TABLE OF CONTENTS
EDK II Python Development Process and Coding Standards Specification
1 Introduction:
2 Python coding guidelines and tools:
3 Development steps and flowchart:
4 Environment setup and example
4.1 Install and setup environment
4.2 Create a project configuration file for flake8:
4.3 Write python code :
4.4 Run flake8:
4.5 Run mypy for type hints:
4.6 Write a unit test using pytest :
4.7 Generate documents using pydoc:
EDK II Python Development Process Specification
DRAFT FOR REVIEW
12/01/2020 06:10:35
Acknowledgements
Redistribution and use in source (original document form) and 'compiled' forms (converted to PDF, epub, HTML and other formats) with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code (original document form) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.
Redistributions in compiled form (transformed to other DTDs, converted to PDF, epub, HTML and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS DOCUMENTATION IS PROVIDED BY TIANOCORE PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TIANOCORE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2020, Intel Corporation. All rights reserved.
Revision History
Revision	Revision History	Date
0.10 | Initial release. | Jan 2017 |
1.0 | #2626 Typo in Python development Process and coding standards draft spec | March 2017 |
1 INTRODUCTION
This specification defines a set of python coding standards, development flow, and tools to help to identify and fix deviations in written code. These standards, flow and tools to establish
These rules apply to all code developed in Python for inclusion in the EDK II , and are intended as an enabling philosophy. All changes or additions from this point on shall conform to this specification. Pre-existing code does not need to be updated for the sole purpose of conforming to this specification. As conforming updates are made, the developer may update other content within the modified file to bring it within compliance with this specification. This specification addresses the chronic problem of providing accurate documentation of the code base by embedding the documentation within the code. A document generation system, using inbuilt python module, then produce formatted documentation by extracting information from specially formatted comment blocks and the syntactic elements of the code.
2 PYTHON CODING GUIDELINES AND TOOLS
This section covers python coding style guidelines followed.
PEP 8- Style guide for python code:
PEP8 covers python code style guide and helps to maintain consistency in code. A style guide is about consistency. Consistency within a project or module or function is most important. Complete specification available at https://www.python.org/dev/peps/pep-0008/
PEP 257- Docstring Conventions:
PEP257 covers semantics and conventions associated with python docstrings. The aim of PEP257 to standardize the high-level structure of docstrings. Complete specification available at https://www.python.org/dev/peps/pep-0257/
PEP 484- Type Hints:
PEP484 introduces a provisional module to provide the standard definitions and tools, along with some conventions for situations where annotations are not available. More details on PEP484 available at https://www.python.org/dev/peps/pep-0484/
Flake8:
Flake8 is a Python library wrapper around PyFlakes, pycodestyle and Ned Batchelder’s McCabe script
PyFlakes:
Pydcodestyle:
McCabe:
pytest:
It is important to validate the classes, methods, and functions we write. This will help to miniate the core software functionality of the modules. This is possible by writing a unit test which is the first level of software functionality validation. The pytest framework helps to write small test, yet scales to support complex functional testing for applications and libraries.
Complete features and documentation available at: https://docs.pytest.org/en/latest/contents.html
mypy:
The mypy tool aims to combine the benefits of dynamic and static typing. mypy combines a powerful type system and compile-time type checking. It is an optional static type checker for python. Mypy type checks standard Python programs; run them using any Python VM with basically no runtime overhead. More details available at https://mypy.readthedocs.io/en/stable/
3 DEVELOPMENT STEPS AND FLOWCHART
Write/modify/generate specifications wherever applicable
Following flow chart explains complete development lifecycle.
4 ENVIRONMENT SETUP AND EXAMPLE
4.1 Install and setup environment
python<version> -m pip install flake8
python<version> -m pip install -u pytest
python<version> -m pip install mypy
4.2 Create a project configuration file for flake8
Create a file at root level of the project directory and name it as ".flake8".
Flake8 configuration options needs to be in the flake8 section. The following options used for EDK II flake8 configuration.
[flake8]
H903 Windows style line endings not allowed in code
E266 too many leading '#' for block comment
D203 : One blank line required before class docstring
H306 : imports not in alphabetical order
ignore = H903, E266, D203, H306
exclude = .git,
max-complexity = 10
max_line_length = 120
4.3 Write python code
Create new file and name it as sample.py and start writing python code. Please note sample.py and falke8 configuration files stored on same directory level.
Source code sample.py:
Source code sample.py:
import os
class AddTen:
"""Class for add ten to a given number"""
def __init__(self, user_input):
self.user_input = user_input
self.new_varaible = 10
d = {}
def add_ten(self):
"""Init for calss."""
try:
return self.newvaraible + self.user_input
except:
print("Unknown Errror")
return None
4.4 Run flake8
Run flake8. The output of flake8 on sample.py shown below
C:\kpurma\PythonDevelopmentProcess>python -m flake8 sample.py
sample.py:1:1: D100 Missing docstring in public module
sample.py:30:1: F401 'os' imported but unused
sample.py:31:1: W293 blank line contains whitespace
sample.py:32:1: E302 expected 2 blank lines, found 1
sample.py:33:1: D400 First line should end with a period
sample.py:35:1: D107 Missing docstring in __init__
sample.py:36:13: E117 over-indented
sample.py:38:13: F841 local variable 'd' is assigned to but never used
sample.py:41:13: E117 over-indented
sample.py:43:21: E117 over-indented
sample.py:44:13: E722 do not use bare 'except'
sample.py:45:21: E117 over-indented
sample.py:48:1: E305 expected 2 blank lines after class or
function definition, found 1
Fix flake8 issues and run falke8 again to check there is no errors reported.
Source code sample_fixed.py:
#Source code sample.fixed.py:
“””Sample file with flake8 errors fixed.”””
class AddTen:
"""Class for add ten to a given number."""
def __init__(self, user_input: int = 0):
“””Initialization.”””
self.user_input = user_input
self.new_varaible = 10
def add_ten(self)->int:
"""Method to add ten to given number."""
try:
return self.new_varaible + self.user_input
except Exception as e:
raise e
Run flake on fixed code.
C:\kpurma\PythonDevelopmentProcess>python -m flake8 sample_fixed.py
C:\kpurma\PythonDevelopmentProcess>
4.5 Run mypy for type hints
Run mypy on the source file to check to find type hints.
C:\kpurma\PythonDevelopmentProcess>mypy sample.py --strict
sample.py:35: error: Function is missing a type annotation
sample.py:40: error: Function is missing a return type annotation
sample.py:43: error: "AddTen" has no attribute "newvaraible";
maybe "new_varaible"?
sample.py:48: error: Call to untyped function "AddTen" in typed context
Found 4 errors in 1 file (checked 1 source file)
Mypy output for fixed code:
C:\kpurma\PythonDevelopmentProcess>mypy sample_fixed.py --strict
Success: no issues found in 1 source file
4.6 Write a unit test using pytest
Use pytest library to write a unit test. Unit test for sample program is shown below for sample code.
from sample_fixed import AddTen
def test_answer():
sum10 = AddTen(20)
assert sum10.add_ten() == 30
Run the unit test and make sure all tests pass.
C:\kpurma\PythonDevelopmentProcess>python -m pytest test_sample.py
===============testsessionstarts========================
platform win32 -- Python 3.8.0, pytest-5.2.2, py-1.8.0, pluggy-0.13.0
rootdir: C:\kpurma\PythonDevelopmentProcess
collected 1 item
test_sample.py . [100%]
=======================1passedin 0.06s================
4.7 Generate documents using pydoc
By using the pydoc module, documentation is generated in the desired format.
Following command generates html version of document at source level directory.
python -m pydoc -w sample_fixed
sample_fixed |
sample_fixed.py.
Classes | ||||||||||
AddTen
|
Data | ||
a = <sample_fixed.AddTen object> c = 20 |
Table of Contents
EDK II Python Development Process and Coding Standards Specification
2 Python coding guidelines and tools:
3 Development steps and flowchart:
4 Environment setup and example
4.1 Install and setup environment
4.2 Create a project configuration file for flake8:
4.3 Write python code :
4.4 Run flake8:
4.5 Run mypy for type hints:
4.6 Write a unit test using pytest :
4.7 Generate documents using pydoc: