

TABLE	OF	CONTENTS
EDK	II	Python	Development	Process	and	Coding	Standards	Specification

1	Introduction:

2	Python	coding	guidelines	and	tools:

3	Development	steps	and	flowchart:

4	Environment	setup	and	example

4.1	Install	and	setup	environment

4.2	Create	a	project	configuration	file	for	flake8:

4.3	Write	python	code	:

4.4	Run	flake8:

4.5	Run	mypy	for	type	hints:

4.6	Write	a	unit	test	using	pytest	:

4.7	Generate	documents	using	pydoc:

EDK	II	Python	Development	Process	Specification[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

EDK	II	Python	Development	Process	Specification
DRAFT	FOR	REVIEW

12/01/2020	06:10:22

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2020,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

0.10 Initial	release. Jan	2017

1.0 #2626	Typo	in	Python	development	Process	and	coding	standards
draft	spec

March
2017

EDK	II	Python	Development	Process	and	Coding	Standards	SpecificationEDK	II	Python	Development	Process	Specification[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

https://bugzilla.tianocore.org/show_bug.cgi?id=2626

1	INTRODUCTION
This	specification	defines	a	set	of	python	coding	standards,	development	flow,	and	tools	to	help	to
identify	and	fix	deviations	in	written	code.	These	standards,	flow	and	tools	to	establish

Uniformity	of	style
Uniform	conventions
To	maintain	consistency
To	maintain	extensibility
To	improve	readability
To	improve	maintainability,	reusability

These	rules	apply	to	all	code	developed	in	Python	for	inclusion	in	the	EDK	II	,	and	are	intended	as	an
enabling	philosophy.	All	changes	or	additions	from	this	point	on	shall	conform	to	this	specification.	Pre-
existing	code	does	not	need	to	be	updated	for	the	sole	purpose	of	conforming	to	this	specification.	As
conforming	updates	are	made,	the	developer	may	update	other	content	within	the	modified	file	to	bring
it	within	compliance	with	this	specification.	This	specification	addresses	the	chronic	problem	of	providing
accurate	documentation	of	the	code	base	by	embedding	the	documentation	within	the	code.	A
document	generation	system,	using	inbuilt	python	module,	then	produce	formatted	documentation	by
extracting	information	from	specially	formatted	comment	blocks	and	the	syntactic	elements	of	the	code.

1	Introduction:EDK	II	Python	Development	Process	Specification[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

2	PYTHON	CODING	GUIDELINES	AND	TOOLS
This	section	covers	python	coding	style	guidelines	followed.

PEP	8-	Style	guide	for	python	code:
	PEP8		covers	python	code	style	guide	and	helps	to	maintain	consistency	in	code.	A	style	guide	is	about
consistency.	Consistency	within	a	project	or	module	or	function	is	most	important.	Complete
specification	available	at	https://www.python.org/dev/peps/pep-0008/

PEP	257-	Docstring	Conventions:
	PEP257		covers	semantics	and	conventions	associated	with	python	docstrings.	The	aim	of		PEP257		to
standardize	the	high-level	structure	of	docstrings.	Complete	specification	available	at
https://www.python.org/dev/peps/pep-0257/

PEP	484-	Type	Hints:
	PEP484		introduces	a	provisional	module	to	provide	the	standard	definitions	and	tools,	along	with	some
conventions	for	situations	where	annotations	are	not	available.	More	details	on	PEP484	available	at
https://www.python.org/dev/peps/pep-0484/

Flake8:
	Flake8		is	a	Python	library	wrapper	around		PyFlakes,	pycodestyle		and	Ned	Batchelder’s		McCabe		script

PyFlakes:

A	simple	program	that	checks	Python	source	files	for	errors.
It	is	available	on	PyPI	https://pypi.org/project/pyflakes/

Pydcodestyle:

	Pycodestyle		used	to	called	pep8	is	a	tool	to	check	your	Python	code	against	some	of	the	style
conventions	in	PEP8.
It	is	available	on	PyPI	https://pypi.org/project/pycodestyle/

McCabe:

Ned’s	script	to	check	for	the		McCabe		complexity	for	Python	code.
It	is	available	on	PyPI	https://pypi.org/project/mccabe/

pytest:
It	is	important	to	validate	the	classes,	methods,	and	functions	we	write.	This	will	help	to	miniate	the	core
software	functionality	of	the	modules.	This	is	possible	by	writing	a	unit	test	which	is	the	first	level	of
software	functionality	validation.	The		pytest		framework	helps	to	write	small	test,	yet	scales	to	support
complex	functional	testing	for	applications	and	libraries.

Complete	features	and	documentation	available	at:	https://docs.pytest.org/en/latest/contents.html

mypy:

2	Python	coding	guidelines	and	tools:EDK	II	Python	Development	Process	Specification[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0484/
https://pypi.org/project/pyflakes/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/mccabe/
https://docs.pytest.org/en/latest/contents.html

The		mypy		tool	aims	to	combine	the	benefits	of	dynamic	and	static	typing.		mypy		combines	a	powerful	type
system	and	compile-time	type	checking.	It	is	an	optional	static	type	checker	for	python.		Mypy		type
checks	standard	Python	programs;	run	them	using	any	Python	VM	with	basically	no	runtime	overhead.
More	details	available	at	https://mypy.readthedocs.io/en/stable/

2	Python	coding	guidelines	and	tools:EDK	II	Python	Development	Process	Specification[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

https://mypy.readthedocs.io/en/stable/

3	DEVELOPMENT	STEPS	AND	FLOWCHART
Write	code	which	follows	PEP8,	PEP257	and	PEP484	recommendations
Run		flake8		on	source	code.
Run		mypy		for	type	hints	checking	of	the	code
Write	unit	tests	using		pytest	
Run	all	unit	tests.
Send	review
Generate	documents	using		pydoc	
Write/modify/generate	specifications	wherever	applicable

Following	flow	chart	explains	complete	development	lifecycle.

3	Development	steps	and	flowchart:EDK	II	Python	Development	Process	Specification[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4	ENVIRONMENT	SETUP	AND	EXAMPLE

4	Environment	setup	and	exampleEDK	II	Python	Development	Process	Specification[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.1	Install	and	setup	environment
Install	flake8:

python<version>	-m	pip	install	flake8

Install	pytest:

python<version>	-m	pip	install	-u	pytest

Install	mypy:

python<version>	-m	pip	install	mypy

4.1	Install	and	setup	environmentEDK	II	Python	Development	Process	Specification[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.2	Create	a	project	configuration	file	for	flake8
Create	a	file	at	root	level	of	the	project	directory	and	name	it	as	".flake8".

Flake8	configuration	options	needs	to	be	in	the	flake8	section.	The	following	options	used	for	EDK	II
flake8	configuration.

[flake8]

#	H903		Windows	style	line	endings	not	allowed	in	code

#	E266	too	many	leading	'#'	for	block	comment

#	D203	:	One	blank	line	required	before	class	docstring

#	H306		:	imports	not	in	alphabetical	order

ignore	=	H903,	E266,	D203,	H306

exclude	=	.git,

max-complexity	=	10

max_line_length	=	120

4.2	Create	a	project	configuration	file	for	flake8:EDK	II	Python	Development	Process	Specification[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.3	Write	python	code
Create	new	file	and	name	it	as		sample.py		and	start	writing	python	code.	Please	note		sample.py		and		falke8	
configuration	files	stored	on	same	directory	level.

Source	code	 	sample.py	:

#	Source	code	sample.py:

import	os

class	AddTen:

				"""Class	for	add	ten	to	a	given	number"""

				def	__init__(self,	user_input):

												self.user_input	=	user_input

												self.new_varaible	=	10

												d	=	{}

				def	add_ten(self):

												"""Init	for	calss."""

												try:

																				return	self.newvaraible	+	self.user_input

												except:

																				print("Unknown	Errror")

																				return	None

4.3	Write	python	code	:EDK	II	Python	Development	Process	Specification[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.4	Run	flake8
Run		flake8	.	The	output	of		flake8		on		sample.py		shown	below

C:\kpurma\PythonDevelopmentProcess>python	-m	flake8	sample.py

sample.py:1:1:	D100	Missing	docstring	in	public	module

sample.py:30:1:	F401	'os'	imported	but	unused

sample.py:31:1:	W293	blank	line	contains	whitespace

sample.py:32:1:	E302	expected	2	blank	lines,	found	1

sample.py:33:1:	D400	First	line	should	end	with	a	period

sample.py:35:1:	D107	Missing	docstring	in	__init__

sample.py:36:13:	E117	over-indented

sample.py:38:13:	F841	local	variable	'd'	is	assigned	to	but	never	used

sample.py:41:13:	E117	over-indented

sample.py:43:21:	E117	over-indented

sample.py:44:13:	E722	do	not	use	bare	'except'

sample.py:45:21:	E117	over-indented

sample.py:48:1:	E305	expected	2	blank	lines	after	class	or

																function	definition,	found	1

Fix		flake8		issues	and	run	falke8	again	to	check	there	is	no	errors	reported.

