

Table	of	Contents
Tables

Figures

Examples

Acknowledgements

1	Introduction

1.1	Overview

1.2	Organization	of	this	document

1.3	Related	information

1.3.1	UEFI	Specifications

1.3.2	Industry	Standard	Bus	Specifications

1.3.3	Other	specifications

1.3.4	EDK	II	and	UDK2010	Development	Kit

1.4	Typographic	conventions

2	UEFI	Driver	Implementation	Checklist

2.1	Design	and	implementation	of	UEFI	drivers

2.2	How	to	implement	features	in	EDK	II

3	Foundation

3.1	Basic	programming	model

3.2	Objects	managed	by	UEFI-based	firmware

3.3	UEFI	system	table

3.4	Handle	database

3.5	GUIDs

3.6	Protocols	and	handles

3.6.1	Protocols	are	produced	and	consumed

3.6.2	Protocol	interface	structure

3.6.3	Protocols	provided	in	addition	to	the	UEFI	Specification

3.6.4	Multiple	protocol	instances

3.6.5	Tag	GUID

3.7	UEFI	images

3.7.1	Applications

3.7.2	Drivers

3.8	Events	and	task	priority	levels

3.8.1	Defining	priority

3.8.2	Creating	locks

3.8.3	Using	callbacks

3.9	UEFI	device	paths

3.9.1	How	drivers	use	device	paths

3.9.2	IPF	Considerations	for	device	path	data	structures

3.9.3	Environment	variables

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

2DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.10	UEFI	driver	model

3.10.1	Device	driver

3.10.2	Bus	driver

3.10.3	Hybrid	driver

3.11	Service	Drivers

3.12	Root	Bridge	Driver

3.13	Initializing	Driver

3.14	UEFI	Driver	Model	Connection	Process

3.14.1	ConnectController()

3.14.2	Loading	UEFI	option	ROM	drivers

3.14.3	DisconnectController()

3.15	Platform	initialization

3.15.1	Connecting	PCI	Root	Bridges

3.15.2	Connecting	the	PCI	bus

3.15.3	Connecting	consoles

3.15.4	Console	drivers

3.15.5	Console	variables

3.15.6	ConIn

3.15.7	ConOut

3.15.8	ErrOut

3.15.9	Boot	Manager	Connect	All	Processing

3.15.10	Boot	Manager	Driver	List	Processing

3.15.11	Boot	Manager	BootNext	Processing

3.15.12	Boot	Manager	Boot	Option	Processing

4	General	Driver	Design	Guidelines

4.1	Common	Coding	Practices

4.1.1	Type	Checking

4.1.2	Avoid	Name	Collisions

4.1.3	Maximize	Warning	Levels

4.1.4	Compiler	Optimizations

4.2	Maximize	Platform	Compatibility

4.2.1	Never	Assume	all	UEFI	Drivers	are	Executed

4.2.2	Eliminate	System	Memory	Assumptions

4.2.3	Use	UEFI	Memory	Allocation	Services

4.2.4	Do	not	make	assumptions

4.2.5	Never	Directly	Access	Hardware	Resources

4.2.6	Memory	ordering

4.2.7	DMA

4.2.8	Supporting	Older	EFI	Specifications	and	UEFI	Specifications

4.2.9	Reduce	Poll	Frequency

4.2.10	Minimize	Time	in	Notification	Functions

4.2.11	Use	Proper	Task	Priority	Levels

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

3DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.12	Design	to	be	re-entrant

4.2.13	Do	not	use	hidden	PCI	Option	ROM	Regions

4.2.14	Store	Configuration	Data	with	Device

4.2.15	Do	not	use	hard-coded	device	path	nodes

4.2.16	Do	not	cause	errors	on	shared	storage	devices

4.2.17	Limit	use	of	Console	Services

4.2.18	Offer	alternatives	to	function	keys

4.3	Maximize	CPU	Compatibility

4.3.1	Assignment	and	comparison	operators

4.3.2	Casting	pointers

4.3.3	Converting	pointers

4.3.4	UEFI	Data	Type	Sizes

4.3.5	Negative	Numbers

4.3.6	Returning	Pointers	in	a	Function	Parameter

4.3.7	Array	Subscripts

4.3.8	Piecemeal	Structure	Allocations

4.4	Optimization	Techniques

4.4.1	Size	Reduction

4.4.2	Performance	Optimizations

4.4.3	CopyMem()	and	SetMem()	Operations

5	UEFI	Services

5.1	Services	that	UEFI	drivers	commonly	use

5.1.1	Memory	Allocation	Services

5.1.2	Miscellaneous	Services

5.1.3	Handle	Database	and	Protocol	Services

5.1.4	Task	Priority	Level(TPL)	Services

5.1.5	Event	services

5.1.6	SetTimer()

5.1.7	Stall()

5.2	Services	that	UEFI	drivers	rarely	use

5.2.1	ConnectController()	and	DisconnectController()

5.2.2	ReinstallProtocolInterface()

5.2.3	LocateDevicePath()

5.2.4	LoadImage()	and	StartImage()

5.2.5	GetVariable()	and	SetVariable()

5.2.6	QueryVariableInfo	()

5.2.7	GetTime()

5.2.8	CalculateCrc32()

5.2.9	ConvertPointer()

5.2.10	InstallConfigurationTable()

5.2.11	GetNextMonotonicCount()

5.3	Services	that	UEFI	drivers	should	not	use

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

4DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.1	InstallProtocolInterface()

5.3.2	UninstallProtocolInterface()

5.3.3	HandleProtocol()

5.3.4	LocateHandle()

5.3.5	ProtocolsPerHandle()

5.3.6	RegisterProtocolNotify()

5.3.7	UnloadImage()

5.3.8	GetNextVariableName()

5.3.9	SetWatchdogTimer()

5.3.10	SetTime(),	GetWakeupTime(),	and	SetWakeupTime()

5.3.11	GetMemoryMap()

5.3.12	ExitBootServices()

5.3.13	SetVirtualAddressMap()

5.3.14	QueryCapsuleCapabilities()

5.3.15	UpdateCapsule()

5.3.16	ResetSystem()

5.3.17	Exit()

5.3.18	GetNextHighMonotonicCount()

6	UEFI	Driver	Categories

6.1	Device	drivers

6.1.1	Required	Device	Driver	Features

6.1.2	Optional	Device	Driver	Features

6.1.3	Compatibility	with	Older	EFI/UEFI	Specifications

6.1.4	Device	drivers	with	one	driver	binding	protocol

6.1.5	Device	drivers	with	multiple	driver	binding	protocols

6.1.6	Device	driver	protocol	management

6.2	Bus	drivers

6.2.1	Required	Bus	Driver	Features

6.2.2	Optional	Bus	Driver	Features

6.2.3	Bus	drivers	with	one	driver	binding	protocol

6.2.4	Bus	drivers	with	multiple	driver	binding	protocols

6.2.5	Bus	driver	protocol	and	child	management

6.2.6	Bus	drivers	that	produce	one	child	in	Start()

6.2.7	Bus	drivers	that	produce	all	children	in	Start()

6.2.8	Bus	drivers	that	produce	at	most	one	child	in	Start()

6.2.9	Bus	drivers	that	produce	no	children	in	Start()

6.2.10	Bus	drivers	that	produce	children	with	multiple	parents

6.3	Hybrid	drivers

6.3.1	Required	Hybrid	Driver	Features

6.3.2	Optional	Hybrid	Driver	Features

6.4	Service	Drivers

6.5	Root	Bridge	Drivers

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

5DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.6	Initializing	Drivers

7	Driver	Entry	Point

7.1	Optional	Features

7.2	UEFI	Driver	Model

7.2.1	Single	Driver	Binding	Protocol

7.2.2	Multiple	Driver	Binding	Protocols

7.2.3	Adding	Driver	Health	Protocol	Feature

7.2.4	Adding	Driver	Family	Override	Protocol	Feature

7.3	Adding	the	Driver	Supported	EFI	Version	Protocol	Feature

7.4	Adding	HII	Packages	Feature

7.5	Adding	HII	Config	Access	Protocol	Feature

7.6	Adding	the	Unload	Feature

7.7	Adding	the	Exit	Boot	Services	feature

7.8	Initializing	Driver	entry	point

7.9	Service	Driver	entry	point

7.10	Root	bridge	driver	entry	point

7.11	Runtime	Drivers

8	Private	Context	Data	Structures

8.1	Containing	Record	Macro

8.2	Data	structure	design

8.3	Allocating	private	context	data	structures

8.4	Freeing	private	context	data	structures

8.5	Retrieving	private	context	data	structures

9	Driver	Binding	Protocol

9.1	Driver	Binding	Protocol	Implementations

9.2	Driver	Binding	Protocol	Template

9.3	Testing	Driver	Binding	Protocol

10	UEFI	Service	Binding	Protocol

10.1	Service	Binding	Protocol	Implementations

10.2	Service	Driver

10.3	UEFI	Driver	Model	Driver

11	UEFI	Driver	and	Controller	Names

11.1	Component	Name	Protocol	Implementations

11.2	GetDriverName()	Implementations

11.3	GetControllerName()	Implementations

11.3.1	Device	Drivers

11.3.2	Bus	Drivers	and	Hybrid	Drivers

11.4	Testing	Component	Name	Protocols

12	UEFI	Driver	Configuration

12.1	HII	overview

12.1.1	HII	Database	and	Package	Lists

12.2	General	steps	for	implementing	HII	functionality

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

6DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3	HII	Protocols

12.3.1	HII	Database	Protocol	and	HII	String	Protocol

12.3.2	HII	Config	Routing	Protocol

12.3.3	HII	Config	Access	Protocol

12.3.4	Rarely	used	HII	protocols

12.4	HII	functionality

12.4.1	Branding,	and	displaying	a	banner

12.4.2	Specifying	supported	languages

12.4.3	Specifying	configuration	information

12.4.4	Making	configuration	data	available	to	other	drivers

12.4.5	Check	to	see	if	configuration	parameters	are	valid

12.5	Forms	and	VFR	files

12.6	HII	Implementation	Recommendations

12.6.1	Minimize	callbacks

12.6.2	Don't	reparse	the	package	list

12.6.3	Concentrate	on	critical	aspects	of	the	driver

12.6.4	Perform	usability	testing

12.7	Porting	to	UEFI	HII	functionality

13	UEFI	Driver	Diagnostics

13.1	Driver	Diagnostics	Protocol	Implementations

13.2	RunDiagnostics()	Implementations

13.2.1	Device	Drivers

13.2.2	Bus	Drivers	and	Hybrid	Drivers

13.2.3	RunDiagnostics()	as	a	UEFI	Application

13.3	Testing	Driver	Diagnostics	Protocols

14	Driver	Health	Protocol

14.1	Driver	Health	Protocol	Implementation

14.2	GetHealthStatus()	Implementations

14.2.1	Device	Drivers

14.2.2	Bus	Drivers	and	Hybrid	Drivers

14.3	Repair()	Implementation

14.3.1	Device	Drivers

14.3.2	Bus	Drivers	and	Hybrid	Drivers

15	Driver	Family	Override	Protocol

15.1	Driver	Family	Override	Protocol	Implementation

15.2	GetVersion()	Implementation

16	Driver	Supported	EFI	Version	Protocol

16.1	Driver	Supported	EFI	Version	Protocol	Implementation

17	Bus-Specific	Driver	Override	Protocol

17.1	Bus	Specific	Driver	Override	Protocol	Implementation

17.2	Private	Context	Data	Structure

17.3	Bus	Specific	Driver	Override	Protocol	Installation

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

7DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.4	GetDriver()	Implementation

17.5	Adding	Driver	Image	Handles

18	PCI	Driver	Design	Guidelines

18.1	PCI	Root	Bridge	I/O	Protocol	Drivers

18.2	PCI	Bus	Drivers

18.2.1	Hot-plug	PCI	buses

18.3	PCI	drivers

18.3.1	Supported()

18.3.2	Start()	and	Stop()

18.3.3	PCI	Cards	with	Multiple	PCI	Controllers

18.4	Accessing	PCI	resources

18.4.1	Memory-mapped	I/O	ordering	issues

18.4.2	Hardfail/Softfail

18.4.3	When	a	PCI	device	does	not	receive	resources

18.5	PCI	DMA

18.5.1	Map()	Service	Cautions

18.5.2	Weakly	ordered	memory	transactions

18.5.3	Bus	Master	Read	and	Write	Operations

18.5.4	Bus	Master	Common	Buffer	Operations

18.5.6	DMA	Bus	Master	Read	Operation

18.5.7	DMA	Bus	Master	Write	Operation

18.5.8	DMA	Bus	Master	Common	Buffer	Operation

18.6	PCI	Optimization	Techniques

18.6.1	PCI	I/O	fill	operations

18.6.2	PCI	I/O	FIFO	operations

18.6.3	PCI	I/O	CopyMem()	Operations

18.6.4	PCI	Configuration	Header	Operations

18.6.5	PCI	I/O	MMIO	Buffer	Operations

18.6.6	PCI	I/O	Polling	Operations

18.7	PCI	Option	ROM	Images

18.7.1	EfiRom	Utility

18.7.2	Using	INF	File	to	Generate	PCI	Option	ROM	Image

18.7.3	Using	FDF	File	to	Generate	PCI	Option	ROM	Image

19	USB	Driver	Design	Guidelines

19.1	USB	Host	Controller	Driver

19.1.1	Driver	Binding	Protocol	Supported()

19.1.2	Driver	Binding	Protocol	Start()

19.1.3	Driver	Binding	Protocol	Stop()

19.1.4	USB	2	Host	Controller	Protocol	Data	Transfer	Services

19.2	USB	Bus	Driver

19.3	USB	Device	Driver

19.3.1	Driver	Binding	Protocol	Supported()

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

8DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3.2	Driver	Binding	Protocol	Start()	and	Stop()

19.3.3	I/O	Protocol	Implementations

19.3.4	State	machine	consideration

19.4	Debug	Techniques

19.4.1	Debug	Message	Output

19.4.2	USB	Bus	Analyzer

19.4.3	USBCheck/USBCV	Tool

19.5	Nonconforming	USB	Devices

20	SCSI	Driver	Design	Guidelines

20.1	SCSI	Host	Controller	Driver

20.1.1	Single-Channel	SCSI	Adapters

20.1.2	Multi-Channel	SCSI	Adapters

20.1.3	SCSI	Adapters	with	RAID

20.1.4	Implementing	driver	binding	protocol

20.1.5	Implementing	Extended	SCSI	Pass	Thru	Protocol

20.1.6	SCSI	command	set	device	considerations

20.1.7	Discover	a	SCSI	channel

20.1.8	SCSI	Device	Path

20.2	SCSI	Bus	Driver

20.3	SCSI	Device	Driver

20.3.1	Driver	Binding	Protocol	Supported()

20.3.2	Driver	Binding	Protocol	Start()	and	Stop()

20.3.3	I/O	Protocol	Implementations

21	ATA	Driver	Design	Guidelines

21.1	ATA	Host	Controller	Driver

21.1.1	Implementing	Driver	Binding	Protocol

21.1.2	Implementing	ATA	Pass	Thru	Protocol

21.1.3	ATA	Command	Set	Considerations

21.1.4	ATA	Device	Paths

21.2	ATA	Bus	Driver

22	Text	Console	Driver	Design	Guidelines

22.1	Assumptions

22.2	Simple	Text	Input	Protocol	Implementation

22.2.1	Reset()	Implementation

22.2.2	ReadKeyStroke()	and	ReadKeyStrokeEx()	Implementation

22.2.3	WaitForKey	and	WaitForKeyEx	Notification	Implementation

22.2.4	SetState()	Implementation

22.2.5	RegisterKeyNotify()	Implementation

22.2.6	UnregisterKeyNotify()	Implementation

22.3	Simple	Text	Output	Protocol	Implementation

22.3.1	Reset()	Implementation

22.3.2	OutputString()	Implementation

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

9DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.3	TestString()	Implementation

22.3.4	QueryMode()	Implementation

22.3.5	SetMode()	Implementation

22.3.6	SetAttribute()	Implementation

22.3.7	ClearScreen()	Implementation

22.3.8	SetCursorPosition()	Implementation

22.3.9	EnableCursor()	Implementation

22.4	Serial	I/O	Protocol	Implementations

22.4.1	Reset()	Implementation

22.4.2	SetAttributes()	Implementation

22.4.3	SetControl()	and	GetControl()	Implementation

22.4.4	Write()	and	Read()	Implementation

23	Graphics	Driver	Design	Guidelines

23.1	Assumptions

23.2	Graphics	Output	Protocol	Implementation

23.2.1	Single	output	graphics	adapters

23.2.2	Multiple	output	graphics	adapters

23.2.3	Driver	Binding	Protocol	Implementation

23.2.4	QueryMode(),	SetMode(),	and	Blt()	Implementation

23.3	EDID	Discovered	Protocol	Implementation

23.4	EDID	Active	Protocol	Implementation

23.5	EDID	Override	Protocol	Implementation

23.5.1	GetEdid()	Implementation

24	Mass	Storage	Driver	Design	Guidelines

24.1	Assumptions

24.2	Block	I/O	Protocol	Implementations

24.2.1	Reset()	Implementation

24.2.2	ReadBlocks()	and	ReadBlocksEx()	Implementation

24.2.3	WriteBlocks()	and	WriteBlockEx()	Implementation

24.2.4	FlushBlocks()	and	FlushBlocksEx()	Implementation

24.3	Storage	Security	Protocol	Implementation

25	Network	Driver	Design	Guidelines

25.1	Assumptions

25.2	NII	Protocol	and	UNDI	Implementations

25.2.1	Exit	Boot	Services	Event

25.2.2	Set	Virtual	Address	Map	Event

25.2.3	Memory	leaks	caused	by	UNDI

25.3	Simple	Network	Protocol	Implementations

25.4	Managed	Network	Protocol	Implementations

26	User	Credential	Driver	Design	Guidelines

26.1	Assumptions

26.2	User	Credential	Protocol	Implementation

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

10DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

27	Load	File	Driver	Design	Guidelines

27.1	Assumptions

27.2	Load	File	Protocol	Implementation

27.2.1	LoadFile()	Implementation

28	IPF	Platform	Porting	Considerations

28.1	General	notes	about	porting	to	IPF	platforms

28.2	Alignment	Faults

28.3	Casting	Pointers

28.4	Packed	Structures

28.5	UEFI	Device	Paths

28.6	PCI	Configuration	Header	64-bit	BAR

28.7	Speculation	and	floating	point	register	usage

29	EFI	Byte	Code	Porting	Considerations

29.1	No	Assembly	Support

29.2	No	C++	Support

29.3	No	Floating	Point	Support

29.4	Use	of	sizeof()

29.4.1	Global	Variable	Initialization

29.4.2	CASE	Statements

29.5	Natural	Integers	and	Fixed	Size	Integers

29.6	Memory	ordering

29.7	Performance	considerations

29.7.1	Performance	considerations	for	data	types

29.8	UEFI	Driver	Entry	Point

30	Building	UEFI	Drivers

30.1	Prerequisites

30.2	Create	EDK	II	Package

30.3	Create	UEFI	Driver	Directory

30.3.1	Disk	I/O	Driver	Example

30.3.2	Reserved	Directory	Names

30.3.3	EBC	Virtual	Machine	Driver	Example

30.4	Adding	a	UEFI	Driver	to	DSC	File

30.5	Building	a	UEFI	driver

31	Testing	and	Debugging	UEFI	Drivers

31.1	Native	and	EBC

31.2	Compiler	Optimizations

31.3	UEFI	Shell	Debugging

31.3.1	Testing	Specific	Protocols

31.3.2	Other	Testing

31.3.3	Loading	UEFI	drivers

31.3.4	Unloading	UEFI	drivers

31.3.5	Connecting	UEFI	Drivers

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

11DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.6	Driver	and	Device	Information

31.3.7	Testing	the	Driver	Configuration	Protocol

31.3.8	Testing	the	Driver	Diagnostics	Protocols

31.4	Debugging	code	statements

31.4.1	Configuring	DebugLib	with	EDK	II

31.4.2	Capturing	Debug	Messages

31.5	POST	codes

31.5.1	POST	Card	Debug

31.5.2	Other	options

32	Distributing	UEFI	Drivers

32.1	PCI	Option	ROM

32.2	Integrated	in	Platform	FLASH

32.3	EFI	System	Partition

Appendix	A	EDK	II	File	Templates

A.1	UEFI	Driver	Template

A.2	UEFI	Driver	Optional	Protocol	Templates

A.2.1	ComponentName.c	File

A.2.2	DriverConfiguration.c	File

A.2.3	HiiConfigAccess.c	File

A.2.4	DriverHealth.c	File

A.2.5	DriverFamilyOverride.c	File

A.2.6	BusSpecificDriverOverride.c	File

A.2.7	DriverDiagnostics.c	File

A.3	UEFI	Driver	I/O	Protocol	Templates

A.3.1	Usb2Hc.c	File

A.3.2	ExtScsiPassThru.c	File

A.3.3	AtaPassThru.c	File

A.3.4	SimpleTextInput.c	File

A.3.5	SimpleTextOutput.c	File

A.3.6	SerialIo.c	File

A.3.7	GraphicsOutput.c	File

A.3.8	BlockIo.c	File

A.3.9	NiiUndi.c	File

A.3.10	SimpleNetwork.c	File

A.3.11	UserCredential.c	File

A.3.12	LoadFile.c	File

A.4	Platform	Specific	UEFI	Driver	Templates

A.4.1	EdidOverride.c	File

A.5	EDK	II	Package	Extension	Templates

A.5.1	Protocol	File	Template

A.5.2	GUID	File	Template

A.5.3	Library	Class	File	Template

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

12DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5.4	Including	Protocols,	GUIDs,	and	Library	Classes

Appendix	B	EDK	II	Sample	Drivers

Appendix	C	Glossary

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

13DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Tables

Table	1-Organization	of	the	UEFI	Driver	Writers	Guide
Table	2-Classes	of	UEFI	drivers	to	develop
Table	3-Protocols	produced	by	various	devices
Table	4-Mapping	operations	to	UEFI	drivers
Table	5-Description	of	handle	types
Table	6-Description	of	image	types
Table	7-Description	of	event	types
Table	8-Task	priority	levels	defined	in	UEFI
Table	9-Types	of	device	path	nodes	defined	in	UEFI	Specification
Table	10-Protocols	separating	the	loading	and	starting/stopping	of	drivers
Table	11-I/O	protocols	produced	in	the	Start()	function	for	different	device	classes
Table	12-Connecting	controllers:	Driver	connection	precedence	rules
Table	13-UEFI	console	drivers
Table	14-Alternate	key	sequences	for	remote	terminals
Table	15-Space	optimizations
Table	16-Speed	optimizations
Table	17-Alphabetical	listing	of	UEFI	services
Table	18-UEFI	services	that	are	commonly	used	by	UEFI	drivers
Table	19-UEFI	services	that	are	rarely	used	by	UEFI	drivers
Table	20-UEFI	services	that	should	not	be	used	by	UEFI	drivers
Table	21-UEFI	Driver	Feature	Selection	Matrix
Table	22-Service	Binding	Protocols
Table	23-Health	Status	Values
Table	24-UEFI	Specific	Revision	Values
Table	25-Classes	of	PCI	drivers
Table	26-PCI	Attributes
Table	27-EDK	II	attributes	#defines
Table	28-PCI	BAR	attributes
Table	29-PCI	Embedded	Device	Attributes
Table	30-Classes	of	USB	drivers
Table	31-Classes	of	SCSI	drivers
Table	32-SCSI	device	path	examples
Table	33-Classes	of	ATA	drivers
Table	34-SATA	device	path	examples
Table	35-Serial	I/O	protocol	control	bits
Table	36-Network	driver	differences
Table	37-!PXE	interface	structure
Table	38-CDB	structure
Table	39-Reserved	directory	names
Table	40-UEFI	Shell	commands
Table	41-Other	Shell	Testing	Procedures
Table	42-UEFI	Shell	commands	for	loading	UEFI	drivers
Table	43-UEFI	Shell	commands	for	unloading	UEFI	drivers
Table	44-UEFI	Shell	commands	for	connecting	UEFI	drivers
Table	45-UEFI	Shell	commands	for	driver	and	device	information
Table	46-Error	levels
Table	47-UEFI	Driver	Properties
Table	48-Sample	UEFI	Driver	Properties
Table	49-Definitions	of	terms

TablesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

14DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

TablesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

15DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figures

Figure	1-Object	managed	by	UEFI-based	firmware
Figure	2-Handle	database
Figure	3-Handle	types
Figure	4-Construction	of	a	ProtocolFir
Figure	5-Image	types
Figure	6-Event	types
Figure	7-Booting	sequence	for	UEFI	operational	model
Figure	8-A	sample	system	configuration
Figure	9-Device	driver	with	single	Driver	Binding	Protocol
Figure	10-Device	driver	with	optional	features
Figure	11-Device	driver	with	multiple	Driver	Binding	Protocols
Figure	12-Device	driver	protocol	management
Figure	13-Complex	device	driver	protocol	management
Figure	14-Bus	driver	protocol	management
Figure	15-Testing	Component	Name	Protocol	GetDriverName()
Figure	16-Testing	Component	Name	Protocol	GetControllerName()
Figure	17-Testing	Driver	Diagnostics	Protocols
Figure	18-Driver	Health	Status	State	Diagram
Figure	19-PCI	driver	stack
Figure	20-A	multi-controller	PCI	device
Figure	21-USB	driver	stack
Figure	22-Sample	SCSI	driver	stack	on	single-channel	adapter
Figure	23-Sample	SCSI	driver	implementation	on	a	multichannel	adapter
Figure	24-Sample	SCSI	driver	implementation	on	multichannel	RAID	adapter
Figure	25-Console	Geometry
Figure	26-Example	single-output	graphics	driver	Implementation
Figure	27-Example	dual-output	graphics	driver	implementation
Figure	28-Software	BLT	Buffer
Figure	29-UEFI	UNDI	Network	Stack
Figure	30-SNP	Based	Network	Stack

FiguresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

16DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Examples

Example	1-EFI_GUID	data	structure	in	EDK	II
Example	2-Protocol	structure	in	EDK	II
Example	3-Device	Path	Header
Example	4-PCI	Device	Path
Example	5-Device	Path	Examples
Example	6-ConnectController()	UEFI	Boot	Service
Example	7-Stronger	type	checking
Example	8-Assignment	operation	warnings
Example	9-Comparison	operation	warnings
Example	10-Examples	of	casting	pointers
Example	11-Negative	number	example
Example	12-Casting	OUT	function	parameters
Example	13-Array	subscripts	example
Example	14-Incorrect	and	correct	piecemeal	structure	allocation
Example	15-CopyMem()	and	SetMem()	Speed	Optimizations
Example	16-Allocate	and	free	pool	using	UEFI	Boot	Services	Table
Example	17-Allocate	and	free	pool	using	MemoryAllocationLib
Example	18-Allocate	and	clear	pool	using	MemoryAllocationLib
Example	19-Allocate	and	initialize	pool	using	MemoryAllocationLib
Example	20-Allocate	and	free	pages	using	UEFI	Boot	Services	Table
Example	21-Allocate	and	free	pages	using	MemoryAllocationLib
Example	22-Allocate	and	free	aligned	pages	using	MemoryAllocationLib
Example	23-Allocate	and	clear	a	buffer	using	UEFI	Boot	Services
Example	24-Allocate	and	clear	a	buffer	using	BaseMemoryLib
Example	25-Allocate	and	clear	a	buffer	using	BaseMemoryLib
Example	26-Allocate	and	copy	buffer
Example	27-Allocate	and	clear	a	buffer	using	BaseMemoryLib
Example	28-Install	protocols	in	UEFI	Driver	entry	point.
Example	29-Install	protocols	in	UEFI	Driver	entry	point	using	UefiLib.
Example	30-Uninstall	protocols	in	UEFI	Driver	Unload()	function.
Example	31-Add	child	handle	to	handle	database
Example	32-Remove	child	handle	from	handle	database.
Example	33-Add	tag	GUID	to	a	controller	handle.
Example	34-Remove	tag	GUID	from	a	controller	handle.
Example	35-Retrieve	all	handles	in	handle	database
Example	36-Retrieve	all	Block	I/O	Protocols	in	handle	database
Example	37-Locate	first	Decompress	Protocol	in	handle	database
Example	38-OpenProtocol()	function	prototype
Example	39-OpenProtocol()	TEST_PROTOCOL
Example	40-OpenProtocol()	GET_PROTOCOL
Example	41-OpenProtocol()	EFI_OPEN_PROTOCOL_BY_DRIVER
Example	42-OpenProtocol()	EFI_OPEN_PROTOCOL_BY_DRIVER	|
Example	43-OpenProtocol()
Example	44-Count	child	handles	using	OpenProtocolInformation()
Example	45-Using	TPL	Services	for	a	Global	Lock
Example	46-Using	UEFI	Library	for	a	Global	Lock
Example	47-Create	and	close	a	wait	event
Example	48-Create	and	Close	an	Exit	Boot	Services	Event
Example	49-Create	and	Close	an	Exit	Boot	Services	Event	Group
Example	50-Create	and	Signal	an	Event	Group

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

17DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	51-Signal	a	key	press	event
Example	52-Wait	for	one-shot	timer	event	to	be	signaled
Example	53-Create	periodic	timer	event
Example	54-Create	one-shot	timer	event
Example	55-Cancel	and	close	one-shot	timer	event
Example	56-Fixed	delay	stall
Example	57-Poll	for	completion	status	using	stalls
Example	58-Recursive	connect	in	response	to	a	hot-add	operation
Example	59-Recursive	disconnect	in	response	to	a	hot-remove	operation
Example	60-Disconnect	a	UEFI	Driver	from	all	handles
Example	61-Reinstall	Block	I/O	Protocol	for	media	change
Example	62-Reinstall	Device	Path	Protocol	for	Serial	I/O	attributes	change
Example	63-Locate	Device	Path
Example	64-Load	and	Start	a	UEFI	Application	from	a	PCI	Option	ROM
Example	65-Write	configuration	structure	to	a	UEFI	variable
Example	66-Read	configuration	structure	from	a	UEFI	variable
Example	67-Use	UefiLib	to	read	configuration	structure	from	a	UEFI	variable
Example	68-Collect	information	about	the	UEFI	variable	store
Example	69-Get	time	and	date
Example	70-Get	real	time	clock	capabilities
Example	71-Calculate	and	update	32-bit	CRC	in	UEFI	System	Table
Example	72-Calculate	and	32-bit	CRC	for	a	structure
Example	73-Verify	32-bit	CRC	in	UEFI	System	Table
Example	74-Create	a	Set	Virtual	Address	Map	event
Example	75-Convert	a	global	pointer	from	physical	to	virtual
Example	76-Using	UefiRuntimeLib	to	convert	a	pointer
Example	77-Using	UefiRuntimeLib	to	convert	a	function	pointer
Example	78-Using	UefiRuntimeLib	to	convert	a	linked	list
Example	79-Add	or	update	a	configuration	table	entry
Example	80-Add	or	update	a	configuration	table	entry
Example	81-Wait	for	key	press	or	timer	event
Example	82-Retrieve	64-bit	monotonic	counter	value.
Example	83-Print	all	UEFI	variable	store	contents
Example	84-ResetSystem
Example	85-Exit	from	a	UEFI	Driver
Example	87-UEFI	Driver	INF	File
Example	88-EDK	II	UefiLib	driver	initialization	functions
Example	89-Single	Driver	Binding	Protocol
Example	90-Single	Driver	Binding	Protocol	with	optional	features
Example	91-Multiple	Driver	Binding	Protocols
Example	92-Driver	Heath	Protocol	Feature
Example	93-Driver	Family	Override	Protocol	Feature
Example	94-Driver	Supported	EFI	Version	Protocol	Feature
Example	95-HII	Packages	feature
Example	96-UEFI	Driver	INF	File	with	HII	Packages	feature
Example	97-HII	Config	Access	Protocol	Feature
Example	98-Add	the	Unload	feature
Example	99-UEFI	Driver	INF	File	with	Unload	feature
Example	100-UEFI	Driver	Model	Unload	Feature
Example	101-Adding	the	Exit	Boot	Services	feature
Example	102-Add	the	Unload	and	Exit	Boot	Services	event	features
Example	103-Initializing	driver	entry	point
Example	104-Service	driver	entry	point	using	image	handle

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

18DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	105-Service	driver	entry	point	creating	new	handle
Example	106-Single	PCI	root	bridge	driver	entry	point
Example	107-Multiple	PCI	root	bridge	driver	entry	point
Example	108-UEFI	Runtime	Driver	entry	point
Example	109-UEFI	Runtime	Driver	INF	File
Example	110-UEFI	Runtime	Driver	entry	point	with	Unload	feature
Example	111-Containing	record	macro	definitions
Example	112-Containing	record	macro	definitions
Example	113-Simple	private	context	data	structure
Example	114-Complex	private	context	data	structure
Example	115-Allocation	of	a	private	context	data	structure
Example	116-Library	allocation	of	private	context	data	structure
Example	117-Disk	I/O	allocation	of	private	context	data	structure
Example	118-Free	a	private	context	data	structure
Example	119-Disk	I/O	free	of	a	private	context	data	structure
Example	120-Retrieving	the	Disk	I/O	private	context	data	structure
Example	121-Retrieving	the	disk	I/O	private	context	data	structure	in	Stop()
Example	122-Driver	Binding	Protocol
Example	123-Driver	Binding	Protocol	declaration
Example	124-Service	Binding	Protocol
Example	125-Service	Binding	Protocol	for	Service	Driver
Example	126-Component	Name	Protocol
Example	127-Component	Name	2	Protocol
Example	128-Driver	Diagnostics	Protocol	declaration
Example	129-GetDriverName()	for	Device,	Bus,	or	Hybrid	Driver
Example	130-GetControllerName	()	Service
Example	131-GetControllerName()	for	a	Device	Driver
Example	132-Controller	names	in	private	context	data	structure
Example	133-Adding	a	controller	name	to	a	dynamic	controller	name	table
Example	134-Freeing	a	dynamic	controller	name	table
Example	135-Device	driver	with	dynamic	controller	names
Example	136-GetControllerName()	for	a	Bus	Driver	or	Hybrid	Driver
Example	137-Example	of	a	Unicode	string	file
Example	138-Example	of	a	Unicode	string	file
Example	139-ExtractConfig()	Function
Example	140-RouteConfig()	Function
Example	141-Callback	function
Example	142-Unicode	string	file	with	support	for	multiple	languages
Example	143-Sample	VFR	file,	simplified
Example	144-Driver	Diagnostics	Protocol
Example	145-Driver	Diagnostics	2	Protocol
Example	146-Driver	Diagnostics	Protocol	declaration
Example	147-RunDiagnostics()	Service
Example	148-RunDiagnostics()	for	a	Device	Driver
Example	149-RunDiagnostics()	for	a	Bus	Driver	or	Hybrid	Driver
Example	150-Driver	Health	Protocol
Example	151-Install	Driver	Health	Protocol
Example	152-GetHealthStatus()	Function	of	the	Driver	Health	Protocol
Example	153-GetHealthStatus()	for	a	Device	Driver
Example	154-GetHealthStatus()	for	a	Bus	Driver	or	Hybrid	Driver
Example	155-Repair()	Function	for	a	Device	Driver
Example	156-Repair()	for	a	Bus	Driver	or	Hybrid	Driver
Example	157-Driver	Family	Override	Protocol

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

19DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	158-Install	Driver	Family	Override	Protocol
Example	159-GetVersion()	Function	of	the	Driver	Family	Override	Protocol
Example	160-Driver	Support	EFI	Version	Protocol
Example	161-Driver	Supported	EFI	Version	Protocol	Feature
Example	162-Bus	Specific	Driver	Override	Protocol
Example	163-Private	Context	Data	Structure	with	a	Bus	Specific	Driver	Override	Protocol
Example	164-Private	Context	Data	Structure	Initialization
Example	165-Install	Bus	Specific	Driver	Override	Protocol
Example	166-Uninstall	Bus	Specific	Driver	Override	Protocol
Example	167-GetDriver()	Function	of	a	Bus	Specific	Driver	Override	Protocol
Example	168-Adding	Driver	Image	Handles
Example	169-Supported()	Reading	partial	PCI	Configuration	Header
Example	170-Supported()	Reading	entire	PCI	Configuration	Header
Example	171-Start()	for	a	64-bit	DMA-capable	PCI	controller
Example	172-Restore	PCI	Attributes	in	Stop()
Example	173-Completing	a	memory	write	transaction
Example	174-Accessing	ISA	resources	on	a	PCI	controller
Example	175-Locate	PCI	handles	with	matching	bus	number
Example	176-Map()	Function
Example	177-Completing	a	bus	master	write	operation
Example	178-Bus	master	read	operation
Example	179-Bus	master	write	operation
Example	180-Allocate	bus	master	common	buffer
Example	181-Free	bus	master	common	buffer
Example	182-PCI	I/O	8-bit	fill	with	a	loop
Example	183-PCI	I/O	32-bit	fill	with	a	loop
Example	184-PCI	I/O	8-bit	fill	without	a	loop
Example	185-PCI	I/O	32-bit	fill	without	a	loop
Example	186-PCI	I/O	FIFO	using	a	loop
Example	187-PCI	I/O	FIFO	without	a	loop
Example	188-Scroll	frame	buffer	using	a	loop
Example	189-Scroll	frame	buffer	without	a	loop
Example	190-Read	PCI	configuration	using	a	loop
Example	191-Read	PCI	configuration	32	bits	at	a	time
Example	192-Read	PCI	configuration	32	bits	at	a	time
Example	193-Write	1MB	Frame	Buffer	using	a	loop
Example	194-Write	1MB	Frame	Buffer	with	no	loop
Example	195-Using	Mem.Read()	and	Stall()	to	poll	for	1	second
Example	196-Using	PollIo()	to	poll	for	1	second
Example	197-EfiRom	Utility	Help
Example	198-EfiRom	Utility	Dump	Feature
Example	199-UEFI	Driver	INF	File	for	PCI	Option	ROM
Example	200-Specify	name	of	FDF	file	from	a	DSC	file
Example	201-Using	an	FDF	file	to	Generate	PCI	Option	ROM	images
Example	202-USB	2	Host	Controller	Protocol
Example	203-USB	I/O	Protocol
Example	204-Supported()	service	for	USB	host	controller	driver
Example	205-Disable	USB	Legacy	Support
Example	206-Supported()	for	a	USB	device	driver
Example	207-USB	mass	storage	driver	private	context	data	structure
Example	208-USB	Mouse	Private	Context	Data	Structure
Example	209-Setup	asynchronous	interrupt	transfer	for	USB	mouse	driver
Example	210-Completing	an	asynchronous	interrupt	transfer

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

20DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	211-Retrieving	pointer	movement
Example	212-Extended	SCSI	Pass	Thru	Protocol
Example	213-SCSI	Pass	Thru	Mode	Structure	for	Single	Channel	Adapter
Example	214-SCSI	Pass	Thru	Mode	Structure	for	Multi-Channel	Adapter
Example	215-SCSI	Pass	Thru	Mode	Structures	for	RAID	SCSI	adapter
Example	216-Building	Device	Path	for	ATAPI	Device
Example	217-Non-Blocking	Extended	SCSI	Pass	Thru
Example	218-Blocking	and	non-blocking	modes
Example	219-Supported()	for	a	SCSI	device	driver
Example	220-ATA	Pass	Thru	Protocol
Example	221-ATA	Pass	Thru	Mode	Structure
Example	222-SCSI	Pass	Thru	Mode	Structures	for	RAID	SCSI	adapter
Example	223-Simple	Text	Input	Protocol
Example	224-Simple	Text	Input	Ex	Protocol
Example	225-Simple	Text	Output	Protocol
Example	226-Light	reset	of	terminal	driver
Example	227-Full	reset	of	terminal	driver
Example	228-Query	current	Simple	Text	Output	Mode
Example	229-Query	all	Simple	Text	Output	Modes
Example	230-Simple	Text	Output	Protocol
Example	231-Graphics	Output	Protocol
Example	232-Graphics	Output	Protocol	Blt()	Service
Example	233-EDID	Discovered	Protocol
Example	234-EDID	Active	Protocol
Example	235-DID	Override	Protocol
Example	236-Block	I/O	Protocol
Example	237-Block	I/O	2	Protocol
Example	238-Storage	Security	Command	Protocol
Example	239-Network	Interface	Identifier	Protocol
Example	240-Simple	Network	Protocol
Example	241-User	Credential	Protocol
Example	242-Load	File	Protocol
Example	243-Pointer-cast	alignment	fault
Example	244-Corrected	pointer-cast	alignment	fault
Example	245-Packed	structure	alignment	fault
Example	246-Corrected	packed	structure	alignment	fault
Example	247-UEFI	device	path	node	alignment	fault
Example	248-Corrected	UEFI	device	path	node	alignment	fault
Example	249-Accessing	a	64-bit	BAR	in	a	PCI	configuration	header
Example	250-Size	of	data	types	with	EBC
Example	251-Global	Variable	Initialization	that	fails	for	EBC
Example	252-Global	Variable	Initialization	that	works	for	EBC
Example	253-Case	statements	that	fail	for	EBC
Example	254-Case	statements	that	work	for	EBC
Example	255-EDK	II	Package	Directory
Example	256-EDK	II	Package	DEC	File
Example	257-EDK	II	Package	DSC	File
Example	258-UEFI	Driver	Directory
Example	259-UEFI	Driver	INF	File
Example	260-UEFI	Driver	C	Source	File
Example	261-Disk	I/O	UEFI	Driver	Source	Files
Example	262-EBC	driver	with	instruction	set	architecture-specific	files
Example	263-EDK	II	Package	DSC	File

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

21DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	264-Build	Output	Directory
Example	265-EDK	II	Package	DSC	File	with	Optimizations	Disabled
Example	266-EDK	II	Package	DSC	File	with	Build	Options
Example	268-EDK	II	Package	DSC	File	with	Build	Options
Example	269-UEFI	Driver	Entry	Point	with	POST_CODE()	Macros
Example	270-Enable	POST_CODE()	macros	from	DSC	file
Example	A-1-UEFI	Driver	INF	file	template
Example	A-2-UEFI	Runtime	Driver	INF	file	template
Example	A-3-UEFI	Driver	include	file	template
Example	A-4-UEFI	Driver	implementation	template
Example	A-5-UEFI	Driver	protocol	implementation	template
Example	A-6-Component	Name	Protocol	implementation	template
Example	A-7-Driver	Configuration	Protocol	implementation	template
Example	A-8-Driver	Health	Protocol	implementation	template
Example	A-9-Driver	Health	Protocol	implementation	template
Example	A-10-Driver	Family	Override	Protocol	implementation	template
Example	A-11-Bus	Specific	Driver	Override	Protocol	implementation	template
Example	A-12-Driver	Diagnostics	Protocols	implementation	template
Example	A-13-USB	2	Host	Controller	Protocol	implementation	template
Example	A-14-Extended	SCSI	Pass	Thru	Protocol	implementation	template
Example	A-15-ATA	Pass	Thru	Protocol	implementation	template
Example	A-16-Simple	Text	Input	Protocols	implementation	template
Example	A-17-Simple	Text	Output	Protocol	implementation	template
Example	A-18-Serial	I/O	Protocol	implementation	template
Example	A-19-Graphics	Output	Protocol	implementation	template
Example	A-20-Block	I/O,	Block	I/O	2,	and
Example	A-21-Network	Interface	Identifier	Protocol	implementation	template
Example	A-22-Simple	Network	Protocol	implementation	template
Example	A-23-User	Credential	Protocol	implementation	template
Example	A-24-Load	File	Protocol	implementation	template
Example	A-25-EDID	Override	Protocol	implementation	template
Example	A-26-Add	protocol	to	an	EDK	II	package
Example	A-27-Protocol	include	file	template
Example	A-28-Add	GUID	to	an	EDK	II	package
Example	A-29-GUID	include	file	template
Example	A-30-Add	Library	Class	to	an	EDK	II	package
Example	A-31-Library	Class	include	file	template
Example	A-32-Protocol,	GUID,	and	Library	Class	include	statements
Example	A-33-Protocol	and	GUID	INF	statements

ExamplesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

22DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1

DRAFT	FOR	REVIEW

12/01/2020	06:32:57

Acknowledgements

Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2012-2018,	Intel	Corporation.	All	rights	reserved.

AcknowledgementsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

23DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Revision	History

	Revision	 	Decscription	 	Date	

0.31 Initial	draft. 4/3/03

0.70 Initial	draft.	Edited	for	formatting	and	grammar. 6/3/03

0.90 Incorporated	industry	review	comments. 7/20/04

Updated	the	coding	conventions.

Updated	for	the	1.10.14.62	release	of	the	EFI	Sample	Implementation.

Updated	the	supported	versions	of	Microsoft	Visual	Studio	and	Windows.

Removed	TBD	sections	that	appeared	in	the	0.7	version.	Edited	for
grammar	and	formatting.

0.91 Updated	for	UEFI	2.0 10/31/06

0.92 New	formatting 11/27/06

0.93 Review	feedback	incorporated 1/14/2007

0.94 Additional	formatting 2/27/2007

0.95 Additional	formatting 3/23/2007

0.96 Additional	formatting 4/25/2008

0.97
Clarify	role	of	EDK	as	being	implementation-specific	and	added
definitions	myriad	of	library	references	so	the	meaning	of	the
implementation	specific	code	examples	could	be	clarified	without	having
to	reference	documents	aside	from	the	UEFI	Specification.

6/25/2008

0.98 Updated	for	UEFI	2.3.1	and	EDK	II 2/12/12

1.00 Review	feedback	incorporated,	additional	formatting 2/27/12

1.01 Review	feedback	incorporated 3/8/12

1.1 Conversion	to	GitBook	markdown	format 4/18/18

AcknowledgementsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

24DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

1	Introduction
UEFI	is	a	modular,	extensible	interface	that	abstracts	the	details	of	platform	hardware	from	an
operating	system	(OS).	It	complements	existing	interfaces,	helps	manufacturers	create	OS-neutral	add-
in	products,	and	provides	an	efficient	replacement	for	PC	BIOS	legacy	option	ROMs.

1	IntroductionEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

25DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

1.1	Overview

This	document	is	designed	to	aid	in	the	development	of	UEFI	Drivers	using	the	EDK	II	open	source
project	as	a	development	environment.	The	EDK	II	provides	a	crossplatform	firmware	development
environment	for	UEFI.	UEFI	Drivers	are	described	in	the	Unified	Extensible	Firmware	Interface
Specification	(hereafter	referred	to	as	the	"UEFI	Specification"_).	There	are	different	categories	of	UEFI
Drivers,	and	many	variations	of	each	category.	This	document	provides	basic	information	for	the	most
common	categories	of	UEFI	drivers.	Many	other	driver	designs	are	possible.

In	addition,	this	document	covers	the	design	guidelines	and	recommendations	for	the	different	driver-
related	UEFI	Protocols,	along	with	the	design	guidelines	for	PCI,	USB,	SCSI,	ATA,	Consoles,	Serial	Ports,
Graphics,	Mass	Storage,	Network	Interfaces	and	User	Credentials.

Finally,	this	document	discusses	UEFI	Driver	porting	considerations	and	UEFI	Driver	optimization
techniques	for	Intel	IA-32-,	Intel	x64-	and	Intel(R)	Itanium(R)-based	platforms,	as	well	as	EFI	Byte	Code
(EBC)	platform	types	supported	by	the	UEFI	Specification.

The	UEFI	Driver	Writers	Guide	uses	the	names	defined	by	the	EDK	II	open	source	project	when	referring
to	the	various	platform	types.

	IA32	-Intel	IA-32	platforms

	X64	-Intel(R)	64	platforms

	IPF	-Intel(R)	Itanium(R)-based	platforms

	EBC	-EFI	Byte	Code	platforms

1.1.1	Assumptions

This	document	assumes	that	the	reader	is	familiar	with	the	following:

Unified	Extensible	Firmware	Interface	Specification,	Version	2.3.1.

The	EDK	II	is	an	open-source	build	environment	project	that	is	under	constant	development.	EDK	II
not	only	provides	the	build	environment,	but	also	provides	build	tools	and	source	code	for	firmware
and	drivers.

Note:	The	EDK	II	project	of	TianoCore	is	under	active	development,	often	on	a	daily	basis.	Be	sure	to
use	a	validated	release	of	UDK2010	for	all	UEFI	Driver	development.

The	UDK2010	Developer's	Kit,	referred	to	in	this	guide	as	the	UDK2010,	contains	EDK	II	validated
common-core	sample	code.	The	open-source	UDK2010	is	a	stable	build	of	the	EDKII	project	and	has
been	validated	on	a	variety	of	Intel	platforms,	operating	systems	and	application	software.	The
open-source	UDK2010	is	available	for	download	at	www.tianocore.org

The	UDK2010	supports	UEFI	Driver	development	using	the	following	operating	system	environments:
Microsoft	Windows*,	UNIX	and	like	systems	and	MAC	OS	X(R).	Refer	to	http://www.tianocore.org	for	a
complete	list	of	current	development	operating	systems.

The	UDK2010	supports	the	development	of	UEFI	Drivers	using	several	families	of	compilers	including
those	from	Microsoft*,	Intel	and	GCC.	Refer	to	http://www.tianocore.org	for	a	complete	list	of
currently	supported	compilers.

1.1	OverviewEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

26DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
http://www.tianocore.org/
https://github.com/tianocore/tianocore.github.io/wiki/UDK2010
http://www.tianocore.org/
http://www.tianocore.org/

1.1	OverviewEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

27DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

1.2	Organization	of	this	document

This	document	is	not	intended	to	be	read	front	to	back.	Use	it	more	as	a	cookbook	for	developing	and
implementing	drivers.	The	following	table	describes	the	organization	of	this	document.

1.2	Organization	of	this	documentEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

28DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	1-Organization	of	the	UEFI	Driver	Writers	Guide

Chapter Description

1.
Introduction Introduction	and	list	of	references	related	to	UEFI	Driver	development.

2.	Checklist Checklist,	or	basic	recipe,	for	UEFI	Driver	development.

3.
Foundation Foundation	and	terms	related	to	UEFI	Driver	development.

4-17.
Common
Features

Recommendations	for	features	common	to	most	UEFI	Driver	types.	Many	of	these
features	are	optional	and	inclusion	of	them	depends	on	the	requirements	for	a
specific	UEFI	Driver.

18-21.
Industry
Standard
Busses

Recommendations	for	UEFI	Drivers	that	manage	controllers	on	Industry	standard
buses	such	as	PCI,	USB,	SCSI	and	SATA.

22-27.
Console	and
OS	Boot
Devices

Recommendations	for	UEFI	Drivers	that	produce	protocols	that	directly	or
indirectly	provide	services	for	a	UEFI	Boot	Manager	to	initialize	consoles	and	boot
a	UEFI	conformant	operating	system	from	a	boot	device.	This	includes	text
consoles,	serial	ports,	graphical	consoles,	mass	storage	devices,	network	devices
and	boot	devices	not	defined	by	the	UEFI	Specification.

28-29.	CPU
Specific Special	considerations	for	IPF	and	EBC	platforms.

30-32.
Build/Release Best	practices	for	building,	testing,	debugging	and	distributing	UEFI	Drivers.

Appendix	A.
File
Templates

Source	file	templates	for	UEFI	Drivers,	Protocols,	GUIDs,	and	Library	Classes

Appendix	B.
EDK	II	Drivers Table	of	UEFI	Driver	features	found	in	EDK	II	driver	implementations.

Appendix	C.
Glossary Glossary	of	terms	used	in	this	guide.

1.2	Organization	of	this	documentEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

29DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

1.3	Related	information

This	chapter	contains	references	to	specifications,	publications	and	tools	referenced	by	other	sections
of	this	guide	that	may	be	useful	in	the	development	of	UEFI	Drivers.	Find	more	information	about	UEFI
tables,	UEFI	protocols,	UEFI	GUIDs,	UEFI	device	types	and	UEFI	status	codes	in	the	UEFI	Specification	at
http://uefi.org/specifications.	This	same	information	is	also	available	from	the	Doxygen-generated	help
documents	in	the	UDK2010	MdePkg.	All	source	code	examples	in	this	guide	follow	the	C	coding	style
defined	in	the	EDK	II	C	Coding	Standard	Specification.

1.3	Related	informationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

30DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://uefi.org/specifications

1.3.1	UEFI	Specifications

Unified	Extensible	Firmware	Interface,	version	2.3.1,	The	UEFI	Forum,	2010,
http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_3_1.pdf.	Find	information	about	the
differences	between	different	versions	of	the	UEFI	Specification	at	http://www.uefi.org/specifications.

Microsoft	Portable	Executable	and	Common	Object	File	Format	Specification,	Microsoft	Corporation,
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx.

Microsoft	Extensible	Firmware	Initiative	FAT32	File	System	Specification,	Version	1.03,	Microsoft
Corporation,	December	6,	2000,	http://msdn.microsoft.com/enus/windows/hardware/gg463080.

1.3.1	UEFI	SpecificationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

31DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_3_1.pdf
http://www.uefi.org/specifications
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn.microsoft.com/enus/windows/hardware/gg463080

1.3.2	Industry	Standard	Bus	Specifications

PCI	Express	Base	Specification,	Revision	2.1,	PCI	Special	Interest	Group,	Hillsboro,	OR,
http://www.pcisig.com/specifications.

PCI	Hot-Plug	Specification,	Revision	1.0,	PCI	Special	Interest	Group,	Hillsboro,	OR,
http://www.pcisig.com/specifications.

PCI	Local	Bus	Specification,	Revision	3.0,	PCI	Special	Interest	Group,	Hillsboro,	OR,
http://www.pcisig.com/specifications.

Universal	Serial	Bus	Revision	2.0	Specification	bundle,	USB	Implementers	Forum,	Inc.,	2006,
http://www.usb.org	(this	bundle	is	referred	to	as	USB	Spec).

Universal	Serial	Bus	Revision	3.0	Specification	bundle,	USB	Implementers	Forum,	Inc.,	2011,
http://www.usb.org	(this	bundle	is	referred	to	as	USB	Spec).

E-EDID	EEPROM	Specification,	VESA,	http://www.vesa.org

1.3.2	Industry	Standard	Bus	SpecificationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

32DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
http://www.usb.org/
http://www.usb.org/
http://www.vesa.org/

1.3.3	Other	specifications

Advanced	Configuration	and	Power	Interface	Specification,	Revision	5.0,	2011,	http://www.acpi.info.

The	Unicode	Standard,	Version	5.2,	Unicode	Consortium,	http://www.unicode.org/versions/Unicode5.2.0.

ISO	639-2:1998	Codes	for	the	Representation	of	Names	of	Languages-Part2:	Alpha-3	code,
http://www.iso.org.

[RFC	4646]	Tags	for	Identifying	Languages,	IETF,	2005,	http://www.ietf.org/rfc/rfc4646.txt.

Intel(R)	64	and	IA-32	Architecture	Software	Developer's	Manual,	Intel	Corporation,
http://www.intel.com/products/processor/manuals.

Intel(R)	Itanium(R)	Architecture	Software	Developer's	Manual,	vols.	1-4,	Intel	Corporation,
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm.	The	current	version	of	the	manual
includes	Itanium(R)	Processor	Family	System	Abstraction	Layer	Specification.

A	Formal	Specification	of	Intel(R)	Itanium(R)	Processor	Family	Memory	Ordering,	Intel	Corporation,
http://www.intel.com/design/itanium/downloads/251429.htm.

Developer's	Interface	Guide	for	Intel	Itanium	Architecture-based	Servers	(DIG64).	Compaq	Computer
Corporation,	Dell	Computer	Corporation,	Fujitsu	Siemens	Computers,	Hewlett-Packard	Company,	Intel
Corporation,	International	Business	Machines	Corporation,	and	NEC	Corporation,	2001,
http://www.dig64.org.

Beyond	Bios:	Implementing	the	Unified	Extensible	Firmware	Interface	with	Intel's	Framework,	Vincent
Zimmer,	Michael	Rothman,	and	Robert	Hale,	ISBN	0-9743649-0-8,
http://www.intel.com/intelpress/sum_efi.htm

Harnessing	the	UEFI	Shell:	Moving	the	platform	beyond	DOS,	Michael	Rothman,	Tim	Lewis,	Vincent
Zimmer,	and	Robert	Hale,	ISBN	978-1-934053-14-0.

Code	Complete,	Steven	C.	McConnell,	ISBN	1-55615-484-4

1.3.3	Other	specificationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

33DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.acpi.info/
http://www.unicode.org/versions/Unicode5.2.0
http://www.iso.org/
http://www.ietf.org/rfc/rfc4646.txt
http://www.intel.com/products/processor/manuals
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm
http://www.intel.com/design/itanium/downloads/251429.htm
http://www.dig64.org/
http://www.intel.com/intelpress/sum_efi.htm

1.3.4	EDK	II	and	UDK2010	Development	Kit

UDK2010	Developer's	Kit,	http://www.tianocore.org	(known	hereafter	as	UDK2010).

UEFI	Shell,	EFI	Shell,	and	EFI	Shell	Users	Guide,	Intel	Corporation,	http://www.tianocore.org

EDK	II	User's	Manual.	http://www.tianocore.org

EDK	II	C	Coding	Standards	Specification.	http://www.tianocore.org

EDK	II	Build	Specification.	http://www.tianocore.org

EDK	II	Module	Information	File	(INF)	Specification.	http://www.tianocore.org

EDK	II	Package	Declaration	File	(DEC)	Specification.	http://www.tianocore.org

EDK	II	Platform	Description	File	(DSC)	Specification.	http://www.tianocore.org

EDK	II	Flash	Description	File	(FDF)	Specification.	http://www.tianocore.org

EDK	II	MdePkg	Document.	http://www.tianocore.org

Visual	Forms	Representation	Programming	Language	document,	Intel	Corporation,
http://www.tianocore.org.

1.3.4	EDK	II	and	UDK2010	Development	KitEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

34DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/
http://www.tianocore.org/

1.4	Typographic	conventions

This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Typographic
Convention Typographic	convention	description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the
crossreference.	Click	on	the	word	to	follow	the	hyperlink.

Bold In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,
a	Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	BOLD	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear
in	one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Bold	Monospace	

Words	in	a		Bold	Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyper	link	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyper	link.

	$(VAR)	 This	symbol	VAR	defined	by	the	utility	or	input	files.

Italic	Bold In	code	or	in	text,	words	in	Italic	Bold	indicate	placeholder	names	for	variable
information	that	must	be	supplied	(i.e.,	arguments).

Note:	Due	to	management	and	file	size	considerations,	only	the	first	occurrence	of	the	reference	on
each	page	is	an	active	link.	Subsequent	references	on	the	same	page	will	not	be	actively	linked	to	the
definition	and	will	use	the	standard,	non-underlined	BOLD	Monospace	typeface.	Find	the	first	instance
of	the	name	(in	the	underlined	BOLD	Monospace	typeface)	on	the	page	and	click	on	the	word	to	jump
to	the	function	or	type	definition.

The	following	typographic	conventions	are	used	in	this	document	to	illustrate	the	Extended	Backus-Naur
Form.

[item] Square	brackets	denote	the	enclosed	item	is	optional.

	{item}	
Curly	braces	denote	a	choice	or	selection	item,	only	one	of	which	may	occur	on	a	given
line.

	<item>	 Angle	brackets	denote	a	name	for	an	item.

	(range-

range)	

Parenthesis	with	characters	and	dash	characters	denote	ranges	of	values,	for
example,	(a-zA-Z0-9)	indicates	a	single	alphanumeric	character,	while	(0-9)	indicates	a
single	digit.

"item" Characters	within	quotation	marks	are	the	exact	content	of	an	item,	as	they	must
appear	in	the	output	text	file.

	?	 The	question	mark	denotes	zero	or	one	occurrences	of	an	item.

	*	 The	star	character	denotes	zero	or	more	occurrences	of	an	item.

	+	 The	plus	character	denotes	one	or	more	occurrences	of	an	item.

A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be	used.

1.4	Typographic	conventionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

35DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	item{n}	
A	superscript	number,	n,	is	the	number	occurrences	of	the	item	that	must	be	used.
Example:	(0-9)8	indicates	that	there	must	be	exactly	eight	digits,	so	01234567	is	valid,
while	1234567	is	not	valid.

	item{n,}	

A	superscript	number,	n,	within	curly	braces	followed	by	a	comma	","	indicates	the
minimum	number	of	occurrences	of	the	item,	with	no	maximum	number	of
occurrences.

	item{,n}	
A	superscript	number,	n,	within	curly	brackets,	preceded	by	a	comma	","indicates	a
maximum	number	of	occurrences	of	the	item.

	item{n,m}	
A	super	script	number,	n,	followed	by	a	comma	","	and	a	number,	m,	indicates	that	the
number	of	occurrences	can	be	from	n	to	m	occurrences	of	the	item,	inclusive.

1.4	Typographic	conventionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

36DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

2	UEFI	Driver	Implementation	Checklist
The	following	is	a	checklist	for	implementing	good,	conformant,	and	efficient	UEFI	Drivers.	References	to
sections	of	the	guide	that	apply	to	each	of	the	items	in	the	checklist	are	provided	so	a	UEFI	Driver
developer	can	easily	determine	the	sections	of	the	guide	that	apply	to	a	specific	UEFI	Driver
development	task.	The	terminology	used	in	this	checklist	is	introduced	in	Chapter	3.

When	possible,	copy	an	existing	UEFI	Driver	with	similar	features	and	modify	it	to	match	the	new	UEFI
Driver	requirements.	Appendix	B	contains	a	table	of	UEFI	Drivers	and	features	that	each	implements	to
help	select	an	existing	UEFI	Driver.

Some	UEFI	drivers	are	ported	from	PC	BIOS	legacy	option	ROMs	or	EFI/UEFI	Drivers	based	on	previous
releases	of	the	EFI/UEFI	Specification.	While	porting	a	driver	from	one	environment	to	another	is	often
done	to	save	time	and	leverage	resources,	note	that	it	requires	careful	attention	to	detail.	Without	a
complete	understanding	of	the	target	environment,	the	final	driver	can	have	remnants	of	the	previous
design	that	may	degrade	performance	and	functionality	in	the	new	environment.

1.	 Determine	UEFI	Driver	Type

UEFI	Driver	Model	(Section	3.10	and	Chapter	6)
Must	produce	Driver	Binding	Protocol	(Chapter	9)

Device	Driver	(Section	6.1,	Section	7.2,	and	Chapter	9)
Bus	Driver	(Section	6.2,	Section	7.2,	and	Chapter	9)
Hybrid	Drive	(Section	6.3,	Section	7.2,	and	Chapter	9)

Determine	Optional	UEFI	Driver	Model	Features
Component	Name	2	Protocol	(Section	7.1,	Section	7.2,	Chapter	11)
Component	Name	Protocol	(Section	7.1,	Section	7.2,	Chapter	11)
Driver	Family	Override	Protocol	(Section	7.2.4	and	Chapter	15)
Driver	Diagnostics	2	Protocol	(Section	7.1,	Section	7.2,	Chapter	13)
HII	Packages	(Section	7.1,	Section	7.4,	and	Chapter	12)
HII	Config	Access	Protocol	(Section	7.1,	Section	7.5,	and	Chapter	12)
Driver	Configuration	2	Protocol	(Section	7.1	and	Chapter	12)
Driver	Configuration	Protocol	(Section	7.1	and	Chapter	12)
Driver	Health	Protocol	(Section	7.1,	Section	7.2.3,	Chapter	14)
Bus	Specific	Driver	Override	Protocol	(Chapter	17)

Service	Binding	Protocol	(Chapter	10)
Service	Driver	(Section	6.4	and	Section	7.9)
Root	Bridge	Driver	(Section	6.5	and	Section	7.10)
Initializing	Driver	(Section	6.6	and	Section	7.8)

2.	 Determine	Optional	UEFI	Driver	Features

Install	an		Unload()		handler	(Section	7.6	and	Section	5.2.1.2)
HII	Packages	(Section	7.1,	Section	7.4,	and	Chapter	12)
HII	Config	Access	Protocol	(Section	7.1,	Section	7.5,	and	Chapter	12)
Driver	Supported	EFI	Version	Protocol	(Chapter	6,	Section	7.3,	Chapter	16)

Required	for	all	plug	in	cards
Service	Binding	Protocol	(Chapter	10)

3.	 Identify	the	required	UEFI	supported	CPU	architectures

IA32	(Chapter	4)
X64	(Chapter	4)
IPF	(Chapter	4	and	Chapter	28)
EFI	Byte	Code	(Chapter	4,	Section	4.4,	Section	18.6,	and	Chapter	29)

4.	 Identify	consumed	I/O	protocols

2	UEFI	Driver	Implementation	ChecklistEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

37DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

PCI	I/O	Protocol	to	access	a	PCI	Controller	(Chapter	18)
Always	call		PciIo->Attributes()		(Section	18.3.2)

Advertises	dual	address	cycle	capability
Save	and	enable	attributes	in	Start()
Disable	attributes	in	Stop()

DMA-Bus	master	write	operations	(Section	18.5)
Must	call		PciIo->Flush()	

DMA-Setting	up	with		PciIo->Map()		(Section	18.5)
Do	not	use	returned	device	address
Not	all	chipsets	have	1:1	bus/system	mappings

PCI	Option	ROM	(Section	18.7)
USB	I/O	Protocol	to	access	a	USB	(Chapter	19)	Device
SCSI	I/O	Protocol	to	access	a	SCSI	Device	(Chapter	20)
ATA	Pass	Thru	Protocol	to	access	a	SATA	Device	(Chapter	21)

5.	 Identify	the	boot	related	protocol(s)	the	UEFI	Driver	must	produce

Keyboard	(Section	22.2)
Mouse
Tablet
Text	Console	(Section	22.3)
Serial	Port	(Section	22.4)
Graphics	Console	(Chapter	23)
Mass	Storage	(Chapter	24)
Network	Controller	(Chapter	25)
Load	File	Protocol	(Chapter	27)
User	Credential	Provider	(Chapter	26)
USB	Host	Controller	(Section	19.1)
SCSI	Host	Controller	(Section	20.1)
ATA	Host	Controller	(Section	21.1	and	Section	20.1)

6.	 Build	UEFI	Driver	(Chapter	30)

7.	 Test	and	Debug	UEFI	Driver	(Chapter	31)

Use	UEFI	Shell	to	load	and	exercise	functionality
Test	all	produced	protocols
Test	on	multiple	platforms
Pass	UEFI	SCT	tests	for	the	devices	the	UEFI	Driver	manages

2	UEFI	Driver	Implementation	ChecklistEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

38DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

2.1	Design	and	implementation	of	UEFI	drivers

The	following	lists	the	basic	steps	a	driver	writer	should	follow	when	designing	and	implementing	a	UEFI
driver.	Note	that	this	document	assumes	UEFI	driver	model	drivers	are	being	developed.

1.	 Determine	the	category	of	UEFI	driver	to	be	developed.	The	different	categories	are	listed	in	Table	2,
below,	and	are	described	in	more	detail	in	Chapter	6	of	this	document.

Note:	UEFI	Drivers	that	follow	the	UEFI	Driver	Model	are	recommended	because	they	enable	faster
platform	boot	times.

2.	 Make	sure	the	driver	supports	the	unload	service.	This	feature	is	strongly	recommended	for	all
drivers.	Section	7.6	describes	the	unload	service.

3.	 Make	sure	the	UEFI	driver	supports	both	the	Component	Name	protocol	and	the	Component	Name2
protocol.	It	is	strongly	recommended	that	all	drivers	support	both	protocols.

4.	 Is	the	UEFI	driver	going	to	include	configuration	settings	that	the	user	can	change?	If	so,	the	driver
must	support	HII	functionality.	Note	that	the	HII	functionality	replaces	the	Driver	Configuration
Protocol,	which	is	now	obsolete.	See	Table	2.

5.	 The	UEFI	driver	must	produce	the	Driver	Diagnostics	Protocols	if	the	driver	is	going	to	support
testing	See	Chapter	13.

6.	 If	the	UEFI	driver	is	a	bus	driver	for	a	bus	type	that	supports	storage	of	UEFI	drivers	with	the	child
devices,	the	Bus	Specific	Driver	Override	Protocol	must	be	implemented	by	the	bus	driver.	See
Chapter	17	of	this	guide.

7.	 A	UEFI	driver	might	not	need	to	call	an	Exit	Boot	Service	event.	However,	if	the	UEFI	driver	is	going	to
require	an	Exit	Boot	Services	event,	then	the	driver	must	create	an	event	of	type	Exit	Boot	Services.
When	the	driver	initializes,	it	creates	the	event,	and	when	Exit	Boot	Services	happens,	the	system
calls	the	function	that	the	driver	produces.	See	Chapter	7.

8.	 For	runtime	drivers,	make	sure	the	driver	defines	an	event	of	type	Set	Virtual	Address	Map.	This
allows	the	driver	to	know	where	the	memory	map	is	located	once	the	OS	takes	control.	See	Chapter
7.

9.	 Identify	the	I/O-related	protocols	the	driver	needs	to	consume.	Based	on	the	list	of	consumed
protocols	and	the	criteria	for	these	protocol	interfaces,	determine	how	many	instances	of	the	Driver
Binding	Protocol	need	to	be	produced.	For	example,	a	console	driver	might	have	multiple	binding
protocols	to	allow	for	input	from	multiple	devices.	See	Chapter	9.

10.	 Identify	all	I/O-related	protocols	that	the	driver	binding	model	must	produce.	Once	the	I/O-related
protocols	are	known,	make	sure	the	driver	creates	a	function	with	a	single	entry	point	for	each
protocol.

11.	 Implement	the	driver's	entry	point.	See	Chapter	7.

12.	 Design	the	private	context	data	structure.	See	Chapter	8.

13.	 Implement	all	the	services	listed	in	the	supported	section	of	the	Driver	Binding	Protocol.	See
Chapter	9.	See	Table	3.

Table	2-Classes	of	UEFI	drivers	to	develop

2.1	Design	and	implementation	of	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

39DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Class	of	Driver See	sections

Device	driver 6.1

Bus	driver	that	can	produce	one	or	all	child	handles 6.2.6

Bus	driver	that	produces	all	child	handles	in	the	first	call	to		Start()	 6.2.7

Bus	driver	that	produces	at	most	one	child	handle	in		Start()	 6.2.8

Bus	driver	that	produces	no	child	handles	in		Start()	 6.2.9

Bus	driver	that	produces	child	handles	with	multiple	parent	controllers 6.2.4

Hybrid	driver	that	can	produce	one	or	all	child	handles 6.3	and	6.2.6

Hybrid	driver	that	produces	all	child	handles	in	the	first	call	to		Start()	 6.3	and	6.2.7

Hybrid	driver	that	produces	at	most	one	child	handle	in		Start()	 6.3	and	6.2.8

Hybrid	driver	that	produces	no	child	handles	in		Start()	 6.3	and	6.2.9

Hybrid	driver	that	produces	child	handles	with	multiple	parent	controllers 6.3	and	6.2.4

Service	driver 6.4	and	7.9

Root	bridge	driver 6.5	and	7.10

Initializing	driver 6.6	and	7.8

2.1	Design	and	implementation	of	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

40DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	3-Protocols	produced	by	various	devices

Device Produces	these	I/O	protocols

USB	peripherals USB	I/O	protocol

PCI	adapter PCI	I/O	protocol

Console	devices

Simple	input	protocol	

Simple	pointer	protocol	

Graphics	output	protocol	

Block	I/O	protocol

SCSI,	SCSI	RAID,	and	Fiber
Channel

Extended	SCSI	pass	thru	protocol	

Block	I/O	protocol

NIC	(network	interface	controller)

The	protocols	produced	by	the	NIC	depends	on	the	specific
NIC:	

Universal	network	driver	interface	(UNDI)	protocol	

Network	interface	identifier	protocol	

Managed	network	protocol	(MNP)	

Simple	network	protocol	(SNP)

Note:	The	device	path	protocol	is	a	data	structure	protocol,	not	a	function	call	with	a	callable	entry
point.	It	is	the	UEFI	driver's	job	to	append	the	path	of	the	devices	it	is	controlling	to	the	data	structure.
In	other	words,	as	part	of	producing	the	I/O	protocol	for	each	device,	the	driver	builds	the	device	path
for	that	device.

2.1	Design	and	implementation	of	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

41DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

2.2	How	to	implement	features	in	EDK	II

The	first	column	of	the	table	below	describes	functions	a	typical	driver	performs.	Column	2	briefly
describes	how	each	function	is	implemented	in	UEFI	and	references	the	chapter	in	this	guide	that
specifically	addresses	each	issue.	This	list	of	driver	operations	is	not	exhaustive.

2.2	How	to	implement	features	in	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

42DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	4-Mapping	operations	to	UEFI	drivers

Operation Recommended	UEFI	method

Find	devices
that	the
driver
supports
while	the
driver	is
running

Do	not	try	to	search	the	handle	database	specifically.	Instead,	allow	the
supported	section	of	the	driver	binding	protocol	to	do	this	operation.	

The	supported	section	checks	to	see	if	the	driver	supports	the	device	for	the
specified	controller	handle.	The	supported	section	uses	the	controller	handle
along	with	a	partial	device	path,	to	check	to	see	if	the	specific	device	is
supported,	and	returns	supported,	already	started,	or	notsupported	for	each
device.

Search
devices	that
the	driver
supports

Use	shell	applications,	such	as	the		dh		(dump	handle	database)	command	or	the
drivers	shell	command.	

The		dh		command	returns	a	list	of	all	devices	on	the	system.	The	drivers	command
returns	a	list	of	all	drivers	on	the	system.	With	the	list	of	drivers,	the		dh	-d	
command	can	be	used	to	list	the	handles	which	that	driver	supports.

Perform	DMA Use	the	DMA-related	services	from	the	PCI	I/O	Protocol.	See	the	PCI	driver	section
(Chapter	18)	of	this	guide.

Access	PCI
configuration
header

Always	use	PCI	I/O	Protocol	services	to	access	the	PCI	configuration	header.	Never
directly	access	I/O	ports	0xCF8	or	0xCFC.	

See	the	PCI	driver	section	(Chapter	18)	of	this	guide.

Access	PCI
I/O	ports

Always	use	PCI	I/O	Protocol	services	to	access	PCI	I/O	ports.	Never	use		IN		or		OUT	
instructions.	

See	the	PCI	driver	section	(Chapter	18)	of	this	guide.

Access	PCI
memory

Use	PCI	I/O	Protocol	services	to	access	PCI	memory.	Never	use	pointers	to	directly
access	memory-mapped	I/O	resources	on	a	bus.	

See	the	PCI	driver	section	(Chapter	18)	of	this	guide.

Hardware
interrupts

EDK	II	does	not	support	legacy	INT	type	hooking	interrupts.	Instead,	UEFI	drivers
are	expected	to	either	perform	block	I/O,	by	which	they	must	complete	their	I/O
operation	and	poll	their	devices	as	required	to	complete	it,	or	they	can	create	a
periodic	timer	event	to	get	control	and	check	the	status	of	the	devices	under
management.	

See	the	services	section	(Chapter	5)	and	the	general	driver	guidelines	section
(Chapter	4)	of	this	guide	for	more	detail.

Calibrated
stalls

Do	not	use	hardware	devices	to	perform	calibrated	stalls.	Instead,	use	the		Stall()	
service	for	short	delays	that	are	typically	less	than	10	ms.	Use	one-shot	timer
events	for	long	delays	that	are	typically	greater	than	10	ms.	Use		SetTimer()		in
conjunction	with		CreateEvent()	,	or		CreateEventEx(),	for	longer	delays.	Do	not	use	the
	GetTime()		service	for	delays	in	UEFI	drivers.	Use	it	only	to	retrieve	information.	See
the	services	section	in	this	guide:	Services	that	UEFI	drivers	commonly	use.

Get
keyboard
input	from
user

Use	the	HII	interface	to	accept	keyboard	input	from	the	user.	The	HII	engine
displays	forms	to	the	user	in	which	the	user	can	answer	questions	or	provide
input.	The	forms	themselves	are	defined	in	the	VFR	standard.	

Note	that	console-related	services,	such	as	Simple	Text	Input	Protocol	and	Simple
Text	Output	Protocol	can	be	replaced	with	or	supplemented	by	HII	functionality
and	forms.	

Note	that	the	Driver	Configuration	Protocol	service	is	obsolete	and	has	been
replaced	with	HII	functionality.

Use	the	HII	interface	to	display	text	to	the	user.	The	HII	engine	displays	forms	to
the	user	and	allows	querying	of	the	user.	The	forms	themselves	are	defined	by	the
VFR	programming	language	and	IFR	specification.	

Note	that	console-related	services,	such	as	Simple	Text	Input	Protocol	and	Simple
Text	Output	Protocol,	can	be	replaced	with	or	supplemented	by	HII	functionality

2.2	How	to	implement	features	in	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

43DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Display	text
and	forms.	

Also,	note	that	the	Driver	Configuration	Protocol	service	is	obsolete	and	has	been
replaced	with	HII	functionality.	

Implement	both	the	Driver	Diagnostics	Protocol	and	the	Driver	Diagnostics2
Protocol.	See	Chapter	13	of	this	guide.	

UEFI	drivers	should	not	try	to	reprogram	a	flash	device.	Typically,	a	flash	device	is
reprogrammed	by	a	standalone	application,	such	as	a	UEFI	utility.

Prepare
controllers
for	use	by	an
OS

The	OS-present	drivers	should	not	make	assumptions	about	the	state	of	a
controller.	It	should	not	assume	a	UEFI	driver	touched	the	controller	before	the	OS
was	booted.	If	a	specific	state	is	required,	then	the	driver	can	use	an	Exit	Boot
Services	event	to	put	the	controller	into	the	required	state.	See	Chapter	7.

2.2	How	to	implement	features	in	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

44DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3	Foundation
UEFI	employs	several	key	concepts	as	cornerstones	of	understanding	for	UEFI	Drivers.	These	concepts
are	defined	in	the	UEFI	Specification.	Programmers	new	to	UEFI	should	find	the	following	introduction	to
a	few	of	UEFI's	key	concepts	helpful	as	they	study	the	UEFI	Specification.

The	basic	concepts	covered	in	the	following	sections	include:

Basic	programming	model

Objects	managed	by	UEFI-conformant	firmware

UEFI	system	table

Handle	database

Protocols

UEFI	images

Events

Task	priority	levels

Device	paths

UEFI	driver	binding	model

Platform	initialization

Boot	manager	and	console	management

EDK	II	libraries

As	each	concept	is	discussed,	the	related	application	programming	interfaces	(APIs)	are	identified
along	with	references	to	the	related	sections	in	the	UEFI	Specification.

One	of	the	components	available	from	the	EDK	II	open	source	project	and	distributed	with	the	UDK2010
releases	is	the	UEFI	Shell;	a	command	line	interface	with	useful	commands	for	development	and	testing
of	UEFI	drivers	and	UEFI	applications.	The	UEFI	Shell	also	provides	commands	to	help	illustrate	many	of
the	basic	concepts	described	in	the	sections	that	follow.	These	useful	UEFI	Shell	commands	are
identified	as	each	concept	is	introduced.	The	UEFI	Shell	is	an	open	source	project	at
http://www.tianocore.org	where	documents	providing	details	on	all	of	the	available	commands	can	be
found.

3	FoundationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

45DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/

3.1	Basic	programming	model

Common	questions	about	UEFI	include:

How	are	programs	in	UEFI	implemented?

What	makes	UEFI	programming	different	from	an	operating	system?

What	makes	UEFI	different	from	other	firmware	environments?

In	particular,	what	is	the	programming	model	for	a	UEFI	Driver?

Key	points	about	writing	UEFI-conformant	drivers	are	that:

UEFI	Drivers	are	relocatable	PE/COFF	images	whose	format	is	defined	by	the	Microsoft	Portable
Executable	and	Common	Object	File	Format	Specification.

UEFI	Drivers	may	be	compiled	for	any	of	the	CPU	architectures	supported	by	the	UEFI	Specification.

UEFI	Drivers	run	on	a	single	CPU	thread.

The	driver	support	infrastructure	does	not	extend	beyond	the	boot	processor.

Drivers	sit	above	some	interfaces	(for	example,	bus	abstractions)	and	below	other	interfaces:	They
are	both	consumers	and	producers.	The	UEFI	Specification	defines	the	interfaces	and	they	are
extensible.

Each	driver	is	expected	to	cooperate	with	other	drivers,	other	modules	and	the	underlying	core
services.

The	communicating	modules	bind	together	to	create	stacks	of	cooperating	drivers	to	accomplish
tasks.

Inter-module	communication	is	enabled	via	interfaces	known	as	protocols	and	via	events.

Tables	provided	at	invocation	provide	access	to	core	services.

The	operating	environment	is	non-preemptive	and	polled.	There	are	no	tasks	per	se.	Instead,
modules	execute	sequentially.

There	is	only	one	interrupt:	the	timer.	This	means	that	data	structures	accessed	by	both	in-line
code	and	timer-driven	code	must	take	care	to	synchronize	access	to	critical	paths.	This	is
accomplished	via	privilege	levels.

3.1	Basic	programming	modelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

46DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.2	Objects	managed	by	UEFI-based	firmware

Objects	of	several	differing	types	are	managed	through	the	services	provided	by	UEFI.	The	following
figure	shows	the	various	object	types.	The	most	important	objects	for	UEFI	drivers	are	the	following:

UEFI	system	table

Memory

Handles

Images

Events

Some	UEFI	drivers	may	need	to	access	environment	variables,	but	most	do	not.

Rarely	do	UEFI	drivers	require	the	use	of	a	monotonic	counter,	watchdog	timer	or	realtime	clock.

The	UEFI	system	table	provides	access	to	all	services	provided	by	UEFI.	The	system	table	also	provides
access	to	all	the	additional	data	structures	that	describe	the	configuration	of	the	platform.	Each	of
these	object	types,	and	the	services	that	provide	access	to	them,	are	introduced	in	the	following
sections.

Figure	1-Object	managed	by	UEFI-based	firmware

3.2	Objects	managed	by	UEFI-based	firmwareEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

47DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.3	UEFI	system	table

The	UEFI	system	table	is	the	most	important	data	structure	in	UEFI.	From	this	one	data	structure,	a	UEFI
executable	image	can	gain	access	to	system	configuration	information	and	a	rich	collection	of	UEFI
services.	These	UEFI	services	include	the	following:

UEFI	boot	services

UEFI	runtime	services

Services	provided	by	protocols

Two	of	the	data	fields	in	the	UEFI	system	table,	UEFI	boot	services	and	UEFI	runtime	services,	are
accessed	through	the	UEFI	boot	services	table	and	the	UEFI	runtime	services	table,	respectively.	The
number	and	type	of	services	that	are	available	from	these	two	tables	are	fixed	for	each	revision	of	the
UEFI	Specification.	The	UEFI	boot	services	and	UEFI	runtime	services	are	defined	in	the	UEFI
Specification.	The	specification	also	describes	the	common	uses	of	these	services	by	UEFI	drivers.

Protocol	services	are	groups	of	related	functions	and	data	fields	that	are	named	by	a	Globally	Unique
Identifier	(GUID;	see	Appendix	A	of	the	UEFI	Specification).	Protocol	services	are	typically	used	to	provide
software	abstractions	for	devices	such	as	consoles,	mass	storage	devices	and	networks.	They	can	also
be	used	to	extend	the	number	of	generic	services	that	are	available	in	the	platform.

Protocols	are	the	basic	building	blocks	that	allow	the	functionality	of	UEFI	firmware	to	be	extended	over
time.	The	UEFI	Specification	defines	over	30	different	protocols,	and	various	implementations	of	UEFI
firmware.	UEFI	drivers	may	produce	additional	protocols	to	extend	the	functionality	of	a	platform.

3.3	UEFI	system	tableEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

48DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.4	Handle	database

The	handle	database	is	composed	of	objects	called	handles	and	protocols.	Handles	are	a	collection	of
one	or	more	protocols	and	protocols	are	data	structures	named	by	a	GUID.	The	data	structure	for	a
protocol	may	contain	data	fields,	services,	both	or	none	at	all.

At	reset,	the	Handle	Database	is	empty.	During	platform	initialization,	the	system	firmware,	UEFI
conformant	drivers	and	UEFI	applications	create	handles	and	attach	one	or	more	protocols	to	the
handles.	Information	in	the	handle	database	is	"global"	and	accessible	by	any	executable	UEFI	image.

The	handle	database	is	a	list	of	UEFI	handles	and	is	the	central	repository	for	the	objects	maintained	by
UEFI-based	firmware.	Each	UEFI	handle	identified	by	a	unique	handle	number	is	maintained	by	the
system	firmware.	A	handle	number	provides	a	database	"key"	to	an	entry	in	the	handle	database.	Each
entry	in	the	handle	database	is	a	collection	of	one	or	more	protocols.	The	types	of	protocols	named	by
a	GUID	attach	to	a	UEFI	handle	and	determine	the	handle	type.	A	UEFI	handle	may	represent
components	like:

Executable	images	such	as	UEFI	drivers	and	UEFI	applications

Devices	such	as	network	controllers	and	hard	drive	partitions

UEFI	services	which	are	accessed	as	drivers	such	as	EFI	Decompress	and	the	EBC	Interpreter

The	following	figure	shows	a	portion	of	the	handle	database.	In	addition	to	the	handles	and	protocols,	a
list	of	objects	is	associated	with	each	protocol.	The	handle	database	uses	this	list	to	track	which
agents	are	consuming	which	protocols.	This	information	is	critical	to	the	operation	of	UEFI	drivers.	It	is
what	allows	UEFI	drivers	to	be	safely	loaded,	started,	stopped	and	unloaded	without	resource	conflicts.

3.4	Handle	databaseEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

49DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	2-Handle	database

The	figure	for	Handle	types,	below,	shows	the	different	types	of	handles	that	may	be	present	in	the
handle	database	and	the	relationships	between	the	various	handle	types.	The	handle-related	terms
introduced	here	appear	throughout	the	document.

There	is	only	one	handle	database	and	all	handles	reside	in	it.	Services	that	manage	the	Handle
database	do	not	distinguish	handle	types.	Handles	are	differentiated	by	the	types	of	protocols
associated	with	each	handle.

3.4	Handle	databaseEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

50DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	3-Handle	types

The	following	table	describes	the	types	of	handles	shown	above.	The	UEFI	Specification	provides
detailed	information	on	these	types	of	handles,	the	protocols	they	support,	and	the	different	driver
types.	Note	that	HII	handles	are	considered	service	handles.

3.4	Handle	databaseEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

51DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	5-Description	of	handle	types

Type	of
handle Description

Image
handle

This	is	the	handle	for	the	UEFI	Driver	image	loaded	into	memory.	It	supports	the
Loaded	Image	Protocol.

Driver
handle

Supports	all	UEFI	protocols.	The	most	common	protocols	are	the	Driver	Binding
Protocol,	the	two	Component	Name	Protocols	and	the	two	Driver	Diagnostics
Protocols.

Driver
image
handle

This	is	a	handle	that	has	the	attributes	of	both	an	Image	Handle	and	a	Driver	Handle.
It	is	the	handle	for	a	UEFI	Driver	image	loaded	into	memory.	It	supports	the	Loaded
Image	Protocol,	and	it	supports	the	UEFI	Driver	related	protocols.

Agent
handle

Some	of	the	UEFI	driver	model-related	services	in	the	UEFI	Specification	use	this	term.
An	agent	is	a	UEFI	component	that	can	consume	a	protocol	in	the	handle	database.
An	agent	handle	is	a	general	term	that	can	represent	an	image	handle,	a	driver
handle	or	a	driver	image	handle.

Controller
handle

A	controller	handle	represents	a	console	or	boot	device	that	is	present	in	the
platform.	If	the	handle	represents	a	physical	device,	then	it	must	support	the	Device
Path	Protocol.	If	the	handle	represents	a	virtual	device,	then	it	must	not	support	the
Device	Path	Protocol.	In	addition,	a	device	handle	must	support	one	or	more
additional	I/O	protocols	that	are	used	to	abstract	access	to	that	device.	The	list	of	I/O
protocols	that	are	defined	in	the	UEFI	Specification	include	the	following:	

	Console	Services:		These	have	been	replaced	or	supplemented	by	HII	functionality.	These
protocols	include	the	Simple	Input	Protocol,	Simple	Text	Output	Protocol,	Simple
Pointer	Protocol,	Serial	I/O	Protocol	and	Debug	Port	Protocol.	

	Bootable	Image	Services:		Block	I/O	Protocol,	Disk	I/O	Protocol,	Simple	File	System	Protocol
and	Load	File	Protocol.	

	Network	Services:		Network	Interface	Identifier	Protocol,	Simple	Network	Protocol	and
PXE	Base	Code	Protocol.	

	PCI	Services:		PCI	Root	Bridge	I/O	Protocol	and	PCI	I/O	Protocol.	

	USB	Services:		USB	Host	Controller	Protocol	and	USB	I/O	Protocol.	

	SCSI	Services:		Extended	SCSI	Pass	Thru	Protocol	and	SCSI	I/O	Protocol.	

	Graphics	Services:		Graphics	Output	Protocol.

Device
handle Used	interchangeably	with	controller	handle.

Bus
controller
handle

A	Controller	Handle	managed	by	a	bus	driver	or	a	hybrid	driver-producing	child
handles.	The	term	"bus"	does	not	necessarily	match	the	hardware	topology.	The	term
"bus"	in	this	document	is	used	from	the	software	perspective	and	the	production	of
the	software	construct-a	child	handle-is	the	only	distinction	between	a	controller
handle	and	a	bus	controller	handle.

Child
handle

This	is	a	Controller	Handle	created	by	a	bus	driver	or	a	hybrid	driver.	The	distinction
between	a	child	handle	and	a	controller	handle	depends	on	the	perspective	of	the
driver	that	is	using	the	handle.	A	handle	would	be	a	child	handle	from	a	bus	driver's
perspective,	and	that	same	handle	may	be	a	controller	handle	from	a	device	driver's
perspective.

Physical
controller
handle

A	controller	handle	representing	a	physical	device	that	must	support	the	Device	Path
Protocol.	See	the	UEFI	Specification.

Virtual
controller
handle

A	controller	handle	representing	a	virtual	device	and	not	supporting	the	Device	Path
Protocol.

A	handle	referencing	certain	types	of	tasks	such	as	decompression	or	HII	forms
display.	It	can	interface	with	other	drivers,	but	does	not	relate	to	hardware	or	file

3.4	Handle	databaseEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

52DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Service
handle

management.	This	type	of	handle	is	not	used	for	the	Loaded	Image	Protocol,	the
Driver	Binding	Protocol	or	the	Device	Path	Protocol.	Instead,	this	type	of	handle
supports	the	only	instance	of	a	specific	protocol	in	the	entire	handle	database.	This
protocol	provides	services	that	may	be	used	by	other	UEFI	applications	or	UEFI
drivers.	The	list	of	service	protocols	that	are	defined	in	the	UEFI	Specification	include:

HII	functionality	

Platform	Driver	Override	Protocol	

Unicode	Collation	Protocol

Boot	Integrity	Services	Protocol	

Debug	Support	Protocols	

Decompress	Protocol	(optional).	To	give	developers	more	flexibility,	the	EDK	II	open
source	project	provides	several	decompression	algorithms	

EFI	Byte	Code	(EBC)	Protocol

3.4	Handle	databaseEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

53DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.5	GUIDs

A	UEFI	programming	environment	provides	software	services	through	the	UEFI	Boot	Services	Table,	the
UEFI	Runtime	Services	Table,	and	Protocols	installed	into	the	handle	database.	Protocols	are	the
primary	extension	mechanism	provided	by	the	UEFI	Specification.	Protocols	are	named	using	a	GUID.

A	GUID	is	a	unique	128-bit	number	that	is	a	globally	unique	identifier	(a	universally	unique	identifier,	or
UUID).	Each	time	an	image,	protocol,	device,	or	other	item	is	defined	in	UEFI,	a	GUID	must	be	generated
for	that	item.	The	example	below	shows	the	structure	definition	for	an		EFI_GUID		in	the	EDK	II	along	with
the	definition	of	the	GUID	value	for	the	EFI	Driver	Binding	Protocol	from	the	UEFI	Specification.

Example	1-EFI_GUID	data	structure	in	EDK	II

///

///	128	bit	buffer	containing	a	unique	identifier	value.

///	Unless	otherwise	specified,	aligned	on	a	64	bit	boundary.

///

typedef	struct	{

		UINT32		Data1;

		UINT16		Data2;

		UINT16		Data3;

		UINT8			Data4[8];

}	GUID;

///

///	128-bit	buffer	containing	a	unique	identifier	value.

///

typedef	GUID	EFI_GUID;

///

///	The	global	ID	for	the	Driver	Binding	Protocol.

///

#define	EFI_DRIVER_BINDING_PROTOCOL_GUID	\

		{	\

				0x18a031ab,	0xb443,	0x4d1a,	{0xa5,	0xc0,	0xc,	0x9,	0x26,	0x1e,	0x9f,	0x71	}	\	

		}

TIP:	New	GUID	values	can	be	generated	using	the	GUIDGEN	utility	shipped	with	Microsoft	compilers,	or
the	*uuidgen	command	under	Linux.	Other	GUID	generation	utilities	may	be	found	using	internet
searches.

Protocol	services	are	registered	in	the	handle	database	using	the	GUID	name	of	the	Protocol	and
Protocol	services	are	discovered	by	looking	up	Protocols	in	the	handle	database	using	the	GUID	name
associated	with	the	Protocol	to	perform	the	lookup	operation.

UEFI	fundamentally	assumes	that	a	specific	GUID	exposes	a	specific	protocol	interface	(or	other	item).
Because	a	protocol	is	"named"	by	a	GUID	(a	unique	identifier),	there	should	be	no	other	protocols	with
that	same	GUID.	Be	careful	when	creating	protocols	to	define	a	new,	unique	GUID	for	a	new	protocol.

Put	another	way,	the	GUID	forms	a	contract:	If	the	UEFI	Driver	finds	a	protocol	with	a	particular	GUID,	it
may	assume	that	the	contents	of	the	protocol	are	as	specified	for	that	protocol.	If	the	contents	of	the
protocol	are	different,	the	driver	that	published	the	protocol	is	assumed	to	be	in	error.

In	some	ways,	GUIDs	are	can	be	viewed	as	contracts.	If	a	UEFI	Driver	looks	up	a	protocol	with	a	certain
GUID,	the	structure	under	the	GUID	is	well	defined.	If	the	GUID	is	duplicated,	this	1:1	mapping	breaks.	If
a	GUID	is	copied	and	applied	to	a	new	protocol,	the	users	of	the	old	protocol	call	the	new	protocol

3.5	GUIDsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

54DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

expecting	the	old	interfaces	or	vice	versa.	Either	way,	the	results	are	never	good.

Caution:	There	are	improper	practices	to	create	new	GUID	values.	For	example,	cutting	and	pasting	an
existing	GUID,	hand-modifying	an	existing	GUID,	or

incrementing/decrementing	fields	in	a	GUID	creates	the	opportunity	to	introduce	a	duplicate	GUID.
These	practices	can	cause		catastrophic	failures.		Typically,	a	system	containing	a	duplicate	GUID	may
inadvertently	find	the	new	protocol	and	think	that	it	is	another	protocol,	which	mostly	likely	crashes	the
system.	Another	possible	failure	is	a	data-loss	failure	caused	when	a	duplicated	GUID	is	a	data-handling
GUID	(such	as	a	disk	I/O,	file-system	or	NVRAM-handling	GUID).	Always	use	a	GUID	generator	utility	to
create	new	GUIDs.

TIP:	Bugs	caused	by	duplicate	GUIDs	are	typically	very	difficult	to	root	cause	and	many	developers	do
not	check	the	GUID	when	debugging.	If	the	root	cause	for	a	hang	has	not	been	found	in	a	reasonable
amount	of	time,	check	to	make	sure	the	GUID	for	each	relevant	protocol	is	unique.

3.5	GUIDsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

55DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6	Protocols	and	handles

The	extensible	nature	of	UEFI	is	built,	to	a	large	degree,	around	protocols.	Protocols	serve	to	enable
communication	between	separately	built	modules,	including	drivers.

Drivers	create	protocols	consisting	of	two	parts.	The	body	of	a	protocol	is	a	C-style	data	structure
known	as	a	protocol	interface	structure,	or	just	"interface".	The	interface	typically	contains	an
associated	set	of	function	pointers	and	data	structures.

Every	protocol	has	a	GUID	associated	with	it.	The	GUID	serves	as	the	name	for	the	protocol.	The	GUID
also	indicates	the	organization	of	the	data	structure	associated	with	the	GUID.	Note	that	the	GUID	is
not	part	of	the	data	structure	itself.

The	example	below	shows	a	portion	of	the	Component	Named	2	Protocol	definition	from	the	UEFI	Driver
Model	chapter	of	the	UEFI	Specification.	Notice	that	the	protocol	data	structure	contains	two	functions
and	one	data	field.

Example	2-Protocol	structure	in	EDK	II

///

///	Global	ID	for	the	Component	Name	Protocol

///

#define	EFI_COMPONENT_NAME2_PROTOCOL_GUID	\

		{0x6a7a5cff,	0xe8d9,	0x4f70,	{	0xba,	0xda,	0x75,	0xab,	0x30,	0x25,	0xce,	0x14	}	}

typedef	struct	_EFI_COMPONENT_NAME2_PROTOCOL	EFI_COMPONENT_NAME2_PROTOCOL;

///

///	This	protocol	is	used	to	retrieve	user	readable	names	of	drivers

///	and	controllers	managed	by	UEFI	Drivers.

///

struct	_EFI_COMPONENT_NAME2_PROTOCOL	{

		EFI_COMPONENT_NAME2_GET_DRIVER_NAME						GetDriverName;

		EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME		GetControllerName;

		///

		///	A	Null-terminated	ASCII	string	array	that	contains	one	or	more

		///	supported	language	codes.	This	is	the	list	of	language	codes	that

		///	this	protocol	supports.	The	number	of	languages	supported	by	a

		///	driver	is	up	to	the	driver	writer.	SupportedLanguages	is

		///	specified	in	RFC	4646	format.

		///

		CHAR8	*SupportedLanguages;

};

Protocols	are	gathered	into	a	single	database.	The	database	is	not	"flat."Instead,	it	allows	protocols	to
be	grouped	together.	Each	group	is	known	as	a	handle,	and	the	handle	is	also	the	data	type	that	refers
to	the	group.	The	database	is	thus	known	as	the	handle	database.	Handles	are	allocated	dynamically.
Protocols	are	not	required	to	be	unique	in	the	system,	but	they	must	be	unique	on	a	handle.	In	other
words,	a	handle	may	not	be	associated	with	two	protocols	that	have	the	same	GUID.

3.6	Protocols	and	handlesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

56DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6.1	Protocols	are	produced	and	consumed

Protocols	enable	inter-module	communication	in	UEFI.	To	enable	this	communication,	one	of	the
modules	must	create	or	"produce"	the	protocol.	Other	modules	(including	drivers)	may	then	use	or
"consume"	the	protocol.

Drivers	are	both	consumers	and	producers	of	protocols.	For	example,	a	UEFI	Driver	for	a	SCSI	Host
Controller	on	a	PCI	bus	consumes	the	PCI	I/O	Protocol	and	produces	the	SCSI	Host	Controller	Protocols.

The	initial	producer	of	the	protocol	must	"create"	the	protocol.	The	protocol	structure	must	be	allocated
from	memory	(allocated	either	statically	in	the	program	or	via	a	memory	allocation	operation).	The
protocol	must	then	be	initialized	by	filling	in	its	contents.	This	almost	always	involves	filling	in	the
function	pointers	declared	in	the	protocol	structure.	In	other	words,	to	produce	a	protocol	is	to	declare
its	functionality	and	publish	that	functionality	to	the	handle	database	(so	other	drivers	can	find	and	use
that	declaration).

Although	it	is	legal	to	store	data	in	a	protocol,	this	is		strongly	discouraged		for	data	items	that	may	change
over	time.	It	is	not	a	safe	way	to	store	dynamic	data.	Instead,	functions	that	provide	get/set	operations
(as	in	object-oriented	programming)	are	safer	and	more	extensible.	The	producer	then	uses
	InstallMultipleProtocolInterfaces()		(as	defined	in	the	Boot	Service	chapter	of	the	UEFI	Specification)	or
similar	to	install	the	protocol	into	the	handle	database	and	make	the	protocol	available	to	others.

The	consumer	has	a	somewhat	simpler	task.	The	consumer	looks	up	the	protocol	in	the	handle
database	by	GUID.	With	service	protocols,	for	which	there	is	only	one	instance	in	the	entire	handle
database,	the	consumer	can	use	the		LocateProtocol()		service.	For	protocols	that	may	be	present	on
multiple	handles	in	the	handle	database,	the		LocateHandleBuffer()		service	can	be	used	to	locate	the	set	of
handles	that	support	a	specified	protocol.	The	consumer	can	then	use	the		OpenProtocol()		service	to
lookup	a	protocol	on	a	specific	handle.

It	is	possible	that	the	consumer	is	invoked	before	the	producer.	In	this	case,	the	consumer	can	request
it	be	notified	when	new	instances	of	the	protocol	are	created.	This	is	accomplished	using	the
	RegisterProtocolNotify()		service.

Any	UEFI	image	can	use	protocols	during	boot	time.	However,	after		ExitBootServices()		is	called,	the	handle
database	is	no	longer	available	to	the	image.

A	complete	description	of	all	the	services	used	to	manage	the	handle	database	and	produce	and
consume	protocols	appears	in	Chapter	5.

3.6.1	Protocols	are	produced	and	consumedEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

57DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6.2	Protocol	interface	structure

The	following	figure	shows	a	single	handle	and	protocol	from	the	handle	database	produced	by	a	UEFI
driver.	The	protocol	is	composed	of	a	GUID	and	a	protocol	interface	structure.

Many	times,	the	UEFI	driver	that	produces	a	protocol	interface	maintains	additional	private	data	fields.
The	protocol	interface	structure	itself	simply	contains	pointers	to	the	protocol	function.	The	protocol
functions	are	actually	contained	within	the	UEFI	driver.	A	UEFI	driver	may	produce	one	protocol	or	many
protocols	depending	on	the	driver's	complexity.

Figure	4-Construction	of	a	Protocol

3.6.2	Protocol	interface	structureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

58DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6.3	Protocols	provided	in	addition	to	the	UEFI	Specification

Not	all	protocols	are	defined	in	the	UEFI	Specification.	For	example,	the	EDK	II,	like	other	developer's
kits,	includes	additional	protocols	that	are	not	part	of	the	UEFI	Specification.	These	additional	protocols
are	necessary	to	provide	all	of	the	functionality	in	a	particular	implementation	but	they	are	not	defined
in	the	current	UEFI	Specification	because	they	do	not	present	an	external	interface-a	requirement	to
support	booting	of	an	OS	or	writing	of	a	UEFI	driver.

The	creation	of	new	protocols	is	how	UEFI-based	systems	can	be	extended	over	time	as	new	devices,
buses,	and	technologies	are	introduced.

The	following	are	a	few	examples	of	protocols	in	the	EDK	II	that	are	not	part	of	the	UEFI	Specification:

Print	2	Protocol

	MdeModulePkg/Include/Protocol/Print2.h	

Deferred	Procedure	Call	Protocol

	MdeModulePkg/Include/Protocol/Dpc.h	

VGA	Mini	Port	Protocol

	IntelFrameworkModulePkg/Include/Protocol/VgaMiniPort.h	

UEFI	Drivers	and	UEFI	OS	Loaders	should	not	depend	on	these	types	of	protocols	because	they	are	not
guaranteed	to	be	present	in	every	UEFI-conformant	firmware	implementation.	UEFI	Drivers	and	UEFI	OS
Loaders	should	depend	only	on	protocols	defined	in	the	current	UEFI	Specification	and	protocols
required	by	platform	design	guides	(i.e.	DIG64).	The	extensible	nature	of	UEFI	allows	each	platform	to
design	and	add	its	own	special	protocols.	Use	these	protocols	to	expand	the	capabilities	of	UEFI	and
provide	access	to	proprietary	devices	and	interfaces	congruent	with	the	rest	of	the	UEFI	architecture.

3.6.3	Protocols	provided	in	addition	to	the	UEFI	SpecificationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

59DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6.4	Multiple	protocol	instances

Multiple	protocols	are	installed	on	the	same	handle	if	the	protocols	provide	services	related	to	that	one
handle.	There	are	several	handle	types.	The	most	common	are	image	handles	and	device	handles.	For
example,	if	there	are	multiple	I/O	services	for	a	single	device	that	are	abstracted	through	multiple
protocols,	then	multiple	protocols	must	be	installed	onto	the	handle	for	that	device.

A	handle	may	have	many	protocols	attached	to	it.	However,	it	may	have	only	one	protocol	of	each	GUID
name.	In	other	words,	a	single	handle	may	not	produce	more	than	one	instance	of	any	single	protocol.
This	prevents	nondeterministic	behavior	about	which	instance	would	be	consumed	by	a	given	request.

However,	drivers	may	create	multiple	"instances"	of	a	particular	protocol	and	attach	each	instance	to	a
different	handle.	This	scenario	is	the	case	with	the	PCI	I/O	Protocol,	where	the	PCI	bus	driver	installs	a
PCI	I/O	Protocol	instance	for	each	PCI	device.	Each	"instance"	of	the	PCI	I/O	Protocol	is	configured	with
data	values	unique	to	that	PCI	device,	including	the	location	and	size	of	the	UEFI-conformant	Option
ROM	(OpROM)	image.

Each	driver	can	install	customized	versions	of	the	same	protocol	(as	long	as	it	is	not	on	the	same
handle).	For	example,	each	UEFI	driver	produces	the	Component	Name	Protocols	on	its	driver	image
handle,	yet	when	the	Component	Name	Protocols'		GetDriverName()		function	is	called,	each	handle	returns
the	unique	name	of	the	driver	that	owns	that	image	handle.	The		GetDriverName()		function	on	the	USB	bus
driver	handle	returns	"USB	bus	driver"	for	the	English	language,	but	the		GetDriverName()		function	on	the
PXE	driver	handle	returns	"PXE	base	code	driver."

3.6.4	Multiple	protocol	instancesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

60DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.6.5	Tag	GUID

A	protocol	may	be	nothing	more	than	a	GUID	with	no	associated	data	structure.	This	GUID	is	also	known
as	a	tag	GUID.	Such	a	protocol	can	be	useful,	for	example,	to	mark	a	device	handle	as	special	in	some
way	or	allow	other	UEFI	images	to	find	the	device	handle	easily	by	querying	the	system	for	the	device
handles	with	that	protocol	GUID	attached.

3.6.5	Tag	GUIDEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

61DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.7	UEFI	images

There	are	different	types	of	UEFI	images,	but	all	UEFI	images	contain	a	PE/COFF	header	that	defines	the
format	of	the	executable	code.	The	PE/COFF	image	header	follows	the	format	defined	by	the	Microsoft
Portable	Executable	and	Common	Object	File	Format	Specification.	The	code	can	be	for	IA32,	X64,	IPF,	or
EBC.	The	header	defines	the	processor	type	and	the	image	type.	Refer	to	the	UEFI	Image	section	of	the
Overview	chapter	in	the	UEFI	Specification	for	definitions	of	the	processor	types	and	the	following	three
image	types:

UEFI	applications

UEFI	boot	services	drivers

UEFI	runtime	drivers

UEFI	images	are	loaded	and	relocated	into	memory	with	the	boot	service		LoadImage()	.

There	are	several	supported	storage	locations	for	UEFI	images,	including:

Expansion	ROMs	on	a	PCI	card

System	ROM	or	system	flash

A	media	device	such	as	a	hard	disk,	floppy,	CD-ROM,	DVD,	FLASH	drive

LAN	server

In	general,	UEFI	images	are	not	compiled	and	linked	at	a	specific	address.	Instead,	they	are	compiled
and	linked	such	that	relocation	fix-ups	are	included	in	the	UEFI	image.	This	allows	the	UEFI	image	to	be
placed	anywhere	in	system	memory.	The	Boot	Service		LoadImage()		does	the	following:

Allocates	memory	for	the	image	being	loaded

Automatically	applies	the	relocation	fix-ups	to	the	image

Creates	a	new	image	handle	in	the	handle	database,	which	installs	an	instance	of	the
	EFI_LOADED_IMAGE_PROTOCOL	

This	instance	of	the		EFI_LOADED_IMAGE_PROTOCOL		contains	information	about	the	UEFI	image	that	was	loaded.
Because	this	information	is	published	in	the	handle	database,	it	is	available	to	all	UEFI	components.

After	a	UEFI	image	is	loaded	with		LoadImage()	,	the	image	can	be	started	with	a	call	to		StartImage()	.	The
header	for	a	UEFI	image	contains	the	address	of	the	entry	point	called	by		StartImage()	.	The	entry	point
always	receives	the	following	two	parameters:

The	image	handle	of	the	UEFI	image	being	started

A	pointer	to	the	UEFI	system	table

The	image	handle	and	pointer	allow	the	UEFI	image	to:

Access	all	of	the	UEFI	services	that	are	available	in	the	platform.

Retrieve	information	about	where	the	UEFI	image	was	loaded	from	and	where	in	memory	the	image
was	placed.

The	operations	performed	by	the	UEFI	image	in	its	entry	point	vary	depending	on	the	type	of	UEFI	image.
The	figure	below	shows	the	various	UEFI	image	types	and	the	relationships	between	the	different	levels
of	images.

Figure	5-Image	types

3.7	UEFI	imagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

62DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	table	below	describes	the	types	of	images	shown	in	the	preceding	figure.

3.7	UEFI	imagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

63DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	6-Description	of	image	types

Type	of
image Description

Application A	UEFI	image	of	type		EFI		IMAGE		SUBSYSTEM		EFI		APPLICATION	.	This	image	is	executed	and
automatically	unloaded	when	the	image	exits	or	returns	from	its	entry	point.

OS	loader
A	special	type	of	application	that	normally	does	not	return	or	exit.	Instead,	it	calls
the	EFI	Boot	Service		ExitBootServices()		to	transfer	control	of	the	platform	from	the
firmware	to	an	operating	system.

Driver

A	UEFI	image	of	type		EFI		IMAGE		SUBSYSTEM		BOOT		SERVICE		DRIVER		or
	EFI		IMAGE		SUBSYSTEM		RUNTIME		DRIVER	.	If	this	image	returns		EFI		SUCCESS	,	then	the	image	is
not	unloaded.	If	the	image	returns	an	error	code	other	than		EFI	_	SUCCESS	,	then	the
image	is	automatically	unloaded	from	system	memory.	The	ability	to	stay	resident	in
system	memory	is	what	differentiates	a	driver	from	an	application.	Because	drivers
can	stay	resident	in	memory,	they	can	provide	services	to	other	drivers,
applications,	or	an	operating	system.	Only	the	services	produced	by	runtime	drivers
are	allowed	to	persist	past		ExitBootServices()	.

Service
driver

A	driver	that	produces	one	or	more	protocols	on	one	or	more	new	service	handles
and	returns		EFI_SUCCESS		from	its	entry	point.

Initializing
driver

A	driver	that	does	not	create	any	handles	and	does	not	add	any	protocols	to	the
handle	database.	Instead,	this	type	of	driver	performs	some	initialization	operations
and	returns	an	error	code	so	the	driver	is	unloaded	from	system	memory.

Root
bridge
driver

A	driver	that	creates	one	or	physical	controller	handles	that	contain	a	Device	Path
Protocol	and	a	protocol	that	is	a	software	abstraction	for	the	I/O	services	provided
by	a	root	bus	produced	by	a	core	chipset.	The	most	common	root	bridge	driver	is
one	that	creates	handles	for	the	PCI	root	bridges	in	the	platform	that	support	the
Device	Path	Protocol	and	the	PCI	Root	Bridge	I/O	Protocol.

UEFI	driver
model
driver

A	driver	that	follows	the	UEFI	driver	model	described	in	the	UEFI	Driver	Model	chapter
of	the	UEFI	Specification.	This	type	of	driver	is	fundamentally	different	from	service
drivers,	initializing	drivers,	and	root	bridge	drivers	because	a	driver	that	follows	the
UEFI	driver	model	is	not	allowed	to	touch	hardware	or	produce	device-related
services	in	the	driver	entry	point.	Instead,	the	driver	entry	point	of	a	driver	that
follows	the	UEFI	driver	model	is	allowed	only	to	register	a	set	of	services	that	allow
the	driver	to	be	started	and	stopped	at	a	later	point	in	the	system	initialization
process.

Device
driver

A	driver	following	the	UEFI	driver	model.	This	type	of	driver	produces	one	or	more
driver	handles	or	driver	image	handles	by	installing	one	or	more	instances	of	the
Driver	Binding	Protocol	into	the	handle	database.	This	type	of	driver	does	not	create
any	child	handles	when	the		Start()		service	of	the	Driver	Binding	Protocol	is	called.
Instead,	it	only	adds	additional	I/O	protocols	to	existing	controller	handles.

Bus	driver

A	driver	following	the	UEFI	driver	model.	This	type	of	driver	produces	one	or	more
driver	handles	or	driver	image	handles	by	installing	one	or	more	instances	of	the
Driver	Binding	Protocol	in	the	handle	database.	This	type	of	driver	creates	new	child
handles	when	the		Start()		service	of	the	Driver	Binding	Protocol	is	called.	It	also
adds	I/O	protocols	to	these	newly	created	child	handles.

Hybrid
driver

A	driver	that	follows	the	UEFI	driver	model	and	shares	characteristics	with	both
device	drivers	and	bus	drivers.	This	distinction	means	that	the		Start()		service	of	the
Driver	Binding	Protocol	adds	I/O	protocols	to	existing	handles	and	creates	child
handles.

3.7	UEFI	imagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

64DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.7.1	Applications

A	UEFI	application	starts	execution	at	its	entry	point	and	then	executes	until	it	returns	from	its	entry
point	or	it	calls	the		Exit()		boot	service	function.	When	done,	the	image	is	unloaded	from	memory.	It
does	not	stay	resident.	Some	examples	of	common	UEFI	applications	include	the	following:	-	UEFI	Shell

UEFI	Shell	Applications

Flash	utilities

Diagnostic	utilities

It	is	perfectly	acceptable	to	invoke	UEFI	applications	from	inside	other	UEFI	applications.

3.7.1.1	OS	loader

The	UEFI	Specification	details	a	special	type	of	UEFI	application	called	an	OS	boot	loader.	It	is	a	UEFI
application	that	calls		ExitBootServices()	.		ExitBootServices()		is	called	when	the	OS	loader	has	set	up	enough
of	the	OS	infrastructure	that	it	is	ready	to	assume	ownership	of	the	system	resources.	At
	ExitBootServices()	,	the	UEFI	platform	firmware	frees	all	of	its	boot	time	services	and	boot	time	drivers,
leaving	only	the	runtime	services	and	runtime	drivers.

3.7.1	ApplicationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

65DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.7.2	Drivers

UEFI	drivers	are	different	from	UEFI	applications	in	that,	unless	there	is	an	error	returned	from	the
driver's	entry	point,	the	driver	stays	resident	in	memory.	The	UEFI	platform	firmware,	the	boot	manager,
and	UEFI	applications	may	load	drivers.

3.7.2.1	Boot	service	drivers

Boot	drivers	are	loaded	into	memory	marked	as		EfiBootServicesCode	,	and	they	allocate	their	data
structures	from	memory	marked	as		EfiBootServicesData	.	These	memory	types	are	converted	to	available
memory	after		ExitBootServices()		is	called.

3.7.2.2	Runtime	drivers

Runtime	drivers	are	loaded	in	memory	marked	as		EfiRuntimeServicesCode	.	They	allocate	their	data
structures	from	memory	marked	as		EfiRuntimeServicesData	.	These	types	of	memory	are	preserved	after
	ExitBootServices()		is	called.	This	preservation	allows	runtime	driver	to	provide	services	to	an	operating
system	while	the	operating	system	is	running.	Runtime	drivers	must	publish	an	alternative	calling
mechanism,	because	the	UEFI	handle	database	does	not	persist	into	OS	runtime.	The	alternative	calling
mechanism	is	application-specific.

The	most	common	examples	of	UEFI	runtime	drivers	are	the	Floating	Point	Software	Assist	driver
(FPSWA.efi)	and	the	network	Universal	Network	Driver	Interface	(UNDI)	driver.	The	EDK	II	does	include	an
UNDI	driver.	UEFI	Drivers	for	Network	Interface	Controllers	(NICs)	are	discussed	in	detail	in	Chapter	25.
Other	runtime	drivers	are	not	common	and	are	not	discussed	in	this	guide.

3.7.2.2.1	Be	rigorous	when	implementing	runtime	drivers

Implementing	and	validating	runtime	drivers	is	much	more	difficult	than	implementing	and	validating
boot	service	drivers.	The	difficulties	occur	because	UEFI	supports	the	translation	of	runtime	services
and	runtime	drivers	from	a	physical	addressing	mode	to	a	virtual	addressing	mode.	For	example,	a
pointer	might	not	have	the	same	value	in	the	physical	address	space	as	it	might	in	the	virtual	address
space.	Getting	that	translation,	or	mapping,	correct	is	very	difficult	because	if	even	a	single	pointer
translation	is	missed,	the	OS	may	crash	or	hang	if	the	runtime	driver	is	called	and	a	code	path	that
accesses	that	pointer	is	used.	Debugging	runtime	services	provides	by	UEFI	Drivers	at	OS	runtime	is
more	difficult	than	debugging	UEFI	Drivers	in	the	preboot	environment.	Since	some	code	paths	are
executed	infrequently,	careful	code	review	and	extensive	validation	of	runtime	drivers	is	strongly
recommended.	Also,	there	are	no	utilities	to	perform	such	translations	automatically.	Each	piece	of	data
and	memory	allocation	must	be	inspected	manually	to	determine	if	it	needs	to	be	adjusted.	That	in	itself
can	be	an	error-prone	process.	Additionally,	if	another	driver	writer	tries	to	adjust	the	code,	that	writer
might	not	be	aware	of	each	piece	of	data	or	memory	allocation	that	must	adjusted.

There	are	best	practices	to	help	perform	these	translations.	However,	great	care	must	be	taken	to
follow	the	recommended	practices	and	UEFI	requirements	rigorously.	Many	of	the	requirements	for
runtime	drivers	are	listed	in	the	UEFI	Specification.	Make	sure	they	are	well	understood.	Of	particular
importance	are	the	sections	on	runtime	services,	and	specifically,	virtual	memory.

3.7.2	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

66DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.8	Events	and	task	priority	levels

Events	are	another	type	of	object	that	is	managed	through	UEFI	services.	They	provide	synchronous	or
asynchronous	call	back	upon	a	particular	occurrence.	They	can	be	created	and	destroyed	and	are
either	in	the	waiting	state	or	the	signaled	state.	A	UEFI	image	can	do	any	of	the	following:

Create	an	event.

Destroy	an	event.

Check	to	see	if	an	event	is	in	the	signaled	state.

Wait	for	an	event	to	be	in	the	signaled	state.

Request	that	an	event	be	moved	from	the	waiting	state	to	the	signaled	state.

	UEFI	supports	polled	drivers,	not	interrupts.		Because	UEFI	does	not	support	interrupts,	it	can	present	a
challenge	to	driver	writers	who	are	used	to	an	interruptdriven	driver	model.

The	most	common	use	of	events	by	a	UEFI	driver	is	the	use	of	timer	events	that	allow	drivers	to	poll	a
device	periodically.	The	figure	below	shows	the	different	types	of	events	supported	in	UEFI,	as	well	as
the	relationships	between	those	events.

Figure	6-Event	types

The	following	table	describes	the	types	of	events	shown	in	the	preceding	figure.

3.8	Events	and	task	priority	levelsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

67DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	7-Description	of	event	types

Type	of
events Description

Wait
event

An	event	whose	notification	function	is	executed	whenever	the	event	is	checked	or
waited	upon.

Signal
event

An	event	whose	notification	function	is	scheduled	for	execution	whenever	the	event
goes	from	the	waiting	state	to	the	signaled	state.

Exit
Boot
Services
event

A	special	type	of	signal	event	that	is	moved	from	the	waiting	state	to	the	signaled
state	when	the	EFI	Boot	Service		ExitBootServices()		is	called.	This	call	is	the	point	in	time
when	ownership	of	the	platform	is	transferred	from	the	firmware	to	an	operating
system.	The	event's	notification	function	is	scheduled	for	execution	when
	ExitBootServices()		is	called.

Set
Virtual
Address
Map
event

A	special	type	of	signal	event	that	is	moved	from	the	waiting	state	to	the	signaled
state	when	the	UEFI	runtime	service		SetVirtualAddressMap()		is	called.	This	call	is	the	point
in	time	when	the	operating	system	is	making	a	request	for	the	runtime	components	of
UEFI	to	be	converted	from	a	physical	addressing	mode	to	a	virtual	addressing	mode.
The	operating	system	provides	the	map	of	virtual	addresses	to	use.	The	event's
notification	function	is	scheduled	for	execution	when		SetVirtualAddressMap()		is	called.

Timer
event

A	type	of	signal	event	that	is	moved	from	the	waiting	state	to	the	signaled	state	when
at	least	a	specified	amount	of	time	has	elapsed.	Both	periodic	and	one-shot	timers	are
supported.	The	event's	notification	function	is	scheduled	for	execution	when	a	specific
amount	of	time	has	elapsed.

Periodic
timer
event

A	type	of	timer	event	that	is	moved	from	the	waiting	state	to	the	signaled	state	at	a
specified	frequency.	The	event's	notification	function	is	scheduled	for	execution	when	a
specific	amount	of	time	has	elapsed.

One-
shot
timer
event

A	type	of	timer	event	that	is	moved	from	the	waiting	state	to	the	signaled	state	after
the	specified	time	period	has	elapsed.	The	event's	notification	function	is	scheduled
for	execution	when	a	specific	amount	of	time	has	elapsed.

The	following	three	elements	are	associated	with	every	event:

The	task	priority	level	(TPL)	of	the	event

A	notification	function

A	notification	context

The	notification	function	for	a	wait	event	is	executed	when	the	state	of	the	event	is	checked	or	when
the	event	is	being	waited	upon.	The	notification	function	of	a	signal	event	is	executed	whenever	the
event	transitions	from	the	waiting	state	to	the	signaled	state.

The	notification	context	is	passed	into	the	notification	function	each	time	the	notification	function	is
executed.	The	TPL	is	the	priority	at	which	the	notification	function	is	executed.	The	four	TPL	levels	that
are	defined	in	UEFI	are	listed	in	the	table	below.

3.8	Events	and	task	priority	levelsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

68DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	8-Task	priority	levels	defined	in	UEFI

Task	Priority
Level Description

	TPL_APPLICATION	 The	priority	level	at	which	UEFI	images	are	executed.

	TPL_CALLBACK	 The	priority	level	for	most	notification	functions.

	TPL_NOTIFY	 The	priority	level	at	which	most	I/O	operations	are	performed.

	TPL_HIGH_LEVEL	
The	priority	level	for	the	one	timer	interrupt	supported	in	UEFI.	(Not	usable	by
drivers)

TPLs	serve	two	purposes:

Define	the	priority	in	which	notification	functions	are	executed

Create	locks

3.8	Events	and	task	priority	levelsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

69DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.8.1	Defining	priority

Notification	functions	at	higher	priorities	can	interrupt	the	execution	of	notification	functions	executing
at	a	lower	priority.

The	mechanism	for	defining	the	priority	(in	which	notification	functions	are	executed),	is	used	only	when
more	than	one	event	is	in	the	signaled	state	at	the	same	time.	In	these	cases,	the	notification	function
that	has	been	registered	with	the	higher	priority	is	executed	first.

3.8.1	Defining	priorityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

70DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.8.2	Creating	locks

It	is	possible	for	the	code	in	normal	context	and	the	code	in	interrupt	context	(i.e.	notification	functions)
to	access	the	same	data	structure.	This	is	because	UEFI	does	support	a	single	timer	interrupt.	This
access	can	cause	issues	if	the	updates	to	a	shared	data	structure	are	not	atomic.	A	UEFI	application	or
UEFI	driver	that	wants	to	guarantee	exclusive	access	to	a	shared	data	structure	can	temporarily	raise
the	task	priority	level	to	prevent	simultaneous	access	from	both	normal	context	and	interrupt	context.	A
lock	can	be	created	by	temporarily	raising	the	task	priority	level	to		TPL_HIGH_LEVEL	.	This	level	blocks	even
the	one	timer	interrupt.	However,	care	must	be	taken	to	minimize	the	amount	of	time	that	the	system
executes	at		TPL_HIGH_LEVEL	.	All	timer-based	events	are	blocked	during	this	time	and	any	driver	requiring
periodic	access	to	a	device	is	prevented	from	accessing	its	device.	See	the	Boot	Services	chapter	of	the
UEFI	Specification	for	more	information	on	Task	Priority	Levels	and	Section	5.1.4	of	this	guide	for
examples	on	how	Task	Priority	Levels	can	be	used	to	create	and	manage	locks.

3.8.2	Creating	locksEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

71DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.8.3	Using	callbacks

The	calls	to	create	an	event	take	two	important	parameters:	the	callback	and	the	parameter	pointer.

The	callback	function	is	invoked	when	the	event	occurs.	Using	callbacks	appropriately	is	not	difficult-as
long	as	the	following	rules	are	followed:

The	parameter	pointer	can	point	to	any	static	(not	on	the	stack)	structure.	The	parameter	pointer	is
used	to	provide	state	information	for	the	event	invocation.	The	parameter	pointer	is	particularly
useful	if	multiple	events	must	be	handled	by	the	same	callback.

The	callback	function,	when	invoked,	may	only	assume	its	priority	level,	its	parameter	pointer,	and
that	it	has	a	stack.	It	must	derive	all	context	from	the	parameter	pointer	and	the	static	data	left	in
its	module.	This	makes	writing	callbacks	somewhat	more	challenging	than	normal	driver	code.

3.8.3.1	Debugging	callbacks

Debugging	callbacks	is	a	little	like	debugging	interrupt	handlers	in	that	one	is	not	always	sure	when	a
callback	is	invoked.	Most	normal	debugging	facilities	function	as	expected	in	callbacks.

There	can	be	a	temptation	to	write	one's	driver	as	a	series	of	callbacks.	This	is	not	recommended	since
normal	code	is	easier	to	debug,	and	managing	a	large	number	of	the	context	structures	addressed	by
parameter	pointers	becomes	difficult	to	maintain.

TIP:	Minimize	the	use	of	callbacks.	Only	use	a	callback	when	an	operation	cannot	be	implemented	as
part	of	UEFI	Driver	initialization	or	through	a	protocol	services	provided	by	the	UEFI	Driver.

3.8.3	Using	callbacksEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

72DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.9	UEFI	device	paths

UEFI	defines	a	Device	Path	Protocol	that	is	attached	to	device	handles	in	the	handle	database.	The
Device	Path	Protocol	helps	operating	systems	and	their	loaders	identify	the	hardware	that	a	device
handle	represents.

The	Device	Path	Protocol	provides	a	unique	name	for	each	physical	device	in	a	system.	The	collection	of
Device	Path	Protocols	for	the	physical	devices	managed	by	UEFI-based	firmware	is	called	a	"name
space."

Modern	operating	systems	tend	to	use	ACPI	and	industry	standard	buses	to	produce	a	name	space
while	the	operating	system	is	running.	However,	the	ACPI	name	space	is	difficult	to	parse,	and	it	would
greatly	increase	the	size	and	complexity	of	system	firmware	to	carry	an	ACPI	name	space	parser.
Instead,	UEFI	uses	aspects	of	the	ACPI	name	space	that	do	not	require	an	ACPI	name	space	parser.
This	compromise	keeps	the	size	and	complexity	of	system	firmware	to	a	minimum.	It	also	provides	a	way
for	the	operating	system	to	create	a	mapping	from	UEFI	device	paths	to	the	operating	system's	name
space.

A	device	path	is	a	data	structure	that	is	composed	of	one	or	more	device	path	nodes.	Every	device	path
node	contains	a	standard	header	that	includes	the	node's	type,	subtype,	and	length.	This	standard
header	allows	a	parser	of	a	device	path	to	hop	from	one	node	to	the	next	without	having	to	understand
every	type	of	node	that	may	be	present	in	the	system.

The	following	two	examples	show	the	declaration	of	the	PCI	device	path	node	which	combined	the
generic	UEFI	Device	Path	Header	with	the	PCI-device-specific	fields	Function	and	Device.

Example	3-Device	Path	Header

/**

		This	protocol	can	be	used	on	any	device	handle	to	obtain	generic	path/location	information	concerning	the	physical	device	or

	logical	device.	If	the	handle	does	not	logically	map	to	a	physical	device,	the	handle	may	not	necessarily	support	the	device	

path	protocol.	The	device	path	describes	the	location	of	the	device	the	handle	is	for.	The	size	of	the	Device	Path	can	be	dete

rmined	from	the	structures	that	make	up	the	Device	Path.

**/

typedef	struct	{

		UINT8	Type;							///<	0x01	Hardware	Device	Path.

																				///<	0x02	ACPI	Device	Path.

																				///<	0x03	Messaging	Device	Path.

																				///<	0x04	Media	Device	Path.

																				///<	0x05	BIOS	Boot	Specification	Device	Path.

																				///<	0x7F	End	of	Hardware	Device	Path.

		UINT8	SubType;				///<	Varies	by	Type

																				///<	0xFF	End	Entire	Device	Path,	or

																				///<	0x01	End	This	Instance	of	a	Device	Path	and	start	a	new

																				///<	Device	Path.

		UINT8	Length[2];		///<	Specific	Device	Path	data.	Type	and	Sub-Type	define

																				///<	type	of	data.	Size	of	data	is	included	in	Length.

}	EFI_DEVICE_PATH_PROTOCOL;

Example	4-PCI	Device	Path

///

///	PCI	Device	Path.

///

typedef	struct	{

		EFI_DEVICE_PATH_PROTOCOL			Header;

		///

3.9	UEFI	device	pathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

73DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		///	PCI	Function	Number.

		///

		UINT8																						Function;

		///

		///	PCI	Device	Number.

		///

		UINT8																						Device;

}	PCI_DEVICE_PATH;

Device	paths	are	designed	to	be	position-independent	by	not	using	pointer	values	for	any	field.	This
independence	allows	device	paths	to	be	easily	moved	from	one	location	to	another	and	stored	in
nonvolatile	storage.

A	device	path	is	terminated	by	a	special	device	path	node	called	an	end	device	path	node.	See	Example
2	in	this	section.

The	following	table	lists	the	types	of	device	path	nodes	that	are	defined	in	the	Device	Path	Protocol
chapter	of	the	UEFI	Specification.

3.9	UEFI	device	pathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

74DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	9-Types	of	device	path	nodes	defined	in	UEFI	Specification

Type	of
device

path	notes
Description

Hardware
device	path
node

Used	to	describe	devices	on	industry-standard	buses	that	are	directly	accessible
through	processor	memory	or	processor	I/O	cycles.	These	devices	include	memory-
mapped	devices	and	devices	on	PCI	buses	and	PC	card	buses.

ACPI	device
path	node

Used	to	describe	devices	whose	enumeration	is	not	described	in	an	industry-
standard	fashion.	This	type	of	device	path	is	used	to	describe	devices	such	as	PCI
root	bridges	and	ISA	devices.	These	device	path	nodes	contain	HID,	CID,	and	UID
fields	that	must	match	the	HID,	CID,	and	UID	values	that	are	present	in	the
platform's	ACPI	tables.

Messaging
device	path
node

Used	to	describe	devices	on	industry-standard	buses	that	are	not	directly
accessible	through	processor	memory	or	processor	I/O	cycles.	These	devices	are
accessed	by	the	processor	through	one	or	more	hardware	bridge	devices	that
translate	one	industrystandard	bus	type	to	another	industry-standard	bus	type.
This	type	of	device	path	is	used	to	describe	devices	such	as	SCSI,	Fibre	Channel,
1394,	USB,	I2O,	InfiniBand(R),	UARTs,	and	network	agents.

Media
device	path
node

Hard	disk,	CD-ROM,	and	file	paths	in	a	file	system	that	supports	multiple	directory
levels.

BIOS	Boot
Specification
(BBS)	device
path	node

Used	to	describe	a	device	that	has	a	type	that	follows	the	BIOS	Boot	Specification,
such	as	floppy	drives,	hard	disks,	CD-ROMs,	PCMCIA	devices,	USB	devices,	network
devices,	and	bootstrap	entry	vector	(BEV)	devices.	These	device	path	nodes	are
used	only	in	a	platform	that	supports	BIOS	INT	services.

End	device
path	node Used	to	terminate	a	device	path.

Each	of	the	device	path	node	types	also	supports	a	vendor-defined	node	that	is	the	extensibility
mechanism	for	device	paths.	As	new	devices,	bus	types,	and	technologies	are	introduced	into
platforms,	new	device	path	nodes	types	may	have	to	be	created.	The	vendor-defined	nodes	use	a	GUID
to	distinguish	new	device	path	nodes.

Careful	design	is	required	when	choosing	the	data	fields	used	in	the	definition	of	a	new	device	path
node.	As	long	as	a	device	is	not	physically	moved	from	one	location	in	a	platform	to	another	location,
the	device	path	must	not	change	across	platform	boots	or	if	there	are	system	configuration	changes	in
other	parts	of	the	platform.	For	example,	the	PCI	device	path	node	only	contains	a	Device	and	a
Function	field.	It	does	not	contain	a	Bus	field,	because	the	addition	of	a	device	with	a	PCI-to-PCI	bridge
may	modify	the	bus	numbers	of	other	devices	in	the	platform.

Instead,	the	device	path	for	a	PCI	device	is	described	with	one	or	more	PCI	device	path	nodes	that
describe	the	path	from	the	PCI	root	bridge,	through	zero	or	more	PCI-toPCI	bridges,	and	finally	the
target	PCI	device.

The	UEFI	Shell	is	able	to	display	a	device	path	on	a	console	as	a	string.	The	conversion	of	device	path
nodes	to	printable	strings	is	defined	in	the	EFI	Device	Path	Display	Format	Overview	section	of	the	UEFI
Specification.	This	optional	feature	allows	developers	to	view	device	paths	in	a	readable	form	using	the
UEFI	shell.	The	UEFI	Shell	also	provides	a	method	to	perform	a	hex	dump	of	a	device	path.

The	example	below	shows	some	example	device	paths.	These	device	paths	show	standard	and
extended	ACPI	device	path	nodes	being	used	for	a	PCI	root	bridge	and	an	ISA	floppy	controller.	PCI
device	path	nodes	are	used	for	PCI-to-PCI	bridges,	PCI	video	controllers,	PCI	IDE	controllers,	and	PCI-to-
LPC	bridges.	Finally,	IDE	messaging	device	path	nodes	are	used	to	describe	an	IDE	hard	disk,	and	media
device	path	nodes	are	used	to	describe	a	partition	on	an	IDE	hard	disk.

Example	5-Device	Path	Examples

3.9	UEFI	device	pathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

75DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	PCI	Root	Bridge	#0	using	an	Extended	ACPI	Device	Path

//

Acpi(HWP0002,PNP0A03,0)

//

//	PCI	Root	Bridge	#1	using	an	Extended	ACPI	Device	Path

//

Acpi(HWP0002,PNP0A03,1)

//

//	PCI	Root	Bridge	#0	using	a	standard	ACPI	Device	Path

//

Acpi(PNP0A03,0)

//

//	PCI-to-PCI	bridge	device	directly	attached	to	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1E|0)

//

//	A	video	adapter	installed	in	a	slot	on	the	other	side	of	a	PCI-to-PCI	bridge

//	that	is	attached	to	PCI	Root	Bridge	#0.

//

Acpi(PNP0A03,0)/Pci(1E|0)/Pci(0|0)

//

//	A	PCI-to-LPC	bridge	device	attached	to	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1F|0)

//

//	A	1.44	MB	floppy	disk	controller	attached	to	a	PCI-to-LPC	bridge	device

//	attached	to	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1F|0)/Acpi(PNP0604,0)

//

//	A	PCI	IDE	controller	attached	to	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1F|1)

//

//	An	IDE	hard	disk	attached	to	a	PCI	IDE	controller	attached	to

//	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Secondary,Master)

//

//	Partition	#1	of	an	IDE	hard	disk	attached	to	a	PCI	IDE	controller	attached	to

//	PCI	Root	Bridge	#0

//

Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Secondary,Master)/HD(Part1,Sig00000000)

3.9	UEFI	device	pathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

76DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.9.1	How	drivers	use	device	paths

UEFI	drivers	that	manage	physical	devices	must	be	aware	of	device	paths.	When	possible,	UEFI	drivers
treat	device	paths	as	data	structures.	In	general,	UEFI	Drivers	are	not	required	to	parse	or	understand
the	beginning	of	the	device	path.	They	usually	only	need	to	understand	the	device	path	node
associated	with	the	specific	controller	the	UEFI	Driver	is	managing	and,	potentially,	the	device	path
node	associated	with	child	controllers	the	UEFI	Driver	may	generate	by	appending	a	new	device	path
node	to	the	end	of	the	device	path	from	the	parent	controller.

Root	bridge	drivers	are	required	only	to	produce	the	device	paths	for	the	root	bridges,	which
typically	contain	only	a	single	ACPI	device	path	node.

For	a	child	device,	bus	drivers	usually	just	append	a	single	device	path	node	to	that	of	the	parent
device.	The	bus	drivers	should	not	parse	the	contents	of	the	parent	device	path.	Instead,	a	bus
driver	appends	the	one	device	path	node	that	it	is	required	to	understand	to	the	device	path	of	the
parent	device.

For	example,	consider	a	SCSI	Bus	Driver	that	produces	child	handles	for	the	mass	storage	devices	on	a
SCSI	channel.	This	UEFI	Driver	builds	a	device	path	for	each	mass	storage	device.	The	device	path	is
constructed	by	appending	a	SCSI	device	path	node	to	the	device	path	of	the	SCSI	channel.	The	SCSI
device	path	node	simply	contains	the	Physical	Unit	Number	(PUN)	and	Logical	Unit	Number	(LUN)	of	the
SCSI	mass	storage	device.

The	mechanism	described	above	allows	the	construction	of	device	paths	to	be	a	distributed	process.
The	bus	drivers	at	each	level	of	the	system	hierarchy	are	required	only	to	understand	the	device	path
nodes	for	their	child	devices.	Bus	drivers	understand	their	local	view	of	the	device	path,	and	a	group	of
bus	drivers	from	each	level	of	the	system	bus	hierarchy	work	together	to	produce	complete	device
paths	for	the	console	and	boot	devices	that	are	used	to	install	and	boot	operating	systems.

There	are	a	number	of	functions	in	the	EFI	Device	Path	Utilities	Protocol	defined	by	the	UEFI
Specification	to	help	manage	device	paths.	The		MdePkg		in	the	EDK	II	also	provides	a	Device	Path	Library
with	many	useful	functions	and	macros	to	manage	device	paths.

3.9.1	How	drivers	use	device	pathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

77DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.9.2	IPF	Considerations	for	device	path	data	structures

Individual	device	paths	nodes	may	be	any	length,	and	each	device	path	node	in	a	complete	device	path
starts	immediately	after	the	previous	device	path	node.	This	means	that	device	path	nodes	inside	of	a
full	device	path	may	not	start	on	a	naturally	aligned	boundary.	This	can	cause	problems	for	CPU
architectures	that	do	not	support	unaligned	memory	accesses	such	as	IPF.	A	device	path	node	that	is
not	a	multiple	of	8	bytes	in	length	may	cause	a	device	path	node	that	follows	to	be	unaligned.
Implementing	source	code	that	manages	device	paths	requires	some	special	techniques	to	guarantee
that	the	source	code	is	portable	to	all	the	CPU	architectures	supported	by	the	UEFI	Specification.

TIP:	Be	careful	when	using	device	paths.	Make	sure	an	alignment	fault	is	not	generated.

See	Chapter	4	in	this	guide	for	more	information	about	architecture-specific	considerations.	Refer	to
Chapter	28	for	IPF	platform	porting	considerations.

3.9.2	IPF	Considerations	for	device	path	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

78DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.9.3	Environment	variables

Device	paths	are	also	used	when	certain	environment	variables	are	built	and	stored	in	non-volatile
storage.	There	are	a	number	of	environment	variables	defined	in	the	Boot	Manager	chapter	of	the	UEFI
Specification.	These	variables	define	the	following:

Console	input	devices

Console	output	devices

Standard	error	devices

The	drivers	that	need	to	be	loaded	prior	to	an	OS	boot

The	boot	selections	that	the	platform	supports

The	UEFI	boot	manager,	UEFI	utilities,	and	UEFI-conformant	operating	systems	manage	these
environment	variables	as	operating	systems	are	installed	and	removed	from	a	platform.

3.9.3	Environment	variablesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

79DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.10	UEFI	driver	model

The	Overview	and	UEFI	Driver	Model	chapters	of	the	UEFI	Specification	define	the	UEFI	driver	model.
Drivers	that	follow	the	UEFI	driver	model	share	the	same	image	characteristics	as	UEFI	applications.
However,	the	model	allows	UEFI	more	control	over	drivers	by	separating	their	loading	into	memory	from
their	starting	and	stopping.	The	table	below	lists	the	series	of	UEFI	driver	model-related	protocols	that
are	used	to	accomplish	this	separation.

Table	10-Protocols	separating	the	loading	and	starting/stopping	of	drivers

Protocol Description

Driver
Binding
Protocol

Provides	functions	for	starting	and	stopping	the	driver,	as	well	as	a	function	for
determining	if	the	driver	can	manage	a	particular	controller.	The	UEFI	driver
binding	model	requires	this	protocol.

Service
Binding
Protocols

Provides	a	mechanism	that	allows	protocols	to	support	more	than	one	consumer.
UEFI	Drivers	that	are	required	to	produce	protocols	that	need	to	be	available	to
more	than	one	consumer	produce	both	the	Driver	Binding	Protocol	and	a	Service
Binding	Protocol.

Driver
Supported
EFI	Version
Protocol

Provides	information	on	the	version	of	the	UEFI	Specification	to	which	the	UEFI
Driver	conforms.	The	version	information	follows	the	same	format	as	the	version
field	in	the	EFI	System	Table.

Driver	Family
Override
Protocol

Provides	a	mechanism	for	a	UEFI	Driver	to	express	UEFI	Driver	specific	version
information	among	a	family	of	UEFI	Drivers	that	are	used	by	ConnectController()	to
select	the	best	driver	to	manage	a	specific	controller.

Driver	Health
Protocol

Provides	services	that	allow	a	UEFI	Driver	to	express	messages	associated	with
the	health	status	of	a	controller,	suggest	repair	operations,	and	request
configuration	changes	required	to	place	the	controller	in	a	usable	state.

HII	Config
Access
Protocol

Provides	services	to	retrieve	and	save	configuration	data	for	a	controller
managed	by	a	UEFI	Driver.	Also	provides	a	service	that	allows	a	setup	browser	to
inform	a	UEFI	Driver	when	specific	setup	browser	actions	are	performed.

HII	Packages
Allows	a	UEFI	Driver	to	register	strings,	fonts,	images,	keyboard	mappings,	and
setup	forms	related	to	the	configuration	operations	required	for	UEFI	Driver
managed	controllers.

Component
Name	2
Protocol

Provides	functions	for	retrieving	a	human-readable	name	of	a	driver	and	the
controllers	that	a	driver	is	managing	using	language	codes	defined	by	RFC	4646.

Driver
Diagnostics
2	Protocols

Provides	functions	for	executing	diagnostic	functions	on	driver	managed	devices
using	RFC	4646	defined	language	codes.

Component
Name
Protocol

Provides	functions	for	retrieving	a	human-readable	name	of	a	driver	and	the
controllers	that	a	driver	is	managing	using	language	codes	defined	by	ISO	639-2.
This	protocol	is	only	required	by	a	UEFI	Driver	that	must	be	compatible	with
platforms	that	support	only	UEFI	2.0	or	EFI	1.10	This	protocol	has	been	replaced
by	the	Component	Name	2	Protocol.

Driver
Diagnostics
Protocols

Provides	functions	for	executing	diagnostic	functions	on	driver	managed	devices
using	language	codes	defined	by	ISO	639-2.	This	protocol	is	only	required	by	a
UEFI	Driver	specifically	compatible	with	platforms	supporting	only	UEFI	2.0	or	EFI
1.10	This	protocol	has	been	replaced	by	the	Driver	Diagnostics	2	Protocol.

Driver
Configuration
Protocol

Provides	functions	that	allow	users	to	configure	devices	a	driver	is	managing
using	language	codes	defined	by	ISO	639-2.	It	also	provides	services	to	place	a
device	into	a	default	configuration.	This	protocol	is	only	required	by	a	UEFI	Driver
specifically	compatible	with	platforms	supporting	only	UEFI	2.0	or	EFI	1.10.	This
protocol	has	been	replaced	with	HII	functionality.

3.10	UEFI	driver	modelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

80DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	new	protocols	are	registered	on	the	driver's	image	handle.	HII	packages	are	registered	in	the	HII
database.	In	the	UEFI	driver	model,	the	main	goal	of	the	driver's	entry	point	is	to	install	theses
protocols,	register	HII	packages,	and	exit	successfully.

At	a	later	point	in	the	system	initialization,	UEFI	can	use	these	protocol	functions	to	operate	the	driver.
A	more	complex	driver	may	produce	more	than	one	instance	of	the		EFI_DRIVER_BINDING_PROTOCOL	.	In	this	case,
additional	instances	of	the	Driver	Binding	Protocol	are	installed	on	new	handles.	These	new	handles
may	also	optionally	support	the	additional	protocols	listed	in	Table	10	above.

The	UEFI	driver	model	follows	the	organization	of	physical/electrical	architecture	by	defining	three	basic
types	of	UEFI	boot	time	drivers:

Device	drivers

Bus	drivers

Hybrid	drivers,	which	have	characteristics	of	both	a	device	driver	and	a	bus	driver

Device	drivers	and	bus	drivers	are	distinguished	by	the	operations	they	perform	in	the		Start()		and
	Stop()		services	of	the	Driver	Binding	Protocol.	By	walking	through	the

process	of	connecting	a	driver	to	a	device,	the	roles	and	relationships	of	the	bus	drivers	and	device
drivers	become	evident;	the	following	sections	discuss	these	two	driver	types.

3.10	UEFI	driver	modelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

81DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.10.1	Device	driver

The		Start()		service	of	a	device	driver	installs	protocol(s)	directly	onto	the	controller	handle	that	was
passed	into	the		Start()		service.	The	protocol(s)	installed	by	the	device	driver	use	the	I/O	services	that
are	provided	by	the	bus	I/O	protocol	that	is	installed	on	the	controller	handle.	For	example,	a	device
driver	for	a	USB	device	uses	the	service	of	the	USB	I/O	Protocol,	and	a	device	driver	for	a	PCI	controller
uses	the	services	of	the	PCI	I/O	Protocol.	In	other	words,	the	PCI	I/O	Protocol	is	consumed	by	a	driver	for
a	PCI	option	ROM	card.	This	process	is	called	"consuming	the	bus	I/O	abstraction."

The	following	are	the	main	objectives	of	the	device	driver:

Initialize	the	controller.

Install	an	I/O	protocol	on	the	device	that	can	be	used	directly	or	indirectly	by	UEFI-conformant
system	firmware	to	boot	an	operating	system.

It	does	not	make	sense	to	write	device	drivers	for	devices	that	cannot	be	used	to	boot	a	platform.	The
following	table	provides	the	list	of	standard	I/O	protocols	that	the	UEFI	Specification	defines	for	different
classes	of	devices.	If	multiple	protocols	are	listed,	that	does	not	necessarily	mean	that	all	the	protocols
must	be	produced.	Please	see	later	sections	of	the	guide	and	the	UEFI	Specification	for	details	on
which	protocols	are	required	and	which	are	optional.

3.10.1	Device	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

82DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	11-I/O	protocols	produced	in	the	Start()	function	for	different	device	classes

Class	of	device Protocol(s)	created	in	the	Start	section	of
the	driver

Block	Oriented	Device 	EFI_BLOCK_IO2_PROTOCOL	

	EFI_BLOCK_IO_PROTOCOL	

	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	

File	System 	EFI_SIMPLE_FILE_SYSTEM_PROTOCOL	

Non	block	oriented	or	file	system	based
boot	device 	EFI_LOAD_FILE_PROTOCOL	

LAN Universal	Network	Driver	Interface	(UNDI)

	EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL	

	EFI_SIMPLE_NETWORK_PROTOCOL	

	EFI_MANAGED_NETWORK_PROTOCOL	

	EFI_VLAN_CONFIG_PROTOCOL	

	EFI_BIS_PROTOCOL	

Graphics	Display 	EFI_GRAPHICS_OUTPUT_PROTOCOL	

	EFI_EDID_DISCOVERED_PROTOCOL	

	EFI_EDID_ACTIVE_PROTOCOL	

Text	Console 	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	

Character	based	I/O	device 	EFI_SERIAL_IO_PROTOCOL	

Keyboard 	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	

	EFI_SIMPLE_TEXT_INPUT_PROTOCOL	

Mouse 	EFI_SIMPLE_POINTER_PROTOCOL	

Tablet 	EFI_ABSOLUTE_POINTER_PROTOCOL	

USB	Host	Controller 	EFI_USB2_HC_PROTOCOL	EFI_USB_HC_PROOCOL	

SCSI	Host	Controller 	EFI_EXT_SCSI_PASS_TRU_PROTOCOL	

	EFI_SCSI_PASS_THRU_PROTOCOL	

SATA	Controller 	EFI_ATA_PASS_THRU_PROTOCOL	

Credential	Provider	for	User	Authentication 	EFI_USER_CREDENTIAL2_PROTOCOL	

The	fundamental	definition	of	a	UEFI	device	driver	is	that	it	does	not	create	any	child	handles.	This
difference	distinguishes	a	device	driver	from	a	bus	driver.

The	definition	of	a	device	driver	can	be	confusing	because	it	is	often	necessary	to	write	a	driver	that
creates	child	handles.	This	necessity	makes	the	driver	a	bus	driver	by	definition,	even	though	the	driver
may	not	be	managing	a	hardware	bus	in	the	classical	sense	(such	as	a	PCI,	SCSI,	USB,	or	Fibre	Channel
bus).

Even	though	a	device	driver	does	not	create	child	handles,	the	device	managed	by	the	device	driver
could	still	become	a	"parent."	The	protocol(s)	produced	by	a	device	driver	on	a	controller	handle	may	be
consumed	by	a	bus	driver	that	produces	child	handles.	In	this	case,	the	controller	handle	that	is
managed	by	a	device	driver	is	a	parent	controller.	This	scenario	happens	quite	often.

3.10.1	Device	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

83DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

For	example,	the		EFI_USB2_HC_PROTOCOL		is	produced	by	a	device	driver	called	the	USB	host	controller	driver.
The	protocol	is	consumed	by	the	USB	bus	driver.	The	USB	bus	driver	creates	child	handles	that	contain
the		USB_IO_PROTOCOL	.	The	USB	host	controller	driver	that	produced	the		EFI_USB2_HC_PROTOCOL		has	no
knowledge	of	the	child	handles	that	are	produced	by	the	USB	bus	driver.

3.10.1	Device	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

84DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.10.2	Bus	driver

A	bus	driver	is	nearly	identical	to	a	device	driver	except	that	a	bus	driver	creates	child	handles.	This
capability	leads	to	several	added	features	and	responsibilities	for	a	bus	driver	that	are	addressed	in
detail	throughout	this	document.	For	example,	device	drivers	do	not	need	to	concern	themselves	with
searching	the	bus.

Just	as	with	a	device	driver,	the		Start()		function	of	a	bus	driver	consumes	the	parent	bus	I/O
abstraction(s)	and	produces	new	I/O	abstractions	in	the	form	of	protocols.	For	example,	the	PCI	bus
driver	consumes	the	services	of	the

	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		and	uses	these	services	to	scan	a	PCI	bus	for	PCI	controllers.	Each	time	a	PCI
controller	is	found,	a	child	handle	is	created	and	the

	EFI_PCI_IO_PROTOCOL		is	installed	on	the	child	handle.	The	services	of	the		EFI_PCI_IO_PROTOCOL		are	implemented
using	the	services	of	the		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	

As	a	second	example,	the	USB	bus	driver	uses	the	services	of	the		EFI_USB2_HC_PROTOCOL		to	discover	and
create	child	handles	that	support	the		EFI_USB_IO_PROTOCOL		for	each	USB	device	on	the	USB	bus.	The
services	of	the		EFI_USB_IO_PROTOCOL		are	implemented	using	the	services	of	the		EFI_USB2_HC_PROTOCOL	.

The	following	are	the	main	objectives	of	the	bus	driver:

Initialize	the	bus	controller.

Determine	how	many	children	to	create.	For	example,	the	PCI	bus	driver	may	discover	and
enumerate	all	PCI	devices	on	the	bus	or	only	a	single	PCI	device	that	is	being	used	to	boot.	How	a
bus	driver	handles	this	step	creates

a	basic	subdivision	in	the	types	of	bus	drivers.	A	bus	driver	can	do	one	of	the	following:

Create	handles	for	all	child	controllers	on	the	first	call	to	Start().

Allow	the	handles	for	the	child	controllers	to	be	created	across	multiple	calls	to	Start().

A	bus	driver	that	creates	child	handles	across	multiple	Start()	calls	is	very	useful	because	it	may
reduce	the	platform	boot	time.	It	allows	a	few	child	handles,	or	even	a	single	child	handle,	to	be
created	across	multiple	calls	to	Start().	On	buses	that	take	a	long	time	to	enumerate	their	children
(for	example,	SCSI	and	Fibre	Channel),	multiple	calls	to	Start()	can	save	a	large	amount	of	time	when
booting	a	platform.

Allocate	resources	and	create	a	child	handle	in	the	UEFI	handle	database	for	one	or	more	child
controllers.

Install	an	I/O	protocol	on	the	child	handle	that	abstracts	the	I/O	operations	that	the	controller
supports	(such	as	the	PCI	I/O	Protocol	or	the	USB	I/O	Protocol).

If	the	child	handle	represents	a	physical	device,	then	install	a	Device	Path	Protocol	(see	the	UEFI
Specification).

Load	drivers	from	option	ROMs,	if	present.	The	PCI	bus	driver	is	currently	the	only	bus	driver	that
loads	from	option	ROMs.

Some	common	examples	of	UEFI	bus	drivers	include:

	PCI	Bus	Driver	:	Creates	a	child	handle	for	PCI	controllers,	either	directly	attached	to	a	PCI	Root	Bridge,
or	attached	to	a	PCI	Root	Bridge	through	one	or	more	PCI	to	PCI	Bridges.	The	Device	Path	Protocol
includes		Pci()		device	path	nodes.

3.10.2	Bus	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

85DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	USB	Bus	Driver	:	Creates	a	child	handle	for	USB	devices,	either	directly	attached	to	a	USB	Root	Port,	or
attached	to	a	USB	Root	Port	through	one	or	more	USB	Hubs.	The	Device	Path	Protocol	includes
	Usb()		device	path	nodes.

	SCSI	Bus	Driver	:	Creates	a	child	handle	for	SCSI	devices	attached	to	a	SCSI	channel.	The	Device	Path
Protocol	includes		Scsi()		device	path	nodes.

	SATA	Bus	Driver	:	Creates	a	child	handle	for	SATA	devices	attached	to	a	SATA	ports.	The	Device	Path
Protocol	includes		Sata()		device	path	nodes.

Because	bus	drivers	are	defined	as	drivers	that	produce	child	handles,	there	are	some	other	drivers
that	unexpectedly	qualify	as	bus	drivers:

	Serial	Driver:		Creates	a	child	handle	and	extends	the	Device	Path	Protocol	to	include	a		Uart()	
messaging	device	path	node.

	LAN	Driver:		Creates	a	child	handle	and	extends	the	Device	Path	Protocol	to	include	a		Mac()		address-
messaging	device	path	node.

	Graphics	Driver:		Creates	a	child	handle	for	each	physical	video	output	and	any	logical	video	output
that	is	a	combination	of	two	or	more	physical	video	outputs.	Graphics	drivers	do	not	extend	the
Device	Path	Protocol.

3.10.2	Bus	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

86DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.10.3	Hybrid	driver

A	hybrid	driver	manages	and	enumerates	a	bus	controller.	Its		Start()		function	creates	one	or	more	child
handles	and	installs	protocols	into	the	child	handles.	Its		Start()		function	also	installs	protocols	onto	the
handle	for	the	bus	controller	itself.

3.10.3	Hybrid	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

87DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.11	Service	Drivers

A	service	driver	does	not	manage	any	devices	and	does	not	produce	any	instances	of	the
	EFI_DRIVER_BINDING_PROTOCOL	.	It	is	a	simply	a	driver	that	produces	one	or	more	protocols	on	one	or	more	new
service	handles	in	the	handle	database.	These	service	handles	do	not	have	a	Device	Path	Protocol
because	they	do	not	represent	physical	devices.	The	driver	entry	point	returns		EFI_SUCCESS		after	the
service	handles	are	created	and	the	protocols	installed,	leaving	the	driver	resident	in	system	memory.
Some	example	service	drivers	in	the		MdeModulePkg		in	the	EDK	II	include:

	MdeModulePkg/Universal/Acpi/AcpiTableDxe	

	MdeModulePkg/Universal/DebugSupportDxe	

	MdeModulePkg/Universal/DevicePathDxe	

	MdeModulePkg/Universal/EbcDxe	

	MdeModulePkg/Universal/HiiDatabaseDxe	

	MdeModulePkg/Universal/PrintDxe	

	MdeModulePkg/Universal/SetupBrowserDxe	

	MdeModulePkg/Universal/SmbiosDxe	

3.11	Service	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

88DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.12	Root	Bridge	Driver

A	root	bridge	driver	does	not	produce	any	instances	of	the

	EFI_DRIVER_BINDING_PROTOCOL	.	It	is	responsible	for	initializing	and	immediately	creating	physical	controller
handles	for	the	root	bridge	controllers	or	root	devices	in	a	platform.	The	driver	must	install	the	Device
Path	Protocol	onto	a	physical	controller	handle	because	the	root	bridge	controllers	or	root	devices
represent	physical	devices.	An	example	root	bridge	driver,		PcAtChipsetPkg/PciHostBridgeDxe	,	is	shown	in	the
EDK	II.

This	driver	also	installs	the	PCI	Root	Bridge	I/O	Protocol―the	protocol	abstraction	for	a	PCI	Bus.	This
protocol	is	used	by	a	bus	driver	for	the	PCI	Bus	to	enumerate	the	PCI	controllers	attached	to	the	PCI
root	bridge.

A	driver	for	a	root	device	may	produce	a	protocol	that	is	more	directly	usable	as	a	console	or	boot
device.	For	example,	a	Serial	I/O	Protocol	for	a	serial	device	that	is	not	attached	to	an	industry	standard
bus	type	supported	by	the	UEFI	Specification,	or	a	Block	I/O	Protocol	for	a	block-oriented	media	device
that	is	not	attached	to	an	industry	standard	bus	type	supported	by	the	UEFI	Specification.

3.12	Root	Bridge	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

89DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.13	Initializing	Driver

An	initializing	driver	does	not	create	any	handles	and	it	does	not	add	any	protocols	to	the	handle
database.	Instead,	this	type	of	driver	performs	some	initialization	operations	and	then	intentionally
returns	an	error	code	so	the	driver	is	unloaded	from	system	memory.	The	EDK	II	does	not	currently
include	examples	of	UEFI	initializing	drivers.

3.13	Initializing	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

90DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.14	UEFI	Driver	Model	Connection	Process

All	UEFI	Drivers	that	adhere	to	the	UEFI	Driver	Model	follow	the	same	basic	procedure.	When	the	driver	is
loaded,	it	installs	a	Driver	Binding	Protocol	on	the	image	handle	from	which	it	was	loaded.	It	may	also
update	a	pointer	to	the		Unload()		service	of	the	Loaded	Image	Protocol	and	install	the	Component	Name
2	Protocol	and	the	Component	Name	Protocol,	if	needed,	so	its	name	is	visible	to	any	operator.	The
UEFI	Driver	then	exits	from	the	entry	point	with	a	return	status	of		EFI_SUCCESS	,	leaving	the	UEFI	Driver
resident	in	system	memory.

The	Driver	Binding	Protocol	provides	a	version	number	and	the	following	three	services:

	Supported()	

	Start()	

	Stop()	

The	Driver	Binding	Protocol	is	available	on	the	driver's	image	handle	after	the	entry	point	is	exited.	Later
on	when	the	system	is	"connecting"	drivers	to	devices,	the	driver's	Driver	Binding	Protocol		Supported()	
service	is	called.

The		Supported()		service	is	passed	a	controller	handle.	The		Supported()		function	quickly	examines	the
controller	handle	to	see	if	it	represents	a	device	that	the	driver	knows	how	to	manage.	If	so,	it	returns
	EFI_SUCCESS	.	The	system	then	starts	the	driver	by	calling	the	driver's		Start()		service,	passing	in	the
supported	controller	handle.	The	driver	can	later	be	disconnected	from	a	controller	handle	by	calling
the		Stop()		service.

A	platform	connects	the	devices	in	a	platform	with	the	drivers	available	in	the	platform.	This	connection
process	appears	complex	at	first,	but	as	the	process	continues,	it	becomes	evident	that	the	same
basic	procedure	is	used	over	and	over	again	to	accomplish	the	complex	task.	This	description	does	not
go	into	all	the	details	of	the	connection	process	but	explains	enough	that	the	role	of	various	drivers	in
the	connection	process	can	be	understood.	This	knowledge	is	fundamental	to	designing	new	UEFI
Drivers.

The	UEFI	boot	service		ConnectController()		demonstrates	the	flexibility	of	the	UEFI	Driver	Model.	The	UEFI
Shell	command		connect		directly	exposes	much	of	the	functionality	of	this	boot	service	and	provides	a
convenient	way	to	explore	the	flexibility	and	control	offered	by		ConnectController()	.

3.14	UEFI	Driver	Model	Connection	ProcessEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

91DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.14.1	ConnectController()

By	passing	the	handle	of	a	specific	controller	into		ConnectController()	,	UEFI	follows	a	specific	process	to
determine	which	driver(s)	manage	the	controller.	For	reference,	the	following	example	is	the	definition	of
	ConnectController()	:

Example	6-ConnectController()	UEFI	Boot	Service

/**

		Connects	one	or	more	drivers	to	a	controller.

		@param		ControllerHandle										The	handle	of	the	controller	to	which	driver(s)	are	to	be	connected.

		@param		DriverImageHandle									A	pointer	to	an	ordered	list	handles	that	support

																																				The	EFI_DRIVER_BINDING_PROTOCOL.

		@param		RemainingDevicePath							A	pointer	to	the	device	path	that	specifies	a	child	of	the	controller

																																				specified	by	ControllerHandle.

		@param		Recursive																	If	TRUE,	then	ConnectController()	is	called	recursively	until	the

																																				entire	tree	of	controllers	below	the	controller	specified	by

																																				ControllerHandle	have	been	created.	If	FALSE,	then	the	tree	of

																																				controllers	is	only	expanded	one	level.

		@retval		EFI_SUCCESS														1)	One	or	more	drivers	were	connected	to

																																							ControllerHandle.

																																				2)	No	drivers	were	connected	to	ControllerHandle,

																																							But	RemainingDevicePath	is	not	NULL,	and	it	is

																																							an	End	Device	Path	Node.

		@retval		EFI_INVALID_PARAMETER				ControllerHandle	is	NULL.

		@retval		EFI_NOT_FOUND												1)	There	are	no	EFI_DRIVER_BINDING_PROTOCOL

																																							Instances	present	in	the	system.

																																				2)	No	drivers	were	connected	to	ControllerHandle.

**/

typedef

EFI_STATUS

(EFIAPI	*	EFI_CONNECT_CONTROLLER)(

		IN	EFI_HANDLE																					ControllerHandle,

		IN	EFI_HANDLE																					*DriverImageHandle,	OPTIONAL

		IN	EFI_DEVICE_PATH_PROTOCOL							*RemainingDevicePath,	OPTIONAL

		IN	BOOLEAN																								Recursive

);

The	connection	is	a	two-phase	process:

1.	 Construct	an	ordered	list	of	driver	handles	from	highest	to	lowest	priority.

2.	 Attempt	to	connect	the	drivers	to	a	controller	in	priority	order	from	highest	to	lowest.

The	following	table	lists	the	steps	for	phase	one;	driver	connection	precedence	rules.	Much	of	this
information	is	in	the	UEFI	Specification	where	the	UEFI	boot	service		ConnectController()	is	discussed.

3.14.1	ConnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

92DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	12-Connecting	controllers:	Driver	connection	precedence	rules

Step Type	of
override Description

1 Context
override

The	parameter	DriverImageHandle	is	an	ordered	list	of	handles	that	support
the		EFI_DRIVER_BINDING_PROTOCOL	.	The	highest	priority	image	handle	is	the	first
element	of	the	list,	and	the	lowest	priority	image	handle	is	the	last	element
of	the	list.	The	list	is	terminated	with	a		NULL		image	handle.	

This	parameter	is	usually		NULL		and	is	typically	used	only	to	debug	new
drivers	from	the	UEFI	Shell.	These	drivers	are	placed	at	the	top	of	the
ordered	list	of	driver	handles.

2
Platform
driver
override

If	an		EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL		instance	is	present	in	the	system,	the
	GetDriver()		service	of	this	protocol	is	used	to	retrieve	an	ordered	list	of
image	handles	for	ControllerHandle.	From	this	list,	the	image	handles	found
in	rule	(1)	above	are	removed.	The	first	image	handle	returned	from
	GetDriver()		has	the	highest	precedence,	and	the	last	image	handle	returned
from		GetDriver()		has	the	lowest.	The	ordered	list	is	terminated	when
	GetDriver()		returns		EFI_NOT_FOUND	.	It	is	legal	for	no	image	handles	to	be
returned	by		GetDriver()	.	There	can	be,	at	most,	a	single	instance	in	the
system	of	the		EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL	.	If	there	is	more	than	one,
then	the	system	behavior	is	not	deterministic.	

The		EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL		is	optional	and,	if	present,	is	provided
with	the	platform	firmware.	This	protocol	is	typically	provided	when	a
platform	needs	to	guarantee	that	a	specific	UEFI	Driver	be	used	to	manage
a	specific	controller,	which	is	typically	only	required	for	controllers	that	are
integrated	into	the	platform.

3
Driver
family
override

The	list	of	available	driver	image	handles	can	be	found	by	using	the	boot
service		LocateHandle()		with	a	SearchType	of		ByProtocol		for	the	GUID	of	the
	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL	.	From	this	list,	the	image	handles	found	in
rules	(1),	and	(2)	above	are	removed.	The	remaining	image	handles	are
sorted	from	highest	to	lowest	based	on	the	value	returned	from	the
	GetVersion()		function	of	the		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		associated	with
each	image	handle.	

The		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		is	optional	and	is	typically	produced	by
UEFI	Drivers	associated	with	a	family	of	controllers,	When	multiple	versions
of	a	UEFI	Driver	for	a	family	of	controllers	are	present	in	a	platform,	the	UEFI
Driver	needs	to	determine	which	version	of	the	UEFI	Driver	is	best	suited	to
manage	a	specific	controller	in	the	family	of	controllers.

4 Bus

If	there	is	an	instance	of	the	specific	driver	override
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		attached	to	ControllerHandle,	then	the
	GetDriver()		service	of	this	protocol	is	used	to	retrieve	an	ordered	list	of
image	handles	for	ControllerHandle.	From	this	list,	the	image	handles	found
in	rules	(1),	(2),	and	(3)	above	are	removed.	The	first	image	handle	returned
from		GetDriver()		has	the	highest	precedence,	and	the	last	image	handle
returned	from		GetDriver()		has	the	lowest	precedence.	The	ordered	list	is
terminated	when		GetDriver()		returns		EFI_NOT_FOUND	.	It	is	legal	for	no	image
handles	to	be	returned	by		GetDriver()	.	

In	practice,	this	precedent	option	allows	the	UEFI	drivers	that	are	stored	in	a
PCI	Option	ROM	of	a	PCI	adapter	to	manage	that	specific	PCI	adapter.	even	if
drivers	with	higher	versions	are	available	from	PCI	Option	ROMs	on	other	PCI
adapters.	This	rule	exists	to	make	sure	that	if	a	particular	UEFI	Driver	on	a
PCI	adapter	only	works	with	the	hardware	on	that	specific	PCI	adapter,	then
a	UEFI	Driver	from	a	different	PCI	adapter	is	not	to	be	used	to	manage	it.	If
an	IHV	does	not	like	this	precedence	rule,	the	Driver	Family	Override	Protocol
can	be	implemented	to	override	this	behavior.

5
Driver
binding
search

The	list	of	available	driver	image	handles	can	be	found	by	using	the	boot
service		LocateHandle()		with	a	SearchType	of		ByProtocol		for	the	GUID	of	the
	EFI_DRIVER_BINDING_PROTOCOL	.	From	this	list,	the	image	handles	found	in	rules	(1),
(2),	(3),	and	(4)	above	are	removed.	The	remaining	image	handles	are
sorted	from	highest	to	lowest	based	on	the	Version	field	of	the
	EFI_DRIVER_BINDING_PROTOCOL		instance	associated	with	each	image	handle.	

3.14.1	ConnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

93DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

In	practice,	this	sorting	means	that	a	PCI	adapter,	for	example,	that	does
not	have	a	UEFI	driver	in	its	PCI	Option	ROM	is	managed	by	the	driver	with
the	highest	Version	number.

Phase	two	of	the	connection	process	checks	each	driver	in	the	ordered	list	to	see	if	it	supports	the
controller.	This	check	calls	the		Supported()		service	of	the	driver's	Driver	Binding	Protocol	and	passes	in
the	ControllerHandle	and	the	RemainingDevicePath.	If	successful,	the		Start()		service	calls	the	Driver
Binding	Protocol	and	passes	in	the	ControllerHandle	and	RemainingDevicePath.	Each	driver	in	the	list	is
given	an	opportunity	to	connect,	even	if	a	prior	driver	connected	successfully.	However,	if	a	driver	with
higher	priority	had	already	connected	and	opened	the	parent	I/O	protocol	with	exclusive	access,	the
other	drivers	would	not	be	able	to	connect	if	they	also	require	exclusive	access	to	the	parent	I/O
protocol.

Use	this	type	of	connection	process	because	the	order	in	which	drivers	are	installed	into	the	handle
database	is	not	deterministic.	Drivers	can	be	unloaded	and	reloaded	later,	which	changes	the	order	of
the	drivers	in	the	handle	database.

These	precedent	rules	assume	that	the	relevant	drivers	to	be	considered	are	loaded	into	memory.	This
case	may	not	be	true	for	all	systems.	Large	systems,	for	example,	may	limit	"bootable"	devices	to	a
subset	of	the	total	number	of	devices	in	the	system.

The		ConnectController()		function	can	be	called	several	times	during	the	UEFI	initialization.	Use	it	to	connect
consoles,	devices	required	to	load	drivers	from	the	driver	list,	and	to	connect	devices	required	for	the
boot	options	to	be	processed	by	the	boot	manager.

3.14.1	ConnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

94DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.14.2	Loading	UEFI	option	ROM	drivers

The	following	is	an	interesting	use	case	that	tests	these	precedence	rules.	Assume	that	the	following
three	identical	adapters	are	in	the	system:

Adapter	A:	UEFI	driver	Version	0x10

Adapter	B:	UEFI	driver	Version	0x11

Adapter	C:	No	UEFI	driver

These	three	adapters	have	UEFI	drivers	in	the	option	ROM	as	defined	below.	When	UEFI	drivers	connect,
the	drivers	control	the	devices	as	follows:

UEFI	driver	Version	0x10	manages	Adapter	A.

UEFI	driver	Version	0x11	manages	Adapter	B	and	Adapter	C.

If	the	UEFI	driver	version	0x12	is	soft	loaded	through	the	UEFI	Shell,	nothing	changes	until	the	existing
drivers	are	disconnected	and	a	reconnect	is	performed.	This	reconnection	can	be	done	in	a	variety	of
ways	but	the	UEFI	Shell	command		reconnect	r		is	the	easiest.

The	drivers	now	control	the	devices	as	follows:

UEFI	driver	Version	0x10	manages	Adapter	A.

UEFI	driver	Version	0x11	manages	Adapter	B.

UEFI	driver	Version	0x12	manages	Adapter	C.

An	IHV	can	override	this	logic	by	implementing	the	Driver	Family	Override	Protocol.

An	OEM	can	override	this	logic	by	implementing	the	Platform	Driver	Override	Protocol.

3.14.2	Loading	UEFI	option	ROM	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

95DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.14.3	DisconnectController()

	DisconnectController()		performs	the	opposite	of		ConnectController()	.	It	requests	that	drivers	managing	a
controller	release	the	controller.

3.14.3	DisconnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

96DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15	Platform	initialization

Figure	7	shows	the	sequence	of	events	that	occur	when	a	UEFI-based	system	is	booted.	The	following
sections	describe	each	of	these	events	in	detail	and	how	they	relate	to	UEFI	drivers.

Figure	7-Booting	sequence	for	UEFI	operational	model

On	the	following	page,	Figure	8	shows	a	possible	system	configuration.	Each	box	represents	a	physical
device	(a	controller)	in	the	system.	Before	the	first	UEFI	connection	process	is	performed,	none	of	the
devices	are	registered	in	the	handle	database.	The	following	sections	describe	the	steps	that	UEFI-
conformant	firmware	follows	to	initialize	a	platform,	how	drivers	are	executed,	handles	are	created,	and
protocols	are	installed.

3.15	Platform	initializationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

97DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	8-A	sample	system	configuration

During	platform	initialization,	early	in	the	boot	process,	the	platform	creates	handles	and	install	the	EBC
Protocol	and	the	Decompression	Protocol(s)	in	the	handle	database.	These	service	protocols	are
needed	to	run	UEFI	drivers	that	may	be	compressed	or	compiled	using	an	EBC	compiler.	The
Compression	Algorithm	Specification	chapter	of	the	UEFI	Specification	defines	the
EFI_DECOMPRESS_PROTOCOL,	which	defines	the	standard	compression	algorithm	for	use	with	UEFI
Drivers	stored	in	PCI	Option	ROMs.

For	example,	a	portion	of	the	handle	database	as	viewed	with	the		dh		UEFI	Shell	command	might	look
like	the	example	below.	Handle		6		supports	the	EBC	Protocol.	Handle		9		is	an	image	handle	for	a	UEFI
Service	Driver.	That	UEFI	Device	Driver	installed	the	EFI_DECOMPRESS_PROTOCOL	onto	a	new	handle.	The
handle	created	is	handle		A	.

...

6:	Ebc

...

9:	Image(Decompress)

A:	Decompress

3.15	Platform	initializationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

98DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.1	Connecting	PCI	Root	Bridges

During	UEFI-conformant	firmware	initialization	by	the	platform,	the	system	typically	uses	the	service
	LoadImage()		to	load	a	root	bridge	driver	for	the	root	device.	One	common	example	is	a	PCI	root	bridge
driver.

Like	all	drivers,	as	it	loads,	UEFI	firmware	creates	a	handle	in	the	handle	database	and	attaches	an
instance	of	the		EFI_LOADED_IMAGE_PROTOCOL		with	the	unique	image	information	for	the	PCI	root	bridge	driver.
Because	this	driver	is	the	system	root	driver,	it	does	not	follow	the	UEFI	Driver	Model.	Instead,	it
immediately	uses	its	knowledge	about	the	platform	architecture	to	create	handles	for	each	PCI	root
bridge

As	viewed	using	the		dh		UEFI	Shell	command	below,	a	portion	of	the	handle	database	shows	a	single	PCI
root	bridge.	Some	platforms,	such	as	data	center	servers,	will	have	more	than	one	PCI	root	bridge.

A	PCI	root	bridge	driver	installs	the		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		and	an		EFI_DEVICE_PATH_PROTOCOL		onto	a	new
handle.	By	not	installing	the	Driver	Binding

Protocol,	the	PCI	root	bridge	prevents	itself	from	being	disconnected	or	reconnected	later	on.	For
example,	the	handle	database	as	viewed	with	the		dh		UEFI	Shell	command	might	look	like	the	following
after	the	PCI	root	bridge	driver	is	loaded	and	executed.

This	example	shows	an	image	handle	that	is	a	single	controller	handle	with	a	PCI	Root	Bridge	I/O
Protocol	and	the	Device	Path	Protocol.

...

B:	Image(PcatPciRootBridge)

C:	PciRootBridgeIo	DevPath	(Acpi(HWP0002,0,PNP0A03))

...

Note:	PNP0A03	may	appear	in	either	_HID	or	_CID	of	the	PCI	root	bridge	device	path	node.	This	example
is	one	where	it	is	not	in	_HID.

OS	loaders	usually	require	access	to	the	boot	devices	to	complete	an	OS	boot	operation.	Boot	devices
must	have	a	Device	Path	Protocol	that	represents	the	unique	name	of	the	boot	device.	The	Device	Path
Protocol	for	a	boot	device	attached	to	a	PCI	Bus	would	start	with	a	single	ACPI	node		Acpi(HID,	UID)		or
	Acpi(HID,	UID,	CID)	.	This	node	also	points	the	OS	to	the	place	in	the	ACPI	name	space	where	the	ACPI
description	of	the	PCI	root	bridge	is	stored.	The		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		provides	PCI	functions	that
are	used	by	the	PCI	bus	driver	that	is	described	in	next	section.

3.15.1	Connecting	PCI	Root	BridgesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

99DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.2	Connecting	the	PCI	bus

Platform	initialization	continues	by	loading	the	PCI	bus	driver.	As	the	driver's	entry	point	is	executed,	the
PCI	bus	driver	installs	the	Driver	Binding	Protocol	and	potentially	the	Component	Name	Protocols.

For	example,	the	handle	database	as	viewed	with	the		dh		UEFI	Shell	command	might	look	like	the
following	after	the	PCI	bus	driver	is	loaded	and	started.	It	contains	one	new	driver	image	handle	with	the
Loaded	Image	Protocol,	Driver	Binding	Protocol,	and	Component	Name2	Protocol.	Because	this	driver
does	follow	the	UEFI	Driver	Model,	no	new	controller	handles	are	produced	when	the	driver	is	loaded
and	started.	They	are	not	produced	until	the	driver	is	connected.

...

14:	Image(PciBus)	Driver	Binding	ComponentName

...

Later	in	the	platform	initialization	process,	UEFI-conformant	firmware	uses		ConnectController()		to	attempt
to	connect	the	PCI	root	bridge	controller(s)	(handle	#14	hex,	as	shown	in	the	example	above).	The
system	has	several	priority	rules	for	determining	what	driver	to	try	first,	but	in	this	case	it	searches	the
handle	database	for	driver	handles	(handles	with	the	Driver	Binding	Protocol).	The	search	finds	handle
#14	and	call	the	Driver	Binding	Protocol		Supported()		service,	passing	in	controller	handle	#14.	The	PCI
bus	driver	requires	the	Device	Path	Protocol	and	PCI	Root	Bridge	I/O	Protocol	to	be	started,	so	the
	Supported()		service	returns		EFI_SUCCESS		when	those	two	protocols	are	found	on	handle	#14	After	receiving
	EFI_SUCCESS		from	the		Supported()		service,		ConnectController()		then	calls	the	Driver	Binding	Protocol		Start()	
service	with	the	same	controller	handle	#14.

Due	to	the	PCI	Bus	Driver,	the		Start()		service	uses	the	PCI	Root	Bridge	I/O	Protocol	functions	to
enumerate	the	PCI	bus	and	discover	all	PCI	devices.	For	each	PCI	device/function	that	the	PCI	bus	driver
discovers,	it	creates	a	child	handle	and	installs	an	instance	of	the	PCI	I/O	Protocol	on	the	handle.	The
handle	is	registered	in	the	handle	database	as	a	"child"	of	the	PCI	root	bridge	controller.

The	PCI	bus	driver	also	copies	the	device	path	from	the	parent	PCI	root	bridge	device	handle	and
appends	a	new	PCI	device	path	node	Pci(Dev|Func).	In	cases	where	the	PCI	bus	driver	discovers	a	PCI-to-
PCI	bridge,	the	devices	below	the	bridge	are	added	as	children	to	the	bridge.	In	these	cases,	extra	PCI
device	path	nodes	are	added	for	each	PCI-to-PCI	bridge	between	the	PCI	root	bridge	and	the	PCI	device.

For	example,	the	handle	database	as	viewed	with	the		dh		UEFI	Shell	command	might	look	like	the
following	after	the	PCI	bus	driver	is	connected	to	the	PCI	root	bridge.	It	shows	that:

Nine	PCI	devices	were	discovered.
The	PCI	device	on	handle	#1B	has	an	option	ROM	with	a	UEFI	driver.
That	UEFI	driver	was	loaded	and	executed	and	is	shown	as	handle	#1C.

Also	notice	that	a	single	PCI	card	may	have	several	UEFI	handles	if	they	have	multiple	PCI	functions.

3.15.2	Connecting	the	PCI	busEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

100DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

...

16:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|0))

17:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1))

18:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(2|0))

19:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(2|1))

1A:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(2|2))

1B:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(3|0))

1C:	Image(Acpi(HWP0002,0,PNP0A03)/Pci(3|0))	Driver	Binding

1D:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(4|0))

1E:	PciIo	DevPath	(Acpi(HWP0002,100,PNP0A03)/Pci(1|0))

1F:	PciIo	DevPath	(Acpi(HWP0002,100,PNP0A03)/Pci(1|1))

...

3.15.2	Connecting	the	PCI	busEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

101DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.3	Connecting	consoles

At	this	point	during	the	platform	initialization,	the	firmware	has	not	initialized	or	configured	a	"console"
device	that	allows	user	input.	This	absence	is	often	because	a	PCI	device,	waits	for	the	PCI	bus	driver	to
provide	device	handles	for	the	console(s).

Most	UEFI	conformant	platforms	follow	a	console	connection	strategy	to	connect	the	consoles	in	a
manner	consistent	with	that	of	the	platform.	This	ensures	that	the	platform	is	able	to	display	messages
to	all	of	the	selected	consoles	through	the	standard	UEFI	mechanisms.	Initially,	this	includes	platform
initialization	and	informational	screens,	and	later	(during	setup),	HII	functionality	and	forms.	Prior	to	this
point,	platform	messages,	if	any,	are	conveyed	through	platform-specific	methods.

Note:	During	initialization,	the	platform	needs	to	connect	console	devices	to	the	driver.	HII	functionality
is	about	displaying	configurable	information	to	the	user,	which	happens	after	consoles	are	initialized
and	after	an	HII	compatible	setup	engine	is	invoked.	UEFI	Drivers	should	never	directly	access	console
devices	except	for	the	few	UEFI	driver	related	services	that	explicitly	allow	user	interaction.	In	most
cases,	UEFI	drivers	use	HII	infrastructure	to	present	information	to	users.

3.15.3	Connecting	consolesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

102DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.4	Console	drivers

UEFI	consoles	drivers	may	include	one	or	more	of	the	following:

Text	console	devices

Graphical	console	devices

Keyboards

Mice

Serial	ports

Some	systems	may	provide	custom	console	devices.	The	following	table	shows	examples	of	console
related	UEFI	Drivers	from	the	EDK	II.	These	UEFI	Drivers	may	be	carried	by	the	platform	firmware	or	in
standard	containers	for	UEFI	Drivers	such	as	PCI	Option	ROMs.

3.15.4	Console	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

103DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	13-UEFI	console	drivers

Class
of

driver
Type	of
driver Driver	name Description	and	example

USB
Console

USB	host
controller
driver

UhciDxe	br/>
EhciDxe	br/>
XhciDxe

Consumes	the	PCI	I/O	Protocol	and	produces
the	USB	2	Host	Controller	Protocol.	

	25:	Image(EhciDxe)	DriverBinding	ComponentName2

ComponentName	

USB
Console

USB	bus
driver UsbBusDxe

Consumes	the	USB	Host	Controller	2	Protocol
and	produces	the	USB	I/O	Protocol.	

	26:	Image(UsbBusDxe)	DriverBinding	ComponentName2

ComponentName	

USB
Console

USB
keyboard
driver

UsbKbDxe

Consumes	the	USB	I/O	Protocol	and	produces
the	Simple	Input	Ex	Protocol	and	Simple	Input
Protocol.	

	27:	Image(UsbKbDxe)	DriverBinding	ComponentName2

ComponentName	

USB
Console USB	mouse UsbMouseDxe

Consumes	the	USB	I/O	Protocol	and	produces
the	Simple	Pointer	Protocol.	

	28:	Image(UsbMouseDxe)	DriverBinding	ComponentName2

ComponentName	

Graphics Graphics
Output

CirrusLogic5430
Dxe

Consumes	the	PCI	I/O	Protocol	and	produces
the	Graphics	Output	Protocol.

	2E:	Image(CirrusLogic5430Dxe)	DriverBinding	ComponentName2

ComponentName	

Graphics
Graphics
console
driver

GraphicsConsole
Dxe

Consumes	the	Graphics	Output	Protocol	and
produces	the	Simple	Text	Output	Protocol.	

	2D:	Image(GraphicsConsoleDxe)	ComponentName	

Serial PCI	Serial PciSerialDxe

Consumes	the	PCI	I/O	Protocol	and	produces
the	Serial	I/O	Protocol.	

30:	Image(PciSerialDxe)	DriverBinding
ComponentName2	ComponentName

Serial
Serial
terminal
driver

TerminalDxe

Consumes	the	Serial	I/O	Protocol	and	produces
the	Simple	Text	Input,	Simple	text	Input	Ex,	and
Simple	Text	Output	Protocols.	

31:	Image(TerminalDxe)	DriverBinding
ComponentName2	ComponentName

Generic
Console

Platform
console
management

ConPlatformDxe

This	driver	is	unique	in	that	a	single	set	of	driver
code	produces	two	driver	handles――one	for
the	"Console	Out"	and	another	for	the	"Console
In".	This	driver	evaluates	the	set	of	physical
console	devices	and	the	UEFI	Console	Variables
that	describe	the	platform	settings	for	active
consoles	and	marks	the	active	consoles	to	they
can	be	easily	discovered	by	driver
ConSplitterDxe.	Different	platforms	may	modify
the	default	policy	decisions	this	driver	provides.	

	32:	Image(ConPlatformDxe)	Driver	Binding	ComponentName2

ComponentName		

	33:	DriverBinding	ComponentName2	ComponentName	

This	driver	may	not	be	present	on	all	platforms.
It	is	only	required	on	platforms	that	support
multiple	output	console	devices	or	multiple

3.15.4	Console	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

104DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Generic
Console

Console
splitter	driver ConSplitterDxe

input	console	devices.	It	combines	the	various
selected	input	and	output	devices	for	the
following	four	basic	UEFI	user	devices:	

ConIn	

ConOut	

ErrOut	

PointerIn	

It	also	installs	multiple	driver	handles	for	a
single	set	of	driver	code.	It	installs	driver
handles	to	manage	ConIn,	ConOut,	ErrOut,	and
PointerIn	devices.	The	entry	point	of	this	driver
creates	virtual	handles	for	ConIn,	ConOut,	and
StdErr,	respectively,	that	are	called	the
following:	

PrimaryConIn	

PrimaryConOut	

PrimaryStdErr	

The	virtual	handles	always	exist	even	if	no
console	exists	or	no	consoles	are	yet
connected	in	the	system.	

	34:	Image(ConSplitterDxe)	DriverBinding	ComponentName2

ComponentName		

	35:	DriverBinding	ComponentName2	ComponentName		

	36:	DriverBinding	ComponentName2	ComponentName		

	37:	DriverBinding	ComponentName2	ComponentName		

	38:	TxtinEx	Txtin	SimplePointer	AbsolutePointer		

	39:	Txtout	GraphicsOutput	UgaDraw	

3.15.4	Console	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

105DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.5	Console	variables

After	loading	these	drivers	in	the	handle	database,	the	platform	can	connect	the	console	devices	that
the	user	has	selected.	The	device	paths	for	these	consoles	are	stored	in	the	ConIn,	ConOut,	and	ErrOut
global	UEFI	variables	(see	the	Boot	Manager	chapter	of	the	UEFI	Specification).	For	the	purpose	of	this
example,	the	variables	have	the	following	device	paths:

ErrOut	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0)

ConOut	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/

VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0)

ConIn	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600N81)/	

VenMsg(Vt100+)

Note	the	following:

The	ErrOut	and	ConOut	variables	are	multi-instance	device	paths	separated	by	semicolon	(;)
indicating	that	the	EFI	output	is	mirrored	on	two	different	console	devices.	The	mirroring	is
performed	when	the		ConSplitterDxe		driver	is	connected.	In	this	example,	the	two	devices	are	a	serial
terminal	and	a	PCI	video	controller.

The	ConIn	variable	contains	a	device	path	to	a	serial	terminal.

The	ErrOut	variable	is	typically	the	same	as	the	ConOut	variable,	but	could	be	redirected	to	different
set	of	devices.	It	is	important	to	check	how	this	UEFI	variable	is	configured	when	developing	UEFI
drivers	because	the	debug	messages	from	a	UEFI	Driver	are	typically	directed	to	the	console
device(s)	specified	by	ErrOut.ErrOut	may	not	specify	the	same	devices	as	ConOut

In	this	example,	the	two	devices	are	a	serial	terminal	and	a	PCI	video	controller.	The	EDK	II	provides	the
	DebugLib		which	is	a	library	that	provides	services	such	as		DEBUG()		and		ASSERT()		that	are	used	generate
debug	messages.

3.15.5	Console	variablesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

106DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.6	ConIn

The	platform	connects	the	console	devices	using	the	device	paths	from	the	ConIn,	ConOut,	and	ErrOut
global	UEFI	variables.	The	ConIn	connection	process	is	discussed	first.

	ConIn	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/	VenMsg(Vt100+)	

The	UEFI	connection	process	searches	for	the	device	in	the	handle	database	having	a	device	path	that
most	closely	matches	the	following.

	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+)	

It	finds	handle	17	as	the	closest	match.	The	portion	of	the	device	path	that	did	not	match	(Uart(9600
N81)/VenMsg(Vt100+))	is	called	the	remaining	device	path.

	17:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1))	

UEFI	calls		ConnectController()	,	passing	in	handle	17	and	the	remaining	device	path.	The	connection	code
constructs	a	list	of	all	the	drivers	in	the	system	and	calls	each	driver,	passing	handle	17	and	the
remaining	device	path	into	the		Supported()		service.	The	only	driver	installed	in	the	handle	database	that
returns		EFI_SUCCESS		for	this	device	handle	is	handle	30:

	30:	Image(PciSerialDxe)	DriverBinding	ComponentName2	ComponentName	

After		ConnectController()		finds	a	driver	that	supports	handle	17,	it	passes	device	handle	17	and	the
remaining	device	path		Uart(9600	N81)/	VenMsg(Vt100+)		into	the	serial	driver's		Start()		service.	The	serial	driver
opens	the	PCI	I/O	Protocol	on	handle	17	and	create	a	new	child	handle.	The	following	is	installed	onto
the	new	child	handle:

	EFI_SERIAL_IO_PROTOCOL		(defined	in	the	Console	Support	chapter	of	the	UEFI	Specification)

	EFI_DEVICE_PATH_PROTOCOL	

The	device	path	for	the	child	handle	is	generated	by	making	a	copy	of	the	device	path	from	the	parent
and	appending	the	serial	device	path	node		Uart(9600	N81)	.	Handle	3B,	shown	below,	is	the	new	child
handle.

	3B:	SerialIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81))	

That	first	call	to		ConnectController()		has	now	been	completed,	but	the	Device	Path	Protocol	on	handle	3B
does	not	completely	match	the	ConIn	device	path,	so	the	connection	process	is	repeated.	This	time	the
closest	match	for	'Acpi(HWP0002,0)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+)'	is	the	newly	created
device	handle	3B.	Now	the	remaining	device	path	is	'VenMsg(Vt100+)'.	The	search	for	a	driver	that
supports	handle	3B	finds	the	terminal	driver,	returning	'EFI_SUCCESS'	from	the	'Supported()'	service.

	31:	Image(TerminalDxe)	DriverBinding	ComponentName2	ComponentName	

This	driver's		Start()		service	opens	the		EFI_SERIAL	IO_PROTOCOL	,	creates	a	new	child	handle,	and	installs	the
following:

	EFI_SIMPLE_TEXT_INPUT_PROTOCOL	

	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	

	EFI_DEVICE_PATH_PROTOCOL	

The	console	protocols	are	defined	in	the	Console	Support	chapter	of	the	UEFI	Specification.	The	device
path	is	generated	by	making	a	copy	of	the	device	path	from	the	parent	and	appending	the	terminal
device	path	node		VenMsg(Vt100+)	.	VT100+	was	chosen	because	that	terminal	type	was	specified	in	the
remaining	device	path	that	was	passed	into	the		Start()		service.	Handle	3C,	shown	below,	is	the	new
child	handle.

	3C:	Txtin	Txtout	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+))	

3.15.6	ConInEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

107DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

At	this	point,	the	process	still	has	not	completely	matched	the		ConIn		device	path,	so	the	connection
process	is	repeated	again.	This	time	there	is	an	exact	match	for		Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600
N81)/VenMsg(Vt100+)		with	the	newly	created	child	handle	3C.	The	search	for	a	driver	that	supports	this
controller	results	in	two	driver	handles	that	return	EFI_SUCCESS	to	the	Supported()	service.	The	two
driver	handles	are	from	the	platform	console	management	driver:

		32:	Image(ConPlatformDxe)	Driver	Binding	ComponentName2	ComponentName

		33:	Driver	Binding	ComponentName2	ComponentName

Driver	32	installs	a		ConOut		Tag	GUID	on	the	handle	if	the	device	path	is	listed	in	the		ConOut		global	UEFI
variable.	In	this	example,	this	case	is	true.	Driver	32	also	installs	a	StdErr	Tag	GUID	on	the	handle	if	the
device	path	is	listed	in	the		ErrOut		global	UEFI	variable.	This	case	is	also	true	in	the	following	example.
Therefore,	handle	3C	has	two	new	protocols	on	it:		ConOut		and		StdErr	.

		3C:	TxtInEx	Txtin	Txtout	ConOut	StdErr	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/	VenMsg(Vt100+))

Driver	33	installs	a		ConIn		Tag	GUID	on	the	handle	if	the	device	path	is	listed	in	the		ConIn		global	UEFI
variable	(which	it	does	because	the	connection	process	started	that	way),	so	handle	3C	has	the		ConIn	
protocol	attached.

		3C:	TxtinEx	Txtin	Txtout	ConIn	ConOut	StdErr	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+))

UEFI	uses	these	three	protocols	(ConIn,	ConOut,	and	StdErr)	to	mark	devices	in	the	platform,	which
have	been	selected	by	the	user	as	ConIn,	ConOut,	and	StdErr.	These	protocols	are	actually	Tag	GUIDs
without	any	services	or	data.

There	are	three	other	driver	handles	that	return		EFI_SUCCESS		from	the		Supported()		service.	These	driver
handles	are	from	the	console	splitter	drivers	for	the	ConIn,	ConOut,	and	StdErr	devices	in	the	system.
There	is	a	fourth	console	splitter	driver	handle	(which	is	not	used	on	this	handle)	for	devices	that
support	the	Simple	Pointer	Protocol.	The	three	driver	handles	are	listed	below:

		34:	Image(ConSplitterDxe)	DriverBinding	ComponentName3	ComponentName**

		35:	DriverBinding	ComponentName2	ComponentName**

		36:	DriverBinding	ComponentName2	ComponentName**

		37:	DriverBinding	ComponentName2	ComponentName**

Remember	that	when	the	console	splitter	driver	was	first	loaded,	it	created	three	virtual	handles	for	the
primary	console	input	device,	the	primary	console	output	device,	and	the	primary	standard	error	device.

		38:	TxtinEx	TxtIn	SimplePointer	AbsolutePointer

		39:	Txtout	GraphicsOutput	UgaDraw

		3A:	Txtout

The	console	splitter	driver's		Supported()		service	for	handle	34	examines	the	handle	3C	for	a	ConIn
Protocol.	Having	found	it,	it	returns		EFI_SUCCESS	.	The		Start()		service	then	opens	the	ConIn	protocol	on
handle	3C	such	that	the	primary	console	input	device	handle	38	becomes	a	child	controller	and	starts
aggregating	the		SIMPLE_INPUT_EX_PROTOCOL		and		SIMPLE_INPUT_PROTOCOL		services.	The	same	thing	happens	for
handle	36	with	ConIn,	except	that	the

	SIMPLE_TEXT_OUTPUT_PROTOCOL		functionality	on	handle	3C	is	aggregated	into	the		SIMPLE_TEXT_OUTPUT_PROTOCOL		on	the
primary	console	output	handle	39.

Handle	37	with	StdErr	also	does	the	same	thing;	the		SIMPLE_TEXT_OUTPUT_PROTOCOL		functionality	on	handle	3C
is	aggregated	into	the		SIMPLE_TEXT_OUTPUT_PROTOCOL		on	the	primary	standard	error	handle	3A.

3.15.6	ConInEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

108DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	connection	process	has	now	been	completed	for	ConIn	because	the	device	path	that	completely
matched	the	ConIn	device	path	and	all	the	console-related	services	has	been	installed.

3.15.6	ConInEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

109DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.7	ConOut

As	with	ConIn,	firmware	connects	the	ConOut	devices	using	the	device	paths	in	the	ConOut	global	UEFI
variable.	If	ConIn	was	not	complicated	enough,	the	ConOut	global	UEFI	device	path	in	this	example	is	a
compound	device	path	and	indicates	that	the	ConOut	device	is	being	mirrored	with	the	console	splitter
driver	to	two	separate	devices.

		ConOut	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0)

The	UEFI	connection	process	searches	the	handle	database	for	a	device	path	that	matches	the	first
device	path	in	the	ConOut	variable:

Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+)`

Luckily,	the	device	path	already	exists	on	handle	3C	in	its	entirety	thanks	to	the	connection	work	done
for	ConIn.

		3C:	Txtin	Txtout	ConIn	ConOut	StdErr	DevPath

		(Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/VenMsg(Vt100+))

UEFI	performs	a		ConnectController()		on	handle	3C.	Because	this	step	was	previously	done	with	ConIn,
there	is	nothing	more	to	be	done	here.

The	connection	process	has	not	yet	been	completed	for	ConOut	because	the	device	path	is	a
compound	device	path	and	a	second	device	needs	to	be	connected:

		Acpi(HWP0002,0,PNP0A03)/Pci(4|0)

The	UEFI	connection	process	searches	the	handle	database	for	a	device	path	that	matches
Acpi(HWP0002,0,PNP0A03)/Pci(4|0).	The	device	path	already	exists	in	its	entirety	on	handle	1C	and	was
created	by	the	PCI	bus	driver	when	it	started	and	exposed	the	PCI	devices.

		1C:	PciIo	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(4|0))

UEFI	now	performs	a		ConnectController()		on	handle	1C.	Note	that	the	device	path	is	a	complete	match,	so
there	is	no	remaining	device	path	to	pass	in	this	time.		ConnectController()		constructs	the	prioritized	list	of
drivers	in	the	system	and	calls	the		Supported()		service	for	each	one,	passing	in	the	device	handle	1C.	The
only	driver	that	returns		EFI_SUCCESS		is	the	GraphicsOutput	driver.

		2E:	Image(CirrusLogic5430Dxe)	Driver	Binding	ComponentName2	ComponentName

	ConnectController()		calls	this	driver's		Start()		function	and		Start()		consumes	the	device's		EFI_PCI_IO_PROTOCOL	
and	installs	the		EFI_GRAPHICS_OUTPUT_PROTOCOL		onto	the	device	handle	1C.

		1C:	PciIo	GraphicsOutput	DevPath	(Acpi(HWP0002,0,PNP0A03)/	Pci(4|0))

	ConnectController()		continues	to	process	its	list	of	drivers	and	finds	that	the		GraphicsConsole		driver's
	Supported()		service	returns		EFI_SUCCESS	.

		2D:	Image(GraphicsConsoleDxe)	DriverBinding	ComponentName2	ComponentName

3.15.7	ConOutEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

110DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Next,	the	graphics	console	driver's		Start()		service	consumes	the		EFI_GRAPHICS_OUTPUT_PROTOCOL		and	produces
the		EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL		on	the	same	device	handle	1C.

		1C:	Txtout	PciIo	GraphicsOutput	DevPath	(Acpi(HWP0002,0,PNP0A03)/

Pci(4|0))

	ConnectController()		continues	to	process	its	list	of	drivers,	now	searching	for	a	driver	that	supports	this
controller,	and	finds	two	driver	handles	that	return		EFI_SUCCESS		from	their		Supported()		services.	These	two
driver	handles	are	from	the	platform	console	management	driver:

		32:	Image(ConPlatformDxe)	DriverBinding	ComponentName2	ComponentName

Driver	handle	32	installs	a	ConOut	Tag	GUID	on	the	handle	if	the	device	path	is	listed	in	the	ConOut
global	UEFI	variable.	In	this	example,	the	case	is	true.	Driver	32	also	installs	a	StdErr	Tag	GUID	on	the
handle	if	the	device	path	is	listed	in	the	ErrOut	global	UEFI	variable.	This	case	is	also	true	in	the
example.	Therefore,	handle	1C	has	two	new	protocols	on	it:	ConOut	and	StdErr.

		1C:	Txtout	PciIo	ConOut	StdErr	DevPath	(Acpi(HWP0002,0,PNP0A03)/Pci(4|0))

These	two	protocols	(ConOut	and	StdErr)	are	used	to	mark	devices	in	the	system	that	have	been	user-
selected	as	ConOut	and	StdErr.	These	protocols	are	actually	just	Tag	GUID	without	any	functions	or
data.

There	are	two	other	driver	handles	that	return		EFI_SUCCESS		to	the		Supported()		service.	These	driver
handles	are	from	the	console	splitter	driver	for	the	ConOut	and	StdErr	devices	in	the	system.

		36:	DriverBindingComponentName

		37:	DriverBindingComponentName

Remember	that	when	the	console	splitter	driver	was	first	loaded,	it	created	three	virtual	handles.

		38:	TxtinEx	TxtIn	SimplePointer	AbsolutePointer

		39:	Txtout	GraphicsOutput	UgaDraw

		3A:	Txtout

The	console	splitter	driver's		Supported()		service	for	driver	handle	36	examines	the	handle	1C	for	a	ConOut
Protocol.	Having	found	it,		EFI_SUCCESS		is	returned.	The		Start()		service	then	opens	the	ConOut	protocol	on
device	handle	1C	such	that	the	device	handle	39	becomes	a	child	controller	and	starts	aggregating	the
	SIMPLE_TEXT_OUTPUT_PROTOCOL		services.

The	same	thing	happens	for	driver	handle	37	with	StdErr;	the		SIMPLE_TEXT_OUTPUT_PROTOCOL		functionality	on
device	handle	1C	is	aggregated	into	the		SIMPLE_TEXT_OUTPUT_PROTOCOL		on	device	handle	3A.

3.15.7	ConOutEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

111DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.8	ErrOut

In	this	example,	ErrOut	is	the	same	as	ConOut.	So	the	connection	process	for	ConOut	is	executed	one
more	time.

		ErrOut	=	Acpi(HWP0002,0,PNP0A03)/Pci(1|1)/Uart(9600	N81)/

		VenMsg(Vt100+);Acpi(HWP0002,0,PNP0A03)/Pci(4|0)

3.15.8	ErrOutEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

112DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.9	Boot	Manager	Connect	All	Processing

On	some	platforms,	the	boot	manager	may	connect	all	drivers	to	all	devices	at	this	point	in	the	platform
initialization	sequence.	However,	platform	firmware	can	choose	to	connect	the	minimum	number	of
drivers	and	devices	that	is	required	to	establish	consoles	and	gain	access	to	the	boot	device.
Performing	the	minimum	amount	of	work	is	recommended	to	enable	shorter	boot	times.

If	the	platform	firmware	chooses	to	go	into	a	"platform	configuration"	mode,	then	all	the	drivers	should
be	connected	to	all	devices.	The	platform	follows	the	following	sequence:

1.	 A	search	is	made	of	the	handle	database	for	all	root	controller	handles.	These	handles	do	not	have
a	Driver	Binding	Protocol	or	the	Loaded	Image	Protocol.	They	have	a	Device	Path	Protocol,	and	no
parent	controllers.

2.	 	ConnectController()		is	called	with	the	Recursive	flag	set	to		TRUE		and	a	RemainingDevicePath	of		NULL		for
each	of	the	root	controllers.	These	settings	cause	all	children	to	be	produced	by	all	bus	drivers.

3.	 As	each	bus	is	expanded,	and	if	the	bus	supports	storage	devices	for	UEFI	drivers,	additional	UEFI
drivers	are	then	loaded	from	those	storage	devices	(for	example,	option	ROMs	on	PCI	adapters).

4.	 This	process	is	recursive.	Each	time	a	child	handle	is	created,		ConnectController()		is	called	again	on
that	child	handle,	so	all	of	those	handle's	children	are	produced.

5.	 When	the	process	is	complete,	the	entire	tree	of	boot	devices	in	the	system	hierarchy	is	present	in
the	handle	database.

3.15.9	Boot	Manager	Connect	All	ProcessingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

113DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.10	Boot	Manager	Driver	List	Processing

The	platform	boot	manager	loads	the	drivers	that	are	specified	by	the	DriverOrder	and	Driver####
environment	variables.	These	environment	variables	are	discussed	in	more	detail	in	the	Boot	Manager
chapter	of	the	UEFI	Specification.

Before	the	platform	boot	manager	loads	each	driver,	it	uses	the	device	path	stored	in	the	Driver####
variable	to	connect	the	controllers	and	drivers	that	are	required	to	access	the	driver	option.	This
process	is	exactly	the	same	as	the	process	used	for	the	console	variables	ErrOut,	ConOut,	and	ConIn.

If	any	driver	in	the	DriverOrder	list	has	a	load	attribute	of		LOAD_OPTION_FORCE_RECONNECT	,	then	the	platform	boot
manager	uses	the		DisconnectController()		and

	ConnectController()		boot	services	to	disconnect	and	reconnect	all	the	drivers	in	the	platform.	This	load
attribute	allows	the	newly	loaded	drivers	to	be	considered	in	the	driver	connection	process.

For	example,	if	no	driver	in	the	DriverOrder	list	has	the		LOAD_OPTION_FORCE_RECONNECT		load	attribute,	then	it
would	be	possible	for	a	built-in	system	driver	with	a	lower	version	number	to	manage	a	device.	Then,
after	loading	a	newer	driver	with	a	higher	version	number	from	the	DriverOrder	list,	the	driver	with	the
lower	version	number	is	still	managing	the	same	device.

However,	if	the	newer	driver	in	the	DriverOrder	list	has	a	load	attribute	of		LOAD_OPTION_FORCE_RECONNECT	,	then
the	platform	boot	manager	disconnects	and	reconnects	all	the	controllers,	so	the	driver	with	the
highest	version	number	manages	the	same	device	that	the	lower	versioned	driver	used	to	manage.
Drivers	that	are	added	to	the	DriverOrder	list	should	not	set	the		LOAD_OPTION_FORCE_RECONNECT		attribute	unless
they	have	to	because	the	disconnect	and	reconnect	process	increases	the	boot	time.

3.15.10	Boot	Manager	Driver	List	ProcessingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

114DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.11	Boot	Manager	BootNext	Processing

After	connecting	any	drivers	in	the	DriverOrder	list,	the	platform	boot	manager	attempts	to	boot	the
option	that	is	specified	by	the	BootNext	environment	variable.	This	environment	variable	is	discussed	in
the	Boot	Manager	chapter	of	the	UEFI	Specification.	This	variable	typically	is	not	set,	but	if	it	is,	the
platform	firmware	deletes	the	variable	and	then	attempts	to	load	the	boot	option	that	is	described	in
the	Boot####	variable	pointed	to	by	BootNext.

Before	the	platform	boot	manager	boots	the	boot	option,	it	uses	the	device	path	stored	in	the
Boot####	variable	to	connect	the	controllers	and	drivers	that	are	required	to	access	the	boot	option.
This	process	is	exactly	the	same	as	the	process	that	is	used	for	the	console	variables	ErrOut,	ConOut,
and	ConIn.

3.15.11	Boot	Manager	BootNext	ProcessingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

115DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

3.15.12	Boot	Manager	Boot	Option	Processing

The	platform	boot	manager	displays	the	boot	option	menu	and	if	the	auto-boot	TimeOut	environment
variable	has	been	set,	then	the	first	boot	option	is	loaded	when	the	timer	expires.	The	boot	options	can
be	enumerated	by	the	platform	boot	manager	by	reading	the	BootOrder	and	Boot####	environment
variables.	These	environment	variables	are	more	thoroughly	discussed	in	the	Boot	Manager	chapter	of
the	UEFI	Specification.	A	boot	option	is	typically	an	OS	loader	that	never	returns	to	UEFI,	but	boot
options	can	also	be	UEFI	applications	like	diagnostic	utilities	or	the	UEFI	Shell.

If	a	boot	option	does	return	to	the	platform	boot	manager,	and	the	return	status	is	not		EFI_SUCCESS	,	then
the	platform	boot	manager	processes	the	next	boot	option.	This	process	is	repeated	until	an	OS	is
booted,		EFI_SUCESS		is	returned	by	a	boot	option	or	the	list	of	boot	options	is	exhausted.	Once	the	boot
process	has	halted,	the	platform	boot	manager	may	provide	a	user	interface	that	allows	the	user	to
manually	boot	an	OS	or	manage	the	platform.

The	platform	boot	manager	uses	the	device	path	in	each	boot	option	to	ensure	that	the	device
required	to	access	the	boot	option	has	been	added	to	the	UEFI	handle	database.	This	process	is
exactly	the	same	as	the	process	used	for	the	console	variables	ErrOut,	ConOut,	and	ConIn.

3.15.12	Boot	Manager	Boot	Option	ProcessingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

116DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4	General	Driver	Design	Guidelines
This	chapter	contains	general	guidelines	for	the	implementation	of	all	types	of	UEFI	drivers.	Guidelines
for	specific	driver	types	(PCI,	USB,	SCSI,	ATA,	Console,	Graphics,	Mass	Storage,	Network,	etc.)	are
presented	in	individual	chapters	later	in	this	guide.	This	chapter	also	focuses	on	general	guidelines	for
implementing	UEFI	Drivers	sources	portable	to	all	UEFI	conformant	platforms	and	all	CPU	architectures
supported	by	the	UEFI	Specification.	If	these	guidelines	are	followed,	there	is	a	good	chance	that	UEFI
Drivers	can	be	re-compiled	for	a	different	CPU	architecture	with	no	source	code	changes.

There	are	a	few	portability	issues	that	apply	specifically	to	IPF	and	EBC,	and	these	are	presented	in
individual	sections	later	in	this	guide	as	well.	The	summary	of	topics	covered	includes:

Common	practices	for	C	source	code

Maximizing	Platform	Compatibility

Maximizing	CPU	Compatibility

Optimizing	for	size	and	performance

4	General	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

117DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.1	Common	Coding	Practices

This	section	covers	common	coding	practices	for	implementing	UEFI	Drivers.	Following	these	practices
may	improve	a	UEFI	Driver's	compatibility	with	different	C	compilers.	The	most	important	rule	to	follow	is
to	use	ANSI	C	and	to	avoid	the	use	of	compiler	specific	language	extensions.	Avoiding	the	use	of
assembly	language	is	also	recommended.

A	common	approach	when	implementing	a	new	UEFI	Driver	is	to	find	an	existing	UEFI	Driver	with	similar
features	and	functionality	and	use	that	existing	UEFI	Driver	as	a	starting	point	for	the	new	UEFI	Driver.
Appendix	B	contains	a	table	that	lists	some	example	UEFI	Drivers	provided	in	the	EDK	II	and	the	features
implemented	by	those	UEFI	Drivers.	The	EDK	II	contains	many	more	UEFI	drivers	than	those	listed	in
Appendix	B.

4.1	Common	Coding	PracticesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

118DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.1.1	Type	Checking

Some	compilers	perform	stronger	type	checking	than	other	compilers	such	as	the	Intel	family	of
compilers	including	the	Intel(R)	C	Compiler	for	EFI	Byte	Code.	As	a	result,	code	that	compiles	without	any
errors	or	warnings	on	one	compiler	may	generate	warnings	or	errors	when	compiled	with	another
compiler.	The	following	example	shows	two	common	examples	from	UEFI	Drivers	that	use		AllocatePool()	
and		OpenProtocol()	.

These	examples	show	the	style	that	may	generate	warnings	with	some	compilers,	and	the	correct
method	to	prevent	the	warnings.

Example	7-Stronger	type	checking

#include	<Uefi.h>

#include	<Protocol/BlockIo.h>

#include	<Protocol/DriverBinding.h>

#include	<Library/UefiBootServicesTableLib.h>

typedef	struct	{

		UINT8	First;

		UINT32	Second;

}	MY_STRUCTURE;

EFI_STATUS	Status;

EFI_DRIVER_BINDING_PROTOCOL	*This;

EFI_HANDLE	ControllerHandle;

EFI_BLOCK_IO_PROTOCOL	*BlockIo;

MY_STRUCTURE	*MyStructure;

Status	=	gBS->OpenProtocol	(

																ControllerHandle,

																&gEfiBlockIoProtocolGuid,

																&BlockIo,	//	Compiler	warning

																This->DriverBindingHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_BY_DRIVER

);

Status	=	gBS->OpenProtocol	(

																ControllerHandle,

																&gEfiBlockIoProtocolGuid,

																(VOID	**)&BlockIo,	//	No	compiler	warning

																This->DriverBindingHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_BY_DRIVER

);

Status	=	gBS->AllocatePool	(

																EfiBootServicesData,

																sizeof	(MY_STRUCTURE),

																&MyStructure	//	Compiler	warning

);

Status	=	gBS->AllocatePool	(

																EfiBootServicesData,

																sizeof	(MY_STRUCTURE),

																(VOID	**)&MyStructure	//	No	compiler	warning

);

4.1.1	Type	CheckingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

119DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.1.2	Avoid	Name	Collisions

Compilers	and	linkers	guarantee	that	there	are	no	function	name	or	global	variable	name	collisions
within	a	single	UEFI	Driver,	but	the	compilers	and	linkers	cannot	check	for	function	name	or	global
variable	name	collisions	between	UEFI	Drivers.	This	inability	to	check	is	a	concern	when	debuggers	are
used	that	can	perform	source-level	debugging	or	can	display	function	names.	Appendix	A	contains
source	code	templates	that	help	avoid	function	name	collisions	between	UEFI	Drivers	by	using	the	name
of	the	driver	in	the	function	names.

4.1.2	Avoid	Name	CollisionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

120DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.1.3	Maximize	Warning	Levels

To	catch	possible	issues	with	assigning	or	comparing	values	of	different	sizes,	UEFI	drivers	should	always
be	compiled	with	the	highest	warning	level	possible.	For	example,	the	Microsoft*	compilers	support	the
/WX	and	/W3	or	/W4	compiler	flags.	The	/WX	flag	causes	any	compile	time	warnings	to	generate	an	error,
so	the	build	stops	when	a	warning	is	generated.	The	/W3	and	/W4	flags	set	the	warning	level	to	3	and	4
respectively.	At	these	warning	levels,	any	size	mismatches	in	assignments	and	comparisons	generate	a
warning.	With	the	/WX	flag,	the	compile	stops	when	such	size	mismatches	are	detected.

If	a	UEFI	Driver	is	being	developed	for	a	32-bit	architecture	and	is	expected	to	be	ported	to	a	64-bit
architecture,	it	is	a	good	idea	to	compile	the	UEFI	driver	with	a	64bit	compiler	during	the	development
process.	This	helps	ensure	the	code	is	clean	when	validation	on	the	64-bit	processor	is	begun.	By	using
the	/WX	and	/W3	or	/W4	compiler	flags,	any	size	mismatches	that	are	generated	by	only	64-bit	code	are
detected.

TIP:	As	the	warning	levels	are	increased,	a	compiler	may	produce	more	error	messages.	This	helps
develop	more	robust,	portable	code.

4.1.3	Maximize	Warning	LevelsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

121DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.1.4	Compiler	Optimizations

Test	UEFI	Drivers	built	with	compiler	optimizations	enabled	and	disabled.	This	helps	identify	odd	code
errors	that	might	not	manifest	at	lower	optimization	levels.	It	also	helps	identify	if	a	UEFI	Driver	is
sensitive	to	differences	in	execution	speed.	A	UEFI	Driver	that	works	at	lower	levels	of	optimization,	but
not	at	higher	levels,	may	be	missing	logic	for	a	required	synchronization.

4.1.4	Compiler	OptimizationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

122DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2	Maximize	Platform	Compatibility

UEFI	drivers	should	make	as	few	assumptions	about	a	system's	architecture	as	possible.	Minimizing	the
number	of	assumptions	maximizes	the	UEFI	driver's	platform	compatibility.	It	also	reduces	the	amount	of
driver	maintenance	that	is	required	when	a	UEFI	Driver	is	deployed	on	new	platforms.

4.2	Maximize	Platform	CompatibilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

123DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.1	Never	Assume	all	UEFI	Drivers	are	Executed

Typically,	the	same	vendor	that	produces	a	UEFI	driver	also	produces	an	OS-present	driver	for	all	the
operating	systems	that	the	vendor	chooses	to	support.	Because	UEFI	provides	a	mechanism	to	reduce
the	boot	time	by	running	the	minimum	set	of	drivers	that	are	required	to	connect	the	console	and	boot
devices,	not	all	UEFI	drivers	may	be	executed	on	every	boot.	For	example,	the	system	may	have	three
SCSI	cards	but	it	only	needs	to	install	the	driver	on	one	SCSI	bus	in	order	to	boot	the	OS.

This	minimum	set	of	drivers	means	that	the	OS-present	driver	may	be	handed	a	controller	that	may	be	in
several	different	states.	It	may	still	be	in	the	power-on	reset	state,	it	may	have	been	managed	by	a	UEFI
driver	for	a	short	period	of	time	and	released,	or	it	may	have	been	managed	by	a	UEFI	driver	right	up	to
the	point	in	time	where	firmware	hands	control	of	the	platform	to	the	operating	system.

The	OS-present	driver	must	accept	controllers	in	all	of	these	states.	This	acceptance	requires	the	OS-
present	driver	to	make	very	few	assumptions	about	the	state	of	the	controller	it	manages.

Note:	OS	drivers	shall	not	make	assumptions	that	the	UEFI	driver	has	initialized	or	configured	the
device	in	any	way.

Note:	I/O	hot-plug	does	not	involve	UEFI	driver	execution,	so	the	OS	driver	must	be	able	to	initialize	and
operate	the	driver	without	UEFI	support.

4.2.1	Never	Assume	all	UEFI	Drivers	are	ExecutedEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

124DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.2	Eliminate	System	Memory	Assumptions

Do	not	make	assumptions	about	the	system	memory	configuration,	including	memory	allocations	and
memory	that	is	used	for	DMA	buffers.	There	may	be	unexpected	gaps	in	the	memory	map	in	any	system
and	entire	memory	regions	may	be	missing.	For	example,	some	memory	regions	could	already	be
allocated	(such	as	for	an	I/O	device),	some	memory	may	be	non-addressable,	and/or	physical	memory
could	actually	be	missing.	UEFI	is	designed	for	a	wide	variety	of	platforms.	As	such,	portable	drivers
should	not	have	hard-coded	limits.	Instead,	they	should	rely	on	published	specifications,	UEFI,	and	the
system	firmware	to	provide	them	with	the	platform	limitations	and	platform	resources,	including	the
following:

The	number	of	adapters	that	can	be	supported	in	a	system

The	type	of	adapter	that	can	be	supported	on	each	bus

The	available	memory	resources

In	addition,	drivers	should	not	make	assumptions	on	a	platform.	Instead,	they	should	make	sure	they
support	all	the	cases	that	are	allowed	by	the	UEFI	Specification.	For	example,	memory	is	not	always
available	beneath	the	4	GB	boundary	(some	systems	may	not	have	any	memory	under	4	GB	at	all)	and
drivers	have	to	be	designed	to	be	compatible	with	these	types	of	system	configurations.	As	another
example,	some	systems	do	not	support	PC-AT(R)	legacy	hardware	and	your	drivers	should	not	expect
them	to	be	present.

4.2.2	Eliminate	System	Memory	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

125DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.3	Use	UEFI	Memory	Allocation	Services

The		AllocatePool()		service	does	not	allow	the	caller	to	specify	a	preferred	address	so	this	service	is
always	safe	to	use	and	has	no	impact	on	platform	compatibility.	The		AllocatePages()		service	does	have	a
mode	that	allows	a	specific	address	to	be	specified	or	a	range	of	addresses	to	be	specified.	The
allocation	type	of		AllocateAnyPages		is	safe	to	use	and	increases	platform	compatibility.	The	allocation	types
of		AllocateMaxAddress		and		AllocateAddress		may	reduce	platform	compatibility.	Refer	to	Chapter	5	in	this	guide
for	information	about	using	the	AllocatePages	service.

The	general	guideline	for	UEFI	drivers	is	to	make	as	few	assumptions	about	the	memory	configuration	of
the	platform	as	possible.	This	guideline	applies	to	the	memory	that	a	UEFI	driver	allocates	and	the	DMA
buffer	addresses	that	DMA	bus	master's	use.	A	UEFI	driver	should	not	allocate	buffers	from	specific
addresses	or	below	specific	addresses.	These	types	of	allocations	may	fail	on	different	system
configurations.	The	following	rules	help	ensure	a	UEFI	Driver	makes	appropriate	memory	allocations.

Use	natural	alignment	(byte	values	on	byte	boundaries)	when	allocating	buffers.	This	maximizes
portability	and	helps	avoid	alignment	faults	on	IPF	platforms.

Buffers	allocated	on	a	32-bit	CPU	architecture	using	the	UEFI	Boot	Service	AllocatePool()are
guaranteed	to	be	below	4GB.

Buffers	allocated	on	a	64-bit	CPU	architecture	using	the	UEFI	Boot	Service	AllocatePool()	may	be
above	4GB	if	memory	is	present	above	4	GB.

The	UEFI	Boot	Service	AllocatePages()	may	be	used	to	allocate	a	buffer	anywhere	system	memory	is
present.	This	means	AllocatePages()	may	return	a	buffer	on	a	32-bit	CPU	architecture	that	is	above
4	GB	if	memory	is	present	above	4GB	and	that	buffer	can	never	be	accessed.

All	UEFI	drivers	must	be	aware	that	pointers	may	contain	values	above	4	GB,	and	care	must	be
taken	never	to	strip	the	upper	address	bits.

To	prevent	memory	leaks,	every	allocation	operation	must	have	a	corresponding	free	operation.

Test	UEFI	drivers	on	64-bit	architectures	with	memory	configurations	where	system	memory	is
present	above	4GB.

Test	UEFI	drivers	on	64-bit	architectures	with	memory	configurations	where	system	memory	is	not
present	above	4GB.

UEFI	drivers	should	not	use	fixed-size	arrays.	Instead,	memory	resources	should	be	dynamically
allocated	using	the		AllocatePages()		and		AllocatePool()		services.

4.2.3	Use	UEFI	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

126DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.4	Do	not	make	assumptions	about	I/O	subsystem	configurations

UEFI	drivers	should	assume	neither	a	fixed	nor	a	maximum	number	of	controllers	in	a	system.	All	UEFI
drivers	should	be	designed	to	manage	any	number	of	controllers	even	if	the	driver	writer	is	convinced
there	are	always	a	fixed	number	of	controllers.	This	design	maximizes	the	compatibility	of	the	UEFI	driver,
especially	on	multi-bus-set	(ECR	pending	at	PCI	SIG)	PCI	systems	that	may	contain	hundreds	of	PCI	slots.
Chapter	8	of	this	guide	introduces	the	private	context	data	structure,	which	is	a	lightweight	mechanism
that	allows	a	UEFI	driver	to	be	designed	with	no	limitations	on	the	number	of	controllers	that	the	UEFI
driver	can	manage.

4.2.4	Do	not	make	assumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

127DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.5	Never	Directly	Access	Hardware	Resources

A	UEFI	driver	should	also	never	directly	access	any	system	chipset	resources.	Directly	accessing	these
resources	limits	the	compatibility	of	the	UEFI	driver	to	systems	only	with	that	specific	chipset.

Instead,	the	UEFI	boot	services,	UEFI	runtime	services,	and	various	protocol	services	should	be	used	to
access	the	system	resources	that	are	required	by	a	UEFI	driver.	The	driver	should	look	only	for	services
to	hook	into-a	capability,	such	as	a	PCI	bus.	The	driver	then	consumes	the	protocols	necessary	for
accessing	that	capability.	It	is	the	chipset's	responsibility	to	get	that	capability	ready	for	use.

TIP:	The	general	rule	is	to	only	access	the	hardware	that	the	UEFI	Driver	supports	and	use	abstractions
for	other	hardware.	If	there	is	not	an	abstraction	for	a	system	device,	do	not	use	the	device.	That
device	may	change	interface	and	functionality	in	the	future.

This	recommendation	serves	several	purposes.	By	using	the	software	abstractions	provided	by	the
platform	vendor,	the	UEFI	driver	maximizes	its	platform	compatibility.	The	platform	vendor	can	also
optimize	the	services	that	are	provided	by	the	platform,	so	the	performance	of	the	UEFI	driver	improves
by	using	these	services.	Chapter	29	in	this	guide	discusses	the	EBC	porting	considerations,	and	one	of
the	most	important	considerations	is	the	performance	of	an	EBC	driver	because	EBC	code	is
interpreted.	The	performance	of	an	EBC	driver	can	be	greatly	improved	by	calling	system	services
instead	of	using	internal	functions.

Putting	effort	into	source	code	portability	helps	maximize	future	platform	compatibility.

4.2.5	Never	Directly	Access	Hardware	ResourcesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

128DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.6	Memory	ordering

Not	all	processors	have	strongly	ordered	memory	models	and	some	compilers,	when	high	levels	of
optimization	are	enabled,	may	induce	memory	ordering	issues.	Weak	ordering	means	that	the	order	in
which	memory	transactions	are	presented	in	the	C	source	code	may	not	be	the	same	order	of
operations	when	the	code	is	executed.	IPF	platforms	are	weakly	ordered,	so	UEFI	Drivers	that	are
compiled	for	IPF	have	to	be	aware	of	this	issue.	See	A	Formal	Specification	of	Intel	Itanium	Processor
Family	Memory	Ordering	for	a	detailed	discussion	of	this	topic.	It	is	also	discussed	in	the	Intel	Itanium
Architecture	Software	Developer	Manuals.

TIP:	Most	of	the	details	of	memory	ordering	are	taken	care	of	by	protocols	and	libraries.	If	protocols	and
libraries	are	used	to	access	hardware,	then	memory	ordering	issues	should	be	hidden	from	a	UEFI
Driver	implementation.	A	direct	access	to	hardware	is	not	recommended

Normally,	memory	ordering	is	not	an	issue,	because	the	processor	and	the	compiler	guarantee	that	the
code	executes	as	the	developer	expects.	However,	UEFI	drivers	that	access	DMA	buffers	that	are
simultaneously	accessed	by	both	the	processor	and	the	DMA	bus	master	may	run	into	issues	if	either
the	processor	or	the	DMA	bus	master,	or	both,	are	weakly	ordered.	The	DMA	bus	master	must	resolve
its	own	memory	ordering	issues,	but	a	UEFI	Driver	is	responsible	for	managing	the	processor's	ordering
issues.

The	classic	case	where	strong	ordering	versus	weak	ordering	produces	different	results	is	when	there	is
a	memory-based	FIFO	and	a	shared	bus	master	"doorbell"	register	that	is	shared	by	all	additions	to	the
FIFO.	In	this	common	implementation,	the	driver	(producer)	formats	a	new	request	descriptor	and,	as	its
last	logical	operation,	writes	the	value	indicating	the	entry	is	valid.

This	mechanism	becomes	a	problem	if	a	new	request	is	being	added	to	the	FIFO	while	the	bus	master	is
checking	the	next	FIFO	entry's	valid	flag.	It	is	possible	for	the	"last	write"	issued	by	the	processor	(that
turns	on	the	valid	flag)	to	be	posted	to	memory	before	the	logically	earlier	writes	that	finish	initializing
the	FIFO/request	descriptor.	The	solution	in	this	case	is	to	ensure	that	all	pending	memory	writes	have
been	completed	before	the	"valid	flag"	is	enabled.	There	are	two	techniques	to	avoid	this	problem:

	Technique	1:		Declare	C	data	structures	or	portions	of	C	data	structures	with	the		volatile		attribute.
The	compiler	ensures	that	strong	ordering	is	used	for	all	operations	to	with	that	declaration.

	Technique	2:		Use	the	EDK	II	library		BaseLib		function	called		MemoryFence()	.	This	function	guarantees	that
all	the	transactions	in	the	source	code	prior	to	the		MemoryFence()		function	are	completed	before	the
code	after	the

	MemoryFence()		function	is	executed.	On	IPF	platforms,	this	function	executes	a	memory	fence	instruction.
Some	compilers	provide	an	intrinsic	function	that	declares	a	barrier	and,	if	this	intrinsic	is	provided,	the
EDK	II	implementation	of		MemoryFence()		includes	that	barrier	intrinsic.	The	barrier	intrinsic	is	not	really	a
call.	Instead,	it	prevents	memory	read/write	transactions	from	being	moved	across	the	barrier	as	part	of
the	compiler	code	generation.	This	may	be	very	important	when	high	levels	of	compiler	optimization	are
enabled.

The	second	technique	is	preferred	for	readability	because	the	intent	is	clearer.	A		volatile		declaration
tends	to	hide	what	was	needed,	because	it	is	not	part	of	the	affected	code	(it	is	off	in	a	structure
definition).	In	addition,	the		volatile		declaration	may	impact	the	performance	of	the	UEFI	Driver's
because	all	memory	transactions	to	the	structure	are	strongly	ordered.

It	is	recommended	that	these	techniques	be	used	appropriately	in	all	driver	types	to	maximize	the	UEFI
driver's	platform	compatibility.

4.2.6	Memory	orderingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

129DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.6	Memory	orderingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

130DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.7	DMA

System	memory	buffers	used	for	DMA	should	not	be	allocated	from	a	specific	address	or	below	a
specific	address.	In	addition,	UEFI	drivers	must	always	use	I/O	abstractions	to	setup	and	complete	DMA
transactions.

It	is	not	legal	to	program	a	system	memory	address	into	a	DMA	bus	master.	This	programming	works	on
chipsets	that	have	a	one-to-one	mapping	between	system	memory	addresses	and	PCI	DMA	addresses,
but	it	does	not	work	with	chipsets	that	remap	DMA	transactions.

4.2.7	DMAEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

131DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.8	Supporting	Older	EFI	Specifications	and	UEFI	Specifications

Complying	with	different	versions	of	the	EFI	Specification	and	UEFI	Specification	may	be	critical	for	some
UEFI	Driver	implementations.	If	the	driver	is	required	to	work	on	platforms	that	are	conformant	with	the
older	EFI	Specifications	or	UEFI	Specifications	and	also	on	current	and	next-generation	UEFI	systems,
then	the	UEFI	Driver	design	must	consider	the	requirements	from	multiple	EFI/UEFI	Specifications.

In	many	cases,	the	UEFI	Driver	can	produce	extra	protocols	to	increase	compatibility.	In	other	cases,	the
UEFI	Driver	may	be	required	to	detect	the	UEFI	capabilities	provided	by	the	platform	firmware	and	adjust
the	protocols	that	the	UEFI	Driver	consumes	and	produces.

4.2.8	Supporting	Older	EFI	Specifications	and	UEFI	SpecificationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

132DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.9	Reduce	Poll	Frequency

UEFI	drivers	operate	in	a	polled	mode	and	do	not	use	interrupts.	For	example,	UEFI	drivers	that
implement	blocking	I/O	services	can	simply	poll	the	device	until	the	request	is	complete.	UEFI	drivers
that	implement	non-blocking	I/O	can	create	a	periodic	timer	event	to	poll	a	device	at	periodic	intervals.

A	common	mistake	in	UEFI	drivers	is	polling	too	often.

Remember	that	polling,	versus	interrupts,	is	a	pull	model,	not	a	push	model.	The	tradeoff	in	a	polling
system	is	how	fast	the	device	is	polled	(which	can	degrade	system	performance)	versus	how	responsive
the	driver	is	to	that	request.	For	example,	in	a	polling	system,	the	driver	should	not	send	a	request	to	a
device	and	wait	until	that	device	responds	before	moving	on	to	another	task.	In	general,	the	polling
interval	should	be	set	to	the	largest	possible	period	for	the	UEFI	driver	to	complete	its	I/O	services	in	a
reasonable	period	of	time.	The	overall	performance	of	a	UEFI-enabled	platform	degrades	if	too	many
UEFI	drivers	create	high-frequency	periodic	timer	events.

Note:	It	is	recommended	that	the	period	of	a	periodic	timer	event	be	at	least	10	ms.	In	general,	the
period	should	be	as	large	as	possible	based	upon	a	specific	device's	timing	requirements.	Most	drivers
can	use	events	with	timer	periods	in	the	range	of	100	ms	to	several	seconds.

When	initially	writing	the	driver,	an	estimate	can	be	made	for	the	initial	polling	frequency.	However,	the
polling	frequency	may	have	to	be	adjusted	based	on	an	analysis	of	the	driver's	performance	on	an
actual	machine.

TIP:	As	part	of	the	development	process,	make	sure	time	is	reserved	for	performance	analysis	to	find
out	how	much	time	is	taken	up	polling	each	device.

4.2.9.1	Distinguishing	a	polling	issue	versus	another	type	of	bug

The	symptoms	of	a	polling	issue	versus	some	other	type	of	bug	can	look	nearly	identical.	The	key	to
identifying	a	polling	issue	is:	Don't	assume	anything.	Begin	simply	by	performing	an	analysis	to	get	data-
the	time	taken	by	each	task	can	be	measured.	If	a	task	is	taking	longer	than	expected,	the	code
associated	with	that	task	can	then	be	examined	more	closely.

4.2.9	Reduce	Poll	FrequencyEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

133DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.10	Minimize	Time	in	Notification	Functions

UEFI	drivers	should	not	spend	a	lot	of	time	in	their	event	notification	functions	because	this	blocks	the
normal	execution	mode	of	the	system.	A	UEFI	driver	using	a	periodic	timer	event	can	always	save	some
state	information	and	wait	for	the	next	timer	tick	if	the	driver	needs	to	wait	for	a	device	to	respond.	The
USB	bus	driver	is	an	example	driver	in	the	EDK	II	that	uses	periodic	timer	events.

4.2.10	Minimize	Time	in	Notification	FunctionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

134DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.11	Use	Proper	Task	Priority	Levels

The	TPLs	provide	a	mechanism	for	code	to	run	at	a	higher	priority	than	application	code.	One	can	be
running	the	UEFI	Shell,	and	a	UEFI	device	driver	can	have	a	timer	event	fire	and	gain	control	to	go	poll
its	device.	The		TPL_CALLBACK		level	is	typically	used	for	deferred	software	calls	and		TPL_NOTIFY		is	typically
used	by	device	drivers.		TPL_HIGH_LEVEL		is	typically	used	for	locks	on	shared	data	structures.

Drivers	may	use	events	and	TPLs	if	they	perform	non-blocking	I/O.	If	they	perform	blocking	I/O,	then
events	are	not	used.	They	may	still	use	the		RaiseTPL()		and		RestoreTPL()		for	critical	sections.

Driver	diagnostics	are	typically	just	applications.	They	do	not	normally	need	to	use	TPLs	or	events	unless
the	diagnostics	is	testing	the	TPL	or	event	mechanisms	in	EFI.	However,	there	is	one	exception.	If	a
diagnostic	needs	to	guarantee	that	EFI's	timer	interrupt	is	disabled,	then	the	diagnostic	can	raise	the
TPL	to		TPL_HIGH_LEVEL	.	If	this	level	is	required,	it	should	be	done	for	the	shortest	possible	time	interval.

Caution:	There	are	ways	in	which	the	platform	firmware	can	be	put	into	an	undefined	state	by	misuse
of	the		RaiseTPL()		and		RestoreTPL()		functions.

Caution:	Do	not	misuse	the		RaiseTPL()		service	by	raising	the	task	priority	level	too	high	for	an	extended
period	of	time.	Raising	the	TPL	level	above	TPLAPPLICATION	circumvents	the	timer	tick.	This	can	interfere
with	other	drivers,	applications,	and	other	elements	that	rely	on	the	timer	tick.	It	can	cause	extreme,
and	sometimes	catastrophic	slowing	of	the	system.	It	can	cause	other	drivers,	applications,	and	other
things	that	rely	on	the	timer	tick	to	fail.	Always	mirror	the	raise	TPL	service	with	the	restore	TPL	service.

4.2.11	Use	Proper	Task	Priority	LevelsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

135DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.12	Design	to	be	re-entrant

Design	all	UEFI	Drivers	to	manage	multiple	controllers.	This	requires	that	the	controller	specific
information	be	managed	in	its	own	data	structure.	The	practical	manifestation	of	this	requirement	is
that	all	the	data	that	must	be	local	to	the	instance	(context)	of	the	protocol	must	not	be	stored	in
global	variables.	Instead,	collect	data	into	a	private	context	data	structure	so	that	each	time	an	I/O
protocol	installs	onto	a	handle,	a	new	version	of	the	structure	is	allocated	from	memory.	This	concept	is
described	in	detail	in	Chapter	8	of	this	guide.

4.2.12	Design	to	be	re-entrantEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

136DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.13	Do	not	use	hidden	PCI	Option	ROM	Regions

Some	option	ROMs	may	use	paging	or	other	techniques	to	load	and	execute	code	that	was	not	visible
to	the	system	firmware	when	measuring	the	visible	portion	of	the	option	ROM.	This	technique	is
discouraged	because	it	is	the	PCI	bus	driver's	responsibility	to	extract	the	option	ROM	contents	when	a
PCI	bus	enumerates.	If	code	were	required	to	access	hidden	portions	of	an	option	ROM,	then	the	PCI
bus	driver	would	not	have	the	ability	to	extract	the	additional	PCI	Option	ROM	contents.

This	inability	means	that	the	UEFI	drivers	in	a	PCI	Option	ROM	must	be	visible	without	accessing	a	hidden
portion	of	a	PCI	Option	ROM.	However,	if	there	is	a	safe	mechanism	to	access	the	hidden	portions	of	the
PCI	option	ROM	after	the	UEFI	drivers	have	been	loaded	and	executed,	then	the	UEFI	driver	may	choose
to	access	those	contents.	For	example,	non-volatile	configuration	information,	utilities,	or	diagnostics
can	be	stored	in	the	hidden	PCI	Option	ROM	regions.

Caution:	The	hidden	option	ROM	regions	are	also	not	measurable	via	UEFI	2.3	and	beyond	signing	and
verification	interfaces.	This	makes	them,	and	the	system,	less	secure.

4.2.13	Do	not	use	hidden	PCI	Option	ROM	RegionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

137DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.14	Store	Configuration	Data	with	Device

The	configuration	for	a	UEFI	driver	should	be	stored	on	the	same	field	replaceable	unit	(FRU)	as	the
managed	device.	If	a	UEFI	driver	is	stored	on	the	motherboard,	then	the	driver's	configuration
information	can	be	stored	in	UEFI	variables.	If	a	UEFI	driver	is	stored	in	an	add-in	card,	then	the	driver's
configuration	information	should	be	stored	in	the	NVRAM	provided	on	the	add-in	card.

4.2.14.1	Benefits

This	method	ensures	that	it	is	possible	to	statically	determine	the	maximum	configuration	storage	that
is	required	for	the	FRU	during	FRU	design.	In	particular,	if	option	cards	stored	their	configuration	in	UEFI
variables,	the	amount	of	variable	storage	could	not	be	statically	calculated	because	it	generally	is	not
possible	to	know	the	particular	set	of	option	cards	installed	in	a	system	ahead	of	time.	The	result	would
be	that	add-in	cards	could	not	be	used	in	otherwise	functional	systems	due	to	lack	of	UEFI	variable
storage	space.

Storing	configuration	data	in	the	same	FRU	as	the	device	reduces	the	amount	of	stale	data	left	in	UEFI
variables.	If	an	option	card	stored	its	data	in	UEFI	variables	and	was	then	removed,	there	would	be	no
automatic	cleanup	mechanism	to	purge	the	UEFI	variables	associated	with	that	card.

Storing	configuration	data	in	the	same	FRU	as	the	device	also	ensures	that	the	configuration	stays	with
the	FRU.	It	enables	centralized	configuration	of	add-in	cards.	For	example,	if	an	IT	department	is
configuring	50	like	systems,	it	can	configure	all	50	in	the	same	system	and	then	disburse	them	to	the
systems,	rather	than	configuring	each	system	separately.	It	can	also	maintain	preconfigured	spares.

4.2.14	Store	Configuration	Data	with	DeviceEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

138DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.15	Do	not	use	hard-coded	device	path	nodes

The		ACPI()		node	in	the	EFI	Device	Path	Protocol	identifies	the	PCI	root	bridge	in	the	ACPI	namespace.
The	ACPI	Specification	allows	_HID	to	describe	vendor-specific	capability	and	_CID	to	describe
compatibility.	Therefore,	there	is	no	requirement	for	all	platforms	to	use	the	PNP0A03	identifier	in	the
_HID	to	identify	the	PCI	root	bridge.	The	following	are	the	only	requirements	for	the	PCI	root	bridge:

The	PNP0A03	identifier	must	appear	in	_HID	if	a	vendor-specific	capability	description	isn't	needed.

The	PNP0A03	identifier	must	appear	in	_CID	if	_HID	contains	a	vendor-specific	identifier.

To	avoid	problems	with	platform	differences,	UEFI	drivers	should	not	create	UEFI	device	paths	from	hard-
coded	information.	Instead,	UEFI	bus	drivers	should	append	new	device	path	nodes	to	the	device	path
from	the	parent	device	handle.

4.2.15.1	PNPID	byte	order	for	UEFI

The	ACPI	PNPID	format	(byte	order)	follows	the	original	EISA	ID	format.	UEFI	also	uses	PNPID	in	the
device	path	ACPI	nodes.	However,	for	a	given	string,	ACPI	and	UEFI	do	not	generate	the	same	numbers.
For	example:

HID	=	"PNP0501"

ACPI	=	0x0105D041

EFI	=	0x050141D0

The	significance	is	that	operating	systems	that	try	to	match	the	UEFI	ACPI	device	path	node	to	the	ACPI
name	space	must	perform	a	translation.

Refer	to	Chapter	4	of	this	guide	for	information	about	lengths	of	words	on	32-bit	versus	64-bit
architectures.

4.2.15.2	Working	with	UEFI	Device	Path	Nodes

UEFI	Device	Paths	Nodes	are	not	required	to	be	aligned.	If	the	proper	coding	style	is	used	when	working
with	device	paths,	a	UEFI	Driver	can	be	implemented	to	guarantee	all	that	fields	of	UEFI	Device	Path
Nodes	are	accessed	with	natural	alignment.	This	improves	platform	compatibility,	especially	for	IPF
platforms.

TIP:	Do	not	assume	that,	when	given	a	device	path,	that	the	path	is	aligned.	Copy	pieces	of	the	device
path	to	a	known-aligned	device	path	before	accessing	it.	The	device	path	may	then	be	accessed	safely.
Alternatively,	use	EDK	II	BaseLib	functions	to	perform	unaligned	reads	and	writes.

4.2.15	Do	not	use	hard-coded	device	path	nodesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

139DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.16	Do	not	cause	errors	on	shared	storage	devices

In	a	cluster	configuration,	multiple	devices	may	be	connected	to	a	shared	storage.	In	such
configurations,	the	UEFI	driver	should	not	cause	errors	that	can	be	seen	by	the	other	devices	that	are
connected	to	storage.

Caution:	On	a	boot	or	reboot,	there	shall	be	no	writes	to	shared	storage	without	user
acknowledgement.	Any	writes	to	shared	storage	by	a	UEFI	driver	may	corrupt	shared	storage	as	viewed
by	another	system.	As	a	result,	all	outstanding	I/O	in	the	controller's	buffers	will	be	cleared,	as	well	as
any	internal.	Any	I/O	operations	that	occur	after	a	reboot	may	corrupt	shared	storage.

Caution:	There	must	not	be	an	excessive	number	of	bus	or	device	resets.	Device	resets	have	an
impact	on	shared	storage	as	viewed	by	other	systems.	For	a	single	reset,	this	impact	is	negligible.
Larger	numbers	of	resets	may	be	seen	as	a	device	failure	by	another	system.

Caution:	Disk	signatures	must	not	be	changed	without	warning	the	user.	If	there	is	an	impact	to	the
user,	then	that	impact	should	be	displayed	along	with	the	warning.	Clusters	may	make	an	assumption
about	disk	signatures	on	shared	storage.

Caution:	The	discovery	process	must	not	impact	other	systems	accessing	the	storage.	A	long
discovery	process	may	"hold"	drives	and	look	like	a	failure	of	shared	storage.

4.2.16	Do	not	cause	errors	on	shared	storage	devicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

140DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.17	Limit	use	of	Console	Services

PC	BIOS	legacy	option	ROMs	typically	display	banners	and	allow	hotkey(s)	to	enter	the	configuration
area	for	a	particular	card.	Current	UEFI	drivers	use	HII	functionality	to	allow	access	to	system
configuration	areas.

Because	UEFI	drivers	now	have	HII	functionality,	the	UEFI	Driver	Model	requires	that	no	console	I/O
operations	take	place	in	the	UEFI	Driver	Binding	Protocol	functions.	A	reasonable	exception	to	this	rule
is	to	use	the		DEBUG()		macro	to	display	progress	information	during	driver	development	and	debug.	Using
the		DEBUG()		macro	allows	the	code	for	displaying	the	data	to	be	easily	removed	for	a	production	build	of
the	driver.

Use	of	the		DEBUG()		macro	should	be	limited	to	"debug	releases"	of	a	driver.	This	strategy	typically	works
if	the	driver	is	loaded	after	the	UEFI	console	is	connected.	However,	because	console	drivers	may	live	in
option	ROMs,	some	firmware	implementations	may	load	the	option	ROM	drivers	before	the	UEFI	console
is	connected.	In	such	cases,	the	ConOut	and	StdErr	fields	of	the	UEFI	system	table	may	be		NULL	,	and
printing	can	crash	the	system.	The		DEBUG()		macro	should	check	to	see	if	the	field	is		NULL		before	using
those	services.

4.2.17	Limit	use	of	Console	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

141DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.2.18	Offer	alternatives	to	function	keys

Configuration	of	drivers	should	be	accomplished	via	HII	and	via	OS-present	interfaces.

There	are	design	considerations	when	interacting	outside	of	configuration.	First,	consider	using	the
setup	interface	as	the	user	interface	for	a	UEFI	driver.	The	user	already	understands	the	interface	and
remote	use	is	already	enabled.	If	the	existing	high	level	interfaces	cannot	be	used,	then	follow	the
design	considerations	for	using	console	based	services.

UEFI	drivers	should	use	the	console	input	services	(see	Section	22.2	of	this	guide),	and	then	be	aware
of	alternatives	to	function	keys.	This	is	because	the	UEFI	console	may	be	connected	through	a	serial
port.	In	such	cases,	it	is	sensitive	to	the	correct	terminal	emulator	configuration.	If	the	terminal
emulator	is	not	correctly	configured	to	match	the	terminal	settings	in	UEFI	(PC	ANSI,	VT100,	VT100+,	or
VT-UTF8),	some	of	the	keys	(function	keys,	arrow	keys	(page	up/down,	insert/delete,	and	backspace),
may	not	work	correctly,	display	colors	properly	nor	render	the	correct	cursor	positioning.

Note:	To	better	support	users,	it	is	recommended	that	UEFI	configuration	protocols	and	UEFI
applications	create	user	interfaces	that	are	not	solely	dependent	on	these	keys	but	instead	offer
alternatives	for	these	keys.

Note:	It	is	important	to	be	aware	that	the	Simple	Input	Protocol	does	not	support	the	CTRL	or	ALT	keys
because	these	keys	are	not	available	with	remote	terminals	such	as	terminal	emulators	and	telnet.

The	following	table	shows	one	possible	set	of	alternate	key	sequences	for	function	keys,	arrow	keys,
page	up/down	keys,	and	the	insert/delete	keys.	Each	configuration	protocol	and	application	decides	if
alternate	key	sequences	are	supported	and	which	alternate	mappings	should	be	used.	The	table	also
lists	the	UEFI	scan	code	from	the	Simple	Input	Protocol	and	the	alternate	key	sequence	to	use	to
produce	particular	scan	codes.

Most	of	these	key	sequences	are	directly	supported	in	the	EDK	II_―_special	handling	is	not	required	to
support	these	key	sequences	on	a	remote	terminal.	Those	labeled	as	"No"	are	not	directly	supported	in
the	EDK	II.	They	are	parsed	and	interpreted	by	the	configuration	protocol	or	application.

4.2.18	Offer	alternatives	to	function	keysEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

142DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	14-Alternate	key	sequences	for	remote	terminals

UEFI	scan	code Key	sequence Supported	in	EDK	II?

SCAN_UP '^' No

SCAN_DOWN 'v'	or	'V' No

SCAN_RIGHT '>' No

SCAN_LEFT '<' No

SCAN_HOME ESC	h Yes

SCAN_END ESC	k Yes

SCAN_INSERT ESC	+ Yes

SCAN_DELETE ESC	- Yes

SCAN_PAGE_UP ESC	? Yes

SCAN_PAGE_DOWN ESC	/ Yes

SCAN_F1 ESC	1 Yes

SCAN_F2 ESC	2 Yes

SCAN_F3 ESC	3 Yes

SCAN_F4 ESC	4 Yes

SCAN_F5 ESC	5 Yes

SCAN_F6 ESC	6 Yes

SCAN_F7 ESC	7 Yes

SCAN_F8 ESC	8 Yes

SCAN_F9 ESC	9 Yes

SCAN_F10 ESC	0 Yes

ESC ESC Yes

4.2.18	Offer	alternatives	to	function	keysEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

143DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3	Maximize	CPU	Compatibility

UEFI	Drivers	should	be	designed	to	maximize	source	code	portability	since	it	is	possible	to	write	a	single
UEFI	Driver	that	compiles	on	all	CPU	architectures	supported	by	the	UEFI	Specification.	The	list	of
supported	CPU	architectures	may	grow	over	time,	so	it	is	important	to	follow	these	portability	guidelines.

The	guidelines	presented	here	apply	to	all	CPU	architectures.	Chapter	28	covers	portability	issues
specific	to	IPF	platforms,	and	Chapter	29	covers	portability	issues	that	are	specific	to	EBC.

When	porting	between	CPU	architectures,	most	developers	take	as	much	existing	code	as	possible	and
reuse	it.	Unfortunately,	some	developers	porting	code	do	not	rigorously	follow	the	UEFI	conventions,
such	as	using	only	the	data	types	defined	in	the	Calling	Conventions	section	of	the	UEFI	Specification.
Others	may	not	follow	best	coding	practices.

Use	data	types	defined	by	the	Calling	Conventions	section	of	the	UEFI	Specification.

Use	compiler	flag	settings	to	guarantee	that	the	UEFI	calling	conventions	for	the	CPU	architecture
are	followed.	See	the	Calling	Conventions	section	of	the	UEFI	Specification	for	details.

If	a	UEFI	driver	contains	assembly	language	sources,	then	either	the	source	needs	to	be	ported	or	it
needs	to	be	converted	to	C	language	source.	Conversion	to	C	language	source	is		recommended.		The
EDK	II	library		BaseLib,		and	other	EDK	II	libraries,	provide	functions	that	may	reduce,	or	even	eliminate,
the	need	to	assembly	code	in	UEFI	Drivers.

TIP:	Implement	UEFI	Drivers	in	C	to	maximize	portability,

Avoid	use	of	C++.	It	is	not	supported	by	EBC.

Avoid	unaligned	data	accesses.	Compilers,	by	default,	generate	code	and	data	that	perform	aligned
accesses.	Unaligned	data	accessed	are	generated	when	features	such	as	byte-packed	structures,
type	casting	pointers,	or	assembly	language	are	used.	Aligned	data	accesses	typically	execute
faster	than	unaligned	data	accesses.	Parsing	UEFI	Device	Paths	is	a	common	generator	of
unaligned	data	accesses.	These	generate	alignment	faults	on	IPF	platforms.

The	best	approach	to	debugging	a	UEFI	Driver	ported	to	a	differing	CPU	architecture	is	to	keep	a
good	code	base	with	every	revision.	This	allows	comparison	with	earlier	revisions	to	see	the	source
code	before	and	after	the	problem	became	visible.

If	source	code	is	not	available,	the	CPU	register	state	may	not	be	sufficient	to	debug	a	specific
issue.	Keep	in	mind	that	a	"new"	problem	might	have	nothing	to	do	with	a	recent	change	to	the
code.	A	pre-existing	problem	might	not	have	shown	up	before	for	a	variety	of	reasons.	For	example,
the	current	developer	might	have	included	error	checking	or	exercised	the	error	handling	registers
after	making	an	addition	to	the	code-error	checking	that	might	not	have	been	done	before.	Or	a
new	addition	might	make	the	pre-existing	problem	worse,	so	the	problem	finally	becomes	visible	in
the	new	revision.

Perform	a	minimal	port	first	to	test	simple	parts	of	the	UEFI	driver.	This	is	simply	good	porting
practices,	but	even	experienced	developers	can	forget	to	port	and	test	the	simple	things	first.	Start
with	a	known-good	sample	driver	that	is	extremely	simple.	For	example,	a	driver	that	prints	"Hello
World".	Then	divide	the	code	into	sections.	Begin	inserting	and	testing	the	less	complicated
sections	into	the	known-good	driver,	one	section	at	a	time.	Another	technique	is	to	replace	more
complex	code	with	"neutered"	code	that	returns	but	doesn't	actually	do	anything.	Make	sure	the

4.3	Maximize	CPU	CompatibilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

144DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

simple	sections	work	and	do	not	cause	alignment	faults	or	other	errors.	Only	then	should	the	more
complicated	sections	be	added	and	adapted	to	the	new	architecture	rules.	This	approach	can
significantly	cut	down	on	debug	time.

4.3	Maximize	CPU	CompatibilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

145DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.1	Assignment	and	comparison	operators

There	are	issues	that,	if	a	data	value	is	cast	from	a	larger	size	to	a	smaller	size,	the	upper	bits	of	the
larger	values	are	stripped.	In	general,	this	stripping	causes	a	compiler	warning,	so	these	are	easy
issues	to	catch.	However,	there	are	a	few	cases	where	compilation	is	free	of	errors	and	warnings	on	32-
bit	platforms	but	generates	errors	or	warnings	on	64-bit	platforms.	The	only	way	to	guarantee	catching
these	errors	early	on	is	to	compile	for	both	32-bit	and	64-bit	processors	during	the	entire	development
process.

When	a	warning	is	generated	by	a	64-bit	processor,	it	can	be	eliminated	by	explicitly	casting	the	larger
data	type	to	the	smaller	data	type.	However,	the	developer	needs	to	make	sure	that	this	casting	is	the
right	solution	because	the	upper	bits	of	the	larger	data	value	are	stripped.

The	example	below	shows	several	examples	that	generate	a	warning	and	how	to	eliminate	it	with	an
explicit	cast.	The	last	example	is	the	most	interesting	because	it	does	not	generate	any	warnings	on	a
32-bit	architecture,	but	does	on	64-bit.	This	difference	is	because	a		UINTN		on	32-bit	CPUs	is	identical	to
	UINT32	,	but		UINTN		on	64-bit	CPUs	is	identical	to	a		UINT64	.

Example	8-Assignment	operation	warnings

#include	<Uefi.h>

UINT8	Value8;

UINT16	Value16;

UINT32	Value32;

UINT64	Value64;

UINTN	ValueN;

//

//	Warning	generated	on	32-bit	CPU

//	Warning	generated	on	64-bit	CPU

//

Value8	=	Value16;

//

//	Works,	upper	8	bits	stripped

//

Value8	=	(UINT8)Value16;

//

//	Works

//

Value16	=	Value8;

//

//	Warning	generated	on	32-bit	CPU

//	Warning	generated	on	64-bit	CPU

//

Value8	=	Value32;

//

//	Works,	upper	24	bits	stripped

//

Value8	=	(UINT8)Value32;

//

//	Works

//

Value32	=	Value8;

//

//	Warning	generated	on	32-bit	CPU

//	Warning	generated	on	64-bit	CPU

//

Value8	=	Value64;

4.3.1	Assignment	and	comparison	operatorsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

146DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Works,	upper	56	bits	stripped

//

Value8	=	(UINT8)Value64;

//

//	Works

//

Value64	=	Value8;

//

//	Warning	generated	on	32-bit	CPU

//	Warning	generated	on	64-bit	CPU

//

Value8	=	ValueN;

//

//	Works

//	Upper	24	bits	stripped	on	32-bit	CPU

//	Upper	56	bits	stripped	on	64-bit	CPU

//

Value8	=	(UINT8)ValueN;

//

//	Works

//

ValueN	=	Value8;

//

//	Works	on	32-bit	CPU

//	Warning	generated	in	64-bit	CPU

//

Value32	=	ValueN;

//

//	Works	on	32-bit	CPU

//	Upper	32-bits	stripped	on	64-bit	CPU

//

Value32	=	(UINT32)ValueN;

Example	9,	below,	is	very	similar	to	Example	8	except	the	assignments	have	been	replaced	with
comparison	operations.	The	same	issues	shown	are	generated	by	all	the	comparison	operators,
including		>	,		<	,		>=	,		<=	,		!=	,	and		==	.	The	solution	is	to	cast	one	of	the	two	operands	to	be	the	same
as	the	other	operand.	The	first	four	cases	are	the	ones	that	work	on	32-bit	platforms	with	no	errors	or
warnings	but	generate	warnings	on	64-bit	architectures.	The	next	four	cases	resolve	the	issue	by
casting	the	first	operand,	and	the	last	four	cases	resolve	the	issue	by	casting	the	second	operand.
Care	must	be	taken	when	casting	the	correct	operand	because	a	cast	from	a	larger	data	type	to	a
smaller	data	type	strips	the	upper	bits	of	the	operand.	When	a	cast	is	performed	to		INTN		or		UINTN	,	a
different	number	of	bits	are	stripped	for	32-bit	and	64-bit	architectures.

Example	9-Comparison	operation	warnings

#include	<Uefi.h>

UINT64	ValueU64;

UINTN	ValueUN;

INT64	Value64;

INTN	ValueN;

//

//	Works	on	32-bit	CPU

//	Warning	generated	in	64-bit	CPU

//

if	(ValueU64	==	ValueN)	{}

//

4.3.1	Assignment	and	comparison	operatorsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

147DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	Works	on	32-bit	CPU

//	Warning	generated	in	64-bit	CPU

//

if	(ValueUN	==	Value64)	{}

//

//	Works	on	32-bit	CPU

//	Warning	generated	in	64-bit	CPU

//

if	(Value64	==	ValueUN)	{}

//

//	Works	on	32-bit	CPU

//	Warning	generated	in	64-bit	CPU

//

if	(ValueN	==	ValueU64)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	((INTN)ValueU64	==	ValueN)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	((INT64)ValueUN	==	Value64)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	((UINTN)Value64	==	ValueUN)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	((UINT64)ValueN	==	ValueU64)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	(ValueU64	==	(UINT64)ValueN)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	(ValueUN	==	(UINTN)Value64)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	(Value64	==	(INT64)ValueUN)	{}

//

//	Works	on	32-bit	and	64-bit	CPUs

//

if	(ValueN	==	(INTN)ValueU64)	{}

4.3.1	Assignment	and	comparison	operatorsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

148DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.2	Casting	pointers

Pointers	can	be	cast	from	one	pointer	type	to	another	pointer	type.	However,	pointers	should	never	be
cast	to	a	fixed-size	data	type,	and	fixed-size	data	types	should	never	be	cast	to	pointers.

The	size	of	a	pointer	varies	depending	on	the	platform	architecture,	such	as	32-bit	versus	64-bit
platforms.	If	any	assumptions	are	made	that	a	pointer	to	a	function	or	a	pointer	to	a	data	structure	is	a
32-bit	value,	then	that	code	may	not	run	on	64-bit	platforms	with	physical	memory	above	4	GB.

4.3.2	Casting	pointersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

149DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.3	Converting	pointers

Be	mindful	when	converting	physical	addresses	to	pointers	on	64-bit	architectures.	All	UEFI	driver	writers
must	be	aware	that	pointers	may	contain	values	above	4	GB,	and	that	care	must	be	taken	never	to	strip
the	upper	address	bits.	If	the	upper	address	bits	are	stripped,	the	driver	may	work	on	32-bit
architectures,	and	on	64-bit	architectures	with	small	memory	configurations,	but	may	not	work	on	64-bit
platforms	with	larger	memory	configurations.

Note:	Make	sure	the	driver	does	not	strip	the	upper	address	bits	when	converting	pointers.

4.3.3.1	The	Exception	to	the	Rule

There	is	one	exception	to	this	rule	of	casting	pointers	and	it	applies	to	both32-bit	and	64-bit
processors.	The	data	types		INTN		and		UINTN		are	the	exact	same	size	of	pointers	on	both	32-bit	and	64-
bit	platforms,	which	means	that	a	pointer	can	be	cast	to	or	from		INTN		or		UINTN		without	any	adverse	side
effects.	However,	ANSI	C	does	not	require	function	pointers	to	be	the	same	size	as	data	pointers.	Also,
function	pointers	and	data	pointers	are	not	required	to	be	the	same	size	as		INTN		or		UINTN	.	As	a	result,
this	exception	does	not	apply	to	all	processors.

4.3.3.2	Identifying	a	Pointer	Problem

Problems	caused	by	mistakes	in	pointer	casting	are	difficult	to	catch.	This	is	so	because	explicit	casts
are	required	to	cast	a	fixed-width	type	to	a	pointer	or	vice	versa.	Once	these	explicit	type	casts	are
introduced,	no	compiler	warnings	or	errors	are	generated.	In	fact,	the	code	may	execute	fine	on,	for
example,	32-bit	platforms	and	on	64-bit	platforms	with	physical	memory	below	4	GB.	The	only	failing	case
is	when	the	code	is	tested	on	a	64-bit	system	with	physical	memory	above	4	GB.	The	symptom	is	typically
a	processor	exception	that	results	in	a	system	hang	or	reset.

