

TABLE	OF	CONTENTS
Understanding	the	Trusted	Boot	Chain	Implementation

Tables

Figures

Executive	Summary

Overview

TCG	Trusted	Boot	Chain	in	EDK	II

Other	Trusted	Boot	Chains

Looking	Forward

Checklist	for	Platform	Developers

Glossary

References

Understanding	the	Trusted	Boot	Chain	Implementation

2Revision	1.0

UNDERSTANDING	THE	TRUSTED	BOOT	CHAIN
IMPLEMENTATION
Revision	1.0

04/30/2025	09:39:20

by	Jiewen	Yao	and	Vincent	J.	Zimmer,	Intel	Corporation

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2020,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Revision	History Date

1.0 Initial	release. December	2020

Understanding	the	Trusted	Boot	Chain	ImplementationUnderstanding	the	Trusted	Boot	Chain	Implementation

3Revision	1.0

Tables
Table	1	TPM	PCR	Usage
Table	2	PCR	Usage	(simple	rules)
Table	3	Coreboot	TPM	PCR	Usage
Table	4	GRUB	TPM	PCR	Usage
Table	5	Shim	TPM	PCR	Usage
Table	6	Windows	BitLocker	PCR	Usage
Table	7	TPM	PCR	Usage	in	Management	Domain

TablesUnderstanding	the	Trusted	Boot	Chain	Implementation

4Revision	1.0

Figures
Figure	1	Measurement	and	Attestation
Figure	2	High	Level	Components	and	Measuring
Figure	3	High	Level	Module	Flow
Figure	4	TCG	Trusted	Boot	Flow
Figure	5	Remote	Attestation	TPM	Device	Verification
Figure	6	Remote	Attestation	Event	Log	Verification
Figure	7	RIM	Validation
Figure	8	TCG	Trusted	Boot	Component	in	EDK	II
Figure	9	TPM	Bank	Selection	in	EDK	II
Figure	10	TCG	PP	Component	in	EDK	II
Figure	11	TCG	MOR	Flow
Figure	12	TBD	MOR	Component	in	EDK	II
Figure	13	TCG	Storage	Component	in	EDK	II
Figure	14	Platform	Root	of	Trust
Figure	15	Dice	Implicit	Identiy	Based	Attestation
Figure	16	Dice	Symmetric	Identity	Based	Attestation
Figure	17	SPDM	1.0
Figure	18	SPDM	1.1
Figure	19	Open	SPDM	Design
Figure	20	An	Open	Trusted	Platform

FiguresUnderstanding	the	Trusted	Boot	Chain	Implementation

5Revision	1.0

EXECUTIVE	SUMMARY
This	document	explains	how	to	implement	the	Trusted	Computing	Group	(TCG)	static	trusted	boot	chain,
using	the	TianoCore	EDK	II	project.

Prerequisite

This	document	assumes	that	the	audience	has	basic	firmware	development	experience	using	UEFI	and
EDK	II,	plus	basic	knowledge	of	the	UEFI	boot	flow,	Trusted	Platform	Module	(TPM),	and	cryptography.

Executive	SummaryUnderstanding	the	Trusted	Boot	Chain	Implementation

6Revision	1.0

OVERVIEW
System	firmware	(BIOS/UEFI)	plays	an	important	role	in	computer	platform	security.	If	the	system	firmware
or	configuration	is	altered	from	the	intended	state,	the	system	may	experience	loss	of	confidentiality,
integrity,	and	availability,	including	system	instability,	system	failure,	and	information	leakage.	Detecting
a	firmware	code	or	configuration	change	is	of	great	importance,	and	can	be	accomplished	by	measuring
and	monitoring	firmware	integrity.

In	2011,	the	National	Institute	of	Standards	and	Technology	(NIST)	published	a	draft	version	BIOS
Integrity	Measurement	Guidelines	(SP800-155).	More	recently,	the	Trusted	Computing	Group	(TCG)	has
developed	the	following	documents	to	discuss	firmware	integrity	measurement:

TCG	Reference	Integrity	Manifest	Information	Model	(RIM-IM)

TCG	PC	Client	Reference	Integrity	Manifest	(PC-RIM)

PC	Client	Platform	Firmware	Profile	(PFP)

PC	Client	Platform	Firmware	Integrity	Measurement	(FIM)	-	Draft

The	relationship	between	the	above	documents	is	as	follows:

The	NIST	SP800-155	specification	provides	a	general	guideline	on	requirements.	It	does	not
describe	implementation	details.

The	TCG	RIM-IM	specification	defines	the	Reference	Integrity	Manifest	(RIM)	structure	that	a	Verifier
uses	to	validate	expected	values	(Assertions)	against	actual	values	(Evidence).

The	TCG	PC	Client	RIM	specification	complements	the	TCG	RIM-IM	specification	and	describes	the	RIM
file	formats,	RIM	storage	locations	within	the	PC	Client,	and	provides	references	for	the	content	of
the	RIM	support	files.

The	TCG	PFP	defines	the	implementation	for	a	PC	client	firmware	architecture.	It	defines	how	the
platform	firmware	measures	the	firmware	components	into	Trusted	Platform	Module	(TPM)	Platform
Configuration	Register	(PCR)	and	how	the	firmware	records	the	actions	in	an	event	log.

The	TCG	FIM	draft	specification	provides	a	framework	for	determining	the	configuration	of	the
hardware	and	the	identity	of	the	firmware	which	has	executed	to	initialize	the	endpoint	into	a
booted	state.	A	FIM	compliant	platform	shall	implement	the	TCG	PFP	specification	in	order	to	provide
runtime	evidence	and	the	platform	shall	also	provide	assertions	based	upon	the	TCG	RIM
specification.

In	this	document,	we	will	focus	on	the	TCG	Platform	Firmware	Profile	specification.	The	PFP	specification
defines	how	a	platform	firmware	contributes	to	the	Root	of	Trust	for	Measurement	(RTM)	of	the	platform
through	extending	digests	(measurements)	of	code	into	a	TPM	Platform	Configuration	Register	(PCR).
The	PFP	specification	also	provides	the	documentation	of	that	measurement	in	an	event	log.

Figure	1	below	shows	a	simple	example	of	the	firmware	validation	process.	An	Original	Equipment
Manufacturer	(OEM)	provides	a	RIM	as	the	assertion	to	describe	the	system	platform.	When	a
corresponding	system	boots,	the	platform	firmware	measures	the	component	into	some	TPM	PCR's	and
generates	an	event	log	as	evidence.	The	whole	platform	acts	as	an	attester	and	presents	the	event	log
and	PCR's	as	evidence	to	a	verifier.	Then	the	verifier	can	compare	the	evidence	(event	log	and	PCRs)
and	compare	it	with	the	assertion	(RIM	manifest).

Figure	1	Measurement	and	Attestation

OverviewUnderstanding	the	Trusted	Boot	Chain	Implementation

7Revision	1.0

https://www.nist.gov/
https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/tcg-reference-integrity-manifest-rim-information-model/
https://trustedcomputinggroup.org/resource/tcg-pc-client-reference-integrity-manifest-specification/
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PC_Client_FIM_v1_r40_02dec2020.pdf

A	verifier	can	use	various	policies	to	determine	the	state	of	the	platform.	Some	example	policies
include	the	following:

All	event	log	match	-	It	means	the	platform	is	expected	to	meet	all	of	the	expected	values.

Event	log	on	code	(PCR0)	and	security	policy	(PCR7)	match	but	the	configuration	data	(PCR1)	has	a
mismatch	--	It	means	someone	changed	the	BIOS	setup	configuration.

Event	log	on	security	policy	(PCR7)	match	but	code	(PCR0)	mismatches	--	It	means	someone	has
updated	the	platform	firmware	code.

All	event	log	mismatch	--	It	means	the	platform	is	not	in	the	expected	code	or	configuration	state.

OverviewUnderstanding	the	Trusted	Boot	Chain	Implementation

8Revision	1.0

TCG	TRUSTED	BOOT	CHAIN	IN	EDK	II

Trusted	Boot	Flow
Trusted	boot	flow	is	activity	that	the	host	platform	firmware	measures,	including	firmware	components,
into	the	Trusted	Platform	Module	(TPM)	Platform	Configuration	Register	(PCR),	and	records	the	actions	in
an	event	log.	The	TPM	acts	as	a	static	Root	of	Trust	for	Storage	(RTS)	and	Root	of	Trust	for	Reporting
(RTR).	The	platform	firmware	here	acts	as	a	Static	Root	of	Trust	for	Measurement	(SRTM).

In	this	document,	we	use	TPM	2.0	as	an	example.	Unless	otherwise	specified,	the	term	TPM	below	refers
to	a	TPM	2.0	device.

PCR,	Measurement,	and	Attestation
The	TPM	PCRs	hold	the	values	of	the	data	measurement.	The	measurement	follows	the	equation	below.
This	operation	is	PCR	extend.

PCR	 	=	HASH	(PCR	 	||	HASH(Data))

PCR	extend	is	the	only	way	to	modify	the	PCR	value.	If	a	platform	extends	a	PCR	multiple	times,	all	data	is
hashed	into	the	PCR.	The	vertical	bars	in	parentheses	designate	the	catenation	of	the	old	and	new
data,	respectively.

General	Guideline
A	typical	TPM	has	24	PCRs.	PCRs	[0-15]	represent	the	SRTM	and	are	associated	with	Locality	0.	PCRs	[0-
7]	are	used	for	platform	firmware	and	PCRs	[8-15]	are	used	for	the	operating	system.	PCR	[16]	is	for
debug	usage.	PCR	[23]	is	for	application	support.	PCRs	[17-22]	represent	the	platform's	dynamic	root	of
trust	for	measurement	(DRTM).	In	this	document	we	will	focus	on	the	usage	of	PCRs	[0-7],	as	described
in	the	following	table.

Table	1	TPM	PCR	Usage

PCR
Index PCR	Usage

0 SRTM,	BIOS,	Host	Platform	Extensions,	Embedded	Option	ROMs	and	PI	Drivers

1 Host	Platform	Configuration

2 UEFI	driver	and	application	Code

3 UEFI	driver	and	application	Configuration	and	Data

4 UEFI	Boot	Manager	Code	(usually	the	MBR)	and	Boot	Attempts

5 Boot	Manager	Code	Configuration	and	Data	(for	use	by	the	Boot	Manager	Code)	and
GPT/Partition	Table

6 Host	Platform	Manufacturer	Specific

7 Secure	Boot	Policy,	Secure	boot	Verification	Authority

(Source:	TCG	PFP	Specification)

The	following	figure	shows	the	high-level	components	and	measurements.

Figure	2	High	level	components	and	measurements

(new) (old)

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

9Revision	1.0

https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/

(See	Building	Secure	Firmware	by	Jiewen	Yao	&	Vincent	Zimmer)

There	is	an	easy	way	to	remember	Table	1,	as	described	by	the	following	two	rules:

1)	Even-numbered	PCRs	are	for	the	code,	while	odd-numbered	PCRs	are	for	configuration	data.

2)	PCRs	[0-1]	are	for	the	OEM,	PCRs	[2-3]	are	for	third	party	usage,	PCRs	[4-5]	are	for	OS	boot,	PCR[7]	is
for	secure	boot	policy,	PCR[6]	is	undefined	by	the	PFP	spec	and	is	platform-specific.

Table	2	PCR	usage	(simple	rules)

Type Code Data	Configuration

OEM PCR[0] PCR[1]

Third	party PCR[2] PCR[3]

OS	Boot PCR[4] PCR[5]

Secure	Boot	Policy N/A PCR[7]

For	example:

Any	PEI,	DXE,	and	SMM	code	in	flash	FV	are	OEM	code.	They	go	into	PCR[0].

ACPI	data	from	OEM	code	is	important	for	boot.	It	goes	into	PCR[0].

An	integrated	PCI	card	option	ROM	in	flash	FV	is	provided	by	the	OEM.	It	goes	to	PCR[0].	An
external	PCI	card	Option	ROM	is	third	party	code.	It	goes	into	PCR[2].

If	a	non-host	component	or	a	device	firmware	can	only	be	updated	by	OEM	platform	code,	it
goes	into	PCR[0].	If	a	non-host	component	or	a	device	firmware	can	be	updated	by	an
entity	other	than	the	OEM	platform	code,	it	goes	into	PCR[2].

A	CPU	Microcode	update	can	be	treated	as	code	or	data.	It	can	go	into	PCR[0]	or	PCR[1].

SMBIOS	tables	are	OEM	configuration	data.	They	go	into	PCR[1].

Setup	variable	and	policy	configuration	are	OEM	configuration	data.	They	go	into	PCR[1].

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

10Revision	1.0

UEFI	Boot####	and	BootOrder	variable	are	OEM	configuration	data.	They	go	into	PCR[1].

If	a	non-host	component	or	a	device	firmware	configuration	can	only	be	updated	by	OEM
platform	code,	it	goes	into	PCR[1].	If	a	non-host	component	or	a	device	firmware
configuration	can	be	updated	by	an	entity	other	than	OEM	platform	code,	it	goes	into
PCR[3].

If	the	action	is	to	enter	an	OEM	provided	setup	utility,	it	goes	into	PCR[1].	If	the	action	is	to
enter	a	third	party	provided	setup	utility,	it	goes	into	PCR[3].

OS	Loader	is	OS	boot	related	code.	It	goes	into	PCR[4].

Boot	Attempt	action	goes	into	PCR[4].	The	ExitBootService	action	goes	into	PCR[5].

Disk	geometry,	such	as	a	GUID	partition	table	(GPT),	is	OS	boot	related	configuration.	It	goes
into	PCR[5].

UEFI	Secure	Boot	variables,	such	as	the	Platform	Key	(PK),	Key	Exchange	Key	(KEK),	image
signature	database	(db),	and	image	forbidden	signature	database	(dbx)	are	all	related	to	secure
boot	policy.	They	go	into	PCR[7].

If	the	security	configuration	policy	is	boot	security	sensitive,	it	goes	into	PCR[7].	If	it	is	NOT	boot
security	sensitive,	it	goes	into	PCR[1].

Secure	feature	disabling,	such	as	DMA	protection	disabling,	is	security	sensitive.	It	goes	into
PCR[7].

Debug	mode	information	is	security	sensitive.	It	goes	into	PCR[7].

Some	other	rules	for	the	data	that	shall	not	be	measured	into	PCR	are	as	follows:

1)	PCRs	can	only	record	statically	configured,	unchangeable	data.	A	PCR	cannot	record	data	that
are	dynamic	and	changeable	across	the	boot,	such	as	system	clock,	fan	speed,	boot	count,
system	reset	reason,	battery	power,	a	nonce	value,	a	pointer,	etc.

For	example:

The	firmware	must	measure	the	PE	COFF	image	before	the	relocation	into	different	memory	location.

The	firmware	must	measure	the	ACPI	table	from	flash	prior	to	any	modification.	An	ACPI	table	patch
may	apply	different	data	settings	based	upon	policy,	such	as	ACPI	version	selection	for	a	secondary
system	description	table	(SSDT),	or	different	addresses,	such	as	a	non-volatile	storage	memory
location	for	a	differentiated	system	description	table	(DSDT).

The	firmware	must	measure	partial	portions	of	the	SMBIOS	table	because	some	SMBIOS	tables	may
contain	some	automatically	updated	information,	such	as	WakeupType,	Voltage,	ResetCount,	or
NominalSpeed.

2)	A	PCR	can	only	record	the	class	of	information.	A	PCR	cannot	record	the	instance	of	specific
information	that	may	be	used	to	unique	identify	a	system,	such	as	an	asset	tag,	a	serial
number,	etc.

For	example:

The	firmware	must	measure	partial	portions	of	the	SMBIOS	tables	because	some	SMBIOS	table
entries	may	contain	the	instance	specific	unique	information,	such	as	SerialNumber,	UUID,	AssetTag,
PartNumber.

3)	A	PCR	cannot	record	any	privacy	sensitive	information.

All	of	the	above	PCR	measurements	need	to	be	recorded	into	an	event	log	which	can	be	used	to
reproduce	the	PCR	value.	Besides	that,	the	event	log	may	include	some	NO_ACTION	event	types.	This
type	means	that	the	data	are	not	required	to	be	measured	into	PCR.	The	event	log	entry	is	intended	to

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

11Revision	1.0

provide	additional	information	to	the	event	log	consumer.	For	example:

Specification	ID	event	--	It	is	to	provide	information	to	the	consumer	regarding	which	version	of
specification	is	implemented.

Reference	Manifest	event	--	It	is	to	provide	NIST	SP800-155	reference	integrity	manifest
information,	such	as	platform	manufacturer	ID,	reference	manifest	GUID,	etc.

Startup	Locality	event	--	It	is	to	record	the	locality	from	which	the	TPM2_Startup	command	was
sent	in	cases	where	the	Locality	sending	the	TPM2_Startup	command	is	Locality	3.

Most	TCG	TPM	related	code	in	EDK	II	is	located	at	SecurityPkg.	The	Tcg2Pei	module	handles	the	PEI
phase	measurement.	The	Tcg2Dxe	DXE	driver	handles	the	DXE	phase	measurement.	The
DxeTpm2MeasureBootLib	library	handles	the	PE	image	measurements	and	GPT	measurement.	All	event
type	definition	can	be	found	at	UefiTcgPlatform.h.	Figure	3	below	shows	the	high	level	flow	of	the
modules.

Figure	3	High	Level	Module	Flow

PCR	0
The	SRTM's	version	identifier	is	measured	by	the	Tcg2Pei.c	MeasureCRTMVersion()	function.	The	event
type	is	EV_S_CRTM_VERSION.	EDKII	uses	PcdFirmwareVersionString	to	let	a	platform	pass	the	SRTM
version	information.	The	version	string	is	encoded	as	a	Unicode	string	with	a	NULL	terminator.

The	platform	firmware	is	measured	by	the	Tcg2Pei.c	MeasureFvImage()	function	with	firmware	volume
(FV)	granularity.	The	event	type	is	EV_EFI_PLATFORM_FIRMWARE_BLOB	or
EV_EFI_PLATFORM_FIRMWARE_BLOB2,	based	upon	the	PcdTcgPfpMeasurementRevision.	The	Tcg2Pei.c
module	measures	the	main	BIOS	at	MeasureMainBios()	and	then	installs	a	callback	function
FirmwareVolumeInfoPpiNotifyCallback()	at	the	memory	present	entrypoint	PeimEntryMP().
Whenever	a	new	FV	is	installed,	this	callback	is	invoked	and	the	new	FV	is	measured.

To	avoid	duplicated	measurements,	the	FirmwareVolumeInfoPpiNotifyCallback()	will	carefully	check
the	new	installed	FV	to	ensure	that	the	same	FV	will	not	be	measured	twice.	It	will	also	ensure	that	the
child	FV	will	not	be	measured.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

12Revision	1.0

https://github.com/tianocore/edk2/tree/master/SecurityPkg
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTpm2MeasureBootLib
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c

The	EFI_PEI_FIRMWARE_VOLUME_INFO_MEASUREMENT_EXCLUDED_PPI	interface	is	designed	to	let	a
platform	report	to	the	Tcg2Pei	module	that	the	installed	FV	is	already	measured.	There	is	no	need	to
measure	it	again.	This	is	usually	done	by	a	hardware	based	static	root	of	trust	for	measurement,	such
as	Intel	Authenticated	Code	Module	(ACM)	in	Intel	Boot	Guard	technology.	If	the	ACM	has	already
measured	the	initial	FV,	such	as	PEI	FV	into	the	TPM	PCR,	then	a	BootGuard	platform	module	can	report
this	information.	The	Tcg2Pei.c	MeasureFvImage()	service	will	check	this	PPI	in	order	to	skip	the
measurement	and	event	log	report.

The	EDKII_PEI_FIRMWARE_VOLUME_INFO_PREHASHED_FV_PPI	service	is	designed	to	let	a	platform	report
the	hash	of	an	FV	to	the	Tcg2Pei.	This	is	also	done	by	a	hardware	based	root	of	trust	module	without
measuring	the	FV.	The	ACM	in	Intel	Boot	Guard	may	just	use	this	hash	to	verify	the	initial	FV,	such	as	PEI
FV,	but	not	measure	the	FV	according	to	the	policy.	Then	a	BootGuard	platform	module	can	report	this
information.	Because	the	hash	value	is	stored	in	the	Boot	Guard	boot	policy	manifest	(BPM)	and	it	is
also	verified	by	the	ACM,	the	hash	can	be	trusted.	Tcg2Pei.c	MeasureFvImage()	will	check	this	PPI	to
skip	the	hash	calculation	and	directly	measure	the	hash	into	PCR	and	also	record	the	event	log.

EDKII_PEI_FIRMWARE_VOLUME_INFO_STORED_HASH_FV_PPI	is	also	designed	to	let	a	platform	report	the
hash	of	an	FV,	but	with	a	different	purpose.	The	hash	is	reported	to	FvReportPei	for	FV	verification,	but
not	to	the	TcgPei	for	FV	measurement.	The	intent	is	to	let	FvReportPei.c	CheckStoredHashFv()	verify
the	FV	based	upon	the	hash.	The	hash	value	is	provisioned	by	the	OEM	in	the	Boot	Guard	BPM.	The	ACM
will	NOT	verify	the	hash	value	against	the	corresponding	FV,	such	as	the	DXE	FV.	Since	the	hash	value
storage	is	signed	and	verified	by	the	ACM	it	can	be	trusted.	Then	the	FvReportPei.c	VerifyHashedFv()
can	verify	the	DXE	FV	based	upon	the	hash	information.	Once	VerifyHashedFv()	passes	the
verification,	it	can	install	EDKII_PEI_FIRMWARE_VOLUME_INFO_PREHASHED_FV_PPI	to	Tcg2Pei.

Tcg2Pei	is	not	the	only	module	that	measures	data	in	the	PEI	phase.	It	also	produces	EDKII_TCG_PPI
HashLogExtendEvent()	API.	As	such,	other	module	can	also	measure	the	data	in	the	PEI	phase	by
calling	TpmMeasurementLib	TpmMeasureAndLogData().	The	PEI	instance	PeiTpmMeasurementLib
uses	the	EDKII_TCG_PPI.	Moreover,	the	TcgEventLogRecordLib	provides	more	services,	such	as
MeasureFirmwareBlob()	and	MeasureHandoffTable().	The	TcgEventLogRecordLib.c	can	choose
EV_EFI_PLATFORM_FIRMWARE_BLOB	or	EV_EFI_PLATFORM_FIRMWARE_BLOB2,	and	EV_EFI_HANDOFF_TABLES
or	EV_EFI_HANDOFF_TABLES2	based	upon	PcdTcgPfpMeasurementRevision.

Some	platform	firmware	uses	the	Intel	Firmware	Supported	Package	(FSP)	binary	to	initialize	the	silicon.
The	FSP	contains	the	firmware	code.	As	such,	the	FSP	binary	shall	also	be	measured.	The	FSP-T	and
FSP-M	are	measured	by	FspmWrapperPeim.	The	FSP-S	is	measured	by	FspsWrapperPeim.	They	call
FspMeasurementLib	MeasureFspFirmwareBlob()	and	this	function	calls	TcgEventLogRecordLib
MeasureFirmwareBlob	().	One	special	thing	about	FSP	measurement	is	that	the	FSP	binary	includes
not	only	code	but	also	configuration.	A	platform	may	want	to	measure	the	FSP	code	to	PCR0	and	FSP
static	configuration	to	PCR1.	In	order	to	support	that,	FspMeasurementLib.c
MeasureFspFirmwareBlob()	refers	the	PcdFspMeasurementConfig	to	determine	if	it	needs
separate	measurements	by	using	MeasureFspFirmwareBlobWithCfg().

All	measured	firmware	volumes	are	recorded	in	EFI_MEASURED_FV_HOB	by	the	Tcg2Pei.c
EndofPeiSignalNotifyCallBack()	service	in	order	to	avoid	duplicated	measurements.	If	a	firmware
volume	is	NOT	reported	in	the	PEI	phase,	then	it	needs	to	be	measured	in	the	DXE	phase.	Similar	to
Tcg2Pei,	the	Tcg2Dxe	produces	EFI_TCG2_PROTOCOL	HashLogExtendEvent()	API.	The	DXE	instance
DxeTpmMeasurementLib	uses	the	EFI_TCG2_PROTOCOL	to	let	other	modules	measure	more	firmware
data.

EDK	II	assumes	that	all	OEM	firmware	volumes	are	reported	in	the	PEI	phase.	As	such,	the	firmware
volume	dispatched	in	the	DXE	phase	is	not	measured	at	FV	granularity,	but	instead	the	code	is
measured	at	PE	image	granularity	in	DxeTpm2MeasureBootLib.	DxeTpm2MeasureBootLib	is	a	hook	to
the	EFI_SECURITY2_ARCH_PROTOCOL.	It	is	linked	with	SecurityStubDxe	and	DxeSecurityManagementLib.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

13Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/FirmwareVolumeInfoMeasurementExcluded.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/FirmwareVolumeInfoPrehashedFV.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/FirmwareVolumeInfoStoredHashFv.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/FvReportPei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/FvReportPei/FvReportPei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/FvReportPei/FvReportPei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/FirmwareVolumeInfoPrehashedFV.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/Tcg.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Library/TpmMeasurementLib.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/PeiTpmMeasurementLib
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/Tcg.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/TcgEventLogRecordLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/TcgEventLogRecordLib/TcgEventLogRecordLib.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2/blob/master/IntelFsp2WrapperPkg/Include/Library/FspMeasurementLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/TcgEventLogRecordLib.h
https://github.com/tianocore/edk2/blob/master/IntelFsp2WrapperPkg/Library/BaseFspMeasurementLib/FspMeasurementLib.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/MeasuredFvHob.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTpmMeasurementLib
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTpm2MeasureBootLib
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTpm2MeasureBootLib
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Security2.h
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/SecurityStubDxe
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Library/DxeSecurityManagementLib

When	the	DxeCore	dispatches	an	EFI	image,	it	calls	EFI_SECURITY2_ARCH_PROTOCOL
FileAuthentication().	Then	DxeTpm2MeasureBootHandler()	will	be	invoked	finally.	The	general	rule
is	that:

1)	If	a	PE	image	driver	or	application	is	from	an	unmeasured	FV,	then	the	PE	image	will	be	measured.	A
PE	image	driver	will	be	measured	into	PCR2	and	a	PE	image	application	will	be	measured	into	PCR4.

2)	If	a	PE	image	driver	is	from	a	measured	FV,	it	will	NOT	be	measured.

3)	If	a	PE	image	application	is	from	a	measured	FV,	it	will	still	be	measured	to	PCR4.

This	logic	is	in	DxeTpm2MeasureBootLib.c	DxeTpm2MeasureBootHandler().	We	will	discuss	more
about	this	process	in	the	PCR2	section	and	PCR4	section,	respectively.

If	there	is	an	additional	executable	binary	loaded,	this	executable	binary	shall	be	measured.	For
example,	the	SMM	Transfer	Monitor	(STM)	image	is	measured	in	SmmStm.c	LoadMonitor()	with
TXT_EVTYPE_STM_HASH.

ACPI	tables	should	be	measured	before	any	data	patches	are	applied.	For	example,	the	Tcg2Smm
measures	the	TPM2	ACPI	table	in	PublishTpm2()	and	TPM	SSDT	ACPI	table	in	PublishAcpiTable(),
before	any	data	patches,	such	as	PcdTpm2AcpiTableRev,	PcdTpm2AcpiTableLaml,
PcdTpm2AcpiTableLasa,	PcdActiveTpmInterfaceType,	PcdTcgPhysicalPresenceInterfaceVer,
PcdTpm2CurrentIrqNum,	PcdTpm2PossibleIrqNumBuf,	etc.

A	platform	may	include	a	non-host	environment,	such	as	the	Intel	Management	Engine	(ME).	The	non-
host	information	shall	be	measured	with	EV_NONHOST_INFO	by	a	platform	specific	module.	If	the	non-
host	platform	can	only	be	updated	by	Platform	Firmware,	then	the	non-host	code	shall	be	measured
with	EV_NONHOST_CODE	by	a	platform	specific	module.

A	platform	may	report	the	SRTM	contents	with	EV_S_CRTM_CONTENTS.	For	example,	an	Intel	BootGuard
enabled	platform	may	report	EV_S_CRTM_CONTENTS	with	the	BootGuard	ACM,	Key	Manifest	(KM)	and	Boot
Policy	Manifest	(BPM)	information.

EV_SEPARATOR	is	used	to	draw	a	line	between	the	pre-boot	environment	and	entering	a	post-boot
environment.	Tcg2Dxe.c	will	use	MeasureSeparatorEvent()	to	record	EV_SEPARATOR	with	0x00000000
for	PCR0~6	in	the	OnReadyToBoot()	function	upon	the	first	boot	attempt.	EV_SEPARATOR	for	PCR7	is
handled	earlier	in	MeasureSecureBootPolicy().	We	will	discuss	this	later	in	the	PCR7	section.

If	a	system	starts	up	with	an	error	status,	then	an	error	EV_SEPARATOR	shall	be	measured.	Tcg2Pei.c
PeimEntryMA()	detects	the	error	and	uses	MeasureSeparatorEventWithError()	to	record
EV_SEPARATOR	with	0x00000001	for	PCR0~7.	More	details	of	TPM	error	handling	will	be	discussed	later.

PCR	1
A	platform	usually	includes	multiple	CPU	Microcode	update	files	and	put	them	all	together	into	a
microcode	FV.	At	runtime,	the	CPU	module	will	scan	them	one	by	one	and	only	load	the	one	matching
the	current	CPU.	A	platform	may	choose	to	measure	the	whole	Microcode	FV	or	the	individually-used
Microcode,	such	as	the	one	from	EDKII_MICROCODE_PATCH_HOB	or	PcdCpuMicrocodePatchAddress.	The
current	EDK	II	does	not	provide	an	example	in	the	CPU	module.	A	platform	needs	to	perform	such
measurement	based	upon	the	platform	policy.

SmbiosMeasurementDxe	is	an	example	of	SMBIOS	table	measurement.	We	call	it	an	example	because
the	SMBIOS	table	measurement	requires	a	platform	specific	policy	to	skip	the	dynamic	changeable
information	and	instance-specific	unique	information	in	the	table	or	a	field	of	the	table.	This
SmbiosMeasurementDxe.c	FilterSmbiosEntry()	will	skip	all	OEM	type	SMBIOS	tables	and	zero	the
dynamic	changeable	information	and	instance	specific	unique	information	before	the	measurement.	The
policy	-	mSmbiosFilterStandardTableBlackList	is	hardcoded	in	the	module.	Once	the	SMBIOS	is
filtered,	the	MeasureSmbiosTable()	function	will	choose	the	event	type	EV_EFI_HANDOFF_TABLES	or

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

14Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Security2.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTpm2MeasureBootLib/DxeTpm2MeasureBootLib.c
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Library/SmmCpuFeaturesLib/SmmStm.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tpm2Acpi.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tpm.asl
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/Include/Guid/MicrocodePatchHob.h
https://github.com/tianocore/edk2/blob/master/UefiCpuPkg/UefiCpuPkg.dec
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/SmbiosMeasurementDxe
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/SmbiosMeasurementDxe/SmbiosMeasurementDxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h

EV_EFI_HANDOFF_TABLES2	based	upon	the	PcdTcgPfpMeasurementRevision	to	measure	the	SMBIOS
table.	If	a	platform	wants	to	use	a	different	policy,	it	may	implement	another	SmbiosMeasurementDxe
module	and	not	use	this	one.

The	UEFI	boot	related	variables,	such	as	"Boot####"	and	"BootOrder."	are	measured	by	Tcg2Dxe.c
ReadAndMeasureBootVariable().	The	event	type	is	EV_EFI_VARIABLE_BOOT.	These	variables	are
measured	if	they	are	present	in	MeasureAllBootVariables().

Other	Setup	variables	or	policy	configurations	are	OEM	specific	data.	They	should	be	measured	in	an
OEM	specific	module.

For	a	server	platform	where	PcdTpmPlatformClass	is	TCG_PLATFORM_TYPE_SERVER,	the	multi-processor
information	(EFI_CPU_PHYSICAL_LOCATION)	is	measured	by	the	module	Tcg2Dxe.c
MeasureHandoffTables().	The	event	type	is	EV_TABLE_OF_DEVICES.	Other	devices	are	not	handled	in
Tcg2Dxe	but	may	be	handled	in	an	OEM	platform	module.

If	a	platform	has	a	setup	utility	which	does	not	require	an	unconditional	reset,	then	the	platform	shall
measure	"Entering	ROM	Based	Setup"	with	EV_ACTION.	This	can	be	done	in	the	platform	utility.

A	platform	may	include	a	non-host	environment,	such	as	the	Intel	Management	Engine	(ME).	If	the	non-
host	platform	can	only	be	updated	by	the	Platform	Firmware,	then	the	non-host	configuration	should	be
measured	with	EV_NONHOST_CONFIG	by	a	platform	specific	module.

PCR	2
A	third	party	UEFI	driver,	such	as	a	PCI	EFI	option	ROM,	is	measured	by	DxeTpm2MeasureBootLib.c
Tcg2MeasurePeImage()	in	DxeTpm2MeasureBootHandler().	The	event	type	for	a	UEFI	boot
services	driver	is	EV_EFI_BOOT_SERVICES_DRIVER	and	the	event	type	for	a	UEFI	runtime	services	driver	is
EV_EFI_RUNTIME_SERVICES_DRIVER.	If	a	UEFI	driver	resides	in	an	unmeasured	FV	which	is	dispatched	in
the	DXE	phase,	it	is	also	measured	with	the	same	policy	into	PCR2.

A	platform	may	include	a	non-host	environment,	such	as	Intel	Management	Engine	(ME).	If	the	non-host
platform	can	be	updated	by	entities	other	than	the	Platform	Firmware,	then	the	non-host	code	shall	be
measured	with	EV_NONHOST_CODE	by	a	platform	specific	module.

A	platform	may	include	Secure	Protocol	and	Data	Model	(SPDM)	capable	devices.	The	platform	should
use	the	GET_MEASUREMENT	command	to	retrieve	the	device	firmware	measurement	and	measure	the
immutable	ROM	and	mutable	firmware	with	EV_EFI_SPDM_FIRMWARE_BLOB	in
TCG_DEVICE_SECURITY_EVENT_DATA.	A	prototype	can	be	found	at	DeviceSecurityPkg
SpdmDeviceMeasurement.c.	For	SPDM,	we	will	discuss	the	topic	in	the	last	chapter.

PCR	3
If	the	option	ROM	or	UEFI	application	has	a	setup	utility	which	does	not	require	an	unconditional	reset,
then	the	platform	shall	measure	"Entering	ROM	Based	Setup"	with	EV_ACTION.	This	can	be	done	in	the
utility.

A	platform	may	include	a	non-host	environment,	such	as	the	Intel	Management	Engine	(ME).	If	the	non-
host	platform	can	be	updated	by	entities	other	than	Platform	Firmware,	then	the	non-host	configuration
should	be	measured	with	EV_NONHOST_CONFIG	by	a	platform	specific	module.

A	platform	may	include	SPDM	capable	devices.	The	platform	should	use	the	GET_MEASUREMENT
command	to	retrieve	the	device	firmware	measurement	and	measure	the	hardware	configuration	and
firmware	configuration	with	EV_EFI_SPDM_FIRMWARE_CONFIG	in	TCG_DEVICE_SECURITY_EVENT_DATA.

PCR	4

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

15Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/MpService.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTpm2MeasureBootLib/DxeTpm2MeasureBootLib.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/jyao1/edk2/tree/DeviceSecurity/DeviceSecurityPkg
https://github.com/jyao1/edk2/blob/DeviceSecurity/DeviceSecurityPkg/SpdmDeviceSecurityDxe/SpdmDeviceMeasurement.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h

A	third	party	UEFI	application,	such	as	a	UEFI	shell	utility,	a	standard	OS	loader	or	an	OEM	boot	option,
is	measured	by	DxeTpm2MeasureBootLib.c	Tcg2MeasurePeImage()	in
DxeTpm2MeasureBootHandler().	The	event	type	is	EV_EFI_BOOT_SERVICES_APPLICATION.	If	a	UEFI
application	is	an	FV	which	is	dispatched	in	the	DXE	phase,	it	is	also	measured	to	PCR4	irrespective	of
whether	the	FV	is	measured	or	unmeasured.

The	boot	attempt	action	is	measured	by	Tcg2Dxe.c	OnReadyToBoot().	Before	invoking	a	boot	option,	it
measures	the	action	\"Calling	EFI	Application	from	Boot	Option\".	After	the	boot	option	returns,	it
measures	the	action	\"Returning	from	EFI	Application	from	Boot	Option\".

PCR	5
When	a	system	boots	a	boot	option	in	a	GUID-named	partition	of	the	disk,	the	GUID	partition	table	(GPT)
disk	geometry	needs	to	be	measured.	It	is	done	by	DxeTpm2MeasureBootLib.c
Tcg2MeasureGptTable()	in	DxeTpm2MeasureBootHandler().

The	ExitBootServices	action	is	measured	by	Tcg2Dxe.c.	If	ExitBootServices	succeeds,	then
OnExitBootServices()	is	invoked.	If	ExitBootServices	fails,	then	OnExitBootServicesFailed()	is
invoked.

PCR	6
PCR6	is	for	OEM	specific	data.	The	open	source	EDK	II	implementation	does	not	have	any	example	to
measure	data	to	PCR6.

PCR	7
The	UEFI	secure	boot	related	variables	--	"SecureBoot",	"PK",	"KEK",	"db",	and	"dbx"	are	unconditionally
measured	by	Tcg2Dxe.c	ReadAndMeasureSecureVariable().	The	event	type	is
EV_EFI_VARIABLE_DRIVER_CONFIG.	If	they	are	not	present,	a	zero	size	UEFI	variable	entry	will	be
measured.	The	"dbt"	and	"dbr"	variables	are	conditionally	measured	only	if	they	are	present	by	the
routine	MeasureAllSecureVariables().

The	UEFI	secure	boot	variable	update	is	measured	in	Variable	RuntimeDxe.	If	any	of	the	above	secure
boot	related	variables	are	updated,	then	Variable	RuntimeDxe	Measurement.c	MeasureVariable()	will
measure	the	new	data	with	EV_EFI_VARIABLE_DRIVER_CONFIG.

When	UEFI	secure	boot	is	enabled,	the	DxeImageVerificationLib	verifies	the	PE	image	signature	based
upon	the	EFI_SIGNATURE_DATA	in	the	EFI_SIGNATURE_LIST	of	an	image	signature	database.	If	an
EFI_SIGNATURE_DATA	is	used	to	verify	the	image,	then	this	EFI_SIGNATURE_DATA	will	be	measured	with
EV_EFI_VARIABLE_AUTHORITY	in	DxeImageVerificationLib	Measurement.c	MeasureVariable().

If	a	platform	uses	some	other	secure	boot	technology,	such	as	Intel	BootGuard,	then	this	secure	boot
policy	and	authority	shall	also	be	measured	into	PCR7.

If	a	platform	provides	a	firmware	debugger	mode,	then	the	platform	shall	measure	"UEFI	Debug	Mode"
string	with	EV_EFI_ACTION.	This	logic	is	done	at	Tcg2Dxe.c	MeasureSecureBootPolicy(),	based	upon
PcdFirmwareDebuggerInitialized.

Per	Microsoft	Windows	requirements,	a	platform	shall	enable	DMA	protection.	If	the	DMA	protection	is
disabled	or	configured	to	a	lower	security	state,	then	the	platform	shall	measure	the	"DMA	Protection
Disabled"	string	with	EV_EFI_ACTION.	Because	a	platform	controls	the	DMA	protection	enable/disable
policy,	a	platform	policy	driver	shall	measure	this	event.

If	a	platform	uses	other	secure	sensitive	and	critical	configuration,	such	as	Intel	Total	Memory
Encryption	(TME)	and	System	Management	Mode	(SMM)	protection,	then	the	action	to	disable	those
security	critical	configuration	shall	also	be	measured.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

16Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTpm2MeasureBootLib/DxeTpm2MeasureBootLib.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTpm2MeasureBootLib/DxeTpm2MeasureBootLib.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/Variable/RuntimeDxe
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/Variable/RuntimeDxe/Measurement.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeImageVerificationLib
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/ImageAuthentication.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/ImageAuthentication.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/ImageAuthentication.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/ImageAuthentication.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeImageVerificationLib/Measurement.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h

EV_SEPARATOR	for	PCR7	is	handled	in	Tcg2Dxe.c	MeasureSecureBootPolicy()	when	the	UEFI	variable
is	ready.	It	is	just	after	MeasureAllSecureVariables().	It	is	earlier	than	the	ReadyToBoot	event	signal.
The	reason	is	that	the	PCR7	EV_SEPARATOR	measurement	must	be	between	secure	boot	policy
configuration	measurement	and	image	verification	authority	measurement.	There	might	be	a	case
where	we	need	to	measure	an	UEFI	image	before	the	ReadyToBoot	event.	In	such	an	example,	the
authority	measurement	happens	before	the	ReadyToBoot	event.

NO_ACTION	event
TCG_EfiSpecIDEvent	is	used	to	describe	the	TCG	FPF	specification	version.	It	is	installed	by	the	Tcg2Dxe
SetupEventLog()	function,	based	upon	PcdTcgPfpMeasurementRevision.

TCG_Sp800_155_PlatformId_Event2	is	usually	installed	by	a	platform	TCG	PEI	or	DXE	module,	such	as
Platform800155EventPei	or	Platform800155EventDxe.	A	platform	TCG	PEIM	may	use
EFI_TCG_800_155_PLATFORM_ID_EVENT_HOB	for	this	event	and	it	will	be	converted	by	the	Tcg2Dxe.c
SetupEventLog()	function.

TCG_EfiStartupLocalityEvent	is	usually	installed	by	a	platform	module	in	the	PEI	phase,	such	as	a
BootGuard	related	PEIM	or	StartupLocalityEventPei.	It	shall	use	EFI_TPM2_STARTUP_LOCALITY_HOB	for	this
event	and	it	will	be	converted	by	Tcg2Dxe.c	SetupEventLog()	function.	This	NO_ACTION	event	is	added
when	a	BootGuard	ACM	starts	up	the	TPM	device.

Event	Log
Tcg2Pei	records	the	event	log	to	a	EFI_TCG_EVENT2_HOB.	The	HOB	will	be	consumed	by	Tcg2Dxe	and
converted	into	a	formal	TCG	event	log.

There	are	two	ways	to	expose	a	TCG	event	log.	The	first	way	is	via	the	EFI_TCG2_PROTOCOL
GetEventLog()	API.	This	protocol	is	installed	by	the	Tcg2Dxe	module	directly.	Care	must	be	taken	that
even	after	the	OS	calls	GetEventLog()	API,	a	platform	firmware	module	may	add	additional	event	log
entries,	such	as	EV_EFI_ACTION	event	"Exit	Boot	Services	Invocation".	Once	the	GetEventLog()	API	is
called,	the	additional	event	log	is	added	to	EFI_TCG2_FINAL_EVENTS_TABLE.	This	table	is	installed	as	a
UEFI	configuration	table	with	EFI_TCG2_FINAL_EVENTS_TABLE_GUID.

The	second	way	the	expose	the	event	log	is	via	a	TPM2	ACPI	table	as	an	optional	feature.	The	TCG	event
log	will	be	produced	via	PcdTpm2AcpiTableLaml	and	PcdTpm2AcpiTableLasa	by	Tcg2Dxe.	Then	Tcg2Smm
consumes	those	two	PCD	and	installs	this	ACPI	table	for	the	operating	system.

Hardware	Root	of	Trust
A	platform	may	choose	to	use	a	dedicated	hardware	root	of	trust	to	verify	the	platform	firmware,	such
as	Intel	Boot	Guard	Technology	or	AMD	Platform	Security	Processor	(PSP).	If	this	mode	is	chosen,	then
there	should	be	dedicated	event	logs	for	the	related	component.

For	example,	if	Intel	Boot	Guard	measured	boot	is	enabled,	then	the	platform	shall	record
TCG_EfiStartupLocalityEvent	and	may	report	a	EV_S_CRTM_CONTENTS	event	in	PCR[0].	If	Intel	Boot	Guard
verified	boot	is	enabled,	then	the	secure	boot	policy	and	authority	shall	also	be	reported	in	PCR[7].

Trusted	Boot	Chain	--	Putting	it	all	together
Figure	4	shows	a	complete	trusted	boot	chain	that	commences	from	a	hardware	root	of	trust	module.

Figure	4	TCG	Trusted	Boot	Flow

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

17Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2/Platform800155EventPei
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2/Platform800155EventDxe
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TcgEventHob.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2/StartupLocalityEventPei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TcgEventHob.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TcgEventHob.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tpm2Acpi.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h

For	test	purposes,	we	have	a	UEFI	shell	tool	Tcg2DumpLog	to	display	the	TCG	event	log.	Because	the
event	log	records	every	step	of	the	PCR	extend,	we	can	reproduce	the	PCR	values	by	using	the	digests
in	the	TCG	event	log.

If	a	developer	does	not	have	hardware,	they	can	use	a	TPM2	simulator,	such	as	Microsoft	TPM2
simulator.	Currently,	EDK	II	Tpm2Emulator	can	be	used	to	communicate	with	the	Microsoft	TPM2
simulator	via	a	socket	interface	on	ports	2321	and	2322.	Then	the	developer	can	use	the	Tcg2DumpLog
to	dump	the	TCG	event	log	in	the	EDK	II	emulator	environment.

The	whole	TPM	software	stack	(TSS)	is	out	of	scope	of	this	document.	There	is	prototype	Tpm2TssPkg
for	reference	only.

Remote	Attestation
Remote	attestation	is	a	client/server	process	that	helps	you	retrieve	a	quote	from	the	TPM.	A	quote	is
process	that	provides	a	list	of	the	current	PCR	values	that	are	signed	by	the	TPM.

A	full	remote	attestation	process	includes	two	major	steps:

The	server	verifies	the	client	TPM	device.

The	server	verifies	the	TCG	event	log	from	the	client.

Figure	5	shows	the	TPM	device	verification	flow.

1)	Every	TPM	includes	an	Endorsement	Key	(EK)	signed	by	a	root	EK	which	belongs	to	the	TPM	vendor.	It
also	includes	an	Attestation	Key	(AK).	The	client	sends	the	TPM	EK	and	AK	to	a	server.

2)	The	server	verifies	the	EK	based	upon	the	TPM	vendor	root	CA	cert.	The	server	generates	a	random
secret	and	encrypts	the	secret	and	AK	with	the	EK	public	key	to	be	used	as	a	challenge.	Then	the
server	sends	the	challenge	to	client.

3)	The	client	decrypts	the	secret	with	the	EK	private	key	and	check	the	AK.	Then	the	client	sends	the
secret	back	to	server.

4)	Now	the	server	knows	the	client	has	a	genuine	TPM.

Figure	6	shows	the	event	log	verification.

1)	The	server	asks	the	client	platform	for	a	quote.

2)	The	client	platform	asks	the	TPM	to	sign	the	PCR	list	with	the	AK	private	key	as	a	quote.	Then	the
client	sends	the	quote	to	the	server.

3)	The	server	verifies	the	signature	of	the	quote	with	the	AK	public	key.	Now	the	server	knows	the	PCR
list	is	genuine.	If	the	verification	succeeds,	then	the	server	sends	a	request	to	get	an	event	log.

4)	The	client	platform	sends	the	event	log	directly	to	the	server.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

18Revision	1.0

https://github.com/jyao1/EdkiiShellTool/tree/master/EdkiiShellToolPkg/Tcg2DumpLog
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/jyao1/EdkiiShellTool/tree/master/EdkiiShellToolPkg/Tcg2DumpLog
https://github.com/flihp/edk2/tree/tpm2-tss/Tpm2TssPkg

5)	The	server	replays	the	event	log	to	reproduce	the	PCR	values.	If	they	are	same,	then	the	server
knows	the	TCG	event	log	is	genuine.

Figure	5	Remote	Attestation	TPM	Device	Verification

(Source:	OpenPower	TrustBoot)

Figure	6	Remote	Attestation	Event	Log	Verification

(Source:	OpenPower	TrustBoot)

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

19Revision	1.0

https://developer.ibm.com/articles/trusted-boot-openpower/
https://developer.ibm.com/articles/trusted-boot-openpower/

Once	the	verifier	in	the	server	gets	the	event	log,	the	verifier	can	compare	it	with	the	reference	integrity
measurement	(RIM)	based	upon	a	predefine	policy.

Figure	7	shows	the	final	RIM	validation	process.

Figure	7	RIM	Validation

(source:	TCG	FIM)

For	test	purposes,	we	created	a	sample	FspManifestTool.	It	can	be	used	to	generate	a	SWID	or	CoSWID
tag	for	an	FSP	binary	as	the	reference	integrity	manifest	(RIM).	The	FSP	RIM	can	be	used	to	verify	the
FSP	binary	based	upon	the	TCG	event	log.

TPM	Device	Startup
The	platform	firmware	needs	to	send	a	TPM	Startup	command	to	the	TPM	before	measuring	any	data
into	a	PCR	register.	TPM	specification	defines	three	shutdown/startup	sequences:

TPM	Reset	--	Tpm2Startup(CLEAR)	after	Tpm2Shutdown(CLEAR)	or	no	shutdown	command	is	sent.

All	those	values	that	are	specified	as	having	a	default	initialization	state	go	back	to	their	default
initialization	state.	Persistent	values	that	have	no	default	initialization	state	are	not	changed.

TPM	Restart	--	Tpm2Startup(CLEAR)	after	Tpm2Shutdown(STATE).

This	preserves	much	of	the	previous	state	of	the	TPM,	except	the	PCRs	and	the	controls	associated	with
the	Platform	hierarchy	are	all	returned	to	their	default	initialization	state.

TPM	Resume	--	Tpm2Startup(STATE)	after	Tpm2Shutdown(STATE).

This	preserves	the	previous	state	of	the	TPM,	including	the	static	Root	of	Trust	for	Measurement	(S-RTM)
PCR	and	the	platform	controls	other	than	the	PlatformHierarchyEnable.

Tpm2Startup(STATE)	after	Tpm2Shutdown(CLEAR)	or	no	shutdown	is	an	invalid	sequence	and	will	fail.

TPM	startup	is	done	in	the	Tcg2Pei.c	PeimEntryMA()	function.	Tpm2Startup(TPM_SU_CLEAR)	will	be
used	if	the	system	is	in	normal	boot	path,	and	Tpm2Startup(TPM_SU_STATE)	will	be	used	if	the	system
is	in	the	S3	resume	path.	The	issuing	of	the	Startup	command	is	controlled	by
PcdTpm2InitializationPolicy	because	other	modules	may	use	the	TPM	and	send	a	Startup	command
before	Tcg2Pei.	One	example	is	TPM1.2/TPM2.0	detection	in	Tpm2ConfigPeim.c	DetectTpmDevice().

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

20Revision	1.0

https://trustedcomputinggroup.org/wp-content/uploads/TCG_PC_Client_FIM_v1_r40_02dec2020.pdf
https://github.com/jyao1/FSP/tree/FspAttestation/Tools/ManifestTools
https://csrc.nist.gov/publications/detail/nistir/8060/final
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Config/Tcg2ConfigPeim.c

The	other	example	is	TPM	device	startup	in	an	Intel	BootGuard	ACM.	If	the	TPM	is	started	by	a	BootGuard
ACM,	then	the	platform	needs	to	add	a	TCG_EfiStartupLocalityEvent	to	indicate	that	the	startup	locality
is	3.

The	platform	firmware	may	send	a	TPM	Shutdown	command	if	a	reset	happens	in	the	pre-OS
environment.	Tcg2Dxe.c	registers	a	ShutdownTpmOnReset()	callback	function	on	the	system	reset
event.	Tpm2Shutdown(TPM_SU_CLEAR)	will	be	used	to	shut	down	the	TPM	device.

The	TPM	measurements	happen	in	both	a	normal	boot	path	and	a	S4	resume.	In	an	S3	resume,	there	is
no	need	to	measure	the	firmware	components	because	the	TPM	state	is	restored	in	the	S3	resume
path.	The	assumption	is	that	the	OS	shall	issue	a	Tpm2Shutdown(TPM_SU_STATE)	to	save	the	TPM
state.	Then	platform	firmware	uses	Tpm2Startup(TPM_SU_STATE)	to	restore	the	state.

If	the	OS	does	not	send	Tpm2Shutdown()	or	sends	TpmShutdown(TPM_SU_CLEAR),	then	the
Tpm2Startup(TPM_SU_STATE)	will	fail.	Then	Tcg2Pei.c	will	start	error	handling	and	use
Tpm2Startup(TPM_SU_CLEAR)	to	start	up	TPM	again.	If	the	TPM	can	be	started,	then	Tcg2Pei.c	will	call
MeasureSeparatorEventWithError()	to	record	EV_SEPARATOR	with	0x00000001	for	PCR0~7.	This
action	is	required	to	cap	the	PCR's	to	an	invalid	state	in	order	to	resist	the	PCR	forgery	attack.

TPM	Device	Selection
A	platform	TPM	can	be	implemented	in	different	ways,	such	as	a	discrete	TPM2.0	(dTPM)	with	either	a
Serial	Peripheral	Interface	(SPI)	or	Inter-Integrated	Circuit	(I2C)	bus,	a	firmware	TPM2.0	(fTPM),	or	even	a
legacy	TPM1.2	device.	A	platform	needs	to	select	the	TPM	device	at	build	time	or	at	runtime.

TPM_DEVICE_SELECTED_GUID	PPI	is	an	interface	that	indicates	that	the	platform	has	selected	the	TPM
device.	Tcg2Pei	can	run	to	start	the	TPM.	If	Tcg2Pei	starts	the	TPM	successfully,	it	will	install
PEI_TPM_INITIALIZED_PPI	to	tell	other	module	that	the	TPM	is	initialized	and	ready	to	use.	No	matter
whether	TPM	startup	succeeds	or	fails,	Tcg2Pei	always	installs	PEI_TPM_INITIALIZATION_DONE_PPI	to	tell
other	modules	that	the	TPM	initialization	process	is	done.	Other	modules	can	locate
PEI_TPM_INITIALIZED_PPI	to	know	if	it	has	succeeded	or	failed.

Tcg2Config	TpmDetection.c	provides	a	sample	implementation	to	detect	a	TPM1.2	or	TPM2.0.	Besides
installing	TPM_DEVICE_SELECTED_GUID	PPI,	it	also	sets	TPM_DEVICE_INTERFACE_TPM20_DTPM	to
PcdTpmInstanceGuid,	which	is	checked	by	Tcg2Smm	to	ensure	that	only	a	discrete	TPM	2.0	can	be
supported	by	Tcg2Smm.

A	platform	may	also	install	the	TPM_DEVICE_SELECTED_GUID	PPI	and	set	PcdTpmInstanceGuid	directly	if
the	configuration	is	fixed.

TPM	Device	Interface
The	main	TPM	specification	defines	the	TPM	commands.	In	EDK	II,	the	TPM	commands	are	defined	in
Tpm20.h.

A	TPM	hardware	device	may	support	the	First-In-First-Out	(FIFO)	interface	or	Command	Response	Buffer
(CRB).	The	FIFO	interface	defines	a	set	of	data	input/output	IO	registers	for	the	TPM	commands.	The	CRB
interface	defines	a	chunk	of	DMA	memory	buffer	for	the	TPM	commands.	In	EDK	II,	both	the	TPM	FIFO	and
CRB	interfaces	are	described	in	TpmPtp.h,

EDKII	TCG	drivers	are	TPM	interface	agnostic.	They	just	send	commands	via	Tpm2CommandLib.	The
Tpm2CommandLib	implementation	is	also	TPM	interface	agnostic	and	sends	command	to
Tpm2DeviceLib.	The	Tpm2DeviceLib	abstracts	how	to	send	a	TPM	command.	For	example,
Tpm2DeviceLibTcg2	is	the	instance	to	send	a	TPM	command	via	EFI_TCG2_PROTOCOL.SubmitCommand().
Tpm2DeviceLibDTpm	is	the	instance	to	send	a	TPM	command	to	the	hardware	via	FIFO	or	CRB.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

21Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TpmInstance.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Pei
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/TpmInitialized.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/TpmInitialized.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/TpmInitialized.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Config
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Config/TpmDetection.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TpmInstance.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TpmInstance.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TpmInstance.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tpm20.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TpmPtp.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tpm2CommandLib.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/Tpm2CommandLib
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tpm2DeviceLib.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/Tpm2DeviceLibTcg2
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/Tpm2DeviceLibDTpm

Tpm2DeviceLibDTpm.c	detects	the	TPM	device	interface	type	in	Tpm2GetPtpInterface().	It	checks	the
FIFO	and	CRB	register	to	know	the	device	interface.	Then	this	function	sets	the
PcdActiveTpmInterfaceType.	Then

Tpm2DeviceLibDTpm.c	detects	the	TPM	device	interface	type	in	Tpm2GetPtpInterface().	It	checks	the
FIFO	and	CRB	register	to	know	the	device	interface.	Then	this	function	sets	the
PcdActiveTpmInterfaceType.

Tpm2DeviceLibDTpm	sends	a	TPM	command	in	Tpm2Ptp.c	DTpm2SubmitCommand().	It	checks
PcdActiveTpmInterfaceType	and	calls	Tpm2Tis.c	Tpm2TisTpmCommand()	for	the	FIFO	interface	or
Tpm2Ptp.c	PtpCrbTpmCommand()	for	the	CRB	interface.

Figure	8	shows	the	TCG	trusted	boot	component	in	EDK	II.

Figure	8	TCG	Trusted	Boot	Component	in	EDK	II

Error	Handling
TPM	errors	may	happen	at	any	time.	According	to	the	TCG	specification,	capping	PCR	is	always	required.
If	the	PCR	cannot	be	capped,	the	platform	SHOULD	take	any	necessary	action	to	notify	the	host
platform's	administrator,	user,	and	operator	of	this	situation	and	transition	to	a	"fail-safe"	mode	by
performing	one	of	these	actions:

Make	the	TPM	interface	inaccessible	via	hardware	for	the	remainder	of	the	power	cycle

Reboot	the	Host	Platform

Disable	the	Host	Platform

Perform	a	vendor-specific	action	that	is	equivalent	to	one	of	the	options	above.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

22Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2DeviceLibDTpm.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2DeviceLibDTpm.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/Tpm2DeviceLibDTpm
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2Ptp.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2Tis.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2Ptp.c

When	a	TPM	returns	an	error,	Tcg2Pei.c	will	create	a	EFI_TPM_ERROR	HOB	and	report	the	error	status
code	via	REPORT_STATUS_CODE()	with	PcdStatusCodeSubClassTpmDevice.

Tcg2Dxe.c	will	detect	the	EFI_TPM_ERROR	HOB	and	not	install	EFI_TCG2_PROTOCOL	if	there	is	a	TPM	error.
If	the	TPM	error	happens	after	the	EFI_TCG2_PROTOCOL	installation,	Tcg2Dxe.c	will	set	the
EFI_TCG2_BOOT_SERVICE_CAPABILITY.TPMPresentFlag	to	be	FALSE.	At	this	point	the	OS	will	know	the	TPM
is	absent.	Similar	to	Tcg2Pei.c,	Tcg2Dxe.c	also	reports	the	error	status	code	via
REPORT_STATUS_CODE().

A	platform	module	may	register	a	ReportStatusCode	callback	handler	to	process	the	TPM	error,	such	as
reset	system,	or	disable	the	TPM	hardware.

TCG	Physical	Presence
TCG	Physical	Presence	(PP)	interface	is	a	way	to	let	an	OS	send	a	request	to	configure	the	TPM	device,
such	as	Clear,	SetPCRBanks,	ChangeEPS,	Enable,	Disable,	DisableEndorsementEnableStorageHierarchy.
TcgPhysicalPresence.h	lists	all	TCG	PP	operation	defined	by	the	TCG	PP	specification.

EDK	II	defines	a	Tcg2PhysicalPresenceLib	to	abstract	the	TCG	PP	functions.	It	has	three	instances	-
PeiTcg2PhysicalPresenceLib,	DxeTcg2PhysicalPresenceLib,	and	SmmTcg2PhysicalPresenceLib.	The	TCG
PP	related	ACPI	code	is	at	Tpm.asl	of	the	Tcg2Smm	driver.

During	boot,	Tcg2Smm.c	PublishAcpiTable()	allocates	the	non-volatile	storage	ACPI	OpRegion

mTcgNvs	for	ASL/SMM	communication.	At	runtime,	the	OS	locates	the	TPM	device	-	Name(CID,
\"MSFT0101\")	and	calls	the	_DSM()	method.	The	first	parameter	is	a	UUID.	The	value	(3dddfaa6-
361b-4eb4-a424-8d10089d1653)	means	the	function	call	is	TCG	PP	request.	Finally,	the	TPPI()
method	fills	the	parameter	in	the	OperationRegion(TNVS)	and	triggers	the	SMI	-	Store(PPIN,
IOPN).

Then	Tcg2Smm.c	PhysicalPresenceCallback()	will	be	triggered	to	handle	such	a	PP	request.	It	checks
the	parameters	and	calls	the	corresponding	function	in	SmmTcg2PhysicalPresenceLib.	EDK	II	defines	two
PP	variables:

Tcg2PhysicalPresence	variable.	It	is	a	read/write	variable	because	anyone	can	send	the	PP	request.
The	data	structure	is	EFI_TCG2_PHYSICAL_PRESENCE.	This	variable	is	to	record	the	TCG	PP	request,
request	parameter,	and	finally,	the	response	result.

Tcg2PhysicalPresenceFlags	variable.	It	is	a	read-only	variable	to	prevent	modification	from	malicious
software.	The	data	structure	is	EFI_TCG2_PHYSICAL_PRESENCE_FLAGS.	This	variable	is	to	record	the
TCG	management	flags.	The	flags	are	defined	in	Tcg2PhysicalPresenceLib,	such	as
TCG2_BIOS_TPM_MANAGEMENT_FLAG_xxx,	TCG2_BIOS_INFORMATION_FLAG_xxx,
TCG2_BIOS_STORAGE_MANAGEMENT_FLAG_xxx.

If	the	OS	submits	a	TPM	configuration	change	request,	then	this	request	is	saved	in	the
Tcg2PhysicalPresence	variable.

Upon	the	next	boot,	a	PlatformBds	module,	such	as	BoardBdsHookLib,	needs	to	process	the	TCG	PP
request.	ProcessTcgPp()	needs	to	check	Tcg2PhysicalPresenceLibNeedUserConfirm(),	connect
the	platform	specific	trusted	console	if	user	confirmation	is	required,	and	then	call
Tcg2PhysicalPresenceLibProcessRequest().

DxeTcg2PhysicalPresenceLib.c	implements	the	Tcg2PhysicalPresenceLibProcessRequest().	It	calls
VariableLockProtocol->RequestToLock()	to	lock	the	Tcg2PhysicalPresenceFlags	variable,	reads
Tcg2PhysicalPresence	variable,	and	then	calls	Tcg2ExecutePendingTpmRequest()	to	process	the
request.	If	user	confirmation	is	required,	then	Tcg2UserConfirm()	is	called.	Once	the	configuration	is
confirmed,	the	TPM	is	configured	in	Tcg2ExecutePhysicalPresence(),	such	as	Clear,	SetPCRBanks,

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

23Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TcgEventHob.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/TcgEventHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tcg2PhysicalPresenceLib.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/PeiTcg2PhysicalPresenceLib
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTcg2PhysicalPresenceLib
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/SmmTcg2PhysicalPresenceLib
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tpm.asl
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tcg2Smm.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tpm.asl
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tcg2Smm.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/SmmTcg2PhysicalPresenceLib
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tcg2PhysicalPresenceLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/BoardModulePkg/Library/BoardBdsHookLib/BoardBdsHookLib.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTcg2PhysicalPresenceLib/DxeTcg2PhysicalPresenceLib.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h

ChangeEPS,	LogAllDigests.	After	configuration,	Tcg2ExecutePendingTpmRequest()	then	records	the
new	configuration	in	Tcg2PhysicalPresenceFlags	variable	and	the	PP	result	in	Tcg2PhysicalPresence
variable.	Finally,	this	function	will	reset	the	system	in	order	to	make	the	new	settings	take	effect.

Please	be	aware	that	Tcg2PhysicalPresenceLibProcessRequest()	shall	be	called	before	EndOfDxe
event	because	the	read-only	Tcg2PhysicalPresenceFlags	variable	can	only	be	updated	before	EndOfDxe.

Once	the	PP	request	is	processed,	the	OS	may	use	ACPI	_DSM()	method	again	to	get	the	result.
Tcg2Smm.c	PhysicalPresenceCallback()	will	return	the	result	from	Tcg2PhysicalPresence	variable.

TPM	Bank	Selection
A	TPM	device	may	have	multiple	banks	of	PCRs.	A	PCR	bank	is	a	collection	of	PCRs	that	are	extended
with	the	same	hash	algorithm.	PCR	banks	are	identified	by	the	hash	algorithm	used	to	extend	the	PCR	in
that	bank.

The	PP	operation	TCG2_PHYSICAL_PRESENCE_SET_PCR_BANKS	can	be	used	to	configure	the	active	PCR
banks.

Besides	the	PP	request,	the	OS	may	use	EFI_TCG2_PROTOCOL	for	TPM	active	bank	management	as	well.
GetActivePcrBanks()	returns	the	current	active	banks.	SetActivePcrBanks()	is	used	to	set	the	new
PCR	banks	request.	It	does	not	take	effect	immediately,	but	just	saves	a	request.	The	new	PCR	bank
setting	request	will	be	processed	in	the	next	boot.	GetResultOfSetActivePcrBanks()	is	used	to	get
the	new	PCR	banks	setting	result.

EDK	II	Tcg2Dxe.c	just	uses	the	same	Tcg2PhysicalPresence	variable	for	the	implementation.	Later
DxeTcg2PhysicalPresenceLib.c	calls	Tcg2ExecutePhysicalPresence()	and	then
Tpm2GetCapabilitySupportedAndActivePcrs()	in	order	to	get	the	current	supported	PCR	banks	and
compares	them.	If	one	of	the	new	PCR	banks	is	not	supported,	then	the	request	will	be	rejected.
Otherwise,	this	function	calls	Tpm2PcrAllocateBanks()	to	set	the	new	banks	and	then	reset	the
system.

Care	must	be	taken	that	the	final	active	PCR	banks	value	is	based	upon	multiple	criteria:

1)	TPM	supported	PCR	banks	-	It	can	be	retrieved	from
Tpm2GetCapabilitySupportedAndActivePcrs(&TpmHashAlgorithmBitmap).

2)	TPM	end	user	desired	current	active	PCR	banks	--	It	can	also	be	retrieved	from
Tpm2GetCapabilitySupportedAndActivePcrs(&TpmActivePcrBanks).

3)	The	OEM	configuration	supported	active	PCR	banks	--	the	OEM	may	select	a	subset	of	hash
algorithms.	It	is	recorded	in	PcdTpm2HashMask.

4)	The	platform	firmware	software	capability	--	the	OEM	may	select	a	subset	of	hash	algorithms.	It	is
recorded	in	PcdTcg2HashAlgorithmBitmap.

The	final	effective	PCR	banks	is	a	subset	of	all	of	them.	For	example,	take	a	TPM	that	supports
SHA256|SHA384|SM3_256.	The	end	user	desired	active	PCR	bank	is	SHA256.	The	supported	active	PCR
banks	is	SHA256|SHA384.	The	platform	firmware	software	capability	is	SHA256|SHA384.	Then	the	final
effective	PCR	banks	is	SHA256	only.

Tcg2Pei.c	SyncPcrAllocationsAndPcrMask()	function	is	used	to	synchronize	the	settings.	This
includes	ensuring	that	the	TPM	has	appropriate	hardware	capability	(TpmHashAlgorithmBitmap),	the
current	active	PCR	banks	(TpmActivePcrBanks),	and	the	supported	active	PCR	banks
(PcdTpm2HashMask).	These	all	need	to	be	in	agreement.

If	there	is	a	bank	in	TpmActivePcrBanks	that	is	not	described	in	PcdTpm2HashMask,	then	it	means
that	the	OEM	does	not	want	to	enable	this	bank.	SyncPcrAllocationsAndPcrMask()	will	call
Tpm2PcrAllocateBanks()	to	remove	the	bank	from	the	active	PCR	banks	and	reset	the	system.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

24Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tcg2Smm.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTcg2PhysicalPresenceLib/DxeTcg2PhysicalPresenceLib.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Pei/Tcg2Pei.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec

If	there	is	a	bank	in	PcdTpm2HashMask	but	not	supported	in	the	TpmHashAlgorithmBitmap,	that
means	the	OEM	configured	an	invalid	bank.	SyncPcrAllocationsAndPcrMask()	will	update
PcdTpm2HashMask.

PcdTpm2HashMask	serves	as	an	indicator	of	the	supported	active	PCR	banks.	It	will	be	used	to	guide
PcdTcg2HashAlgorithmBitmap	generation	and	during	the	hash	algorithm	registration	in
HashLibBaseCryptoRouter.	A	platform	may	register	multiple	hash	algorithms,	such	as
HashInstanceLibSha256,	HashInstanceLibSha384,	HashInstanceLibSha512	and	HashInstanceLibSm3.	If
a	hash	algorithm	is	not	indicated	in	PcdTpm2HashMask,	this	hash	algorithm	will	not	be	registered
successfully.	The	final	registered	hash	algorithms	value	is	a	subset	of	PcdTpm2HashMask	and	is
recorded	in	PcdTcg2HashAlgorithmBitmap.

Figure	9	shows	the	TPM	bank	selection	in	EDK	II.

Figure	9	TPM	Bank	Selection	in	EDK	II

In	brief,	we	have	below	result:

PcdTpm2HashMask	(supported	active	PCR	banks)	must	be	a	subset	of	TpmHashAlgorithmBitmap
(TPM	capability).

TpmActivePcrBanks	(end	user	desired	active	PCR	banks)	must	be	a	subset	of	PcdTpm2HashMask.

PcdTcg2HashAlgorithmBitmap	(platform	firmware	capability)	must	be	a	subset	of	PcdTpm2HashMask.

PcdTcg2HashAlgorithmBitmap	serves	as	an	indicator	of	the	firmware	hash	algorithm	capability.	Tcg2Dxe.c
needs	to	report	the	capability	to	the	OS	with	the	following	values:

EFI_TCG2_BOOT_SERVICE_CAPABILITY.HashAlgorithmBitmap	shall	be	the	(TpmHashAlgorithmBitmap	&
PcdGet32	(PcdTcg2HashAlgorithmBitmap))

EFI_TCG2_BOOT_SERVICE_CAPABILITY.ActivePcrBanks	shall	be	the	(TpmActivePcrBanks	&	PcdGet32
(PcdTcg2HashAlgorithmBitmap))

In	the	above	example,	we	have	following	configuration:

TpmHashAlgorithmBitmap	is	SHA256|SHA384|SM3_256.

PcdTpm2HashMask	is	SHA256|SHA384.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

25Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashLibBaseCryptoRouter
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha256
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha384
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha512
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSm3
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Dxe/Tcg2Dxe.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec

TpmActivePcrBanks	is	SHA256.

PcdTcg2HashAlgorithmBitmap	is	SHA256|SHA384.

The	final	report	is:

EFI_TCG2_BOOT_SERVICE_CAPABILITY.HashAlgorithmBitmap	is	SHA256|SHA384.

EFI_TCG2_BOOT_SERVICE_CAPABILITY.ActivePcrBanks	is	SHA256.

Then	the	end	user	may	have	chance	to	enable	SHA384	for	the	platform.

TPM	Hierarchy	Management
TPM	has	three	hierarchies	--	platform	hierarchy,	storage	hierarchy	and	endorsement	hierarchy.

The	platform	hierarchy	is	managed	by	the	platform	firmware.	Before	booting	to	the	OS,	the	platform
firmware	shall	randomize	the	platform	hierarchy	auth	value	in	order	to	prevent	another	entity	from
accessing	the	platform	hierarchy.

A	sample	implementation	of	this	randomization	can	be	found	in	the	Tcg2Platform	module	in	EDK	II
platform	repository.	In	a	normal	boot	path,	Tcg2PlatformDxe.c	calls	ConfigureTpmPlatformHierarchy()
in	TpmPlatformHierarchyLib.c	to	randomize	the	platform	auth	value	in	EndOfDxe	event.	Once	the
Tpm2HierarchyChangeAuth()	command	is	sent	to	the	TPM,	no	one	else	can	use	the	platform
hierarchy	without	knowing	the	random	number.	In	the	S3	resume	path,	there	is	no	need	to	randomize
the	platform	auth	value	again	if	the	Tcg2Pei	resumes	TPM	successfully.	However,	if	a	TPM	resume	fails
and	Tcg2Pei	needs	to	restart	the	TPM,	then	Tcg2PlatformPei.c	RandomizePlatformAuth()	is	called	to
randomize	the	platform	auth	value	in	the	EndOfPei	event	PlatformInitEndOfPei()	before	the	platform
firmware	resumes	to	the	OS.

The	OS	manages	the	storage	hierarchy,	which	is	independent	of	the	platform	hierarchy.	The	OS	may	ask
the	platform	auth	to	clear	the	TPM	via	TCG	PP	operation	TCG2_PHYSICAL_PRESENCE_CLEAR.	Later
DxeTcg2PhysicalPresenceLib.c	calls	Tcg2ExecutePhysicalPresence()	then	Tpm2CommandClear()	to
clear	the	TPM.

Other	PP	operations	such	as	TCG2_PHYSICAL_PRESENCE_ENABLE,	TCG2_PHYSICAL_PRESENCE_DISABLE,
TCG2_PHYSICAL_PRESENCE_DISABLE_ENDORSEMENT_ENABLE_STORAGE_HIERARCHY	can	be	used	to	enable
or	disable	the	storage	hierarchy	or	the	endorsement	hierarchy.	These	are	optional	features.	If	they	are
implemented,	then	Tcg2Pei	needs	to	call	the	Tcg2PhysicalPresenceLibGetManagementFlags()
function	from	PeiTcg2PhysicalPresenceLib,	check
TCG2_BIOS_INFORMATION_FLAG_HIERARCHY_CONTROL_xxx	flags	in	Tcg2PhysicalPresenceLib	and	send
Tpm2HierarchyControl()	command	to	enable	or	disable	the	hierarchy.

TCG	PP	Interface	not	only	controls	TPM	configuration,	but	it	also	controls	the	TCG	storage	configuration,
such	as	BlockSid.	We	will	discuss	that	in	TCG	storage	section.

TCG	PP	interface	also	supports	vendor	specific	extensions.	EDK	II	defines	Tcg2PpVendorLib	to	serve	that
purpose.

Figure	10	shows	TCG	PP	component	in	EDK	II.

Figure	10	TCG	PP	Component	in	EDK	II

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

26Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2-platforms/tree/master/Platform/Intel/MinPlatformPkg/Tcg
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/MinPlatformPkg/Tcg/Tcg2PlatformDxe/Tcg2PlatformDxe.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/MinPlatformPkg/Tcg/Library/TpmPlatformHierarchyLib/TpmPlatformHierarchyLib.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/MinPlatformPkg/Tcg/Tcg2PlatformPei/Tcg2PlatformPei.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Library/DxeTcg2PhysicalPresenceLib/DxeTcg2PhysicalPresenceLib.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/TcgPhysicalPresence.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/PeiTcg2PhysicalPresenceLib
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tcg2PhysicalPresenceLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tcg2PpVendorLib.h

TCG	Memory	Overwrite	(MOR)
The	memory	overwrite	(MOR)	feature	is	to	mitigate	the	platform	reset	attack.	It	is	not	related	to	the	TPM
hardware	but	is	a	pure	software	feature.

The	TCG	Platform	Reset	Mitigation	specification	defines	two	UEFI	variables:

MemoryOverwriteRequestControl	variable	(MOR	variable).	It	is	a	read/write	variable.	This	variable	is	to
record	the	TCG	MOR	request	state.

MemoryOverwriteRequestControlLock	variable	(MorLock	variable).	It	is	lockable	in	some	situations	to
prevent	modification	from	malicious	software.	This	variable	is	to	control	the	lock	state	of
MemoryOverwriteRequestControl	variable	and	itself.	It	can	be	accessed	with	a	UEFI	variable	service	--
SetVariable()/GetVariable().	But	it	is	not	a	normal	UEFI	variable	because	it	cannot	be	stored	on	flash
region	even	though	it	has	the	NON_VOLATILE	attribute.	It	is	more	like	a	virtual	variable.

A	platform	memory	initialization	module	shall	check	the	MemoryOverwriteRequestControl	variable.	If	this
variable	is	not	present	or	this	variable	indicates	a	MOR	request,	then	the	memory	initialization	module
shall	clear	the	memory	after	enabling	the	memory	controller.	For	example,	the	QuarkPlatformMemoryInit
module	InstallEfiMemory()	function	checks	the	MOR	variable	and	zeros	all	system	memory	before
installing	it	if	MOR_CLEAR_MEMORY_VALUE()	is	TRUE.	Another	example	is	the	Kabylake	openboard
FspmPolicyWrapper	PeiFspMiscUpdUpdatePreMem()	function	that	checks	the	MOR	variable	and	sets
the	CleanMemory	policy	data	if	MOR_CLEAR_MEMORY_BIT_MASK	is	set.

The	MOR	variable	is	managed	by	the	MemoryOverwriteControl	module.	The	MOR	variable	is	created	at
TcgMor.c	entrypoint	MorDriverEntryPoint(),	and	the	variables	is	cleared	at	the	ReadyToBoot	event
OnReadyToBoot().

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

27Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/MemoryOverwriteControl.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/MemoryOverwriteRequestControlLock.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/MemoryOverwriteControl.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/MemoryOverwriteControl.h
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/QuarkPlatformPkg/Platform/Pei/PlatformInit/MrcWrapper.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/KabylakeOpenBoardPkg/KabylakeRvp3/FspWrapper/Library/PeiSiliconPolicyUpdateLibFsp/PeiFspMiscUpdUpdateLib.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/MemoryOverwriteControl
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/MemoryOverwriteControl/TcgMor.c

Because	the	MOR	variable	is	read/write,	a	malicious	software	entity	may	just	clear	the	MOR	request	even
if	a	high	privileged	software	requests	the	MOR.	We	need	a	secure	MOR	solution	to	prevent	such	an
attack.	The	MorLock	variable	was	introduced	to	protect	the	MOR	variable.	The	first	version	of	MorLock	is
simple.	Once	the	MorLock	is	set,	no	one	can	unlock	MOR	until	the	next	boot.	It	is	secure,	but	it	brings
performance	overhead	for	a	system	reset.	People	have	to	wait	a	long	time	for	the	platform	memory
module	cleaning	all	system	memory,	especially	on	a	server	platform	with	large	memory.	The	second
MorLock	supports	unlock.	The	MorLock	caller	can	set	MorLock	with	an	8	byte	secret	key.	If	the	caller	sets
MorLock	with	the	same	8	bytes	secret	key,	it	means	unlock	MOR.	In	order	to	prevent	secret	key
guessing,	any	wrong	secret	key	will	cause	the	MorLock	to	become	unlockable	in	the	current	boot.

Because	the	variable	driver	must	save	a	secret	key,	the	variable	driver	shall:

1)	execute	in	a	secure	execution	environment,	such	as	system	management	mode	(SMM).

2)	not	store	the	secret	key	content	to	a	non-volatile	storage,	such	as	an	SPI	flash	region.

The	MorLock	variable	is	managed	by	the	EDKII	VariableRuntimeDxe	driver	TcgMorLockSmm.c.
SetVariableCheckHandlerMorLock()	function	follows	the	specification	to	handle	both	secure	MOR
version	1	(lock	without	key)	and	version	2	(lock	with	key).

Figure	11	shows	the	high	level	TCG	MOR	Flow.

Figure	11	TCG	MOR	Flow

The	MOR	variable	not	only	control	memory	overwrite	but	also	control	the	storage	device	TPer	reset.	We
will	discuss	that	in	TCG	storage	section.

Previous	MOR	specifications	also	defined	an	ACPI	interface.	The	OS	may	set	MOR	state	by	using	an	ACPI
_DSM	method.	This	interface	is	deprecated	because	it	does	not	support	secure	MOR.	Figure	12	shows
TCG	MOR	component	in	EDK	II.

Figure	12	TCG	MOR	Component	in	EDK	II

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

28Revision	1.0

https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/Variable/RuntimeDxe
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/Variable/RuntimeDxe/TcgMorLockSmm.c

OS	Interface
A	platform	firmware	shall	report	the	TPM	device	to	an	OS.	The	report	should	include	1)	ACPI	table,	2)
EFI_TCG2_PROTOCOL.

ACPI	Table
A	TPM	capable	system	shall	report	two	ACPI	tables.

1)	TPM2	ACPI	table	--	This	is	a	static	table	to	report	the	TPM	device	control	area	and	TCG	event	log.

2)	TPM	SSDT	ACPI	table	--	This	is	the	ACPI	language	to	declare	the	TPM	device,	describe	the	hardware
resources,	such	as	interrupt	information,	and	provide	the	device	specific	method	_DSM(),	such	as	TCG
Physical	Presence	(PP)	operation.

Tcg2Smm	installs	TPM2	ACPI	table	in	PublishTpm2().	It	uses	the	below	PCDs	to	patch	the	table.

PcdTpm2AcpiTableRev	-	This	is	to	indicate	TPM2	ACPI	table	version:	version	3	or	version	4.

PcdTpmPlatformClass	-	This	is	to	indicate	the	platform	type:	client	or	server.

PcdTpm2AcpiTableLaml/PcdTpm2AcpiTableLasa	--	This	is	for	TCG	event	log	area.	Only	version	4	table
includes	the	TCG	event	log	field.

PcdActiveTpmInterfaceType	--	These	are	for	the	TPM	device	interface:	Tpm2PtpInterfaceCrb	or
Tpm2PtpInterfaceFifo.	Only	Tpm2PtpInterfaceCrb	interface	requires	StartMethod	and
AddressOfControlArea.

PcdTpmBaseAddress	--	This	is	for	TPM	device	base	address.

PcdAcpiDefaultOemId,	PcdAcpiDefaultOemTableId,	PcdAcpiDefaultOemRevision,
PcdAcpiDefaultCreatorId,	PcdAcpiDefaultCreatorRevision	--	These	are	for	the	common	ACPI	header.

Tcg2Smm	installs	the	TPM	SSDT	ACPI	table	in	PublishAcpiTable().	It	uses	the	below	PCDs	to	patch	the
table.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

29Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tpm2Acpi.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tpm.asl
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tpm2Acpi.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Tcg2Smm/Tpm.asl

PcdTcgPhysicalPresenceInterfaceVer	--	This	is	to	indicate	the	TCG	Physical	Presence	Interface
version.

PcdTpm2CurrentIrqNum,	PcdTpm2PossibleIrqNumBuf	--	This	is	to	indicate	the	TPM	IRQ	information.

PcdAcpiDefaultOemId	--	This	is	for	the	common	ACPI	header.	The	OemTableId	and	OemRevision
should	not	be	patched	because	they	are	defined	at	build	time	--	'TPM2Tabl'.	The	CreatorId	and
CreatorRevision	should	not	be	patched	because	the	ASL	compiler	fills	in	those	values.

Tcg2Smm	patches	the	TNVS	ACPI	OperationRegion	with	an	ACPInvs	memory	address	in
AssignOpRegion().	The	TNVS	is	used	as	a	runtime	communication	buffer	between	ASL	and	the	SMI
handler	PhysicalPresenceCallback()	for	the	TCG	PP	request.

Tcg2Smm	patches	_HID	to	indicate	a	TPM	device	to	the	OS	in	UpdateHID().	Tcg2Smm	should	get	the
TPM	vendorID	from	the	Tpm2GetCapabilityManufactureID(),	then	translate	the	TPM	vendorID	to	the
ACPI	defined	PNPID	and	update	the	_HID	name	string.	In	a	case	that	a	company	only	registered	a	TPM
vendorID	but	not	an	ACPI	PNPID,	the	translation	fails.	The	_CID("MSFT0101")	should	be	used	as	_HID.

TCG2_PROTOCOL
EFI_TCG2_PROTOCOL	is	to	provide	a	TCG	services	to	an	OS	loader.	It	is	a	boot	service	protocol.	It	cannot
be	used	after	the	ExitBootServices	event.

Tcg2Dxe	installs	the	EFI_TCG2_PROTOCOL	and	provides	the	below	services:

GetCapability()	--	This	is	to	return	capability	information	and	state	information,	such	as
HashAlgorithmBitmap,	SupportedEventLogs,	TPMPresentFlag,	NumberOfPCRBanks,	ActivePcrBanks,
etc.

GetEventLog()	--	This	is	to	return	the	TCG	event	log.

HashLogExtendEvent()	--	This	is	to	provide	a	service	to	extend	data	and	log	events.	It	has	a	flag
to	measure	a	PE	image	directly.

SubmitCommand()	--	This	is	to	submit	a	TPM	command.

GetActivePcrBanks()	--	This	is	to	get	the	active	PCR	banks.

SetActivePcrBanks()	--	This	is	to	set	the	active	PCR	banks.	It	will	not	take	effect	until	the	next
reboot.

GetResultOfSetActivePcrBanks()	--	This	is	to	return	the	result	of	the	last	SetActivePcrBanks().

TCG	Storage
The	TCG	not	only	defines	the	TPM	device,	but	it	also	defines	storage	devices,	such	as	OPAL,	Opalite,
Pyrite,	and	Ruby.

EDK	II	TcgStorageCoreLib	provides	interfaces	for	TCG	storage,	including	the	lowest	level	TCG	data
encoding,	such	as	TcgStartComPacket(),	TcgEndComPacket(),	TcgStartPacket(),	TcgEndPacket(),
TcgStartSubPacket(),	TcgEndSubPacket(),	TcgAddUINT8(),	TcgAddUINT64(),	TcgAddBOOLEAN(),
TcgAddTcgUid(),	etc.

EDK	II	TcgStorageOpalLib	provides	interfaces	for	TCG	OPAL	commands,	such	as	OpalStartSession(),
OpalEndSession(),	OpalPsidRevert(),	OpalGetMsid(),	OpalSetPassword(),	OpalBlockSid(),	etc.

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	is	used	to	send	a	storage	security	command	to	a	secure
storage	device.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

30Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Smm
https://trustedcomputinggroup.org/resource/vendor-id-registry/
https://uefi.org/PNP_ACPI_Registry
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Dxe
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/Tcg2Protocol.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/TcgStorageCoreLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/TcgStorageOpalLib.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/StorageSecurityCommand.h

The	EDK	II	OpalPassword	driver	handles	all	TCG	storage	features,	such	as	OPAL	device	password
management	and	BlockSid.

OPAL	Password
The	OPAL	password	feature	is	designed	to	replace	the	Hard	Disk	Drive	(HDD)	password	in	the	Advanced
Technology	Attachment	(ATA)	specification.	It	lets	a	user	set	a	password	for	the	disk	during	provisioning
and	requests	the	same	password	during	every	subsequent	boot	to	unlock	the	disk.

The	EDK	II	OpalPassword	driver	provides	a	setup	user	interface	(UI)	to	let	a	user	to	input	a	password	to
unlock	the	disk.	At	the	driver	entrypoint,	OpalDriver.c	EfiDriverEntryPoint()	installs	the	DriverBinding
protocol	and	calls	HiiInstall()	to	install	the	setup	form.	Whenever	there	is	an	storage	device
discovered,	OpalEfiDriverBindingSupported()	will	check	if	the	device	supports
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.	If	supported,	then	OpalEfiDriverBindingStart()	calls
OpalDiskInitialize()	to	initialize	the	device,	such	as	getting	manufactured	SID	(MSID)	and	data	removal
mechanism	information.	Then	OpalEfiDriverBindingStart()	calls	OpalDriverRequestPassword()	to
unlock	the	disk.

If	the	disk	locking	feature	is	not	set,	then	there	is	no	need	to	ask	the	user	to	input	a	password.	The
function	just	returns.

If	the	disk	locking	feature	is	set,	the	disk	will	be	in	the	locked	state.	A	password	dialogue	box	will	be	pop
up	to	ask	user	to	input	the	password.	Then	OpalDriverRequestPassword()	calls
OpalUtilUpdateGlobalLockingRange()	to	try	unlocking.	If	the	disk	is	unlocked,	then	the	password	is
correct.	It	will	be	used	for	auto-unlocking	in	S3	resume	(we	will	discuss	that	later).	If	unlocking	fails,	then
the	user	will	be	asked	to	input	the	password	again.	The	maximum	retry	count	is	5	times.	After	that,	the
system	will	shut	down.

A	system	level	cold	reset	causes	disk	device	power	off,	in	which	case	the	disk	is	locked.	However,	a
warm	reset	may	keep	the	disk	device	power	on,	which	cause	the	disk	remaining	in	the	unlocked	state
after	reset.	In	this	condition,	the	OpalPassword	driver	still	need	to	get	the	password	from	the	end	user
for	auto-unlocking	in	S3	resume.	As	such,	OpalDriverRequestPassword()	calls
OpalUtilUpdateGlobalLockingRange()	to	try	locking	the	device.	If	the	user	does	not	input	the
original	password,	the	action	will	not	success.	Once	the	disk	is	locked,	then	the	password	is	correct.
OpalUtilUpdateGlobalLockingRange()	is	called	again	to	unlock	the	disk.

Sometimes,	the	platform	may	want	to	skip	the	OPAL	password	prompt.	It	can	be	controlled	by
PcdSkipOpalPasswordPrompt.	An	end	user	may	also	choose	to	skip	the	password	input	by	using	'ESC'.	In
this	password	skip	scenario,	if	the	device	is	in	the	locked	state,	the	device	will	be	kept	in	the	locked
state	and	continue	booting.	If	the	device	is	unlocked,	the	system	will	be	forced	to	shut	down	in	order	to
lock	the	device	again.

OPAL	disk	auto-unlocking	in	S3	resume	is	a	necessary	feature	because	there	is	no	UI	available	in	the	S3
resume	path	to	let	an	end	user	input	anything.	What	we	need	is	to	let	the	DXE	OPAL	driver	save	the
password	to	a	secure	place	with	confidentiality	guarantee,	and	then	another	S3	resume	OPAL	driver	can
get	the	password	and	unlock	the	OPAL	device.	The	system	management	RAM	(SMRAM)	is	a	natural	place
to	save	the	password	secret.	There	are	two	possible	ways	to	achieve	this:

We	can	have	an	SMM	OPAL	password	driver.	The	DXE	OPAL	driver	passes	the	password	to	the	SMM
OPAL	driver	on	a	normal	boot.	Then	the	PEI	S3	script	uses	a	software	system	management	interrupt
(SMI)	invokes	the	SMM	OPAL	driver	to	unlock	the	device.

We	can	have	a	PEI	OPAL	password	driver.	The	DXE	OPAL	driver	saves	the	password	to	a	LockBox	with
a	confidentiality	attribute.	The	password	won't	be	exposed	by	an	OS	and	it	can	only	be	retrieved	in
PEI	S3	code.	Each	LockBox	can	be	uniquely	identified	by	a	GUID.	As	such,	the	PEI	OPAL	driver	gets
the	password	from	the	same	LockBox	during	the	S3	resume	and	unlocks	the	device.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

31Revision	1.0

https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Opal/OpalPassword
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Opal/OpalPassword
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalDriver.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/StorageSecurityCommand.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Library/LockBoxLib.h

In	the	first	version,	we	choose	the	SMM	OPAL	password	solution.	However,	we	ran	into	complicated
Direct	Memory	Access	(DMA)	protection	issues	because	it	is	complicated	to	enable	I/O	Memory
Management	Unit	(IOMMU)	for	device	DMA	protection	inside	of	SMM.	So	now	we	choose	the	PEI	OPAL
password	solution.	In	a	normal	boot	path,	at	EndOfDxe	event	OpalEndOfDxeEventNotify(),	the
OpalDriver.c	BuildOpalDeviceInfo()	routine	collects	all	OPAL	device	and	password	information	and
saves	this	to	the	OpalDevice	LockBox	and	S3InitDevice	LockBox	via	SaveLockBox()	and	sets	the
confidentiality	attribute	via	SetLockBoxAttributes(LOCK_BOX_ATTRIBUTE_RESTORE_IN_S3_ONLY).	The
OPAL	password	unlock	must	happen	before	EndOfDxe	event	because	the	LockBox	services	are	closed
after	EndOfDxe.

In	the	S3	resume	path,	OpalPasswordPei.c	entry	point	OpalPasswordPeiInit()	installs	the
EDKII_PEI_STORAGE_SECURITY_CMD_PPI.	Whenever	there	is	a	disk	driver	installed,	the
OpalPasswordStorageSecurityPpiNotify()	callback	function	is	invoked.	Then
UnlockOpalPasswordDevices()	gets	the	LockBox	information	via	RestoreLockBox()	and	calls
UnlockOpalPassword()	to	unlock	the	device	one	by	one.

OPAL	Features
An	end	user	may	want	to	update	the	OPAL	password	for	a	device.	Usually,	an	end	user	can	go	to	the
BIOS	setup	page	to	perform	that	action	and	the	new	password	will	take	effect	immediately.	However,
that	is	not	feasible	in	the	OpalPassword	driver.	Because	the	setup	page	is	launched	after	EndOfDxe
event,	there	is	no	chance	to	save	the	new	password	for	auto-unlocking.	As	such,	the	OpalPassword
driver	only	allows	the	user	to	send	a	request	and	then	reset	the	system.	The	OPAL	password	update
request	will	be	served	in	the	next	boot.	After	the	disk	is	unlocked,	the	OpalDriver.c
OpalEfiDriverBindingStart()	routine	calls	ProcessOpalRequest().

Besides	the	password	update,	the	OpalPassword	driver	supports	an	additional	set	of	requests,	such	as:

ProcessOpalRequestSetAdminPwd()	--	Set	admin	password.	The	old	admin	password	is	required
here.

ProcessOpalRequestSetUserPwd()	--	Set	user	password.	The	old	user	password	is	required
here.

ProcessOpalRequestSecureErase()	--	Secure	erase	user	data	on	the	disk.	An	admin	or	user
password	is	required	here.

ProcessOpalRequestRevert()	--	Admin	based	revert	to	factory	default.	The	admin	password	and
manufactured	SID	(MSID)	is	required	here.	MSID	can	be	read	via	OpalUtilGetMsid().	The	admin	can
choose	to	keep	the	user	data	or	destroy	it.

ProcessOpalRequestPsidRevert()	--	Physical	Presence	SID	(PSID)	based	revert	to	factory	default.
PSID	is	a	32-character	case	sensitive	value	that	is	shipped	with	the	disk.

ProcessOpalRequestDisableUser()	--	Disable	user.	The	admin	password	is	required	here.

ProcessOpalRequestEnableFeature()	--	Enable	OPAL	feature.	The	admin	password	and	MSID	are
required	here.

Care	must	be	taken	given	that	the	OPAL	device	may	take	long	to	finish	an	Erase	or	Revert	action.	To	give
a	better	user	experience,	the	OPAL	driver	pops	up	a	message	to	notify	the	user	of	this	potential	delay.

Figure	13	shows	TCG	storage	component	in	EDK	II.

Figure	13	TCG	Storage	Component	in	EDK	II

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

32Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalDriver.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalPasswordPei.c
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Ppi/StorageSecurityCommand.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Opal/OpalPassword
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Opal/OpalPassword
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalDriver.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Opal/OpalPassword

BlockSid
Even	if	an	OPAL	device	supports	locking,	an	end	user	may	choose	to	not	lock	it.	In	this	case,	a	malicious
entity	may	set	a	password	to	lock	the	OPAL	device	later	and	freeze	the	disk.	In	order	to	mitigate	this
attack,	we	need	block	Secure	Identifier	(SID),	even	if	we	don't	want	to	use	it.

BlockSid	is	a	policy.	It	can	be	controlled	by	the	end	user	via	TCG	Physical	Presence	(PP)	interface,	which
we	have	discussed	before.

In	the	normal	boot	path,	at	EndOfDxe	event	OpalEndOfDxeEventNotify(),	OpalDriver.c
SendBlockSidCommand()	checks	TCG2_BIOS_STORAGE_MANAGEMENT_FLAG_ENABLE_BLOCK_SID	from
the	Tcg2PhysicalPresenceFlags	and	sends	an	OpalBlockSid()	command	if	it	is	set.

In	the	S3	resume	path,	OpalPasswordPei.c	UnlockOpalPassword()	checks	the	same	flag	and	sends
an	OpalBlockSid()	command	after	it	unlocks	the	devices	one	by	one.

See	Figure	10	and	Figure	13	for	the	BlockSid	action	in	PP	and	OPAL	driver.

TPer	reset
When	a	platform	firmware	detects	the	MOR	request,	it	means	an	unexpected	system	reset	happened
and	the	system	might	not	erase	the	secrets	from	the	memory.	It	also	means	the	disk	protected	region
might	be	also	unlocked.	In	order	to	mitigate	the	reset	attack,	the	platform	not	only	cleans	the	memory
content,	but	the	platform	also	needs	to	issue	a	TPer	reset	command	to	the	TCG	storage	devices.

The	MemoryOverwriteControl	module	manages	the	MemoryOverwriteRequestControl	(MOR)	variable.	At
the	EndOfDxe	event,	TcgMor.c	TPerResetAtEndOfDxe()	locates	all	security	storage	devices	and	sends
a	TPer	reset	command	in	InitiateTPerReset().

The	platform	also	needs	to	ensure	all	trusted	storages	are	connected	before	the	EndOfDxe	event.	A
PlatformBds	module,	such	as	BoardBdsHookLib,	needs	to	process	the	TCG	MOR	request.
ProcessTcgMor()	needs	to	check	if	there	is	any	MOR	request	and	connect	the	platform	specific	trusted
storage.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

33Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalDriver.c
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tcg2PhysicalPresenceLib.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Guid/Tcg2PhysicalPresenceData.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/Opal/OpalPassword/OpalPasswordPei.c
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/MemoryOverwriteControl
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/MemoryOverwriteControl.h
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Tcg/MemoryOverwriteControl/TcgMor.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/Intel/BoardModulePkg/Library/BoardBdsHookLib/BoardBdsHookLib.c

See	Figure	12	for	the	TPer	reset	action	in	MOR	driver.

TCG	Trusted	Boot	Chain	in	EDK	IIUnderstanding	the	Trusted	Boot	Chain	Implementation

34Revision	1.0

OTHER	TRUSTED	BOOT	CHAINS
Besides	EDK	II,	other	firmware	or	firmware	related	boot	loaders	also	include	the	trusted	boot	chain.

coreboot
coreboot	includes	the	measured	boot	flow.	It	is	a	simplified	version.	Table	3	shows	the	usage	in
coreboot.

Table	3	Coreboot	TPM	PCR	Usage

PCR	Index PCR	Usage

0 Google	vboot	GBB	flags

1 Google	vboot	GBB	HWID

2 Core	Root	of	Trust	for	Measurement	(CRTM)

3 Runtime	data	like	hwinfo.hex	or	MRC	cache.

4 N/A

5 N/A

6 N/A

7 N/A

(Source:	coreboot	measured	boot)

vboot2api.h	defines	two	PCRs:

BOOT_MODE_PCR(0)	--	It	is	to	record	the	digest	based	on	the	current	developer	and	recovery
mode	flags	in	the	Google	Binary	Blob	(GBB)

HWID_DIGEST_PCR(1)	--	It	is	to	record	the	digest	of	the	hardware	ID	(HWID)	from	the	GBB.

In	verstage,	vboot_logic.c	verstage_main()	calls	extend_pcrs()	to	extend	two	PCRs.	tpm_common.c
vboot_extend_pcr()	calls	2api.c	vb2api_get_pcr_digest()	to	get	the	corresponding	flags	and	HWID
digest	from	the	GBB	and	extends	them	to	the	TPM.

Later,	coreboot	crtm.h	defines	two	PCRs:

TPM_CRTM_PCR(2)	--	It	is	for	Core	Root	of	Trust	for	Measurement	(CRTM)	modules,	including	all
stages,	data	and	blobs.	These	include	COREBOOT	CBFS	(bootblock,	fallback/verstage),	FW_MAIN
CBFS	(fallback/romstage,	fspm,	fallback/postcar,	fallback/ramstage,	cpu_microcode_blob,	fsps,	vbt,
fallback/dsdt.aml,	fallback/payload),	RO_VPD,	GBB,	SI_DESC,	SI_GBE.

TPM_RUNTIME_DATA_PCR(3)	--	It	is	for	runtime	changeable	data.	Such	as	CMOS,	SI_ME,	RW_NVRAM.

crtm.c	tspi_measure_cbfs_hook()	is	the	hook	function	to	measure	different	components	in	the
coreboot	file	system	(CBFS)	data.	The	CBFS_TYPE	definition	can	be	found	at	cbfs_serialized.h.	For
example:

CBFS_TYPE_MRC	--	PCR2

CBFS_TYPE_STAGE	--	PCR2

CBFS_TYPE_SELF	--	PCR2

CBFS_TYPE_FIT	--	PCR2

Other	Trusted	Boot	ChainsUnderstanding	the	Trusted	Boot	Chain	Implementation

35Revision	1.0

https://github.com/coreboot
https://doc.coreboot.org/security/vboot/measured_boot.html
https://github.com/coreboot/vboot
https://github.com/coreboot/vboot/blob/master/firmware/2lib/include/2api.h
https://github.com/coreboot/coreboot/blob/master/src/security/vboot/verstage.c
https://github.com/coreboot/coreboot/blob/master/src/security/vboot/tpm_common.c
https://github.com/coreboot/vboot/blob/master/firmware/2lib/2api.c
https://github.com/coreboot/coreboot/blob/master/src/security/tpm/tspi/crtm.h
https://github.com/coreboot/coreboot/blob/master/src/security/tpm/tspi/crtm.c
https://github.com/coreboot/coreboot/blob/master/src/commonlib/bsd/include/commonlib/bsd/cbfs_serialized.h

CBFS_TYPE_MRC_CACHE	--	PCR3

Other	--	runtime	data	go	to	PCR3,	non-runtime	data	go	to	PCR2.

After	that,	log.c	tcpa_log_add_table_entry()	appends	the	log	to	a	tcpa	table.

Grub2
Grub2	extends	the	trusted	boot	chain	from	platform	firmware	into	the	OS.	Table	4	shows	the	PCR	usage
in	Grub.

Table	4	GRUB	TPM	PCR	Usage

PCR
Index PCR	Usage

8 Grub	command	line:	All	executed	commands	(including	those	from	configuration	files)	will
be	logged	and	measured	as	entered	with	a	prefix	of	"grub	cmd:	"

Kernel	command	line:	Any	command	line	passed	to	a	kernel	will	be	logged	and	measured
as	entered	with	a	prefix	of	"kernel	cmdline:	"

Module	command	line:	Any	command	line	passed	to	a	kernel	module	will	be	logged	and
measured	as	entered	with	a	prefix	of	"module	cmdline:	"

9 Files:	Any	file	read	by	GRUB	will	be	logged	and	measured	with	a	descriptive	text
corresponding	to	the	filename.

(Source:	Grub2	Measured	Boot)

Grub2	tpm.h	defines	two	PCR	index:

GRUB_STRING_PCR(8)	--	It	is	for	the	command	line	string.

GRUB_BINARY_PCR(9)	--	It	is	for	a	file	binary.

tpm.c	registers	grub_tpm_verify_string()	and	grub_tpm_verify_write()	to	a	grub_file_verifier
structure.	They	will	be	called	by	grub_verify_string()	and	grub_verifiers_open()	in	verifiers.c.

when	grub2	executes	a	command	line	such	as	GRUB_VERIFY_MODULE_CMDLINE,
GRUB_VERIFY_KERNEL_CMDLINE,	GRUB_VERIFY_COMMAND	or	grub_create_loader_cmdline()	in	cmdline.c,
grub_verify_string()	is	used.	Finally,	grub_tpm_verify_string()	measures	the	string	to	PCR8.

grub_verifiers_open()	is	registered	as	one	of	grub_file_filters	in	file.h.	Whenever	grub	uses	file.c
grub_file_open()	this	filter	is	invoked.	Finally,	grub_tpm_verify_write()	measures	the	file	binary	to
PCR9.

Linux	Secure	Boot	Shim
Shim	is	used	to	extend	the	UEFI	secure	boot	concept	to	Linux.	Table	5	shows	the	PCR	usage	in	Shim.

Table	5	Shim	TPM	PCR	Usage

PCR
Index PCR	Usage

4 UEFI	application,	such	as	second_stage,	FALLBACK,	MOK_MANAGER.

7 UEFI	variable,	such	as	"MokSBState".	Verification	policy	authority,	such	as	"Shim",	"db",
"MokList".

14 UEFI	variable,	such	as	"MokList",	"MokListX",	"MokSBState".

Other	Trusted	Boot	ChainsUnderstanding	the	Trusted	Boot	Chain	Implementation

36Revision	1.0

https://github.com/coreboot/coreboot/blob/master/src/security/tpm/tspi/log.c
https://github.com/rhboot/grub2
https://www.gnu.org/software/grub/manual/grub/html_node/Measured-Boot.html
https://github.com/rhboot/grub2/blob/master/include/grub/tpm.h
https://github.com/rhboot/grub2/blob/master/grub-core/commands/tpm.c
https://github.com/rhboot/grub2/blob/master/grub-core/commands/verifiers.c
https://github.com/rhboot/grub2/blob/master/grub-core/lib/cmdline.c
https://github.com/rhboot/grub2/blob/master/include/grub/file.h
https://github.com/rhboot/grub2/blob/master/grub-core/kern/file.c
https://github.com/rhboot/shim

shim.c	start_image()	supports	to	execute	a	UEFI	application	image,	such	as	second_stage,	FALLBACK,
MOK_MANAGER.	It	calls	tpm_log_pe()	to	measure	it	to	PCR4.

Shim	defines	a	set	of	UEFI	variable	to	store	the	shim	variable.	mok.c	import_mok_state()	checks	the
mok_state_variables,	such	as	"MokList",	"MokListX",	"MokSBState",	"MokDBState".	In	which,	the
"MokSBState"	variable	is	measured	to	PCR7	via	tpm_measure_variable().	The	"MokList",	"MokListX",
"MokSBState"	variables	are	measured	to	PCR14	via	tpm_log_event().

To	follow	the	UEFI	secure	boot	protocol,	shim.c	verify_one_signature()	will	record	"Shim"	as	the
authority	via	tpm_measure_variable(),	if	the	AuthenticodeVerify()	succeeds.	Also
check_db_cert()/check_db_hash()	will	record	"db",	"MokList"	as	authority	if	verification	succeeds.

Windows	BitLocker
Microsoft	Windows	BitLocker	uses	the	below-listed	PCRs.	The	legacy-boot	version	of	Windows	used
PCR[8,	9,	10,	11],	while	UEFI-based	Windows	uses	PCR[11,	12,	13,	14]	for	the	BitLocker	policies.	Table	6
shows	the	PCR	usage	in	Windows	BitLocker.

Table	6	Windows	BitLocker	PCR	Usage

PCR	Index PCR	Usage	(Legacy) PCR	Usage	(UEFI)

8 NTFS	Boot	Sector Reserved

9 NTFS	Boot	Block Reserved

10 Boot	Manager Reserved

11 BitLocker	access	control BitLocker	access	control

12 Reserved Data	events	and	highly	volatile	events

13 Reserved Boot	Module	Details

14 Reserved Boot	Authorities

(Source:	Windows	BitLocker)

Other	Trusted	Boot	ChainsUnderstanding	the	Trusted	Boot	Chain	Implementation

37Revision	1.0

https://github.com/rhboot/shim/blob/main/shim.c
https://github.com/rhboot/shim
https://github.com/rhboot/shim/blob/main/mok.c
https://github.com/rhboot/shim/blob/main/shim.c
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-group-policy-settings

LOOKING	FORWARD
In	trusted	boot,	the	goal	of	the	measurement	is	to	support	attestation	later.	The	TPM	implements	the
root	of	trust	for	storage	(RTS)	and	the	root	of	trust	for	reporting	(RTR).	The	root	of	trust	for
measurement	(RTM)	can	be	implemented	in	static	RTM	(SRTM)	or	dynamic	RTM	(DRTM).	From	a	platform
perspective,	there	are	other	ways	to	implement	the	measurement	and	attestation.

Platform	Root	of	Trust	-	Cerberus
A	platform	root	of	trust	(RoT)	is	an	entity	to	authenticate	the	firmware	on	the	platform.	One	example	is
the	OCP	Project	Cerberus.	The	platform	RoT	may	also	collect	measurements	from	the	devices	and
support	remote	attestation.	Figure	14	shows	the	concept	of	platform	RoT.

Figure	14	Platform	Root	of	Trust

Device	Root	of	Trust	-	DICE
A	device	root	of	trust	(RoT)	is	the	RoT	for	a	specific	device	to	verify	the	mutable	firmware	and	report	the
measurement.	TCG	defines	the	Device	Identifier	Composition	Engine	(DICE)	architecture	for	embedded
devices	which	do	not	have	full	TPM	capability	but	still	want	to	support	attestation.	DICE	uses	a	layering
architecture.	A	layered	TCB	architecture	uses	a	constrained	set	of	TCB	capabilities	to	construct	the	next
TCB	layer.	Figure	15	shows	the	DICE	asymmetric	attestation	architecture.	Similar	to	the	TPM	certificate,	a
DICE	device	can	present	a	DICE	certificate	as	the	identity	for	the	device.	Figure	16	shows	the	DICE
symmetric	attestation	architecture,	which	may	be	used	in	a	resource	constrain	environment.	For	more
detail,	please	refer	to	TCG	DICE	architecture.

Figure	15	DICE	implicit	identity	based	attestation

Looking	ForwardUnderstanding	the	Trusted	Boot	Chain	Implementation

38Revision	1.0

https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus
https://trustedcomputinggroup.org/work-groups/dice-architectures/

(source:	DICE	Identity)

Figure	16	DICE	symmetric	identity	based	attestation

(source:	DICE	symmetric	Identity)

Looking	ForwardUnderstanding	the	Trusted	Boot	Chain	Implementation

39Revision	1.0

https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/symmetric-identity-based-device-attestation/

Server	Management	Domain	Firmware
A	server	management	domain	(such	as	Baseboard	Management	Controller,	also	known	as	BMC)	may
have	its	own	TPM	module	and	SRTM	because	of	its	isolated	execution	environment.	Table	7	shows	the
TPM	PCR	usage	in	a	server	management	domain.	For	more	details,	please	refer	to	TCG	Server
Management	Domain	Firmware	Specification.

Table	7	TPM	PCR	Usage	in	Management	Domain

PCR	Index PCR	Usage

0 SRTM	and	Boot	Loader

1 Management	Domain	Configuration

2 Loadable	Devices

3 Loadable	Devices	Configuration

4 Reserved	for	future

5 Reserved	for	future

6 Vendor	Specific

7 Reserved	for	future

8 For	management	domain	OS

9 For	management	domain	OS	configuration

10-15 Reserved	for	future

16 Debug

17-23 Reserved	for	future

(Source:	TCG	Server)

Secure	communication	--	SPDM
Now	we	have	multiple	device	entities	on	the	platform.	We	need	a	secure	communication	mechanism.
The	Desktop	Management	Taskforce	(DMTF)	Secure	Protocol	and	Data	Model	(SPDM)	serves	that
purpose.	SPDM	defines	message	formats,	data	objects,	and	sequences	for	performing	message
exchanges.	The	protocols	defined	by	SPDM	can	be	used	for	a	wide	range	of	security	functions.	The
SPDM	protocol	is	similar	to	the	network	Transport	Layer	Security	(TLS)	protocol,	but	it	is	customized	for
the	communication	between	two	device	entities.

SPDM	1.0	defines	messages	for	hardware	and	firmware	identification	and	authentication,	including
messages	for	hardware	and	firmware	measurement	collection	and	attestation.	See	Figure	17.	SPDM	1.1
defines	a	secure	session	establishment	mechanism	between	two	entities	by	using	Diffie	Hellman
ephemeral	(DHE)	or	Elliptic	Curve	DHE	(ECDHE)	key	exchange	with	asymmetric	authentication	such	as
RSA	or	Elliptic	Curve	Digital	Signature	Algorithm	(ECDSA).	For	a	device	that	only	supports	symmetric
cryptography,	the	secure	session	can	also	be	established	with	a	pre-shared	key	(PSK).	Once	the
session	is	created,	two	entities	can	use	Authentication	Encryption	and	Associated	Data	(AEAD)	for
message	communication.	See	Figure	18.	For	more	detail,	please	refer	to	DMTF	SPDM	Specification.

Figure	17	SPDM	1.0

Looking	ForwardUnderstanding	the	Trusted	Boot	Chain	Implementation

40Revision	1.0

https://trustedcomputinggroup.org/wp-content/uploads/TCG_ServerManagementDomainFirmwareProfile_v1p00_11aug2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ServerManagementDomainFirmwareProfile_v1p00_11aug2020.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf

(source:SPDM)

Figure	18	SPDM	1.1

(source:	SPDM)

Currently	openspdm	project	provides	an	open	source	tool	to	validate	the	SPDM	implementation	and
some	sample	code	for	explaining	the	SPDM	concept.	Figure	4-4	shows	the	openspdm	internal	design.

Figure	19	Openspdm	Design

Looking	ForwardUnderstanding	the	Trusted	Boot	Chain	Implementation

41Revision	1.0

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://github.com/jyao1/openspdm

(Source:	openspdmdoc)

An	Open	Trusted	Platform	--	Putting	it	all	together
To	put	all	of	the	above	technology	together,	Figure	4-5	shows	an	example	of	an	open	trusted	platform.

Figure	20	An	Open	Trusted	Platform

Looking	ForwardUnderstanding	the	Trusted	Boot	Chain	Implementation

42Revision	1.0

https://github.com/jyao1/openspdm/blob/master/Doc/Design.md

CHECKLIST	FOR	PLATFORM	DEVELOPERS

PCR,	Measurement	and	Attestation

General	Guideline
1.1.1.	Use	an	even	PCR	for	code	measurement	in	general.

1.1.2.	Use	an	odd	PCR	for	data	measurement	in	general.

1.1.3.	Do	NOT	record	data	that	that	are	dynamic	and	changeable	across	the	boot,	such	as
system	clock,	fan	speed,	boot	count,	system	reset	reason,	battery	power,	a	nonce	value,	a	pointer,	etc.

1.1.4.	Do	NOT	record	the	instance	of	specific	information	that	may	be	used	to	unique	identify
a	system,	such	as	an	asset	tag,	a	serial	number,	etc.

1.1.5.	Do	NOT	record	any	privacy	sensitive	information.

PCR	0
1.2.1.	Do	configure	PcdTcgPfpMeasurementRevision	to	select	TCG	PFP	compliance	revision.

1.2.2.	Do	configure	PcdFirmwareVersionString	to	a	valid	Unicode	string	for	version,	so	that	it	can	be
measured.

1.2.3.	Do	report	all	FV	information	in	PEI,	so	that	all	of	them	can	be	measured.

1.2.4.	Do	install	EFI_PEI_FIRMWARE_VOLUME_INFO_MEASUREMENT_EXCLUDED_PPI	for	the	FV	that	is	ready
measured.

1.2.5.	Do	measure	individual	non-FV	component,	if	it	is	loaded	from	the	platform	firmware.

1.2.6.	Do	NOT	update	the	loaded	component	before	measuring	it.

1.2.7.	Do	measure	the	non-host	platform	information	using	EV_NONHOST_INFO,	if	it	exists.

1.2.8.	Do	measure	the	non-host	platform	component	using	EV_NONHOST_CODE	if	it	can	only	be	updated
by	the	platform	firmware.

PCR	1
1.3.1.	Do	measure	Microcode.

1.3.2.	Do	measure	SMBIOS	table	after	filtering	changeable	data	or	instance	data.

1.3.3.	Do	measure	"Entering	ROM	Based	Setup"	with	EV_ACTION	for	a	setup	utility.

1.3.4.	Do	measure	security	related	configuration	data	from	non-volatile	storage,	such	as	UEFI	setup
variable,	or	CMOS.

1.3.5.	Do	measure	the	hardware	device	list	with	EV_TABLE_OF_DEVICES.

1.3.6.	Do	measure	the	non-host	platform	configuration	using	EV_NONHOST_CONFIG	if	it	can	only	be
updated	by	the	platform	firmware.

PCR	2
1.4.1.	Do	link	DxeTpm2MeasureBootLib	as	LAST	NULL	instance	lib	for	SecurityStubDxe.inf	in	a	DSC	file.

Checklist	for	Platform	DevelopersUnderstanding	the	Trusted	Boot	Chain	Implementation

43Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Ppi/FirmwareVolumeInfoMeasurementExcluded.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/DxeTpm2MeasureBootLib

1.4.2.	Do	measure	the	non-host	platform	component	using	EV_NONHOST_CODE	if	it	can	be	updated	by
entities	other	than	the	platform	firmware.

1.4.3.	Do	measure	SPDM-capable	device	hardware	or	firmware	use	EV_EFI_SPDM_FIRMWARE_BLOB.

PCR	3
1.5.1.	Do	measure	"Entering	ROM	Based	Setup"	with	EV_ACTION	for	a	UEFI	application	based	setup
utility.

1.5.2.	Do	measure	the	non-host	platform	configuration	using	EV_NONHOST_CONFIG	if	it	can	be	updated
by	entities	other	than	the	platform	firmware.

1.5.3.	Do	measure	SPDM-capable	device	hardware	configuration	or	firmware	configuration	use
EV_EFI_SPDM_FIRMWARE_CONFIG.

PCR	4
1.6.1.	Do	measure	the	additional	pre-OS	code	loaded	by	an	UEFI	application	the	using
EV_COMPACT_HASH.

PCR	5
1.7.1	Do	measure	the	additional	data	configuration	related	to	the	UEFI	application.

PCR	6
N/A

PCR	7
1.9.1.	Do	measure	security	configuration	if	it	exits.	(It	means	the	whole	policy.)

1.9.2.	Do	measure	security	authority	if	it	exits.	(It	means	the	specific	policy	which	is	used	to	verify	the
component.)

1.9.3.	Do	measure	the	security	feature	disabling	event,	such	as	"UEFI	Debug	Mode",	"DMA	Protection
Disabled".

NO_ACTION	event
1.10.1.	Do	record	startup	locality	event,	if	an	ACM	starts	the	TPM.

TPM	Device	Startup

Device	Selection
2.1.1.	Do	NOT	support	TPM1.2.

2.1.2.	Do	choose	a	proper	Tcg2Config	driver	for	device	selection,	such	as	Tcg2Config	or	platform	specific
one.

2.1.3.	Do	set	PcdTpmInstanceGuid	directly	after	the	TPM	device	selection.

2.1.4.	Do	set	PcdTpm2InitializationPolicy	if	the	TPM	device	is	started.

TPM	Device	Interface

Checklist	for	Platform	DevelopersUnderstanding	the	Trusted	Boot	Chain	Implementation

44Revision	1.0

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/UefiTcgPlatform.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Tcg/Tcg2Config
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec

2.2.1.	Do	link	proper	Tpm2DeviceLib	to	Tcg2Dxe.inf	and	Tcg2Pei.inf	in	platform	DSC,	such	as
Tpm2DeviceLibDTpm	or	other	TPM	device	such	as	I2C.

Error	Handling
2.3.1.	Do	register	a	ReportStatusCode	callback	handler	to	process	the	TPM	error,	if	the	platform	wants
to	reset	system,	or	disable	the	TPM	hardware	on	error.

TCG	Physical	Presence
3.1.1.	Do	call	Tcg2PhysicalPresenceLibNeedUserConfirm()	and
Tcg2PhysicalPresenceLibProcessRequest()	in	the	platform	BDS	before	EndOfDxe.

3.1.2.	Do	connect	all	trusted	consoles	if	Tcg2PhysicalPresenceLibNeedUserConfirm()	is	TRUE.

TPM	Bank	Selection
3.2.1.	Do	choose	HashLibBaseCryptoRouter	if	the	platform	wants	to	support	crypto	agile.

3.2.2.	Do	link	proper	multiple	HashLib	instances,	such	as	HashInstanceLibSha256,
HashInstanceLibSha384,	HashInstanceLibSha512	and	HashInstanceLibSm3,	to	Tcg2Pei.inf	and
Tcg2Dxe.inf	in	platform	DSC.

3.2.3.	Do	NOT	use	HashInstanceLibSha1.

TPM	Hierarchy	Management
3.3.1.	Do	choose	a	proper	Tcg2Platform	module	to	manage	the	TPM	platform	hierarchy,	such	as
Tcg2Platform	or	platform	specific	one.

3.3.2.	Do	randomize	TPM	platform	auth	before	EndOfDxe.

3.3.3.	Do	randomize	TPM	platform	auth	before	EndOfPei	in	S3	resume,	if	TPM	error	happens.

3.3.4.	Do	send	Tpm2HierarchyControl()	command	to	enable	or	disable	the	hierarchy,	if	it	is
supported.

TCG	Memory	Override
4.1.1.	Do	check	MOR	variable	and	clear	memory	in	memory	initialization	if	MOR	request	is	set.

4.1.2.	Do	treat	MOR	variable	missing	as	requested.

OS	Interface

ACPI	Table
5.1.1.	Do	configure	PcdTpm2AcpiTableRev	to	indicate	TPM2	ACPI	table	version.

5.1.2.	Do	configure	PcdTpmPlatformClass	for	client	or	server.

5.1.3.	Do	configure	PcdTcgPhysicalPresenceInterfaceVer	to	indicate	the	TCG	Physical	Presence	Interface
version.

5.1.4.	Do	configure	PcdTpm2CurrentIrqNum	and	PcdTpm2PossibleIrqNumBuf	to	indicate	the	TPM	IRQ
information.

Checklist	for	Platform	DevelopersUnderstanding	the	Trusted	Boot	Chain	Implementation

45Revision	1.0

https://github.com/tianocore/edk2/blob/master/SecurityPkg/Include/Library/Tpm2DeviceLib.h
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/Tpm2DeviceLibDTpm
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashLibBaseCryptoRouter
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha256
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha384
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha512
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSm3
https://github.com/tianocore/edk2/tree/master/SecurityPkg/Library/HashInstanceLibSha1
https://github.com/tianocore/edk2-platforms/tree/master/Platform/Intel/MinPlatformPkg/Tcg
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/MdeModulePkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec
https://github.com/tianocore/edk2/blob/master/SecurityPkg/SecurityPkg.dec

TCG2_PROTOCOL
N/A

TCG	Storage

OPAL	Password
6.1.1.	Do	connect	trusted	storages	and	trusted	consoles	in	Platform	BDS	before	EndOfDxe	if	there
is	OPAL	password	request.

6.1.2.	Do	include	storage	disk	drivers	in	PEI	for	S3	auto-unlock.

OPAL	Feature
6.2.1.	Do	connect	trusted	storages	and	trusted	consoles	in	Platform	BDS	before	EndOfDxe	if	there
is	OPAL	feature	request.

BlockSid
6.3.1.	Do	enable	BlockSid	by	default.

TPer	reset
6.4.1.	Do	connect	trusted	storages	in	Platform	BDS	before	EndOfDxe	if	MOR	request	is	set.

6.4.2.	Do	treat	MOR	variable	missing	as	requested.

Checklist	for	Platform	DevelopersUnderstanding	the	Trusted	Boot	Chain	Implementation

46Revision	1.0

GLOSSARY
ACM	--	Authenticated	Code	Module	(Intel)

AEAD	--	Authenticated	Encryption	with	Associated	Data

APCI	--	Advanced	Power	and	Configuration	Interface

CoSWID	--	Concise	SWID

CCC	--	Confidential	Computing	Consortium

CRB	--	Command	Response	Buffer

DHE	--	Diffie-Hellman	ephemeral	(key	exchange)

DICE	--	Device	Identifier	Composition	Engine

DMA	--	Direct	Memory	Access

DRTM	--	Dynamic	Root	of	Trust	for	Measurement

ECDHE	--	Elliptic	Curve	DHE	(key	exchange)

ECDSA	--	Elliptic	Curve	Digital	Signature	Algorithm

FIM	--	Firmware	Integrity	Measurement

GP	--	Global	Platform

IBV	--	Independent	BIOS	Vendor

IFV	--	Independent	Firmware	Vendor

IHV	--	Independent	Hardware	Vendor

ISV	--	Independent	Silicon	Vendor

MAC	--	Message	Authentication	Code

MMIO	--	Memory	Mapped	I/O

MOR	--	Memory	Overwrite

MSID	--	Manufactured	SID

ODM	--	Original	Design	Manufacturer

OEM	--	Original	Equipment	Manufacturer

OSV	--	Operating	System	Vendor

PFP	--	TCG	Platform	Firmware	Profile	specification

PI	--	Platform	Initialization	(UEFI)

PP	--	Physical	Presence

PSID	--	Physical	Presence	SID

PSK	--	Pre-shared	key

PTP	--Platform	TPM	Profile

RIM	--	TCG	Reference	Integrity	Manifest

RoT	--	Root	of	Trust

GlossaryUnderstanding	the	Trusted	Boot	Chain	Implementation

47Revision	1.0

RSA	--	Rivest	Shamir	Adlemann	(algorithm)

RTM	--	Root	of	Trust	for	Measurement

SID	--	TCG	Storage	Secure	Identifier

SMBIOS	--	DMTF	System	Management	BIOS

SMM	--	x86	System	Management	Mode.

SP	--	Storage	Security	Provider

SPDM	--	Secure	Protocol	and	Data	Model	(DMTF)

SRTM	--	Static	Root	of	Trust	for	Measurement

SWID	--	Software	Identification

TCB	--	Trust	Computing	Base

TCG	--	Trust	Computing	Group

TEE	--	Trusted	Execution	Environment

TLS	--	Transport	Layer	Security

TPer	--	Trusted	Peripheral

TPM	--	Trust	Platform	Module

TSS	--	TPM	Software	Stack

TZ	--	TrustZone	(ARM)

UEFI	--	Unified	Extensible	Firmware	Interface

GlossaryUnderstanding	the	Trusted	Boot	Chain	Implementation

48Revision	1.0

REFERENCES

Books
[Building	Secure	Firmware]	Jiewen	Yao,	Vincent	Zimmer,	Building	Secure	Firmware:	Armoring	the
Foundation	of	the	Platform,	2020,	Apress,	https://www.amazon.com/gp/product/1484261054/,

https://link.springer.com/content/pdf/10.1007%2F978-1-4842-6106-4.pdf

[TPM2.0	Book]	Will	Arthur,	David	Challener,	A	Practical	Guide	to	TPM2.0,	2015,	Apress,
https://www.amazon.com/Practical-Guide-TPM-2-0-Platform-ebook/dp/B0781D8J6W,
https://link.springer.com/book/10.1007%2F978-1-4302-6584-9

Specifications
[NIST	SP800-155]	BIOS	Integrity	Measurement	Guidelines,	2011,
https://csrc.nist.gov/publications/detail/sp/800-155/draft

[NIST	SWID]	Software	Identification	SWID,	https://csrc.nist.gov/projects/Software-Identification-SWID

[NIST	IR8086]	NISTIR.8060	Guidelines	for	the	Creation	of	Interoperable	SWID	Tags,
https://csrc.nist.gov/publications/detail/nistir/8060/final

[IETF	CoSWID]	Concise	Software	Identification	Tags,	https://datatracker.ietf.org/doc/draft-ietf-sacm-
coswid/

[IETF	CoSWID-RIM]	Reference	Integrity	Measurement	Extension	for	Concise	Software	Identities,
https://datatracker.ietf.org/doc/draft-birkholz-rats-coswid-rim/

[TCG	RIM-IM]	TCG	Reference	Integrity	Manifest	Information	Model	Specification,	2020,
https://trustedcomputinggroup.org/resource/tcg-reference-integrity-manifest-rim-information-model/

[TCG	PC	Client	RIM]	TCG	PC	Client	Reference	Integrity	Manifest	Specification,	2020,
https://trustedcomputinggroup.org/resource/tcg-pc-client-reference-integrity-manifest-specification/

[TCG	PC	Client	FIM]	TCG	PC	Client	Platform	Firmware	Integrity	Measurement	Specification,	2020,

[TCG	PC	Client	PFP]	TCG	PC	Client	Platform	Firmware	Profile	Specification,	2020,
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/,
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_PFP_r1p05_v22_02dec2020.pdf

[TCG	PC	Client	PTP]	TCG	PC	Client	Platform	TPM	Profile	Specification,	2020,
https://trustedcomputinggroup.org/resource/pc-client-platform-tpm-profile-ptp-specification/,

[TCG	Physical	Presence]	TCG	PC	Client	Platform	Physical	Presence	Interface	Specification,	2015,
https://trustedcomputinggroup.org/resource/tcg-physical-presence-interface-specification/

[TCG	MOR]	TCG	PC	Client	Platform	Reset	Attack	Mitigation	Specification,	2019,
https://trustedcomputinggroup.org/resource/pc-client-work-group-platform-reset-attack-mitigation-
specification/

[TCG	TPM	ACPI]	"TCG	ACPI	Specification,	2017,	https://trustedcomputinggroup.org/resource/tcg-acpi-
specification/

[TCG	UEFI	Protocol]	TCG	EFI	Protocol	Specification,	2016,
https://trustedcomputinggroup.org/resource/tcg-efi-protocol-specification/

ReferencesUnderstanding	the	Trusted	Boot	Chain	Implementation

49Revision	1.0

https://intel-my.sharepoint.com/personal/vincent_zimmer_intel_com/Documents/Documents/https
https://www.amazon.com/gp/product/1484261054/
https://link.springer.com/content/pdf/10.1007%2F978-1-4842-6106-4.pdf
https://www.amazon.com/Practical-Guide-TPM-2-0-Platform-ebook/dp/B0781D8J6W
https://link.springer.com/book/10.1007%2F978-1-4302-6584-9
https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://csrc.nist.gov/projects/Software-Identification-SWID
https://csrc.nist.gov/publications/detail/nistir/8060/final
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/
https://datatracker.ietf.org/doc/draft-birkholz-rats-coswid-rim/
https://trustedcomputinggroup.org/resource/tcg-reference-integrity-manifest-rim-information-model/
https://trustedcomputinggroup.org/resource/tcg-pc-client-reference-integrity-manifest-specification/
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_PFP_r1p05_v22_02dec2020.pdf
https://trustedcomputinggroup.org/resource/pc-client-platform-tpm-profile-ptp-specification/
https://trustedcomputinggroup.org/resource/tcg-physical-presence-interface-specification/
https://trustedcomputinggroup.org/resource/pc-client-work-group-platform-reset-attack-mitigation-specification/
https://trustedcomputinggroup.org/resource/tcg-acpi-specification/
https://trustedcomputinggroup.org/resource/tcg-efi-protocol-specification/

[TCG	Storage]	TCG	Storage	Architecture	Core	Specification,	https://trustedcomputinggroup.org/tcg-
storage-architecture-core-specification/

[TCG	SIIS]	TCG	Storage	Interface	Interactions	Specification,
https://trustedcomputinggroup.org/resource/storage-work-group-storage-interface-interactions-
specification/

[TCG	OPAL]	Storage	Work	Group	Storage	Security	Subsystem	Class:	Opal,
https://trustedcomputinggroup.org/storage-work-group-storage-security-subsystem-class-opal/

[TCG	Pyrite]	Storage	Work	Group	Storage	Security	Subsystem	Class:	Pyrite,
https://trustedcomputinggroup.org/resource/tcg-storage-security-subsystem-class-pyrite/

[TCG	Ruby]	Storage	Work	Group	Storage	Security	Subsystem	Class:	Ruby,
https://trustedcomputinggroup.org/resource/tcg-storage-security-subsystem-class-ruby-specification/

[TCG	BlockSID]	TCG	Storage	Feature	Set:	Block	SID	Authentication,	2015,
https://trustedcomputinggroup.org/resource/tcg-storage-feature-set-block-sid-authentication-
specification/,	https://trustedcomputinggroup.org/wp-
content/uploads/TCG_Storage_BlockIDAuth_v1p01_r1p14_13jan2021.pdf

[TCG	PSID]	TCG	Storage	Feature	Set:	PSID,	https://trustedcomputinggroup.org/resource/tcg-storage-
opal-feature-set-psid/

[TCG	Vendor	ID]	TCG	TPM	Vendor	ID	Registry,	https://trustedcomputinggroup.org/resource/vendor-id-
registry/

[TCG	DICE	Identity]	Implicit	Identity	Based	Device	Attestation,	2018,
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/

[TCG	DICE	Symmetric	Identity]	Symmetric	Identity	Based	Device	Attestation,	2020,
https://trustedcomputinggroup.org/resource/symmetric-identity-based-device-attestation/

[TCG	DICE	Layer]	DICE	Layering	Architecture,	2020,	https://trustedcomputinggroup.org/resource/dice-
layering-architecture/

[TCG	Server	Domain]	TCG	Server	Management	Domain	Firmware	Profile,	2020,
https://trustedcomputinggroup.org/wp-
content/uploads/TCG_ServerManagementDomainFirmwareProfile_v1p00_11aug2020.pdf

[ACPI]	ACPI	specification,	2019,	https://www.uefi.org/specifications

[ACPI	and	PnP	vendor	IDs]	https://uefi.org/PNP_ACPI_Registry

[SMBIOS]	DSP0134	System	Management	BIOS	specification,	2020,
https://www.dmtf.org/standards/smbios

[SPDM]	DSP0274	Security	Protocol	and	Data	Model	Specification,	2020,
https://www.dmtf.org/standards/pmci

[Cerberus]	Project	Cerberus	Architecture	Overview,	2018,
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus

[AMD]	AMD	Architecture	Programmer's	Manual,	2019,	https://developer.amd.com/resources/developer-
guides-manuals/

[Intel	SDM]	Intel	64	and	IA-32	Architecture	Software	Developer	Manuals,	2019,
https://software.intel.com/en-us/articles/intel-sdm

[Intel	FSP]	Intel	Firmware	Support	Package	External	Architecture	Specification,
https://software.intel.com/content/www/us/en/develop/articles/intel-firmware-support-package.html

[TrustZone]	ARM	TrustZone,	https://developer.arm.com/ip-products/security-ip/trustzone

ReferencesUnderstanding	the	Trusted	Boot	Chain	Implementation

50Revision	1.0

https://trustedcomputinggroup.org/tcg-storage-architecture-core-specification/
https://trustedcomputinggroup.org/resource/storage-work-group-storage-interface-interactions-specification/
https://trustedcomputinggroup.org/storage-work-group-storage-security-subsystem-class-opal/
https://trustedcomputinggroup.org/resource/tcg-storage-security-subsystem-class-pyrite/
https://trustedcomputinggroup.org/resource/tcg-storage-security-subsystem-class-ruby-specification/
https://trustedcomputinggroup.org/resource/tcg-storage-feature-set-block-sid-authentication-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage_BlockIDAuth_v1p01_r1p14_13jan2021.pdf
https://trustedcomputinggroup.org/resource/tcg-storage-opal-feature-set-psid/
https://trustedcomputinggroup.org/resource/vendor-id-registry/
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/symmetric-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ServerManagementDomainFirmwareProfile_v1p00_11aug2020.pdf
https://www.uefi.org/specifications
https://uefi.org/PNP_ACPI_Registry
https://www.dmtf.org/standards/smbios
https://www.dmtf.org/standards/pmci
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Architecture%20Overview.pdf
https://developer.amd.com/resources/developer-guides-manuals/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/content/www/us/en/develop/articles/intel-firmware-support-package.html
https://developer.arm.com/ip-products/security-ip/trustzone

Internet	Links
[TCG]	Trusted	Computing	Group,	https://trustedcomputinggroup.org/

[CCC]	Confidential	Computing	Consortium,	https://confidentialcomputing.io/

[TEE]	Confidential	Computing:	Hardware-Based	Trusted	Execution	for	Applications	and	Data,	2020,
https://confidentialcomputing.io/white-papers/

[EDK	II]	https://github.com/tianocore/edk2

[EDK	II	TPM2]	Jiewen	Yao,	Vincent	Zimmer,	"A	Tour	Beyond	BIOS	-	with	the	UEFI	TPM2	Support	in	EDK	II",
2014,
https://software.intel.com/sites/default/files/managed/94/2d/a_tour_beyond_bios_implementing_tpm2_su
pport_in_edkii.pdf

[EDK	II	Tcg2DumpLog]	Tcg2DumpLog	tool,
https://github.com/jyao1/EdkiiShellTool/tree/master/EdkiiShellToolPkg/Tcg2DumpLog

[EDK	II	TPM	Emulator]	EDK	II	TPM	Emulator,
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2

[UEFI	TCTI]	https://github.com/tpm2-software/tpm2-tcti-uefi

[EDK	II	Tpm2TssPkg]	EDK	II	Tpm2TssPkg,	https://github.com/flihp/edk2/tree/tpm2-tss/Tpm2TssPkg

[EDK	II	DeviceSecurityPkg]	EDK	II	DeviceSecurityPkg,
https://github.com/jyao1/edk2/tree/DeviceSecurity/DeviceSecurityPkg

[EDK	II	FSP	Manifest	Tool]	FSP	manifest	tool,
https://github.com/jyao1/FSP/tree/FspAttestation/Tools/ManifestTools

[TPM2	Software]	https://github.com/tpm2-software

[Remote	Attestation]	https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-
Attestation.html

[Microsoft	TPM2	Simulator]	https://github.com/microsoft/ms-tpm-20-ref

[TCG	TPM2	Simulator]	https://github.com/stwagnr/tpm2simulator

[OpenPower	Trusted	Boot]	OpenPOWER	secure	and	trusted	boot	,	Part	1:	Using	trusted	boot	on	IBM
OpenPOWER	servers,	2017,	https://developer.ibm.com/articles/trusted-boot-openpower/

[coreboot]	https://review.coreboot.org/,	https://github.com/coreboot

[coreboot	MeasuredBoot]	coreboot	Measured	Boot,
https://doc.coreboot.org/security/vboot/measured_boot.html

[GRUB]	http://www.gnu.org/software/grub/,	https://github.com/rhboot/shim

[Grub	Measured	Boot]	https://www.gnu.org/software/grub/manual/grub/html_node/Measured-Boot.html

[openspdm]	https://github.com/jyao1/openspdm

[Windows	BitLocker]	Windows	BitLocker	Group	Policy	Setting,

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-group-
policy-settings

[UEFI	TCG]	Vincent	Zimmer,	Shiva	Dasari	(IBM),	Sean	Brogan	(IBM),	"Trusted	Platforms:	UEFI,	PI,	and	TCG-
based	firmware,"	Intel/IBM	whitepaper,	September	2009,
http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-
outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

ReferencesUnderstanding	the	Trusted	Boot	Chain	Implementation

51Revision	1.0

https://trustedcomputinggroup.org/
https://confidentialcomputing.io/
https://confidentialcomputing.io/white-papers/
https://github.com/tianocore/edk2
https://software.intel.com/sites/default/files/managed/94/2d/a_tour_beyond_bios_implementing_tpm2_support_in_edkii.pdf
https://github.com/jyao1/EdkiiShellTool/tree/master/EdkiiShellToolPkg/Tcg2DumpLog
https://github.com/jyao1/edk2/tree/feature_tpm_emulator/EmulatorPkg/Tpm2
https://github.com/tpm2-software/tpm2-tcti-uefi
https://github.com/flihp/edk2/tree/tpm2-tss/Tpm2TssPkg
https://github.com/jyao1/edk2/tree/DeviceSecurity/DeviceSecurityPkg
https://github.com/jyao1/FSP/tree/FspAttestation/Tools/ManifestTools
https://github.com/tpm2-software
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/stwagnr/tpm2simulator
https://developer.ibm.com/articles/trusted-boot-openpower/
https://review.coreboot.org/
https://github.com/coreboot
https://doc.coreboot.org/security/vboot/measured_boot.html
http://www.gnu.org/software/grub/
https://github.com/rhboot/shim
https://www.gnu.org/software/grub/manual/grub/html_node/Measured-Boot.html
https://github.com/jyao1/openspdm
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-group-policy-settings
http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

[TCG-CW]	Ned	Smith,	A	Comparison	of	the	trusted	Computing	Group	Security	Model	with	Clark-Wilson,
2014,	https://www.semanticscholar.org/paper/A-Comparison-of-the-trusted-Computing-Group-Model-
Smith/fa82426d99b86d1040f80b8bd8e0ac4f785b29a6

[Windows	DMA	Protection]	Kernel	DMA	Protection	(Memory	Access	Protection)	for	OEMs,

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-kernel-dma-
protection

[Windows	Secured-Core	PC]	Force	firmware	code	to	be	measured	and	attested	by	Secure	Launch	on
Windows	10,	https://www.microsoft.com/security/blog/2020/09/01/force-firmware-code-to-be-measured-
and-attested-by-secure-launch-on-windows-10/

[KeyStone]	Keystone	Enclave,	https://keystone-enclave.org/

ReferencesUnderstanding	the	Trusted	Boot	Chain	Implementation

52Revision	1.0

https://www.semanticscholar.org/paper/A-Comparison-of-the-trusted-Computing-Group-Model-Smith/fa82426d99b86d1040f80b8bd8e0ac4f785b29a6
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-kernel-dma-protection
https://www.microsoft.com/security/blog/2020/09/01/force-firmware-code-to-be-measured-and-attested-by-secure-launch-on-windows-10/
https://keystone-enclave.org/

	Understanding the Trusted Boot Chain Implementation
	Tables
	Figures
	Executive Summary
	Overview
	TCG Trusted Boot Chain in EDK II
	Other Trusted Boot Chains
	Looking Forward
	Checklist for Platform Developers
	Glossary
	References