Source	code	 	sample_fixed.py	:

#Source	code	sample.fixed.py:

“””Sample	file	with	flake8	errors	fixed.”””

class	AddTen:

				"""Class	for	add	ten	to	a	given	number."""

				def	__init__(self,	user_input:	int	=	0):

								“””Initialization.”””

								self.user_input	=	user_input

								self.new_varaible	=	10

				def	add_ten(self)->int:

								"""Method	to	add	ten	to	given	number."""

								try:

												return	self.new_varaible	+	self.user_input

								except	Exception	as	e:

												raise	e

Run	flake	on	fixed	code.

C:\kpurma\PythonDevelopmentProcess>python	-m	flake8	sample_fixed.py

C:\kpurma\PythonDevelopmentProcess>

4.4	Run	flake8:EDK	II	Python	Development	Process	Specification[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.5	Run	 	mypy		for	type	hints
Run		mypy		on	the	source	file	to	check	to	find	type	hints.

C:\kpurma\PythonDevelopmentProcess>mypy	sample.py	--strict

sample.py:35:	error:	Function	is	missing	a	type	annotation

sample.py:40:	error:	Function	is	missing	a	return	type	annotation

sample.py:43:	error:	"AddTen"	has	no	attribute	"newvaraible";

																					maybe	"new_varaible"?

sample.py:48:	error:	Call	to	untyped	function	"AddTen"	in	typed	context

Found	4	errors	in	1	file	(checked	1	source	file)

	Mypy		output	for	fixed	code:

C:\kpurma\PythonDevelopmentProcess>mypy	sample_fixed.py	--strict

Success:	no	issues	found	in	1	source	file

4.5	Run	mypy	for	type	hints:EDK	II	Python	Development	Process	Specification[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.6	Write	a	unit	test	using	pytest
Use		pytest		library	to	write	a	unit	test.	Unit	test	for	sample	program	is	shown	below	for	sample	code.

from	sample_fixed	import	AddTen

def	test_answer():

		sum10	=	AddTen(20)

		assert	sum10.add_ten()	==	30

Run	the	unit	test	and	make	sure	all	tests	pass.

C:\kpurma\PythonDevelopmentProcess>python	-m	pytest	test_sample.py

===============testsessionstarts========================

platform	win32	--	Python	3.8.0,	pytest-5.2.2,	py-1.8.0,	pluggy-0.13.0

rootdir:	C:\kpurma\PythonDevelopmentProcess

collected	1	item

test_sample.py	.																																																																																																	[100%]

=======================1passedin	0.06s================

4.6	Write	a	unit	test	using	pytest	:EDK	II	Python	Development	Process	Specification[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

4.7	Generate	documents	using	pydoc
By	using	the		pydoc		module,	documentation	is	generated	in	the	desired	format.

Following	command	generates	html	version	of	document	at	source	level	directory.

		python	-m	pydoc	-w	sample_fixed

	
	
sample_fixed

sample_fixed.py.

	
Classes

						 	

builtins.object

AddTen

	
class	AddTen(builtins.object)

			

AddTen(user_input:	int	=	0)

	

Class	for	add	ten	to	a	given	number.

	

	

Methods	defined	here:

__init__(self,	user_input:	int	=	0)
Initialization.

add_ten(self)	->	int
Init	for	calss.

Data	descriptors	defined	here:

__dict__
dictionary	for	instance	variables	(if	defined)

__weakref__
list	of	weak	references	to	the	object	(if	defined)

	
Data

						 	 a	=	<sample_fixed.AddTen	object>
c	=	20

4.7	Generate	documents	using	pydoc:EDK	II	Python	Development	Process	Specification[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	06:10:22]

	EDK II Python Development Process and Coding Standards Specification
	1 Introduction:
	2 Python coding guidelines and tools:
	3 Development steps and flowchart:
	4 Environment setup and example
	4.1 Install and setup environment
	4.2 Create a project configuration file for flake8:
	4.3 Write python code :
	4.4 Run flake8:
	4.5 Run mypy for type hints:
	4.6 Write a unit test using pytest :
	4.7 Generate documents using pydoc:

