	only	in	this	build	DSC.

3.7.4.5.1	Example:	Package.dsc	BuildOptions-single	module	compiler	options

[Components]

		#

		#	Append	the	debug	compile	option	only	to	NameOneDxe	driver

		#

		PackageNamePkg/NameOneDxe/NameOneDxe.inf	{

		<BuildOptions>

		MSFT:*_*_*_CC_FLAGS	=	/Od

		}

The	higher-level	setting	will	append	new	options	in	the	tail	or	replace	all	options.	The	four	methods	work
together	meet	the	platform	build	requirements.

Note:	The	last	two	usages	are	recommended.	Both	only	modify	the	DSC	file.

3.7	Building	the	module

49

3.7.5	Build	module	image
After	the	settings	given	above,	the	EDK	II	build	command	can	be	called	to	build	the	module	to	the	binary
image.	It	has	many	build	configurations	to	support	the	differing	build	requirements.	The	usual	used
build	options	are	introduced	in	the	following	manner:

3.7.5.1	Example:	Build	option
Build	-p	Package.dsc	-m	Module.inf	-a	ARCH	-b	TARGET	-t	TOOLTAG

3.7.5.2	Build	Package	(-p	option)
All	modules	in	the	[Components]	section	of	the	specified	package	DSC	will	be	built	if	the	build	module
option	is	not	added.	If	specified	more	than	once	on	the	command	line,	the	final	selection	is	used.

3.7.5.2.1	Example:	Build	-p	option

		#	Build	all	modules	in	PackageOne	DSC

		Build	-p	PackageOnePackageOne.dsc

		#	Build	all	modules	in	PackageTwo	DSC

		Build	-p	PackageOnePackageOne.dsc	-p	PackageTwoPackageTwo.dsc

3.7.5.3	Build	Module	(-m	option)
When	a	single	specified	module	is	built,	it	must	be	in	the	[Components]	section	of	the	specified	DSC.	If
this	option	is	not	added,	all	modules	in	the	DSC	will	be	built.	If	specified	more	than	once	on	the
command	line,	the	final	selection	is	used.

3.7.5.3.1	Example:	Build	-m	option

		#	Build	single	module	One	in	PacakgeOne	DSC

		Build	-p	PackageOnePackageOne.dsc	-m	PackageOneOneOne.inf

		#	Build	single	module	Two	in	PackageOne	DSC

		Build	-p	PackageOnePackageOne.dsc	-m	PackageOneOneOne.inf	-m

		PackageOneTwoTwo.inf

3.7.5.4	Build	ARCH	(-a	option)
The	supported	ARCH	option	is	IA32,	X64,	IPF	and	EBC.	New	arch	types	may	be	added	in	the	future.	The
module	with	the	settings	given	above	will	be	built	to	the	specified	ARCH.	If	specified	more	than	once	on
the	command	line,	each	ARCH	is	built	sequentially.

3.7.5.4.1	Example:	Build	-a	option

		#	Build	all	modules	in	PacakgeOne	DSC	to	IA32	arch

		Build	-p	PackageOnePackageOne.dsc	-a	IA32

		#	Build	all	modules	in	packageOne	DSC	to	IA32	and	X64	arch	both

		Build	-p	PackageOnePackageOne.dsc	-a	IA32	-a	X64

3.7.5.5	Build	Target	(-b	option)
The	supported	target	is	DEBUG	and	RELEASE,	which	are	for	the	different	compiler	option	settings.	The
module	will	be	built	under	the	specified	target.	If	specified	more	than	once	on	the	command	line,	each
Target	is	built	sequentially.

3.7	Building	the	module

50

3.7.5.5.1	Example:	Build	-b	option

		#	Build	all	modules	in	PacakgeOne	to	IA32	arch

		Build	-p	PackageOnePackageOne.dsc	-b	DEBUG

		#	Build	all	modules	in	packageOne	to	IA32	and	X64	arch	both

		Build	-p	PackageOnePackageOne.dsc	-b	DEBUG	-b	RELEASE

3.7.5.6	Build	Tool	Tag	Name	(-t	option)
Tool	tag	name	are	defined	in	Conf\Tools_def.txt	file	to	represent	a	compiler	tool	chain.	For	example,
MYTOOLS	is	a	default	tool	tag	name	to	Microsoft	VS2005	tool	chain.	The	module	will	be	built	by	the
specified	tool	chain.	If	specified	more	than	once	on	the	command	line,	each	used	tool	chain	is	used
sequentially.

3.7.5.6.1	Example:	Build	-t	option

		#	Build	all	modules	in	PacakgeOne	by	MYTOOLS	tool	chain

		Build	-p	PackageOnePackageOne.dsc	-t	MYTOOLS

		#	Build	all	modules	in	packageOne	by	MYTOOLS	and	ICC	tool	chain

		Build	-p	PackageOnePackageOne.dsc	-t	MYTOOLS	-t	ICC

If	the	options	given	above	are	not	specified	with	the	build	command,	their	default	settings	will	be	from
Conf\target.txt	file.	Details	of	build	command	are	referenced	in	the	EDK	II	User	Manual	3.2.2	section.

After	applying	the	settings	and	build	given	above,	the	library	and	EFI	image	can	be	generated	into	the
build	output	directory.	The	build	output	directory	is	introduced	in	detail	in	EDK	II	User	Manual,	section
3.3	The	library	is	generated	into	the	OUTPUT	directory,	and	the	EFI	image	is	generated	into	the	DEBUG
directory.

3.7.5.7	Example:	Build	HelloWorld

Build	-p	MdeModulePkg/MdeModulePkg.dsc	-m

MdeModulePkg/Application/HelloWorld/HelloWorld.inf	-a	IA32	-b	DEBUG	-t

MYTOOLS

HelloWorld.efi	will	be	generated	in	DEBUG	directory:

$(WORKSAPCE)/Build/MdeModulePkg/DEBUG_MYTOOLS/IA32/MdeModulePkg/Applicati	on/HelloWorld/HelloWorld/DEBUG,	OUTPUT

In	the	build	DEBUG	directory,	the	following	files	are	created:	the	EFI	image,	intermediate	files,	AutoGen.h,	AutopGen.c	and	th

e	Module.map	file.

AutoGen.h	and	AutopGen.c	files	are	generated	for	each	module	by	the	EDK	II	build	tool	based	on	the	required	module	information

.	They	declare	the	dependent	PCDs,	Guid	Values	and	include	the	module	entry	point	related	functions.	Those	AutoGen	functions	a

re	referred	to	in	the	ModuleEntryPoint	library	instance.	For	each	module,	the	entry	point	function	first	calls	AutoGen	code,	t

hen	enters	into	module	functions.

Module.map	is	generated	by	a	compiler	tool	to	list	all	functions	and	their	relative	addresses	in	this
module.	They	can	be	used	to	locate	the	module	function	address	at	run	time.

3.7.6	Build	EFI	Option	Rom	image
An	EFI	Option	Rom	image	is	a	standard	EFI	image.	It	can	be	built	by	the	build	module	command
mentioned	in	the	section	given	above.	The	only	difference	is	that	its	INF	includes	the	related	PCI	option
in	[Defines]	section.	When	PCI	option	is	set	in	the	module	INF,	this	module	will	be	built	to	both	EFI	and
Option	Rom	images.	In	the	build	DEBUG	directory,	ModuleName.efi	and	ModuleName.rom	will	be
generated.

The	following	example	contains	all	PCI	options	required	to	create	the	EFI	option	rom	image.

3.7.6.1	Example:	OptionRom	INF-all	PCI	options

3.7	Building	the	module

51

[Defines]

		INF_VERSION	=	0x00010005

		BASE_NAME			=	OptionRomOne

		FILE_GUID			=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE	=	UEFI_DRIVER

		ENTRY_POINT	=	UefiMain

		#	PCI	option	for	VendorId,	DeviceId,	ClassCode	and	Revision

		#

		#	PCI	option	is	used	to	create	PCI	option	rom	image.

		PCI_VENDOR_ID		=	0x8086

		PCI_DEVICE_ID		=	0x29c2

		PCI_CLASS_CODE	=	0x030000

		PCI_REVISION			=	0x1000

[Sources.common]

		OptionRom.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiBootServicesTableLib

		UefiDriverEntryPoint

		UefiLib

		DebugLib

Of	the	PCI	options,	VendorId,	DeviceId	and	ClassCode	are	required.The	PCI	revision	is	optional.	If	the	PCI
revision	is	not	specified,	the	default	revision	is	0x0.

3.7.7	Common	build	module	breaks
The	following	lists	the	common	build	module	breaks	and	their	fixes.

error	4000:	Value	of	Guid	[gCNameGuid]	is	not	found	under	[Guids]	section	in
MdePkg\MdePkg.dec

The	module	INF	is	missing	a	package	in	the	[Packages]	section.	The	same	error	can	happen	for	any
Guid,	Ppi,	Protocol,	LibraryClass	and	PCD	used	by	this	module.	The	package	DEC	that	declares	them
must	be	added	to	the	[Packages]	section	of	this	module	INF.

error	LNK2001:	unresolved	external	symbol	_gCNameGuid

The	module	INF	is	missing	a	Guid	in	the	[Guids]	section.	The	same	error	can	happen	for	any	Guid,	Ppi,
Protocol,	LibraryClass	and	PCD	used	by	this	module.	The	Guid,	Ppi,	or	Protocol)	CName	needs	to	be
added	into	the	[Guids],	[Ppis],	or	[Protocols]	sections,	respectively.

error	LNK2001:	unresolved	external	symbol	_LibraryFunctionName

The	module	INF	is	missing	a	library	class	in	the	[LibraryClasses]	section.	This	prevents	the	library
instance	from	being	linked	to	the	module.	The	library	class	that	includes	LibraryFunctionName	must	be
added	into	the	[LibraryClasses]	section	of	this	module	INF.

warning	C4013:	'FeaturePcdGet'	undefined;	assuming	extern	returning	int

PcdLib.h	is	missing	in	the	module	source	code.	When	a	PCD	is	used	in	a	module,	PcdLib	APIs	are	referenced	to	access	the	PCD.	T

he	PcdLib	header	file	must	included	in	this	module	source	code.

error	0010:	File	name	case	mismatch	MdeModulePkg\Application\Helloworld\HelloWorld.inf	MdeModulePkg\Application\HelloWorld\Hel

loWorld.inf	[in	file	system]

Note:	Lower	case	'w'	in'	Helloworld',	in	the	first	path

3.7	Building	the	module

52

The	module	INF	file	path	specified	in	the	DSC	is	not	same	as	its	file	path	in	the	file	system.	The	same
error	may	occur	for	the	source	file	path	specified	in	the	[Source]	section	of	a	module	INF.	According	to
the	error	information,	the	file	path	in	the	DSC	or	INF	needs	to	be	corrected	to	its	file	path	in	file	system.
All	files	must	have	their	name	and	case	set	the	same	in	the	metadata	files	as	in	the	file	system.

error	4000:	Instance	of	library	class	[NameOneLib]	is	not	found	consumed	by	module
[MdeModulePkg\Application\HelloWorld\HelloWorld.inf]

The	DSC	file	is	missing	a	library	class	to	library	instance	mapping	for	the	given	library.	If	the	module	does
not	depend	on	the	library	class,	the	unused	library	class	can	be	removed	from	the	[LibraryClasses]
section	of	module	INF	to	fix	this	error.	If	the	module	requires	this	library	class,	the	corresponding	library
instance	mapping	must	be	added	into	the	[LibraryClasses]	section	of	the	DSC	file.

3.7	Building	the	module

53

3.8	Debugging	a	Module

3.8.1	Required	steps	for	debugging	a	module
The	following	steps	are	required	before	starting	to	debug	a	module.

"Build	-b	DEBUG"	command

EDK	II	supports	generating	DEBUG/RELEASE	target.	A	different	target	causes	different	build	options.
The	"BuildTarget"	field	in	target.txt	works	with	the	"ToolChain"	field	to	determine	the	actual	path	of
the	compiler	tool-chain	and	build	option.	Developers	can	directly	open	$(WORKSPACE)\Conf\target.txt
and	change	"TARGET	=	DEBUG"	for	the	debug	tip.	Developers	also	can	use	the	command	line	to
override	this	value,	such	as	"build	-b	DEBUG"	for	debug	tip.

Choose	the	proper	DebugLib	library	instance

For	the	DebugLib	library	class,	MdePkg	and	IntelFrameworkModulePkg	core	packages	provide
several	library	instances,	which	include		BaseDebugLibNull	,		BaseDebugLibSerialPort	,		UefiDebugLibConOut	,
	UefiDebugLibStdErr	,	and		PeiDxeDebugLibReportStatusCode	.	Developers	can	choose	proper	DebugLib	library
instance	in	the	package	DSC	file	according	to	the	actual	requirements.

Configure	the	Pcds	consumed	by	DebugLib

The	DebugLib	library	class	header	defines	two	PCDs	to	be	used	for	debug	library	configuration.

The	PCDs	related	to	debug	ability	include		PcdDebugPropertyMask		and		PcdDebugPrintErrorLevel	.	The	former	is
used	to	control	enable/disable	print/assert	abilities,	and	determines	if	the	ASSERT	macro	is
implemented	through	CpuDeadLoop	or	BreakPoint.	For	the	latter,	developers	can	set	various	values
to	control	if	the	error	information	should	be	printed	or	filtered.

Change	build	option

Developers	can	modify	or	override	the	module	build	option.	For	example,	a	developer	can	use	the
"/Od"	option	for	the	Microsoft	compiler	to	disable	the	optimization	of	the	compiler	and	avoid
disordered	instructions.	The	debug	tip	can	also	use	the	"/FAsc"	option	for	the	Microsoft	compiler	to
generate	a	source	and	assembly	(.cod)	file	to	help	debug.

3.8.2	Basic	debugging	methods
Following	are	three	basic	methods	for	debugging:

Using	DEBUG	print	statement.

In	EDK	II	project,	there	is	a	set	of	PCD	to	enable/disable	debug	capability.	Developer	can	turn	on	the
functionality	when	starting	to	debug.	Therefore,	the	DEBUG	print	statements	can	be	used	to	get
information	desired.

CpuDeadLoop()

Developers	can	use	an	API	to	halt	control	flow,	which	is	helpful	to	find	the	location	of	an	issue	quickly.

Module's	Map	file

Currently,	EDK	II	generates	a	corresponding	FV	map	file	for	every	module.	Developers	can	depend	on
the	base	address	of	a	loaded	module	and	map	file	to	calculate	the	memory	address	of	functions.

3.8	Debugging	a	Module

54

3.8	Debugging	a	Module

55

4	UEFI	APPLICATIONS
UEFI	Application	is	an	EFI	image	of	the	type

EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION.	This	image	is	executed	and	automatically	unloaded	when	the
image	exits	or	returns	from	its	entry	point.

OS	loader	is	a	special	type	of	application	that	normally	does	not	return	or	exit.	Instead,	it	calls	the	EFI
Boot	Service	gBS->ExitBootServices()	to	transfer	control	of	the	platform	from	the	firmware	to	an
operating	system.

The	EFI	Shell	is	a	special	EFI	application	that	provides	the	user	with	a	command-line	interface.

4	UEFI	Applications

56

4.1	Begin	with	INF	file
The	following	is	an	example	of	the	INF	file	of	an	application	named	SampleApplication.	For	UEFI
Application,	the		MODULE_TYPE		entry	should	be		UEFI_APPLICATION.		The	difference	compared	to	Pei/Dxe/Uefi
driver	is	that	UEFI_APPLICATON	has	no	dependency	relationship	section.

[Defines]

		INF_VERSION																=	0x00010005

		BASE_NAME																		=	SampleApplication

		FILE_GUID																		=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE																=	UEFI_APPLICATION

		ENTRY_POINT																=	SampleApplicationEntryPoint

		UEFI_SPECIFICATION_VERSION	=	0x0002001E

[Sources]

		Sample.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiApplicationEntryPoint

		DebugLib

[protocol]

		gSampleProtocolGuid

[Guids]	gSampleGuid

Note:	If	a	module	is	dependent	on	the	new	definitions	or	features	in

EFI_BOOT_SERVICES	or	UEFI_RUNTIME_SERVICES-defined	in	UEFI	specifications	from	version	2.1	forward-
the	hex	version	needs	to	be	given	in	INF	file	[Defines]	section's	UEFI_SPECFIICATION_VERSION	field.

4.1	Begin	with	INF	file

57

4.2	Write	UEFI	Application	Entry	Point
Developers	must	focus	on	specifying	the	entry	point	of	UEFI	application	in	the		[Defines]		section	of	INF
file.

Its	prototype	is	list	below:

EFI_STATUS

EFIAPI

UefiMain	(

	IN	EFI_HANDLE		ImageHandle	,	

	IN	EFI_SYSTEM_TABLE	*SystemTable

);	

As	can	be	seen,	there	are	two	parameters	for	UEFI	application	entry	point,

	ImageHandle		and		SystemTable	.		ImageHandle		refers	to	the	image	handle	of	the	UEFI	application.		SystemTable		is
the	pointer	to	the	EFI	System	Table.

The	following	is	a	full	UEFI_APPLICATION	example	located	at

$WORKSPACE\MdeModulePkg\Application\HelloWorld.	It	shows	how	to	print	a	"UEFI	Hello	World!"	string	to
console.

Note:	This	application	uses	several	pcds	to	demonstrate	the	usage	of	PCD.	Readers	can	obtain	the
default	value	of	these	pcds	from	the

$WORKSPACE\MdeModulePkg\MdeModulePkg.dec	file.

EFI_STATUS

EFIAPI

UefiMain	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		UINT32		Index;

		Index	=	0;

		//

		//	Three	PCD	type	(FeatureFlag,	UINT32	and	String)	are	used	as	the

		//	sample.

		//

		if	(FeaturePcdGet	(PcdHelloWorldPrintEnable))	{

				for	(Index	=	0;

									Index	<	PcdGet32	(PcdHelloWorldPrintTimes);	Index	++)	{

						//

						//	Use	UefiLib	Print	API	to	print	string	to	UEFI	console

						//

						Print	((CHAR16	*)PcdGetPtr	(PcdHelloWorldPrintString));

				}

		}

		return	EFI_SUCCESS;

}

4.2	Write	UEFI	Application	Entry	Point

58

4.2	Write	UEFI	Application	Entry	Point

59

4.3	Get	Service	Tables
UEFI	Application	may	consume	the	UEFI	Boot	Services,	UEFI	Runtime	Services	and	UEFI	System	Table.

Refer	to	UEFI	Specification	for	definitions	and	detailed	descriptions	of	UEFI	Boot	Services,	UEFI	Runtime
Services,	and	UEFI	System	Table.

EDK	II	provides	UefiBootServicesTableLib,	UefiBootServicesTableLib	and

UefiRuntimeServicesTableLib	to	facilitate	developer	in	accessing	those	services.	The	following	table	lists
the	global	symbol	provided	by	those	libraries.

Table	8	Global	Symbol	can	be	used	by	UEFI	Application

	Global	Variable	 	Library	Class	

UEFI	System	Table 	gST	 UefiBootServicesTableLib

UEFI	Boot	Services	Table 	gBS	 UefiBootServicesTableLib

UEFI	Runtime	Services	Table 	gRT	 UefiRuntimeServicesTableLib

4.3	Get	Service	Tables

60

4.4	Communicating	with	a	UEFI	driver

4.4.1	Protocol
Uefi	Application	can	use	the	following	protocol	service	to	access	the	protocol	interfaces	produced	by
UEFI	drivers.

Services	to	retrieve	the	protocol:

	LocateProtocol()	

	HandleProtocol()	

	OpenProtocol()	

Note:	Uefi	Application	cannot	use	the	InstallProcotol	service	or	corresponding	Libraries	to	install	the
protocol.	This	is	because	the	UEFI	application	is	unloaded	after	returning	from	the	entry	point.
Therefore,	it	is	meaningless	to	install	this	protocol.

4.4.2	Variable
Variables	are	defined	as	key/value	pairs	that	consist	of	identifying	information	plus	the	attributes	(the
key)	and	arbitrary	data	(the	value).	Variables	are	intended	for	use	as	a	means	to	store	data	that	is
passed	between	the	EFI	environment	implemented	in	the	platform	and	EFI	OS	loaders	and	other
applications	that	run	in	the	EFI	environment.

UEFI	application	can	read	and	write	variable	via	UEFI	Runtime	Services

	GetVariable()		and		SetVariable()	.	Because	UEFI	application	must	run	after	the	Dxe/UEFI	driver,	Variable	Arch
protocol	must	be	installed.

4.4	Communicating	with	a	UEFI	driver

61

5	UEFI	DRIVERS
The	UEFI	Specification	defines	the	UEFI	Driver	Model.	Drivers	that	follow	the	UEFI	Driver	Model	are	UEFI
drivers.	The	driver	initialization	routine	of	a	UEFI	driver	is	not	allowed	to	touch	any	hardware.	Instead,	it
installs	an	instance	of	the		EFI_DRIVER_BINDING_PROTOCOL		on	the	ImageHandle	of	the	UEFI	driver.

Later	on,	the	driver	may	get	calls	through	the		EFI_DRIVER_BINDING_PROTOCOL		to	test	for	support	of	a	given
piece	of	hardware.	The	test	to	determine	if	a	driver	supports	a	given	controller	must	be	performed	in	as
little	time	as	possible	without	causing	any	side	effects	on	any	of	the	controllers	it	is	testing.	Most	of	the
controller	initialization	is	done	in	the	start	and	stop	services	of	the		EFI_DRIVER_BINDING_PROTOCOL	.

5	UEFI	Drivers

62

5.1	Begin	With	INF	File
The	[Defines]	section	of	the	INF	must	set		MODULE_TYPE		to		UEFI_DRIVER	.	Example:.

[Defines]

		INF_VERSION	=	0x00010005

		BASE_NAME			=	SampleDriverDxe

		FILE_GUID			=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE	=	UEFI_DRIVER

		ENTRY_POINT	=	SampleDriverEntryPoint

Note:	A	UEFI	driver	has	no	[depex]	section	in	the	INF	file.	It	always	depends	on	all	dxe	architectural
protocols.	To	force	this,	the	UEFI	driver	entry	point	library	instance	appends	all	dxe	architectural
protocol	dependency	relationships	into	the	depex	section	of	the	module	image.

Note:	If	module	dependent	on	the	new	definitions/features	in

EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES-defined	in	UEFI	specifications	from	version	2.1	forward-the
hex	version	need	to	be	given	in	INF	file	[Defines]	section's	UEFI_SPECFIICATION_VERSION	field.

5.1	Begin	With	INF	File

63

5.2	Write	the	UEFI	Driver	entry	point
The	following	table	lists	the	most	common	protocols	used	in	UEFI	driver	entry	point.

Table	9	Protocols	Used	to	Separate	the	Loading	and	Starting/Stopping	of	Drivers

	Protocol	 	Description	

Driver
Binding
Protocol

Provides	functions	for	starting	and	stopping	the	driver,	as	well	as	a	function	for
determining	if	the	driver	can	manage	a	particular	controller.	The	UEFI	Driver	Model
requires	this	protocol.

Component
Name
Protocol

Provides	functions	for	retrieving	a	human-readable	name	of	a	driver	and	the
controllers	that	a	driver	is	managing.	While	the	UEFI	Specification	lists	this	protocol
as	optional,	the	Developer's	Interface	Guide	for	64-bit	Intel	Architecturebased
Servers	(hereafter	referred	to	as	"DIG64	specification"	or	"DIG64")	lists	this	protocol
as	required	for	Itanium-based	platforms.

Driver
Diagnostics
Protocol

Provides	functions	for	executing	diagnostic	functions	on	the	devices	that	a	driver	is
managing.	While	the	UEFI

Specification	lists	this	protocol	as	optional,	DIG64	lists	this	protocol	as	required	for
Itanium-based	platforms.

The	UefiLib	library	class	is	provided	to	simplify	the	driver	entry	point	of	a	UEFI	driver.

5.2.1	Example:	APIs	in	UefiLib
The	two	APIs	in	UefiLib	are	shown	below:

EFI_STATUS

EfiLibInstallDriverBinding	(

				IN	CONST	EFI_HANDLE	ImageHandle	,

				IN	CONST	EFI_SYSTEM_TABLE	*	SystemTable	,

				IN	EFI_DRIVER_BINDING_PROTOCOL	*	DriverBinding	,

				IN	EFI_HANDLE	DriverBindingHandle

);

EFI_STATUS

EfiLibInstallAllDriverProtocols2	(

				IN	CONST	EFI_HANDLE	ImageHandle	,

				IN	CONST	EFI_SYSTEM_TABLE	*	SystemTable	,

				IN	EFI_DRIVER_BINDING_PROTOCOL	*	DriverBinding	,

				IN	EFI_HANDLE	DriverBindingHandle	,

				IN	CONST	EFI_COMPONENT_NAME_PROTOCOL	*	ComponentName	,	OPTIONAL

				IN	CONST	EFI_COMPONENT_NAME2_PROTOCOL	*	ComponentName2	,	OPTIONAL	

				IN	CONST	EFI_DRIVER_CONFIGURATION_PROTOCOL	*	DriverConfiguration	,OPTIONAL	

				IN	CONST	EFI_DRIVER_CONFIGURATION2_PROTOCOL	*	DriverConfiguration2	,OPTIONAL

				IN	CONST	EFI_DRIVER_DIAGNOSTICS_PROTOCOL	*	DriverDiagnostics	,OPTIONAL

				IN	CONST	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	*	DriverDiagnostics2	OPTIONAL

);

5.2.2	Example:	Entry	point	to	the	Abc	driver
The	following	shows	an	example	of	the	entry	point	to	the	Abc	driver	that	installs	the	Driver	Binding
Protocol		gAbcDriverBindingProtocol	,	the	Component	Name	Protocol		gAbcComponentName	,	the	Component	Name2
Protocol		gAbcComponentName2,		the

Diagnostic	Protocol		gAbcDriverDiagnostic	s	and	the	Diagnostic2	Protocol

	gAbcDriverDiagnostics2		onto	the	Abc	driver's	image	handle.	This	driver	simply	returns	the	status	from	the
UefiLib	function		EfiLibInstallAllDriverProtocols2()	

5.2	Write	the	UEFI	Driver	entry	point

64

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcDriverBindingSupported,

		AbcDriverBindingStart,

		AbcDriverBindingStop,

		0xa,

		NULL,

		NULL

};

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		AbcComponentNameGetDriverName,

		AbcComponentNameGetControllerName,

		"eng"

};

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		(EFI_COMPONENT_NAME2_GET_DRIVER_NAME)	AbcComponentNameGetDriverName,

		(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)

		AbcComponentNameGetControllerName,

		"en"

};

EFI_DRIVER_DIAGNOSTICS_PROTOCOL	gAbcDriverDiagnostics	=	{

		AbcDriverDiagnosticsRunDiagnostics,

		"eng"

};

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	gAbcDriverDiagnostics2	=	{

		(EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS)	gAbcDriverDiagnosticsRunDiagnostics,

		"en"

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Initialize	a	simple	EFI	driver	that	follows	the	EFI	Driver	Model

		//

		return	EfiLibInstallAllDriverProtocols	(

											ImageHandle,	//	Driver's	image	handle

											SystemTable,	//	EFI	System	Table	Pointer

											&gAbcDriverBinding,	//	Required	parameters

											ImageHandle,

											//	Handle	for	driver-related	protocols	&gAbcComponentName,

											//	Component	Name	Procol.	May	be	NULL.

											&gAbcComponentName2,	//	Component	Name2	Procol.	May	be	NULL.

											NULL,	//	Configuration	Protocol.	May	be	NULL.

											NULL	//	Configuration	Protocol2	May	be	NULL.

											&gAbcDriverDiagnostics,	//	Diagnostics	Protocol.	May	be	NULL.

											&gAbcDriverDiagnostics2,//	Diagnostics	Protocol2	May	be	NULL.

);

}

5.2	Write	the	UEFI	Driver	entry	point

65

5.3	Get	Service	Tables
UEFI	drivers	may	consume	the	UEFI	Boot	Services,	UEFI	Runtime	Services,	and	UEFI	System	Tables	that
are	defined	in	the	UEFI	Specification.

EDK	II	provides	the		UefiBootServicesTableLib		and		UefiRuntimeServicesTableLib		libraries	to	facilitate	developer	to
access	those	services.	The	following	table	lists	the	global	variables	provided	by	those	libraries.

Table	10	Table	Global	Variables

	Global	variable	 	Library	Class	

UEFI	System	Table 	gST	 UefiBootServicesTableLib

UEFI	Boot	Services	Table 	gBS	

UEFI	Runtime	Services	Table 	gRT	 UefiRuntimeServicesTableLib

5.3	Get	Service	Tables

66

5.4	Communication	between	UEFI	Drivers
This	section	describes	the	communication	methods	used	by	UEFI	drivers.

5.4.1	Protocol
UEFI	drivers	can	use	protocol	services	to	access	protocol	interfaces	produced	by	other	modules.

The	UEFI	Specification	defines	a	group	of	boot	services	to	handle	protocols,	including:

Services	to	install	protocols:

	InstallProtocolInterface()	

	ReInstallProtocolInterface()	

	InstallMultipleProtocolInterfaces()	

Services	to	retrieve	protocols:

	LocateProtocol()	

	HandleProtocol()	

	OpenProtocol()	

Section	8.4.1	provides	an	example	of	usage.

5.4.2	Variable
UEFI	drivers	can	read	and	write	variables	via	the	UEFI	Runtime	Services		GetVariable()		and		SetVariable()	.

When	using	this	service,	the	distinction	between	a	UEFI	driver	and	a	Dxe	driver	is	that	a	Dxe	driver	must
explicitly	point	out	the	dependency	relationship	for

	EFI_VARIABLE_ARCH_PROTOCOL		and		EFI_VARIABLE_WRITE_ARCH_PROTOCOL		in	the	[depex]	section	of	the	Dxe	driver's	INF
file	,		but	a	UEFI	driver	does	not	have	this	section	in	the	UEFI	driver's	INF	file

Note:	For	UEFI	drivers,	the	EDK	II	build	system	will	automatically	append	the	dependency	information
inherited	from	the	UefiEntryPointLib	into	the	image	section.	This	causes	UEFI	drivers	to	run	after	all
Dxe	architectural	protocols	are	installed.

Section	8.4.2,	provides	an	example	of	usage.

5.4	Communication	between	UEFI	Drivers

67

6	SEC	MODULE
The	SEC	module	is	the	first	module	executed	after	power-on.	It	is	responsible	for	configuring	the	PEI
environment's	memory	call	stack.	In	addition,	this	module	discovers	and	passes	control	to	PEI	Core	and
hands	information	to	the	PEI	Foundation.

6	SEC	Module

68

6.1	Beginning	to	Write	the	INF	File
The	following	is	a	sample	for		[Defines]		section	of	the	SEC	module:

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	SampleSec

		FILE_GUID						=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE				=	SEC

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	_ModuleEntryPoint

For	a	physical	platform,		MODULE_TYPE		must	be	set	to		SEC	.	For	an	Emulation	Platform,	the	SEC	module's
	MODULE_TYPE		must	be	set	to		SEC		or		USER_DEFINED	.

For	IA-32	Intel	Architecture		_ModuleEntryPoint		is	the	default	entry	point	for	the	SEC	module.

For	Itanium	Processor	Family	platform,	the	entry	point	is	configurable,	such	as	SAMPLE_ENTRY.
Nevertheless,	this	entry	point	should	be	added	in		[BuildOptions]		section	as	following,

[Defines]

		ENTRY_POINT	=	SAMPLE_ENTRY

[BuildOptions]

		INTEL:*_*_IPF_DLINK_FLAGS	=	/ENTRY:	SAMPLE	_ENTRY

		MSFT:*_*_IPF_DLINK_FLAGS		=	/ENTRY:	SAMPLE	_ENTRY

		GCC:*_*_IPF_PP_FLAGS						=	--entry	_	SAMPLE	_ENTRY

The	implementation	of	the	SEC	entry	point	is	commonly	in	the	assembly	language.

6.1	Beginning	to	Write	the	INF	File

69

6.2	Setup	Pre-Memory	Environment
For	IA-32,	the	main	tasks	of	the	SEC	module	are	to:

1.	 Populate	Reset	Vector	Data	structure

2.	 Save	BIST	status

3.	 Enable	protected	mode

4.	 Configure	temporary	RAM	(not	only	limited	in	processor	cache)	by	using	MTRR	to	configure	CAR.

For	Itanium	Processor	Family,	the	main	tasks	of	the	SEC	module	are	to:

1.	 Save	INIT,	MCA	and	RESET	vectors.

2.	 Configure	temporary	RAM	(not	only	limited	in	processor	cache)	by	using	MTRR	to	configure	CAR.

After	enabling	temporary	RAM,	the	SEC	module	must	configure	Stack	and	Heap	in	the	temporary
memory,	so	that	C	code	can	be	run	later.

6.2	Setup	Pre-Memory	Environment

70

6.3	Prepare	for	Data	PEI	Foundation
Upon	completion,	SEC	will	call	the	PEI	Foundation	entry	point	and	transfer	control	to	it.

The	PEI	foundation	Entry	Point	is	defined	as,

typedef

VOID

EFIAPI

(*EFI_PEI_CORE_ENTRY_POINT)(

IN	CONST	EFI_SEC_PEI_HAND_OFF	*SecCoreData,

IN	CONST	EFI_PEI_PPI_DESCRIPTOR	*PpiList);

6.3.1	EFI_SEC_PEI_HAND_OFF	*	SecCoreData
SEC	conveys	the	following	handoff	information	to	the	PEI	Foundation,		State	of	the	platform.

Location	and	size	of	the	Boot	Firmware	Volume	(BFV).

Location	and	size	of	the	temporary	RAM.

Location	and	size	of	the	stack.

The	format	is	defined	as	the		EFI_SEC_PEI_HAND_OFF		structure.

An	example	of,	the	temporary	memory	layout	from	Nt32Pkg	is	shown	below:

|-----------|	<----	TemporaryRamBase	+	TemporaryRamSize	

|			Heap				|	

|											|	

|-----------|	<----	StackBase	/	PeiTemporaryMemoryBase	

|											|	

|			Stack			|	

|-----------|	<----	TemporaryRamBase

Figure	3	Temporary	Memory	Layout

The		EFI_SEC_PEI_HAND_OFF		data	structure	is	populated	as	follows:

SecCoreData->DataSize	=	sizeof	(EFI_SEC_PEI_HAND_OFF);

SecCoreData->BootFirmwareVolumeBase	=	(VOID	*)BootFirmwareVolumeBase;

SecCoreData->BootFirmwareVolumeSize	=	PcdWinNtFirmwareFdSize;

SecCoreData->TemporaryRamBase	=	(VOID	*)(UINTN)LargestRegion;

SecCoreData->TemporaryRamSize	=	STACK_SIZE;

SecCoreData->StackBase	=	SecCoreData->TemporaryRamBase;

SecCoreData->StackSize	=	PeiStackSize;

SecCoreData->PeiTemporaryRamBase	=	(VOID	*)((UINTN)

																																			SecCoreData->TemporaryRamBase	+	PeiStackSize);

SecCoreData->PeiTemporaryRamSize	=	STACK_SIZE	-	PeiStackSize;

6.3.2	EFI_PEI_PPI_DESCRIPTOR	*PpiList
Besides	the		EFI_SEC_PEI_HAND_OFF		data	structure,	SEC	may	transfer	one	additional		PpiList		to	the	PEIM
Foundation.	For	example,		PpiList		may	include		TEMPORARY_RAM_SUPPORT_PPI		and		SEC_PLATFORM_INFORMAITON_PPI	.

	TEMPORARY_RAM_SUPPORT_PPI	

6.3	Prepare	for	Data	PEI	Foundation

71

This	service	may	be	published	by	the	SEC	as	part	of	the	SEC-to-PEI	handoff.	If	so,	it	moves	the	Temporary
RAM	contents	into	Permanent	RAM.

	SEC_PLATFORM_INFORMAITON_PPI	

This	service	abstracts	platform-specific	information.	It	is	necessary	to	convey	this	information	to	the	PEI
Foundation	so	that	it	can	locate	the	PEIM	dispatch	order.	In	addition,	it	contains	the	maximum	stack
capabilities	of	this	platform.

6.3	Prepare	for	Data	PEI	Foundation

72

7	PRE-EFI	INITIALIZATION	MODULES
The	Pre-EFI	Initialization	Modules	(PEIMs)	provide	a	standards-based	platform	initialization.	The	PEI
Phase	is	responsible	for	initializing	enough	of	the	system	to	provide	a	stable	base	for	the	follow-on
phases.

7	Pre-EFI	Initialization	Modules

73

7.1	Introduction
It	is	strongly	recommended	that	PEIMs	perform	only	the	minimum	work	to	meet	the	requirements	of	the
subsequence	phase.

The	PEI	Foundation	establishes	the	PEI	Services	Table	that	is	usable	by	all	PEIMs.

The	PEI	phase	allows	C-codes	PEIMs	to	be	executed	prior	to	the	availability	of	main	memory.	This	is
accomplished	via	configuring	the	on-CPU	resources,	such	as	the	CPU	data	cache	to	be	used	as	a
memory	call	stack.

7.1	Introduction

74

7.2	Beginning	to	Write	a	PEIM	INF	File
Following	is	a	sample	for		[Defines]		section	of	one	PEIM:

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	SamplePei

		FILE_GUID						=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE				=	PEIM

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	PeimSampleInitialize

The		MODULE_TYPE		must	be	set	to		PEIM		for	all	PEIMs.

Note:	If	PEIM	dependent	on	the	new	definitions	and	features	in

PEI_SERVICES_TABLE-defined	in	PI	specification	from	versions1.2	forward-the	hex	version	0x0001000A
needs	to	be	given	in	INF	file	[Defines]	section's	PI_SPECFIICATION_VERSION	field.

7.2	Beginning	to	Write	a	PEIM	INF	File

75

7.3	Defining	a	PEIM's	entry	point
In	the	sample	given	above,		ENTRY_POINT		is	set	to		PeimSampleInitialize	.	The	entry	point	value	is	the	name	of
the	entry	point	function.

Following	is	the	prototype	of	the	PEIMs'	entry	point.

EFI_STATUS

EFIAPI

PeimSampleInitialize	(

				IN	EFI_PEI_FILE_HANDLE	FileHandle,

				IN	CONST	EFI_PEI_SERVICES	PeiServices

);

Parameters:
FileHandle

The	handle	of	the	file	being	invoked.

PeiServices

An	indirect	pointer	to	the	PEI	Services	Table.

If	a	PEIM	is	dispatched	successfully,		PeimSampleInitialize()		is	invoked.	The	parameters	FileHandle	and
PeiServices	may	be	used	in	this	function.

7.3	Defining	a	PEIM's	entry	point

76

7.4	Get	Pei	Services
EDK	II	provides	all	Pei	Services	APIs	in	the	Pei	Services	Library	class.	Developers	can	use	the	Pei	Services
Library	directly	to	invoke	PEI	services.

EDK	II	provides	PEI	Services	Table	Library	to	obtain	the	pointer	of	the	Pei	Service	Table	for	PEIMs.	Aside
from	obtaining	the	PEI	Services	Table	pointer	from	an	input	parameter	in	the	PEIM	entry	point,	EDK	II	also
allows	using	the

	GetPeiServicesTablePointer()		defined	in	Pei	Service	Table	Pointer	Library.

7.4	Get	Pei	Services

77

7.5	Communicate	between	PEIM	Modules
There	are	three	methods	for	PEIMs	to	communicate	with	each	other:	PPIs,	HOBs	and	dynamic	PCDs.

7.5.1	PPI
PEIM	modules	can	communicate	with	each	other	using	a	structure	called	a	PEIM-toPEIM	Interface	(PPI).
Each	PPI	has	one	GUID.	The	Pei	Service	Table	provides	some	Pei	services	to	access	the	PPI	database.

In	EDK	II,	one	PEIM	module	can	invoke		PeiServicesInstallPpi()		to	publish	its	PPI	services	into	the	PPI
database	by	GUID.	Another	PEIM	module	can	invoke		PeiServicesLocatePpi()	to	locate	PPI	services	from	the
PPI	database	by	GUID.

7.5.1.1	Installing	a	PPI
For	example,	if	Module	A	wants	to	publish	one	Template	PPI	service	(including	three	APIs:		Interface2	,
	Interface2		and		Interface3),	it	can	install	the	Template	PPI	by	using		PeiServicesInstallPpi.		For	example:

//

//	Template	PPI

//

EFI_PEI_TEMPLATE_PPI	gEfiTemplatePpi	=	{

		Interface1,

		Interface2,

		Interface3

};

EFI_PEI_PPI_DESCRIPTOR	gPpiListTemplatePpi	=	{

		(EFI_PEI_PPI_DESCRIPTOR_PPI	|	EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),

		&gEfiTemplateGuid,

		&gEfiTemplatePpi

};

EFI_STATUS

PeimEntryPoint	(

		IN	EFI_FFS_FILE_HEADER		*FfsHeader,

		IN	EFI_PEI_SERVICES					**PeiServices

)

{

		EFI_STATUS		Status;

		//

		//	Publish	Template	PPI.

		//

		Status	=	PeiServicesInstallPpi	(&gPpiListTemplatePpi);

		return	Status;

}

7.5.1.2	Locating	a	PPI
If	Module	B	needs	to	invoke		Interface2()		provided	by	Template	PPI,	it	can	locate	Template	PPI	by	using	the
following	code:

//

//	Get	Template	PPI

//

Status	=	PeiServicesLocatePpi	(

											&gEfiTemplateGuid,

											0,

											NULL,

											(VOID	**)&TemplatePpi

);

ASSERT_EFI_ERROR	(Status);

//

//	Invoke	Interface2()

7.5	Communicate	between	PEIM	Modules

78

//

Status	=	TemplatePpi->Interface2	(...);

ASSERT_EFI_ERROR	(Status);

7.5.2	HOB
PEIM	modules	can	build	a	Hand-Off	Block	(HOB)	to	pass	some	information	to	the	DXE	Foundation	and
DXE	modules.	In	addition,	other	PEIMs	can	obtain	similar	information	from	a	HOB	by	using	the	HOB
services	in	the	Pei	Service	Table.

In	EDK	II,	the	Hob	Library	provides	the	generic	interfaces	to	access	HOBs	for	PEIMs	and	DXE	drivers.

7.5.3	PCD
A	PEIM	can	communicate	with	other	PEIMs	through	dynamic	PCDs.	As	with	HOBs,	only	PEIMs	can	obtain
dynamic	PCDs	values,	which	were	previously	set	by	DXE	drivers.	The	usage	of	getting	PCDs	is	introduced
in	Appendix	A,	Dynamic	PCD.

7.5	Communicate	between	PEIM	Modules

79

7.6	Communicate	with	DXE	Modules
There	are	three	methods	for	PEIMs	to	communicate	with	each	other:	PPIs,	HOBs	and	PCDs.

7.6.1	HOB
PEIMs	can	pass	some	information	to	the	DXE	Foundation	and	DXE	modules,	such	as	the	information	of	a
memory	bank	discovered	in	PEI	phase,	by	using	a	Hand-Off	Block	(HOB).

In	EDK	II,	the	Hob	Library	provides	a	set	of	interfaces	to	help	to	build	Hobs,	such	as		BuildGuidHob()	.	For
example:

EFI_MEMINIT_CONFIG_DATA	*ConfigData;

EFI_PEI_HOB_POINTERS	Hob;

UINTN	BufferSize;

BufferSize	=	sizeof	(EFI_MEMINIT_CONFIG_DATA);

Hob.Raw	=	BuildGuidHob	(

												&gEfiMemoryConfigDataGuid,

												BufferSize

);

ASSERT	(Hob.Raw);

ConfigData	=	(EFI_MEMINIT_CONFIG_DATA	*)	Hob.Raw;

CopyMem	(

		ConfigData->SpdData,

		SpdData,

		sizeof	(MEMINIT_SPD_DATA)	*	MAX_SOCKETS

);

In	EDK	II,	the	Hob	Library	also	provides	a	set	of	APIs	to	locate	HOBs	for	PEIMs	and	DXE	drivers.

7.6.2	Variable
PEIMs	can	read	variables	previously	assigned	by	DXE	drivers.	PEIMs	cannot	write	variables.

PEIMs	can	use	ReadOnlyVariable2	PPI	to	obtain	variables.	Follow	these	steps:

1.	 Locate	ReadOnlyVariable2	PPI.

2.	 Invoke		GetVariable()		with	size	is	0,	to	get	variable's	actual	size.

3.	 Allocate	memory	for	variable.

4.	 Invoke		GetVariable(),		again	with	actual	size	to	get	the	variable.

The	following	is	one	example	of	how	to	obtain	the	variable.

Status	=	PeiServicesLocatePpi	(

											&gEfiPeiReadOnlyVariable2PpiGuid,

											0,

											NULL,

											(VOID	**)	&VariablePpi

);

ASSERT_EFI_ERROR	(Status);

Size	=	0;

Status	=	VariablePpi->GetVariable	(

																								VariablePpi,

																								VariableName,

																								(EFI_GUID	*)	VariableGuid,

																								NULL,

																								&Size,

																								NULL

);

if	(Status	==	EFI_BUFFER_TOO_SMALL)

7.6	Communicate	with	DXE	Modules

80

{

		Status	=	PeiServicesAllocatePool	(Size,	&Buffer);

		ASSERT_EFI_ERROR	(Status);

		Status	=	VariablePpi->GetVariable	(

																										VariablePpi,

																										(UINT16	*)	VariableName,

																										(EFI_GUID	*)	VariableGuid,

																										NULL,

																										&Size,

																										Buffer

);

		ASSERT_EFI_ERROR	(Status);

		*VariableSize	=	Size;

		*VariableData	=	Buffer;

}

7.6.3	PCD
PEIMs	can	communicate	with	DXE	drivers	through	dynamic	PCDs.	As	with	variables,	PEIMs	can	get
dynamic	PCDs	values	that	were	previously	set	by	DXE	drivers.	The	usage	for	obtaining	PCDs	is	covered	in
Appendix	A	.

7.6	Communicate	with	DXE	Modules

81

7.7	Boot	Mode
Sometime,	PEIMs	need	to	determine	the	boot	mode	(e.g.	S3,	S5,	normal	boot,	diagnostics,	etc.)	and
take	appropriate	actions	depending	on	it.	For	example,	the	VariablePei	module	will	not	install	EFI
ReadOnlyVariable2Ppi	in	the	recovery	boot	path.

The	Pei	Service	Table	provides	one	pair	of	services	to	Set	or	Get	the	mode.

Accordingly,	the	Pei	Service	Library	APIs	are:	SetBootMode()	and	GetBootMode().

The	following	is	one	example	of	how	to	get	boot	mode:

//

//	Check	if	this	is	recovery	boot	path.	If	no,	publish	the	variable

//	access	capability	to	other	modules.	If	yes,	the	content	of	variable

//	area	is	not	reliable.	Therefore,	in	this	case	we	should	not	provide

//	variable	service	to	other	pei	modules.

//

Status	=	PeiServicesGetBootMode	(&BootMode);

ASSERT_EFI_ERROR	(Status);

if	(BootMode	==	BOOT_IN_RECOVERY_MODE)

{

		return	EFI_UNSUPPORTED;

}

Status	=	PeiServicesInstallPpi	(&mPpiListVariable);

Note:

The	PI	Specification	lists	all	possible	boot	modes.

7.7	Boot	Mode

82

7.8	Execution	in	Place	PEIMs
Most	PEIMs	are	Execution	in	Place	(XIP)	and	not	compressible	as	they	run	prior	to	permanent	memory.
There	is	a	tradeoff	between	the	space-complexity	of	the	code	and	the	time	complexity	of	the	modules:
that	is,	keeping	modules	small	versus	keeping	the	code	paths	short.

Minimizing	the	amount	and	complexity	of	code	in	PEIM	should	be	standard	procedure.	For	example,	a	big
loop	needs	to	be	avoided	for	those	codes	running	on	flash.

When	a	PEIM	attempts	to	load	itself	into	system	memory	and	run	twice,	it	can	use		RegisterForShadow()	to	do
it.		RegisterForShadow()		is	in	the	Pei	Service	Table.

7.8	Execution	in	Place	PEIMs

83

7.9	Dependency	for	PEIMs
A	PEIM	must	have	a	dependency	section.	The	PEIM	is	dispatched	after	all	conditions	in	the	dependency
section	are	met.

If	a	PEIM	has	a	dependency	section	TRUE,	it	can	be	dispatched	immediately.	In	an	extended	INF	file,	a
dependency	section	is	contained	in	the		[Depex]		section.	PPI	dependency	is	defined	by	the	GUID	of	the
PPI.

For	example:

gEfiPeiReadOnlyVariable2PpiGuid	AND	gEfiPeiCachePpiGuid	AND

gPeiCapsulePpiGuid

This	module	may	be	dispatched	only	after	Read	Only	Variable2	Ppi,	CachePpi	and	CapsultPpi	are	all
installed	successfully.

In	the	preceding	example,	the	expression	opcode		AND		is	used	to	show	the	logical	relationship	between
GUIDs.	See	the	EDK	II	Extended	INF	Specification	for	complete	details.

Note:	A	PEIM	inherits	dependency	expressions	from	all	library	instances	it	links	with.	The	dependency
expression	listed	in	module	INF	is	a	subset	of	the	dependency	section	in	the	PE32+	image	built	from
this	module.

The	PI	specification	also	defines	a	generic	rule	to	decide	the	dispatch	order	for	PEIMs:	the	apriori	file.	It
complements	the	dependency	expression	mechanism	of	the	PEI	Phase	by	stipulating	a	series	of
modules	that	must	be	dispatched	in	a	prescribed	order.	The		[depex]		sections	for	these	modules	are
ignored.

7.9	Dependency	for	PEIMs

84

8	DXE	DRIVERS:	NON-UEFI	DRIVERS
DXE	driver	refers	to	drivers	compliant	with	the	PI	Specification,	which	classifies	DXE	drivers	into	two
classes:	UEFI	driver	model	driver,	and	non-UEFI	driver	model	drivers.	The	focus	of	this	chapter	is	the
non-UEFI	drivers.

Non-UEFI	Driver	Model	drivers	are	executed	early	in	the	DXE	phase.	These	drivers	are	the	prerequisites
for	the	DXE	Foundation	to	produce	all	required	services.

The	DXE	drivers	must	be	designed	so	that	unavailable	services	are	not	required.	Given	this	restriction,
all	possible	work	should	be	deferred	to	the	UEFI	drivers.

8	DXE	Drivers:	non-UEFI	drivers

85

8.1	Beginning	with	INF	File
Each	DXE	Driver	requires	an	Extended	INF	file.	For	basic	introduction	of	INF	file,	please	refer	to	Section
3.2.2.

The		[Defines]		section	for	DXE	driver	should	be	modeled	after	the	following.

Note:	The	MODULE_TYPE	entry	must	be	DXE_DRIVER.

INF_VERSION	=	0x00010005	

BASE_NAME	=	SampleDriverDxe	

FILE_GUID	=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX	

MODULE_TYPE	=	DXE_DRIVER	

ENTRY_POINT	=	SampleDriverEntryPoint	

[Depex]	gSampleProtocolGuid

Note:	If	DXE	module	dependent	on	the	new	definitions/features	in

DXE_SERVICES_TABLE-defined	in	PI	specifications	from	version	1.2	forward-	the	hex	version	0x0001000A
needs	to	be	given	in	INF	file	[Defines]	section's	PI_SPECFIICATION_VERSION	field.

Note:	If	module	dependent	on	the	new	definitions/features	in

EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES-	defined	in	UEFI	specifications	from	version	2.1	forward-the
hex	version	need	to	be	given	in	INF	file	[Defines]	section's	UEFI_SPECFIICATION_VERSION	field.

8.1	Beginning	with	INF	File

86

8.2	Write	DXE	Driver	Entry	Point
The		[Defines]		section	of	the	INF	file	defines	the	entry	point	of	the	DXE	driver.

Unlike	the	UEFI	driver	entry	point,	which	is	only	allowed	to	install	protocol	instances	onto	its	own	image
handle	and	may	not	touch	any	hardware,	a	DXE	driver	entry	point	has	no	such	restriction.	It	may	install
any	protocol	into	the	system	and	perform	necessary	hardware	and	software	initializations.

In	the	following	example	(from	the	WatchDogTimerDxe	driver	in	the	MdeModulePkg)	the	DXE	driver	entry
point	installs	its	Architectural	Protocol	if	the	protocol	is	not	yet	installed.

EFI_STATUS

EFIAPI

WatchdogTimerDriverInitialize	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Make	sure	the	Watchdog	Timer	Architectural	Protocol	has	not	been

		//	installed	in	the	system	yet.

		//

		ASSERT_PROTOCOL_ALREADY_INSTALLED	(

				NULL,

				&gEfiWatchdogTimerArchProtocolGuid

);

		//

		//	Create	the	timer	event	to	implement	a	simple	watchdog	timer

		//

		Status	=	gBS->CreateEvent	(

																		EVT_TIMER	|	EVT_NOTIFY_SIGNAL,

																		TPL_NOTIFY,

																		WatchdogTimerDriverExpires,

																		NULL,

																		&mWatchdogTimerEvent

);

		ASSERT_EFI_ERROR	(Status);

The	two	parameters	for	the	DXE	driver	entry	point	are		ImageHandle		and		SystemTable	.		ImageHandle		refers	to
the	image	handle	of	the	DXE	driver.

	SystemTable		points	to	the	EFI	System	Table.

8.2	Write	DXE	Driver	Entry	Point

87

8.3	Obtaining	Services	Tables
DXE	drivers	may	consume	the	UEFI	Boot	Services,	UEFI	Runtime	Services,	and	DXE	Services.	In	addition,
a	DXE	driver	can	also	refer	to	UEFI	System	Table.

UEFI	Boot	Services,	UEFI	Runtime	Services,	and	UEFI	System	Table	are	defined	in	the	UEFI	Specification.
DXE	Services	are	defined	in	the	PI	Specification.

DXE	driver	can	retrieve	these	tables	via	global	variables	provided	by	the	following	library	classes:

Table	11	Reference	to	Services	Tables	for	DXE	Drivers

	Global	variable	 	Library	Class	

UEFI	System	Table 	gST	 UefiBootServicesTableLib

UEFI	Boot	Services	Table 	gBS	 UefiBootServicesTableLib

UEFI	Runtime	Services	Table 	gRT	 UefiRuntimeServicesTableLib

DXE	Services	Table 	gDS	 DxeServicesTableLib

8.3	Obtaining	Services	Tables

88

8.4	Communication	between	DXE	Drivers
This	section	introduces	communication	channels	between	DXE	drivers,	including	protocol,	variable,	and
PCD.

8.4.1	Protocol
This	section	will	introduce	how	to	produce	and	consume	protocols.	The	UEFI	Specification	defines	a
group	of	boot	services	to	handle	protocols,	including:

Services	to	install	protocols

	InstallProtocolInterface()	

	ReInstallProtocolInterface()	

	InstallMultipleProtocolInterfaces()	

Services	to	retrieve	protocols

	LocateProtocol()	

	OpenProtocol()	

First,	to	make	use	of	it,	the	module	writer	must	declare	the	protocols	for	the	module	in	the	INF	and	then
write	code	to	use	the	protocols.

The	following	example	demonstrates	how	a	DXE	driver	produces	a	protocol:

//

//	Handle	for	new	protocol	instance.	Since	it's	NULL	now,	its	value	will

//	be	assigned	by	Boot	Service	InstallMultipleProtocolInterfaces()

//

EFI_HANDLE	mNewHandle	=	NULL;

//

//	The	Sample	Protocol	instance	produced	by	this	driver

//

EFI_SAMPLE_PROTOCOL	mSampleProtocol	=	{

		SampleProtocolApi

		//

		//	More	APIs	can	be	added	here

		//

};

//

//	This	is	just	a	NULL	function	with	no	parameters.	Necessary	parameters

//	and	code	can	be	added.

//

EFI_STATUS

EFIAPI

SampleProtocolApi	(

			VOID

)

{

		return	EFI_SUCCESS;

}

EFI_STATUS

EFIAPI

SampleDriverInitialize	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	More	initialization	can	be	added	here.

		//

8.4	Communication	between	DXE	Drivers

89

		//

		//	Install	the	Sample	Protocol	onto	a	new	handle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&mNewHandle,

																		&gEfiSampleProtocolGuid,

																		&mSampleProtocol,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	EFI_SUCCESS;

}

The	following	example	demonstrates	how	a	DXE	driver	retrieves	a	protocol	and	invokes	the	API:

EFI_STATUS

SampleFunction	(

			VOID

)

{

		EFI_STATUS											Status;

		EFI_SAMPLE_PROTOCOL		*SampleProtocol;

		//

		//	Locates	the	Sample	Protocol	from	system.

		//

		Status	=	gBS->LocateProtocol	(

																		&gEfiSampleProtocolGuid,

																		NULL,

																		(VOID	**)	&SampleProtocol

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		Status	=	SampleProtocol->SampleProtocolApi();

		return	Status;

}

8.4.2	Variable
Variables	are	defined	as	key/value	pairs	that	consist	of	identifying	information	plus	attributes	(the	key)
and	arbitrary	data	(the	value).	Variables	are	intended	for	use	as	a	means	to	store	data	that	is	passed
between	the	EFI	environment	implemented	in	the	platform	and	EFI	OS	loaders	and	other	applications
that	run	in	the	EFI	environment.

A	DXE	driver	can	read	and	write	variables	via	the	UEFI	Runtime	Services		GetVariable()		and		SetVariable()	.

Note:	These	services	are	not	available	at	the	beginning	of	the	DXE	phase	.	The	PI	Specification	defines
two	architectural	protocols	to	indicate	the	readiness	of	read/write	access	to	variables:
EFIVARIABLE_ARCH_PROTOCOL	and	EFI_VARIABLE_WRITE_ARCH_PROTOCOL._

DXE	drivers	that	require	read-only	access	or	read/write	access	to	volatile	environment	variables	must
have		EFI_VARIABLE_ARCH_PROTOCOL		in	their	dependency	expressions.

DXE	drivers	that	require	write	access	to	nonvolatile	environment	variables	must	have	the
	EFI_VARIABLE_WRITE_ARCH_PROTOCOL		in	their	dependency	expressions.

The	full	complement	of	environment	variable	services	is	not	available	until	both		EFI_VARIABLE_ARCH_PROTOCOL	
and		EFI_VARIABLE_WRITE_ARCH_PROTOCOL		are	installed.

Sample	code	to	read	and	write	variables	is	as	follows:

8.4	Communication	between	DXE	Drivers

90

EFI_STATUS

ReadAndWriteVariable	(

				IN	CHAR16	*Name,

				IN	EFI_GUID	*VendorGuid,

){

				EFI_STATUS	Status;

				UINTN	BufferSize;

				VOID	*Buffer;

				Buffer	=	NULL;

				//

				//	Pass	in	a	zero-size	buffer	to	find	the	required	buffer	size.

				//

				BufferSize	=	0;

				Status	=	gRT->GetVariable	(

																				Name,

																				VendorGuid,

																				NULL,

																				&BufferSize,

																				Buffer

);

				//

				//	If	variable	exists,	the	Status	should	be	EFI_BUFFER_TOO_SMALL	and

				//	BufferSize	has	been	updated.

				//

				if	(Status	!=	EFI_BUFFER_TOO_SMALL)	{

				return	Status;

				}

				//

				//	Allocate	the	buffer	according	to	updated	BufferSize.

				//

				Buffer	=	AllocateZeroPool	(BufferSize);

				ASSERT	(Buffer	!=	NULL);

				//

				//	Read	variable	into	the	allocated	buffer.

				//

				Status	=	gRT->GetVariable	(

																				Name,

																				VendorGuid,

																				NULL,

																				&BufferSize,

																				Buffer

);

				if	(EFI_ERROR	(Status))	{

				BufferSize	=	0;

				}

				//

				//	TODO:	Process	of	retrieved	variable	can	be	added	here.

				//

				//

				//	Now	write	back	the	processed	variable.

				//

				Status	=	gRT->SetVariable	(

																				Name,

																				VendorGuid,

																				EFI_VARIABLE_BOOTSERVICE_ACCESS	|

																				EFI_VARIABLE_RUNTIME_ACCESS	|

																				EFI_VARIABLE_NON_VOLATILE,

																				BufferSize,

																				Buffer

);

				ASSERT_EFI_ERROR	(Status);

				return	EFI_SUCCESS;

}

8.4.3	Dynamic	PCD
EDK	II	provides	dynamic	PCDs	as	a	high-level	mechanism	for	communication	between	modules.	See
Appendix	A	for	details.

8.4	Communication	between	DXE	Drivers

91

8.4	Communication	between	DXE	Drivers

92

8.5	Communication	with	PEIMs
This	section	introduces	communication	channels	between	DXE	driver	and	PEIM,	including	HOB,	variable,
and	PCD.

8.5.1	HOB
A	HOB	is	a	one-way	channel	to	pass	data	from	PEI	to	DXE.	The	HOB	list	is	provided	during	the	PEI	phase,
and	must	be	treated	as	a	read-only	data	structure	in	the	DXE	phase.	It	conveys	the	state	of	the	system
at	the	time	the	DXE	Foundation	is	started.	The	DXE	drivers	must	not	modify	the	contents	of	the	HOB	list.

HobLib	provides	a	set	of	APIs	to	build	and	parse	a	HOB	list.	Since	DXE	drivers	only	read	the	HOB	list,
module	writers	of	DXE	drivers	can	focus	on	the	APIs	to	parse	HOB	list.

Several	typical	usage	types	are	shown	in	examples	below:

8.5.1.1	Traversing	all	HOBs	in	the	HOB	list

EFI_HOB_GENERIC_HEADER	*Hob;

UINT16	HobType;

UINT16	HobLength;

for	(Hob	=	GetHobList();

					!END_OF_HOB_LIST	(Hob);	Hob	=	GET_NEXT_HOB	(Hob))

{

		HobType	=	GET_HOB_TYPE	(Hob);

		HobLength	=	GET_HOB_LENGTH	(Hob);

		//

		//	Further	operation	on	the	HOB	can	be	added

		//

}

8.5.1.2	Retrieving	only	the	first	HOB	of	a	specific	type	in	the	HOB	list

(CPU	HOB	type	example)

EFI_HOB_CPU	*CpuHob;

CpuHob	=	GetFirstHob	(EFI_HOB_TYPE_CPU);

if	(CpuHob	!=	NULL)			//

{

		//	Operation	on	the	HOB	can	be	added	here.

		//

}

8.5.1.3	Traversing	specific	types	of	HOBs	in	the	HOB	list	(CPU	HOB
type	example)

EFI_HOB_CPU	*Hob;

Hob	=	GetHobList	();

while	((Hob	=	GetNextHob	(EFI_HOB_TYPE_CPU,	Hob))	!=	NULL)			//

{

		//	Operation	on	the	HOB	can	be	added	here.

		//

		//	At	the	end	of	loop,	GET_NEXT_HOB	must	be	added	here.

		//	GetNextHob	(

							HobType,	HobStart)	does	not	skip	the	HOB	passed	by

							//	parameter	HobStart.	It	returns	HobStart	back	if	HobStart	itself

							//	meets	the	requirement.	So	it	is	required	to	use	GET_NEXT_HOB()	to

							//	skip	current	HOB.	Otherwise,	it	would	be	in	dead	loop.

							//

							Hob	=	GET_NEXT_HOB	(Hob

8.5	Communication	with	PEIMs

93

);

}

8.5.1.4	Retrieving	only	the	first	GUIDed	HOB	with	a	specific	GUID	in
the	HOB	list

EFI_HOB_GENERIC_HEADER	*Hob;

VOID	*HobData;

UINTN	HobDataSize;

Hob	=	GetFirstGuidHob	(&gAbcGuid);

if	(Hob	!=	NULL)

{

		HobData	=	GET_GUID_HOB_DATA	(Hob);

		HobDataSize	=	GET_GUID_HOB_DATA_SIZE	(Hob);

		//

		//	Operation	on	the	HOB	can	be	added	here.

		//

}

8.5.1.5	Traversing	GUIDed	HOBs	with	a	specific	GUID	in	the	HOB	list

EFI_HOB_GENERIC_HEADER	*Hob;

VOID	*HobData;

UINTN	HobDataSize;

Hob	=	GetHobList	();

while	((Hob	=	GetNextGuidHob	(&gAbcGuid,	Hob))	!=	NULL)

{

		HobData	=	GET_GUID_HOB_DATA	(Hob);

		HobDataSize	=	GET_GUID_HOB_DATA_SIZE	(Hob);

		//

		//	Operation	on	the	HOB	can	be	added	here.

		//

		//	At	the	end	of	loop,	GET_NEXT_HOB	must	be	added	here.

		//	GetNextHob	(

							HobType,	HobStart)	does	not	skip	the	HOB	passed	by

							//	parameter	HobStart.	It	returns	HobStart	back	if	HobStart	itself

							//	meets	the	requirement.	So	it	is	required	to	use	GET_NEXT_HOB()	to

							//	skip	current	HOB.	Otherwise,	it	would	be	in	dead	loop.

							//

							Hob	=	GET_NEXT_HOB	(Hob

);

}

8.5.2	Variable
A	non-volatile	variable	can	serve	as	a	channel	to	pass	data	from	DXE	to	PEI.	Because	only	a	DXE	driver
can	write	a	variable,	and	PEIM	can	only	read	variables,	this	channel	from	DXE	to	PEI	is	also	a	one-way
channel.

8.5.3	Dynamic	PCD
A	non-volatile	dynamic	PCD	is	also	a	high-level	mechanism	for	communication	between	a	DXE	driver	and
a	PEIM.

Please	refer	to	in	Appendix	A.

8.5	Communication	with	PEIMs

94

8.6	Dependency	Expressions
A	dependency	expression	specifies	the	protocols	that	the	DXE	driver	requires	to	execute.	In	EDK	II,	it	is
specified	in	the		[Depex]		section	of	INF	file.

Note:	The	PI	Specification	also	defines	an	a	priori	file	as	an	arbitrary	way	for	a	firmware	volume	to
specify	driver	execution	order.	Dependency	expressions	for	drivers	covered	by	the	apriori	file	are
ignored.

Following	is	an	example	of	a	[Depex]	section:

[Depex]

gEfiSimpleTextOutProtocolGuid	AND	gEfiHiiDatabaseProtocolGuid	AND
gEfiVariableArchProtocolGuid	AND	gEfiVariableWriteArchProtocolGuid

The	example	specifies	that	this	driver	can	be	executed	only	after	all	the	four	protocols	listed	have	been
installed.

Note:	The	four	protocols	in	this	example	are	necessary	conditions,	not	sufficient	conditions.	More
dependency	requirement	smay	be	inherited.	Details	follows.

Module	writers	must	pay	special	attention	to	two	points	on	dependency	expressions.

A	DXE	driver	inherits	dependency	expressions	from	all	library	instances	it	links	with.	The	dependency
expression	listed	in	the	module	INF	is	a	subset	of	the	dependency	section	in	the	PE32+	image	built
from	this	module.	Linked	library	instances	are	specified	in	DSC	file.

or

A	"non-UEFI	driver	model"	driver's	INF	must	have	a	dependency	section.	If	TRUE	is	in	INF's
dependency	section,	because	of	inheritance,	the	generated	dependency	expression	maybe	not	the
TRUE.

The	EDK	II	build	tool	would	wipe	out	the	dependency	section	in	PE32+	image	when	it	has	exactly	all
architectural	protocols.

8.6	Dependency	Expressions

95

8.7	Handler	for	EVT_SIGNAL_EXIT_BOOT_SERVICES
Some	DXE	drivers	need	to	place	their	controllers	in	a	quiescent	state	or	perform	other	controller-
specific	actions	at	the	time	that	an	operating	system	is	about	to	take	full	control	of	the	platform.	In	this
case,	the	DXE	driver	should	create	a	signal	type	event	that	is	notified	when		gBS->ExitBootServices()		is
called	by	the	EFI	OS	Loader.

Note:	The	notification	function	for	this	event	is	not	allowed	to	use	the	Memory	Allocation	Services,	or
call	any	functions	that	use	the	Memory	Allocation	Services,	and	should	only	call	functions	that	are
known	not	to	use	Memory	Allocation	Services,	because	these	services	modify	the	current	memory	map.

The	template	code	for	the	notification	function	and	event	registration	is	as	follows:

VOID

EFIAPI

NotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		//

		//	Put	driver-specific	actions	here.

		//	No	UEFI	Memory	Service	may	be	used	directly	or	indirectly.

		//

}

EFI_STATUS

EFIAPI

SampleDriverInitialize	(

		IN	EFI_HANDLE	ImageHandle,

		IN	EFI_SYSTEM_TABLE	*SystemTable

)

{

		EFI_STATUS	Status;

		EFI_EVENT	ExitBootServicesEvent;

		//

		//	TODO:	Other	initialization	of	entry	point	can	be	added	here.

		//

		//

		//	Here	is	just	the	sample	of	registration	of

		//	EVT_SIGNAL_EXIT_BOOT_SERVICES

		//

		Status	=	gBS->CreateEventEx	(

																		EVT_NOTIFY_SIGNAL,

																		TPL_CALLBACK,

																		NotifyExitBootServices,

																		NULL,	//	Parameter	Context	can	be	passed	here

																		&gEfiEventExitBootServicesGuid,

																		&ExitBootServicesEvent

);

		ASSERT_EFI_STATUS	(Status);

}

8.7	Handler	for	EVT_SIGNAL_EXIT_BOOT_SERVICES

96

8.8	DXE	Runtime	Driver
A	DXE	runtime	driver	executes	in	both	boot	services	and	runtime	services	environments.	This	means	the
services	that	these	modules	produce	are	available	before	and	after		ExitBootServices()		is	called,	including
the	time	that	an	operating	system	is	running.	If		SetVirtualAddressMap()		is	called,	then	modules	of	this	type
are	relocated	according	to	virtual	address	map	provided	by	the	operating	system.

The	DXE	Foundation	is	considered	a	boot	service	component,	so	the	DXE	Foundation	is	also	released
when		ExitBootServices()		is	called.	As	a	result,	runtime	drivers	may	not	use	any	of	the	UEFI	Boot	Services,
DXE	Services,	or	services	produced	by	boot	service	drivers	after		ExitBootServices()		is	called.

A	DXE	runtime	driver	defines		MODULE_TYPE		as		DXE_RUNTIME_DRIVER		in	the	INF	file.	In	addition,	because	the	DXE
runtime	driver	encounters		SetVirtualAddressMap()		during	its	life	cycle,	it	may	need	to	register	an	event
handler	for	the	event		EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE	.

8.8.1	INF	File
Following	is	the	example	of		[Defines]		section	for	a	driver	named

	SampleDriverRuntimeDxe	.	For	DXE	runtime	driver,	the		MODULE_TYPE		entry	should	be		DXE_RUNTIME_DRIVER	

[Defines]

		INF_VERSION	=	0x00010005

		BASE_NAME			=	SampleDriverRuntimeDxe

		FILE_GUID			=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE	=	DXE_RUNTIME_DRIVER

		ENTRY_POINT	=	SampleRuntimeDriverEntryPoint

[Depex]	gSampleProtocolGuid

Note:	If	module	dependent	on	the	new	definitions	and	features	in

EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES-defined	in	UEFI	specifications	from	version	2.1	forward-the
hex	version	need	to	be	given	in	INF	file	[Defines]	section's	UEFI_SPECFIICATION_VERSION	field.

8.8.2	Handler	for	EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
DXE	runtime	drivers	may	need	to	be	notified	when	the	operating	system	calls		SetVirtualAddressMap()	.	In	this
case,	the	DXE	runtime	driver	must	create	a	signal	type	event	that	is	notified	when		SetVirtualAddressMap()		is
called	by	the	operating	system.	This	call	allows	the	DXE	runtime	driver	to	convert	pointers	from	physical
addresses	to	virtual	addresses.

The	notification	function	for	this	type	of	event	is	not	allowed	to	use	any	of	the	UEFI	Boot	Services,	UEFI
Console	Services,	or	UEFI	Protocol	Services	either	directly	or	indirectly	because	those	services	are	no
longer	available	when		SetVirtualAddressMap()		is	called.

Instead,	this	type	of	notification	function	typically	uses		ConvertPointer()		to	convert	pointers	within	data
structures	that	are	managed	by	the	DXE	runtime	driver	from	physical	addresses	to	virtual	addresses.

Template	code	for	notification	function	and	event	registration	is	as	follows:

//

//	This	is	the	global	pointer	which	needs	converting

//

VOID	*gGlobalPointer;

8.8	DXE	Runtime	Driver

97

VOID

EFIAPI

NotifySetVirtualAddressMap	(

		IN	EFI_EVENT	Event,

		IN	VOID	*Context

)

{

		gRT->ConvertPointer	(

									EFI_OPTIONAL_POINTER,

									(VOID	**)&gGlobalPointer

);

}

EFI_STATUS

EFIAPI

SampleRuntimeDriverInitialize	(

		IN	EFI_HANDLE	ImageHandle,

		IN	EFI_SYSTEM_TABLE	*SystemTable

)

{

		EFI_STATUS	Status;

		EFI_EVENT	SetVirtualAddressMapEvent;

		//

		//	TODO:	Other	initialization	of	entry	point	can	be	added	here.

		//

		//

		//	Here	is	just	the	sample	of	registration	of

		//	EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE

		//

		Status	=	gBS->CreateEventEx	(

																		EVT_NOTIFY_SIGNAL,

																		TPL_CALLBACK,

																		NotifySetVirtualAddressMap,

																		NULL,	//	Parameter	Context	can	be	passed	here

																		&gEfiEventVirtualAddressChangeGuid,

																		&SetVirtualAddressMapEvent

);

		ASSERT_EFI_STATUS	(Status);

}

8.8	DXE	Runtime	Driver

98

8.9	DXE	SAL	Driver
The	module	type	of	DXE	SAL	Driver	is	only	available	to	the	IPF	architecture.	This	module	type	is	used	by
DXE	Drivers	that	can	be	called	in	physical	mode	before		SetVirtualAddressMap()		is	called,	and	either	physical
mode	or	virtual	mode	after		SetVirtualAddressMap()		is	called.	This	means	the	services	that	these	modules
produce	are	available	after		ExitBootServices()	.

A	DXE	SAL	driver	defines		MODULE_TYPE		as		DXE_SAL_DRIVER		in	the	INF	file.	In	addition,	a	DXE	SAL	driver	registers
SAL	Services	for	the	system.

Because	a	DXE	SAL	Driver	is	available	after		ExitBootServices()	,	it	may	also	need	to	register	an	event
handler	for		EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE	.

8.9.1	INF	File
Following	is	the	example	of	a		[Defines]		section	for	a	driver	named

SampleDriverDxeSal.	For	DXE	SAL	driver,	the		MODULE_TYPE		entry	should	be	as	follows:

		DXE_SAL_DRIVER

[Defines]

		INF_VERSION	=	0x00010005

		BASE_NAME			=	SampleDriverDxeSal

		FILE_GUID			=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE	=	DXE_SAL_DRIVER

		ENTRY_POINT	=	SampleDxeSalDriverEntryPoint

[Depex]

		gSampleProtocolGuid

8.9.2	Entry	Point
The	entry	point	of	DXE	SAL	Driver	must	register	the	SAL	services	it	produces.	The	template	code	is	as
follows.

Note:	EDK	II	does	not	specify	a	detailed	way	for	DXE	SAL	Drivers	to	produce	and	register	SAL	services.

EFI_STATUS

EFIAPI

SampleDxeSalDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	More	initialization	can	be	added	here.

		//

		//

		//	Event	creation	for	EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE	can	be	added

		//	here.

		//

		//

		//	Register	SAL	services

		//

		return	EFI_SUCCESS;

}

8.9	DXE	SAL	Driver

99

8.9	DXE	SAL	Driver

100

8.10	DXE	SMM	Driver
This	module	type	is	used	by	SMM	Drivers	that	are	loaded	into	SMRAM.	As	a	result,	this	module	type	is
only	available	for	IA-32	and	x64	CPUs.	These	modules	are	dispatched	by	SMM	Foundation	and	are	never
destroyed.	This	means	the	services	that	these	modules	produce	are	available	after		ExitBootServices()	.

The	lifecycle	of	SMM	drivers	can	be	divided	into	two	phases,	which	have	different	constraints.		SMM
Initialization:	

This	is	the	phase	of	SMM	Driver	initialization	that	starts	with	the	call	to	the	driver's	entry	point	and	ends
with	the	return	from	the	driver's	entry	point.

SMM	Runtime:

This	is	the	phase	of	SMM	Driver	initialization	that	starts	after	the	return	from	the	driver's	entry	point.

8.10.1	INF	File
Following	is	the	example	of		[Defines]		section	for	a	driver	named

SampleDriverDxeSmm.	For	a	SMM	driver,	the		MODULE_TYPE		is		DXE_SMM_DRIVER	.

[Defines]

		INF_VERSION														=	0x00010005

		BASE_NAME																=	SampleDriverDxeSmm

		FILE_GUID																=	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

		MODULE_TYPE														=	DXE_SMM_DRIVER

		PI_SPECIFICATION_VERSION	=	0x0001000A

		ENTRY_POINT														=	SampleDxeSmmDriverEntryPoint

[Depex]

		gSampleProtocolGuid

Note:	PISPECIFICATIONVERSION	should	be	definitely	set	to	0x0001000A	for	PI

1.1	compliant	SMM	drivers.

8.10.2	Constraints
The	SMM	driver	model	has	constraints	similar	to	those	of	DXE	Runtime	Drivers.

Inside	of	SMM	Runtime,	the	drivers	may	not	be	able	to	use	core	protocol	services.

There	are	SMST-based	services,	which	the	drivers	can	access,	but	the	UEFI	System	Table	and	other
protocols	installed	during	boot	services	may	not	necessarily	be	available.

Inside	of	SMM	Initialization,	the	full	collection	of	UEFI	Boot	Services,	UEFI	Runtime	Services	and	SMST-
based	services	are	available.

8.10.2.1	SMM	Driver	Initialization
An	SMM	Driver's	initialization	phase	begins	when	the	driver	is	loaded	into	SMRAM,	and	its	entry	point	is
called.	An	SMM	Driver's	initialization	phase	ends	when	the	entry	point	returns.

During	SMM	Driver	initialization,	SMM	Drivers	have	access	to	two	sets	of	protocols:

UEFI	protocols	and	SMM	protocols.

8.10	DXE	SMM	Driver

101

UEFI	protocols	are	those	installed	and	discovered	using	UEFI	Boot	Services.	UEFI	protocols	can	be
located	and	used	by	SMM	drivers	only	during	SMM	Initialization.

SMM	protocols	are	those	installed	and	discovered	using	the	System	Management	Services	Table	(SMST).
SMM	protocols	can	be	discovered	by	SMM	drivers	during	initialization	phase	and	SMM	runtime	phase.

SMM	Drivers	must	not	use	the	UEFI	Boot	Services		Exit()		and		ExitBootServices()		during	SMM	Driver
Initialization.

8.10.2.2	SMM	Driver	Runtime
During	SMM	Driver	runtime,	SMM	drivers	only	have	access	to	SMST-based	services.	In	addition,
depending	on	the	platform	architecture,	memory	areas	outside	of	SMRAM	may	not	be	accessible	to	SMM
Drivers.	Likewise,	memory	areas	inside	of	SMRAM	may	not	be	accessible	to	UEFI	drivers.

These	SMM	Driver	Runtime	characteristics	lead	to	several	restrictions	regarding	the	usage	of	UEFI
services:

UEFI	interfaces	and	services	located	during	SMM	Driver	Initialization	must	not	be	called	or
referenced	during	SMM	Driver	Runtime.	This	includes	the	EFI	System	Table,	the	UEFI	Boot	Services,
and	the	UEFI	Runtime	Services.

Events	created	during	SMM	Driver	Initialization	must	be	closed	before	exiting	the	driver	entry	point.

8.10	DXE	SMM	Driver

102

APPENDIX	A	DYNAMIC	PCD
The	dynamic	type	PCD	is	used	for	a	configuration/setting	whose	value	is	to	be	determined	dynamic.	In
contrast,	the	value	of	static	type	PCD	(FeatureFlag,	FixedPcd,	PatchablePcd)	is	fixed	in	the	final
generated	FD	image	during	build	time.

The	"dynamic"	determination	means	one	of	three	things:

The	PCD	setting	value	is	produced	and	consumed	by	drivers	during	execution.

The	PCD	setting	value	is	user	configurable	from	setup.

The	PCD	setting	value	is	produced	by	the	platform	OEM	vendor	in	a	specified	area.

A.1.1	Class	of	Dynamic	Type
According	to	module	distribution	way,	dynamic	PCD	could	be	classified	as:

Dynamic:

If	module	is	released	in	source	code	and	will	be	built	with	platform	DSC,	the	dynamic	PCD	used	by	this
module	can	be	accessed	as:

	PcdGetxx(PcdSampleDynamicPcd);	

In	building	platform,	the	build	tools	translate	PcdSampleDynamicPcd	to	the	parameters	Token	Space
Guid:	Token	Number	for	this	PCD.

DynamicEx:

If	a	module	is	released	as	binary	and	is	not	included	in	the	platform	build,	the	dynamic	PCD	used	by	this
module	must	be	accessed	as:

PcdGetxxEx(gEfiMyTokenspaceGuid,	PcdSampleDynamicPcd)

Note:	Developers	need	to	explicitly	pass	Token	SpaceGuid	and	TokenNumber	as	the	parameters.

According	to	PCD	value's	storage	method,	dynamic	PCD	may	be	classified	three	ways:

Default	Storage:

The	PCD	value	is	stored	in	PCD	database	maintained	by	PCD	driver	in	boot-time	memory.

This	type	is	used	for	communication	between	PEIM/DXE	drivers	and	DXE/DXE	drivers.	All	set/get	value	are
lost	after	boot-time	memory	is	turn	off.

[PcdsDynamicDefault]	is	used	as	the	section	name	for	this	type	of	PCD	in	the	platform	DSC	file.

[PcdsDynamicExDefault]	is	used	for	dynamicEx	types	of	PCDs.

		Variable	Storage:

The	PCD	value	is	stored	in	a	variable	area.	As	the	default	storage	type,	this	type	of	PCD	could	be	used
for	PEI/DXE	driver	communication.	Beside	that,	this	type	PCD	could	also	be	used	to	store	the	value
associate	with	a	HII	setting	via	variable	interface.

In	PEI	phase,	the	PCD	value	can	be	obtained	but	not	set	because	the	variable	area	is	read	only.

Appendix	A	Dynamic	PCD

103

[PcdsDynamicHii]	is	used	as	section	name	for	this	type	of	PCD	in	the	platform	DSC	file.

[PcdsDynamicExHii]	is	for	the	dynamicEx	type	of	PCD.

		OEM	specified	storage	area:

The	PCD	value	is	stored	in	an	OEM-specified	area	whose	base	address	is	specified	by	the	FixedAtBuild
PCD	setting	PcdVpdBaseAddress.

The	area	is	read	only	for	PEI	and	DXE	phases.

[PcdsDynamicVpd]	is	used	as	section	name	for	this	type	PCD	in	the	platform	DSC	file.

[PcdsDynamicExVpd]	is	for	a	dynamicex	type	of	PCD.

A.1.2	When	and	how	to	use	dynamic	PCD
Module	developers	do	not	care	if	the	PCD	is	dynamic	or	static	when	writing	source	code/INF.	Dynamic
PCD	and	dynamic	type	are	indicated	by	the	platform	integrator	in	the	platform	DSC	file.

Appendix	A	Dynamic	PCD

104

	EDK II Module Writer's Guide
	Tables
	Figures
	1 The Basics of EDK II
	1.1 Overview
	1.2 Related References
	1.3 Terms
	1.4 Target Audience

	2 An EDK II Package
	2.1 Introduction
	2.2 Manage Package

	3 Module Development
	3.1 What is an EDK II module?
	3.2 Creating a Module
	3.3 Additional Steps for Library Instances
	3.4 Additional Steps for Driver
	3.5 EDK II Common Library Class
	3.6 Module using HII
	3.7 Building the module
	3.8 Debugging a Module

	4 UEFI Applications
	4.1 Begin with INF file
	4.2 Write UEFI Application Entry Point
	4.3 Get Service Tables
	4.4 Communicating with a UEFI driver

	5 UEFI Drivers
	5.1 Begin With INF File
	5.2 Write the UEFI Driver entry point
	5.3 Get Service Tables
	5.4 Communication between UEFI Drivers

	6 SEC Module
	6.1 Beginning to Write the INF File
	6.2 Setup Pre-Memory Environment
	6.3 Prepare for Data PEI Foundation

	7 Pre-EFI Initialization Modules
	7.1 Introduction
	7.2 Beginning to Write a PEIM INF File
	7.3 Defining a PEIM's entry point
	7.4 Get Pei Services
	7.5 Communicate between PEIM Modules
	7.6 Communicate with DXE Modules
	7.7 Boot Mode
	7.8 Execution in Place PEIMs
	7.9 Dependency for PEIMs

	8 DXE Drivers: non-UEFI drivers
	8.1 Beginning with INF File
	8.2 Write DXE Driver Entry Point
	8.3 Obtaining Services Tables
	8.4 Communication between DXE Drivers
	8.5 Communication with PEIMs
	8.6 Dependency Expressions
	8.7 Handler for EVT_SIGNAL_EXIT_BOOT_SERVICES
	8.8 DXE Runtime Driver
	8.9 DXE SAL Driver
	8.10 DXE SMM Driver

	Appendix A Dynamic PCD