The	example	below	shows	some	good	and	bad	examples	of	casting	pointers.	The	first	group	is	casting
pointers	to	pointers.	The	second	group	is	casting	pointers	to	fixed	width	types,	and	the	last	group	is
casting	fixed	width	types	to	pointers.

Example	10-Examples	of	casting	pointers

#include	<Uefi.h>

typedef	struct	{

		UINT8	First;

		UINT32	Second;

}	MY_STRUCTURE;

MY_STRUCTURE	*MyStructure;

UINT8	ValueU8;

UINT16	ValueU16;

UINT32	ValueU32;

UINT64	ValueU64;

UINTN	ValueUN;

INT64	Value64;

INTN	ValueN;

VOID	*Pointer;

//

//	Casting	pointers	to	pointers

//

Pointer	=	(VOID	*)MyStructure;											//	Good.

MyStructure	=	(MY_STRUCTURE	*)Pointer;			//	Good.

4.3.3	Converting	pointersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

150DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Casting	pointers	to	fixed	width	types

//

ValueU8	=	(UINT8)MyStructure;												//	Bad.	Strips	upper	24	bits	on	32-bit	CPU.

																																									//	Strips	upper	56	bits	on	64-bit	CPU.

ValueU16	=	(UINT16)MyStructure;										//	Bad.	Strips	upper	16	bits	on	32-bit	CPU.

																																									//	Strips	upper	48	bits	on	64-bit	CPU.	ValueU32	=	(UINT32)MyStructure;

																																									//	Bad.	Works	on	32-bit	CPUs.

																																									//	Strips	upper	32	bits	on	64-bit	CPU.

ValueU64	=	(UINT64)MyStructure;										//	Good.	Works	on	all	architectures

Value64	=	(INT64)MyStructure;												//	Good.	Works	on	all	architectures

ValueUN	=	(UINTN)MyStructure;												//	Good.	Works	on	all	architectures

ValueN	=	(INTN)MyStructure;														//	Good.	Works	on	all	architectures

//

//	Casting	fixed	width	types	to	pointers

//

MyStructure	=	(MY_STRUCTURE	*)ValueU8;			//	Bad.

MyStructure	=	(MY_STRUCTURE	*)ValueU16;		//	Bad.

MyStructure	=	(MY_STRUCTURE	*)ValueU32;		//	Bad.	Works	on	32-bit	CPUs.

																																									//	Works	on	64-bit	CPU	with	<	4GB	memory

																																									//	Strips	upper	32	bits	on	64-bit	CPU

MyStructure	=	(MY_STRUCTURE	*)ValueU64;		//	Good.	Works	on	all	architectures

MyStructure	=	(MY_STRUCTURE	*)Value64;			//	Good.	Works	on	all	architectures

MyStructure	=	(MY_STRUCTURE	*)ValueUN;			//	Good.	Works	on	all	architectures	

MyStructure	=	(MY_STRUCTURE	*)ValueN;				//	Good.	Works	on	all	architectures

4.3.3	Converting	pointersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

151DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.4	UEFI	Data	Type	Sizes

Note	that	a	few	UEFI	data	types	are	different	sizes	on	32-bit	architectures	versus	64bit	architectures	as
follow:

Pointers

Enumerations

	INTN	

	UINTN	

The	result	of	these	differing	types	is	that	that	any	complex	types,	such	as	unions	and	data	structures,
that	are	composed	of	these	base	types	also	have	different	sizes	on	32bit	architectures	versus	64-bit
architectures.	These	differences	must	be	kept	in	mind	whenever	the		sizeof()		operator	is	used.

If	a	union	or	data	structure	is	required	that	does	not	change	size	between	32-bit	and	64-bit
architectures,	then	no	changes	are	required.

For	interoperability,	only	the	data	types	defined	in	the	Calling	Conventions	section	of	the	UEFI
Specification	should	be	used.	Some	of	these	data	types	change	based	on	the	selected	compiler,	and
should	not	cause	a	fault	in	the	code.	If	a	new	data	type	is	defined,	then	an	alignment	fault	or	other
error	could	be	generated.

4.3.4	UEFI	Data	Type	SizesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

152DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.5	Negative	Numbers

Negative	numbers	are	not	the	same	on	32-bit	versus	64-bit	processors.	Negative	numbers	are	type
	INTN	.	Type		INTN		is	a	4-byte	container	on	a	32-bit	processor	and	an	8byte	container	on	a	64-bit
processor.	For	example,		-1		on	a	32-bit	CPU	is		0xFFFFFFFF	,	and		-1		on	the	64-bit	CPU	is		0xFFFFFFFFFFFFFFFF	.

Caution:	Be	careful	when	assigning	or	comparing	negative	numbers.	Negative	numbers	have	different
values	on	different	architectures.	For	example,	do	not	compare	-1	to	0xFFFFFFFF,	compare	-1	to	-1	and
compare	0xFFFFFFFF	to	0xFFFFFFFF.	If	the	size	of	the	values	change,	then	the	same	compares	may
return	different	results.

The	following	example	shows	sample	code	that	compiles	without	errors	or	warnings	on	both	32-bit	and
64-bit	architectures.	However,	the	sample	behaves	very	differently	on	32-bit	architectures	versus	64-bit
architectures.

Example	11-Negative	number	example

UINT32	ValueU32;

ValueU32	=	0xFFFFFFFF;

if	((INTN)ValueU32	==	-1)	{

		//

		//	This	message	is	printed	on	32-bit	CPUs.

		//	This	message	is	not	printed	on	64-bit	CPUs.

		//

		Print	(L"Equal\n");

}	else	{

		//

		//	This	message	is	not	printed	on	32-bit	CPUs.

		//	This	message	is	printed	on	64-bit	CPUs.

		//

		Print	(L"Not	Equal\n");

}

4.3.5	Negative	NumbersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

153DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.6	Returning	Pointers	in	a	Function	Parameter

The	following	example	shows	a	bad	example	for	casting	pointers.	The	function		MyFunction()		returns	a	64-
bit	value	in	an		OUT		parameter	that	is	assigned	from	a	32-bit	input	parameter.	There	is	nothing	wrong
with		MyFunction()	.	The	problem	is	when		MyFunction()		is	called.	Here,	the	address	of		B	,	a	32-bit	container,
is	cast	to	a	pointer	to	a	64-bit	container	and	passed	to		MyFunction()	.		MyFunction()		writes	to	64	bits
starting	at		B	.	This	location	happens	to	overwrite	the	value	of		B		and	the	value	of		A		in	the	calling
function.

The	first		Print()		correctly	shows	the	values	of		A		and		B	.	The	second		Print()		shows	that		B		was	given
	A	's	original	value,	but	the	contents	of		A		were	destroyed	and	overwritten	with	a	0.

The	cast	from		&B		to	a		(UINT64	*)		is	the	problem	here.	This	code	compiles	without	errors	or	warnings	on
both	32-bit	and	64-bit	processors.	It	executes	on	32-bit	and	64-bit	processors	with	these	unexpected
side	effects.	It	might	also	generate	an	alignment	fault	on	IPF	if		&B		is	not	64-bit	aligned.	One	possible	fix
for	this	issue	is	to	change	B	from	a		UINT32		to	a		UINT64	.

Example	12-Casting	OUT	function	parameters

EFI_STATUS	

EFIAPI

MyFunction	(

		IN		UINT32		ValueU32,

		OUT	UINT64		*ValueU64

)

{

		*ValueU64	=	(UINT64)ValueU32;

		return	EFI_SUCCESS;

}

UINT32	A;

UINT32	B;

A	=	0x11112222;

B	=	0x33334444;

//

//	Prints	"A	=	11112222	B	=	33334444"

//

Print	(L"A	=	%08x	B	=	%08x\n",	A,	B);

MyFunction	(A,	(UINT64	*)(&B));

//

//	Prints	"A	=	00000000	B	=	11112222"

//

Print	(L"A	=	%08x	B	=	%08x\n",	A,	B);

4.3.6	Returning	Pointers	in	a	Function	ParameterEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

154DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.7	Array	Subscripts

In	general,	array	subscripts	should	be	of	type		INTN		or		UINTN	.	Using	these	types	avoids	problems	if	an
array	subscript	is	decremented	below		0	.	If	a		UINT32		is	used	as	an	array	subscript	and	is	decremented
below	0,	it	is	decremented	to		0xFFFFFFFF		on	a	32-bit	processor	and		0x00000000FFFFFFFF		on	a	64-bit
processor.	These	subscript	values	are	very	different.	On	32-bit	architectures,	this	value	is	the	same
indexing	element	as		-1		of	the	array.	However,	on	a	64-bit	processor,	this	value	is	the	same	indexing
element	as		0xFFFFFFFF		of	the	array.

If	an		INTN		or		UINTN		is	used	instead	of	a		UINT32		for	the	array	subscript,	then	this	problem	goes	away.
When	a		UINTN		is	decremented	below		0	,	it	is	decremented	to		0xFFFFFFFF		on	a	32-bit	processor	and
	0xFFFFFFFFFFFFFFFF		on	a	64-bit	processor.	These	values	are	both	the	same	indexing	element	as		-1		of	the
array.

The	following	example	shows	two	array	subscripts.	The	first	one	works	on	32-bit	architectures	but
accesses	a	very	high	address	on	64-bit	architectures	that	may	generate	a	fault	or	hang	condition.	The
second	array	subscript	is	rewritten	to	work	properly	on	both	32-bit	architectures	and	64-bit
architectures.

Example	13-Array	subscripts	example

UINT32	Index;

CHAR8	Array[]	=	"ABCDEFGHIJKLIMNOPQRSTUVWXYZ";

CHAR8	*MyArray;

MyArray	=	&(Array[5]);

Index	=	0;

//

//	Works	on	32-bit	CPUs

//	Accesses	high	memory	on	64-bit	CPUs	and	may	generate	fault	or	hang

//

Print	(L"Character	=	%c\n",	Array[Index	-	1]);

//

UINTN	Index;

CHAR8	Array[]	=	"ABCDEFGHIJKLIMNOPQRSTUVWXYZ";

CHAR8	*MyArray;

MyArray	=	&(Array[5]);

Index	=	0;

//

//	Works	on	32-bit	CPUs	and	64-bit	CPUs

//

Print	(L"Character	=	%c\n",	Array[Index	-	1]);

4.3.7	Array	SubscriptsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

155DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.3.8	Piecemeal	Structure	Allocations

Structures	should	always	be	allocated	using	the		sizeof()		operator	on	the	name	of	the	structure.	Never
use	the	sum	of	the	sizes	of	the	structure's	members	because	it	does	not	take	into	account	the	padding
that	the	compiler	introduces	to	guarantee	alignment.	The	following	example	shows	two	examples	for
allocating	memory	for	a	structure.	The	first	allocation	is	incorrect,	the	second	allocation	is	correct.

Example	14-Incorrect	and	correct	piecemeal	structure	allocation

typedef	struct	{

		UINT8	Value8;

		UINT64	Value64;

}	EXAMPLE_STRUCTURE;

EXAMPLE_STRUCTURE	*Example;

//

//	Wrong.	This	only	allocates	9	bytes,	but	MyStructure	is	16	bytes

//

Example	=	AllocatePool	(sizeof	(UINT8)	+	sizeof	(UINT64));

//

//	Correct.	This	allocates	16	bytes	for	MyStructure.

//

Example	=	AllocatePool	(sizeof	(EXAMPLE_STRUCTURE));

4.3.8	Piecemeal	Structure	AllocationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

156DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.4	Optimization	Techniques

There	are	several	techniques	you	can	be	use	to	optimize	a	UEFI	driver.	These	techniques	can	be	broken
down	into	the	following	two	categories:

Techniques	to	reduce	the	size	of	UEFI	drivers

Techniques	to	improve	the	performance	of	UEFI	drivers

Sometimes	these	techniques	complement	each	other―sometimes	they	are	at	odds	with	each	other.	For
example,	a	UEFI	driver	may	grow	in	size	to	meet	a	specific

performance	goal.	The	driver	writer	is	required	to	make	the	appropriate	compromises	in	the	selection	of
these	driver	optimization	techniques.

4.4	Optimization	TechniquesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

157DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.4.1	Size	Reduction

Table	15,	below,	lists	techniques	that	can	be	used	to	reduce	the	size	of	UEFI	drivers.	Significant	size
reductions	can	be	realized	by	using	combinations	of	all	of	these	techniques.	The	compiler	and	linker
switches	referenced	below	are	specific	to	the	Microsoft*	compilers.	Different	compilers	and	linkers	may
use	different	switches	for	equivalent	operations.

Table	15-Space	optimizations

Technique Description

MdePkg	and
MdeModulePkg
library	classes

Maximizes	the	use	of	library	classes	defined	in	the	MdePkg	and	MdeModulePkg.
In	some	cases,	multiple	implementations	of	the	same	library	class	may	be
provided.	Some	implementations	may	be	smaller	and	others	may	be	faster.	If	a
UEFI	Driver	implementation	maximizes	its	use	of	library	functions	from	EDK	II
packages,	then	the	UEFI	Driver	can	be	built	with	library	instance	mappings
defined	in	the	DSC	file	that	minimize	the	size	of	a	UEFI	Driver.

Compiler	flags
that	optimize
for	size.

Some	compiler	provide	flags	(such	as	/Os	and	/O1)	optimize	code	for	space.	This
is	an	easy	way	to	reduce	the	size	of	a	UEFI	driver.	
	Note:		When	optimization	is	turned	on,	each	line	of	source	code	may	not	map	to
the	same	line	when	a	debugger	is	active.	This	can	make	it	more	difficult	to
debug.	
	TIP:		Be	careful	when	turning	on	compiler	optimizations	because	C	source	that
works	fine	with	optimizations	disabled	may	stop	working	with	optimizations
enabled.	They	usually	stop	working	because	of	missing		volatile		declarations	on
variables	and	data	structures	that	are	shared	between	normal	contexts	and
raised	TPL	contexts	or	DMA	bus	masters.	
	TIP:		When	optimized	for	speed,	the	UEFI	driver	is	small,	and	may	execute	faster.
If	there	are	any	speed	paths	in	a	UEFI	driver	that	cause	problems	if	the	UEFI
driver	executes	faster,	then	these	switches	may	expose	those	speed	paths.
These	same	speed	paths	also	show	up	as	faster	processors	are	used,	so	it	is
good	to	find	these	speed	paths	early.

Linker	flags
that	remove
unused
functions	and
variables

Some	linkers	provide	flags	(such	as	/OPT:REF)	that	remove	unused	functions	and
variables	from	the	executable	image,	including	functions	and	variables	in	the
UEFI	driver	and	the	libraries	against	which	the	UEFI	driver	is	being	linked.	The
combination	of	using	the	UEFI	driver	library	with	this	linker	switch	can
significantly	reduce	the	size	of	a	UEFI	driver	executable.	The	EDK	II	enabled
these	types	of	flags	by	default.

EFI
Compression

If	a	UEFI	Driver	is	stored	in	a	PCI	option	ROM,	the	UEFI	compression	algorithm
can	be	used	to	further	reduce	the	size	of	a	UEFI	driver.	The	build	utility		EfiRom	
has	built-in	support	for	compressing	UEFI	images.	The	PCI	bus	driver	has	built-in
support	for	decompressing	UEFI	drivers	stored	in	PCI	option	ROMs.	The	average
compression	ratio	on	IA32	is	2.3,	and	the	average	compression	ratio	on	the	IPF
platform	is	2.8	The	EfiRom	utility	is	described	in	Chapter	18	of	this	guide.

EFI	Byte	Code
Images

If	a	UEFI	driver	is	going	to	be	stored	in	a	PCI	option	ROM,	and	the	PCI	option	ROM
must	support	both	IA32	and	IPF	platforms,	or	just	IPF	platforms,	EFI	Byte	Code
(EBC)	executables	should	be	considered.	EBC	executables	are	portable	between
IA32	and	IPF	platforms.	This	portability	means	that	only	a	single	UEFI	driver
image	is	required	to	support	both	IA32	and	IPF	platforms.	Also,	the	EBC
executables	are	significantly	smaller	than	images	for	the	IPF	platform,	so	there
are	advantages	to	using	this	format	for	UEFI	drivers	that	are	targeted	only	at	IPF
platforms.	In	addition,	using	EFI	Compression	(see	above)	can	reduce	the	EBC
executables	even	further.

4.4.1	Size	ReductionEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

158DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.4.2	Performance	Optimizations

The	following	table	lists	the	techniques	to	use	to	improve	the	performance	of	UEFI	drivers.	By	using
combinations	of	all	of	these	techniques,	significant	performance	enhancements	can	be	realized.

Table	16-Speed	optimizations

Technique Description

Compiler
flags	that
optimize	for
performance.

Some	compiler	provide	flags	(such	as	/Ot,	/O2,	and	/Ox)	optimize	code	for
performance.	This	technique	is	an	easy	way	to	reduce	the	execution	time	of	a
UEFI	driver.	For	the	most	part,	the	EDK	II	balances	size	and	speed	optimizations.
The	flags	can	be	customized	to	specify	a	preference	for	speed	or	size.	
	Note:		When	optimization	is	turned	on,	each	line	of	source	code	may	not	map	to
the	same	line	when	a	debugger	is	active.	This	can	make	it	more	difficult	to	debug.
	TIP:		Be	careful	when	turning	on	compiler	optimizations	because	C	source	that
works	fine	with	optimizations	disabled	may	stop	working	with	optimizations
enabled.	They	usually	stop	working	because	of	missing		volatile		declarations	on
variables	and	data	structures	that	are	shared	between	normal	contexts	and
raised	TPL	contexts.	
	TIP:		Because	the	UEFI	driver	is	small,	it	may	execute	faster.	If	there	are	any
speed	paths	in	a	UEFI	driver	that	cause	problems	if	the	UEFI	driver	executes
faster,	then	these	switches	may	expose	those	speed	paths.	These	same	speed
paths	also	show	up	as	faster	processors	are	used,	so	it	is	good	to	find	these
speed	paths	early.

UEFI	Services

Whenever	possible,	use	UEFI	boot	services,	UEFI	runtime	services,	and	the
protocol	services	provided	by	other	UEFI	drivers.	The	UEFI	boot	services	and	UEFI
runtime	services	are	likely	implemented	as	native	calls	that	have	been	optimized
for	the	platform,	so	there	is	a	performance	advantage	for	using	these	services.
Some	protocol	services	might	be	native,	and	other	protocol	services	might	be	EBC
images.	Either	way,	if	all	UEFI	drivers	assume	that	external	protocol	services	are
native,	then	the	combination	of	UEFI	drivers	and	EFI	services	result	in	more
efficient	execution.

PCI	I/O
Protocol

If	a	UEFI	driver	is	a	PCI	driver,	then	it	should	take	advantage	of	all	the	PCI	I/O
Protocol	services	to	improve	the	UEFI	driver's	performance.	This	approach	means
that	all	register	accesses	should	be	performed	at	the	largest	possible	size.	For
example,	perform	a	single	32-bit	read	instead	of	multiple	8-bit	reads.	Also,	take
advantage	of	the	read/write	multiple,	FIFO,	and	fill	modes	of	the		Io()	,		Mem()	,	and
	Pci()		services.	See	Chapter	18	for	details	on	optimization	techniques	that	are
specific	to	PCI.

4.4.2	Performance	OptimizationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

159DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.4.3	CopyMem()	and	SetMem()	Operations

The	following	example	shows	how	to	use	the	EDK	II	library		BaseMemoryLib		functions		CopyMem()		and		SetMem()	to
improve	the	performance	of	a	UEFI	driver.	These	techniques	apply	to	arrays,	structures,	or	allocated
buffers.

Note:	By	default,	the	EDK	II	enables	high	levels	of	optimization,	so	this	example	may	not	build	for	all
compilers	because	the	loops	are	optimized	into	intrinsics	that	can	cause	the	link	to	fail.	So	not	only
does	use	of	'CopyMem()'	and	'SetMem()'	improve	performance,	it	also	improves	UEFI	Driver	portability.

Example	15-CopyMem()	and	SetMem()	Speed	Optimizations

#include	<Uefi.h>

typedef	struct	{

		UINT8	First;

		UINT32	Second;

}	MY_STRUCTURE;

UINTN	Index;

UINT8	A[100];

UINT8	B[100];

MY_STRUCTURE	MyStructureA;

MY_STRUCTURE	MyStructureB;

//

//	Using	a	loop	is	slow	or	structure	assignments	is	slow

//

for	(Index	=	0;	Index	<	100;	Index++)	{

		A[Index]	=	B[Index];

}

MyStructureA	=	MyStructureB;

//

//	Using	the	optimized	CopyMem()	Boot	Services	is	fast

//

CopyMem	(

		(VOID	*)A,

		(VOID	*)B,

		100

);

CopyMem	(

		(VOID	*)&MyStructureA,

		(VOID	*)&MyStructureB,

		sizeof	(MY_STRUCTURE)

);

//

//	Using	a	loop	or	individual	assignment	statements	is	slow

//

for	(Index	=	0;	Index	<	100;	Index++)	{

		A[Index]	=	0;

}

MyStructureA.First	=	0;

MyStructureA.Second	=	0;

//

//	Using	the	optimized	SetMem()	Boot	Service	is	fast.

//

SetMem	((VOID	*)A,	100,	0);

SetMem	((VOID	*)&MyStructureA,	sizeof	(MY_STRUCTURE),	0);

4.4.3	CopyMem()	and	SetMem()	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

160DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.4.3	CopyMem()	and	SetMem()	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

161DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5	UEFI	Services
This	chapter	focuses	on	the	UEFI	services	that	apply	to	the	implementation	of	UEFI	drivers.	This	includes
descriptions	of	those	services,	along	with	code	examples,	that	demonstrate	how	a	UEFI	driver	typically
uses	those	services.	The	EDK	II	provides	a	number	of	library	functions	that	simplify	the	use	of	UEFI
services	as	well	as	UEFI	driver	improvements	in	maintainability,	portability,	readability,	robustness,	and
size.	Additional	descriptions	and	code	examples	using	EDK	II	library	functions	also	appear	where
applicable.

The	UEFI	Boot	Services	and	UEFI	Runtime	Services	available	to	UEFI	Drivers	fall	into	three	general	areas:

Commonly	used	services

Rarely	used	services

Services	that	should	not	be	used	from	a	UEFI	driver

The	full	function	prototypes	and	descriptions	for	each	service,	and	their	arguments,	are	available	in	the
Boot	Services	and	Runtime	Services	chapters	of	the	UEFI	Specification.	The	full	function	prototypes	and
descriptions	of	the	EDK	II	library	functions,	and	their	arguments,	are	available	in	the	EDK	II	MdePkg
Package	Document	and	the	EDK	II	MdeModulePkg	Package	Document.

The	following	table	lists	alphabetically	all	UEFI	Boot	and	Runtime	Services.

5	UEFI	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

162DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	17-Alphabetical	listing	of	UEFI	services

Service Type Service	Type

AllocatePool() Boot Memory	Allocation

AllocatePages() Boot Memory	Allocation

CalculateCrc32() Boot Miscellaneous

CheckEvent() Boot Event

CloseEvent() Boot Event

CloseProtocol() Boot Protocol	Handler

ConnectController() Boot Protocol	Handler

ConvertPointer() Runtime Miscellaneous

CopyMem() Boot Miscellaneous

CreateEvent() Boot Event

CreateEventEx() Boot Event

DisconnectController() Boot Protocol	Handler

Exit() Boot Special

ExitBootServices() Boot Special

FreePages() Boot Memory	Allocation

FreePool() Boot Memory	Allocation

GetMemoryMap() Boot Memory	Allocation

GetNextMonotonicCount() Boot Special

GetNextHighMonotonicCount() Runtime Special

GetNextVariableName() Runtime Variable

GetTime() Runtime Time-related

GetVariable() Runtime Variable

GetWakeupTime() Runtime Time-related

HandleProtocol() Boot Protocol	Handler

InstallConfigurationTable() Boot Miscellaneous

InstallMultipleProtocolInterfaces() Boot Protocol	Handler

InstallProtocolInterface() Boot Protocol	Handler

LoadImage() Boot Image

LocateDevicePath() Boot Protocol	Handler

LocateHandle() Boot Protocol	Handler

LocateHandleBuffer() Boot Protocol	Handler

LocateProtocol() Boot Protocol	Handler

OpenProtocol() Boot Protocol	Handler

OpenProtocolInformation() Boot Protocol	Handler

ProtocolsPerHandle() Boot Protocol	Handler

5	UEFI	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

163DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

QueryCapsuleCapabilities() Runtime Special

QueryVariableInfo() Runtime Variable

RaiseTPL() Boot Task	Priority

RegisterProtocolNotify() Boot Protocol	Handler

ReinstallProtocolInterface() Boot Protocol	Handler

ResetSystem() Runtime Special

RestoreTPL() Boot Task	Priority

SetMem() Boot Miscellaneous

SetTime() Runtime Time-related

SetTimer() Boot Time-related

SetVariable() Runtime Variable

SetVirtualAddressMap() Runtime Special

SetWakeupTime() Runtime Time-related

SetWatchDogTimer() Boot Time-related

StartImage() Boot Image

SignalEvent() Boot Event

Stall() Boot Time-related

UninstallMultipleProtocolInterfaces() Boot Protocol	Handler

UninstallProtocolInterface() Boot Protocol	Handler

UnloadImage() Boot Image

UpdateCapsule() Runtime Special

WaitForEvent() Boot Event

5	UEFI	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

164DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1	Services	that	UEFI	drivers	commonly	use

The	following	table	lists	UEFI	services	commonly	used	by	UEFI	drivers.	Following	that,	discussions	briefly
describe	each	service,	why	they	are	commonly	used,	or	the	particular	circumstance	in	which	they	are
useful.	Code	examples	show	how	the	services	are	typically	used	by	UEFI	drivers	and	are	grouped	by
Service	Type.

Table	18-UEFI	services	that	are	commonly	used	by	UEFI	drivers

Service Type Service	Type Description

AllocatePool() Boot Memory
Allocation

Allocates	a	memory	buffer	of	a
particular	type.

FreePool() Boot Memory
Allocation

Frees	a	previously	allocated	memory
buffer.

AllocatePages() Boot Memory
Allocation

Allocates	one	memory	buffer	of	a
particular	type	with	a	4KB	aligned
start	address	and	a	4KB	aligned
length.

FreePages() Boot Memory
Allocation

Frees	a	memory	buffer	previously
allocated	with	AllocatePages().

CopyMem() Boot Miscellaneous Copies	a	buffer	from	one	location	to
another.

SetMem() Boot Miscellaneous Initializes	the	contents	of	a	buffer	with
a	specified	value.

InstallMultipleProtocolInterfa
ces() Boot Protocol

Handler
Installs	one	or	more	protocol
interfaces	onto	a	handle.	Replaces
the	InstallProtocolInterface()	service.

UninstallMultipleProtocolInter
faces() Boot Protocol

Handler

Uninstalls	one	or	more	protocol
interfaces	from	a	handle.	Replaces
the	UninstallProtocolInterface()
service.

LocateHandleBuffer() Boot Protocol
Handler

Retrieves	a	list	of	handles	from	the
handle	database	meeting	the	search
criteria.	The	return	buffer	is
automatically	allocated.

LocateProtocol() Boot Protocol
Handler

Finds	the	first	handle	in	the	handle
database	supporting	the	requested
protocol.

OpenProtocol() Boot Protocol
Handler

Adds	elements	to	the	list	of	agents
consuming	a	protocol	interface.

OpenProtocolInformation() Boot Protocol
Handler

Retrieves	the	list	of	agents	currently
consuming	a	protocol	interface.

CloseProtocol() Boot Protocol
Handler

Removes	elements	from	the	list	of
agents	consuming	a	protocol
interface.

RaiseTPL() Boot Task	Priority Raises	the	task	priority	level.

RestoreTPL() Boot Task	Priority Restores/lowers	the	task	priority	level.

CreateEvent() Boot Event Creates	a	general-purpose	event
structure.

CreateEventEx() Boot Event Creates	an	event	structure	as	part	of

5.1	Services	that	UEFI	drivers	commonly	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

165DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

CreateEventEx() Boot Event an	event	group.	This	service	is	new.

CloseEvent() Boot Event Closes	and	frees	an	event	structure.

SignalEvent() Boot Event Signals	an	event.

CheckEvent() Boot Event Checks	whether	an	event	is	in	the
signaled	state.

SetTimer() Boot Time-related Sets	an	event	to	be	signaled	at	a
particular	time.

Stall() Boot Time-related
Waits	for	a	specified	number	of
microseconds.	This	is	a	time-related
service	with	the	highest	accuracy.

5.1	Services	that	UEFI	drivers	commonly	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

166DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.1	Memory	Allocation	Services

The		AllocatePool()		and		FreePool()		boot	services	are	used	by	UEFI	drivers	to	allocate	and	free	small	buffers
that	are	guaranteed	to	be	aligned	on	an	8-byte	boundary.	These	services	are	ideal	for	allocating	and
freeing	data	structures.

The		AllocatePages()		and		FreePages()		boot	services	are	used	by	UEFI	drivers	to	allocate	and	free	larger
buffers	that	are	guaranteed	to	be	aligned	on	a	4	KB	boundary.	These	services	allow	buffers	to	be
allocated	at	any	available	address,	at	specific	addresses,	or	below	a	specific	address.

5.1.1.1	Critical	considerations	for	allocating	memory

UEFI	drivers	should	not	make	assumptions	about	the	organization	of	system	memory.	Because	of	this,
allocating	from	specific	addresses	or	below	specific	addresses	is	strongly	discouraged.	The
	AllocatePool()		service	does	not	allow	the	caller	to	specify	a	preferred	address,	so	this	service	is	safe	to
use	and	does	not	impact	the	compatibility	of	a	UEFI	Driver	on	different	platforms.

The		AllocatePages()		service	does	have	a	mode	that	allows	a	specific	address	to	be	specified	or	a	range	of
addresses	to	be	specified.	The	allocation	type	of

	AllocateAnyPages		is	safe	to	use	and	increases	the	compatibility	of	UEFI	Drivers	on	different	platforms.	The
allocation	types	of		AllocateMaxAddress		and		AllocateAddress		may	reduce	platform	compatibility,	so	their	use	is
discouraged.

Caution:	Although	the	Allocate	services	allow	for	specific	memory	allocation,	do	not	allocate	specific
addresses	in	a	UEFI	driver.	Allocating	buffers	at	a	specific	address	could	result	in	errors,	including	a
catastrophic	failure	on	some	platforms.	Memory	allocation	in	UEFI	drivers	should	be	done	dynamically.

TIP:	Always	check	function	return	codes	to	verify	if	a	memory	allocation	request	succeeded	or	not
before	accessing	the	allocated	buffer.

Key	points:

To	prevent	memory	leaks,	every	allocation	operation	must	have	a	corresponding	free	operation.	It	is
important	to	note	that	some	UEFI	services	allocate	buffers	for	the	caller	and	expect	the	caller	to
free	those	buffers.

Buffers	above	4	GB	may	be	allocated	if	there	is	system	memory	is	present	above	4	GB.	As	a	result,
all	UEFI	drivers	must	be	aware	that	pointers	may	contain	address	values	above	4	GB,	and	care	must
be	taken	never	to	strip	the	upper	address	bits.

Structures	and	values	placed	in	allocated	buffers	must	be	naturally	aligned	to	maximize	compatibility
with	all	CPU	architectures.

Never	use	an	allocated	buffer	for	DMA	without	mapping	it	through	an	I/O	Protocol.	For	example,	the
	Map()		and		UnMap()		services	in	the	PCI	I/O	Protocol.

Refer	to	Chapter	4	for	general	porting	considerations	covering	more	memory	allocation	details	for	32-bit
and	64-bit	architectures.

5.1.1.2	Do	not	directly	allocate	a	memory	buffer	for	DMA	access

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

167DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A	UEFI	driver	must	never	directly	allocate	a	memory	buffer	for	DMA	access.	The	UEFI	driver	cannot	know
enough	about	the	system	architecture	to	predict	what	system	memory	areas	are	available	for	DMA	or	if
CPU	caches	are	coherent	with	DMA	operations.	Instead,	a	UEFI	driver	must	use	the	services	provided	by
the	I/O	protocol	for	the	bus	to	allocate	and	free	buffers	required	for	DMA	operations.	There	should	also
be	services	to	initiate	and	complete	DMA	transactions.	For	example,	the	PCI	Root	Bridge	I/O	Protocol	and
PCI	I/O	Protocol	both	provide	services	for	PCI	DMA	operations.	As	additional	I/O	bus	types	with	DMA
capabilities	are	introduced,	new	protocols	that	abstract	the	DMA	services	must	be	provided.

5.1.1.3	Allocating	and	freeing	buffers

UEFI	boot	service	drivers	typically	allocate	and	free	buffers	of	type		EfiBootServicesData	.	UEFI	runtime	drivers
typically	allocate	and	free	buffers	of	type		EfiRuntimeServicesData	.	OS	Loaders	typically	allocate	and	free
buffers	of	type		EfiLoaderData	.

Most	drivers	that	follow	the	UEFI	driver	model	allocate	private	context	structures	in	their	Driver	Binding
Protocol		Start()		function	and	free	them	in	their	Driver	Binding	Protocol		Stop()		function.	UEFI	drivers	may
also	dynamically	allocate	and	free	buffers	as	different	I/O	operations	are	performed.

5.1.1.4	Code	examples	for	AllocatePool()	and	FreePool()

The	following	code	fragment	shows	how	the	UEFI	Boot	Service		AllocatePool()		and		FreePool()		can	be	used
to	allocate	and	free	a	buffer	for	a	data	structure	from		EfiBootServicesData		memory.	The	EDK	II	library
	UefiBootServicesTableLib		provides	global	variables	for	the	UEFI	System	Table,	the	UEFI	Boot	Services	Table,
and	the	Image	Handle	for	the	currently	executing	driver.	In	this	example,	the	global	variable	for	the	UEFI
Boot	Services	Table,	called		gBS,		is	used	to	call	the	UEFI	Boot	Services		AllocatePool()		and		FreePool().	

Example	16-Allocate	and	free	pool	using	UEFI	Boot	Services	Table

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Status	=	gBS->AllocatePool	(

																EfiBootServicesData,

																sizeof	(EXAMPLE_DEVICE),

																(VOID	**)&Device

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Free	the	allocated	buffer

//

Status	=	gBS->FreePool	(Device);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	exactly	the	same	functionality	as	Example	16,	above,	but	uses	EDK	II
library		MemoryAllocationLib		to	simplify	the	implementation.	The		MemoryAllocationLib		function		AllocatePool()	
allocates	memory	of	type		EfiBootServicesData	.	If	memory	of	type		EfiRuntimeServicesData		is	required,	then	the
	MemoryAllocationLib		function		AllocateRuntimePool()		should	be	used.

Example	17-Allocate	and	free	pool	using	MemoryAllocationLib

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

168DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocatePool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Free	the	allocated	buffer

//

FreePool	(Device);

In	many	cases,	when	a	structure	is	allocated,	it	is	useful	to	clear	the	buffer	to	a	known	state	with	zeros.
The	following	code	fragment	in	Example	18	expands	on	Example	17,	above,	showing	how	the	EDK	II
library		MemoryAllocationLib		can	be	used	to	allocate	and	clear	a	buffer	in	a	single	call.

Example	18-Allocate	and	clear	pool	using	MemoryAllocationLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

EXAMPLE_DEVICE	*Device;

//

//	Allocate	and	clear	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocateZeroPool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Free	the	allocated	buffer

//

FreePool	(Device);

Complex	structures	that	require	many	fields	to	be	initialized	after	the	structure	is	allocated	may
increase	the	size	of	the	UEFI	driver	if	the	fields	are	initialized	one	by	one.	The	EDK	II	library
	MemoryAllocationLib		provides	an	additional	allocation	method	that	makes	use	of	a	template	structure	to
reduce	code	size.

The	concept	is	that	a	template	structure	can	be	declared	as	a	global	variable	with	all	the	fields	pre-
initialized	to	the	required	values.	It	takes	less	space	to	store	just	the	data	than	it	does	to	store	the
instructions	and	data	to	initialize	all	the	fields	one	by	one.	This	technique	may	be	useful	for	UEFI	Drivers
that	produce	new	protocols	for	each	device	the	UEFI	Driver	manages.	Example	19,	below,	expands	on
the	above	Example	18	showing	how	the	EDK	II	library		MemoryAllocationLib		is	used	to	allocate	and	initialize	a
buffer	from	a	template	structure	in	a	single	call.

Example	19-Allocate	and	initialize	pool	using	MemoryAllocationLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

EXAMPLE_DEVICE	gExampleDeviceTemplate	=	{

		EXAMPLE_PRIVATE_DATA_SIGNATURE,

		//

		//	Other	device	specific	fields

		//

};

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

169DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EXAMPLE_DEVICE	*Device;

//

//	Allocate	and	initialize	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocateCopyPool	(

																													sizeof	(EXAMPLE_DEVICE),	&gExampleDeviceTemplate

);

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Free	the	allocated	buffer

//

FreePool	(Device);

5.1.1.5	Code	examples	for	AllocatePages()	and	FreePages()

The	following	code	fragment	shows	how	the	UEFI	Boot	Services		AllocatePages()		and		FreePages()		are	used
to	allocate	and	free	a	16KB	buffer	for	a	data	structure	from		EfiBootServicesData		memory.	The	EDK	II	library
	UefiBootServicesTableLib		provides	global	variables	for	the	UEFI	System	Table,	the	UEFI	Boot	Services	Table,
and	the	Image	Handle	for	the	currently	executing	driver.	In	this	example,	the	global	variable	for	the	UEFI
Boot	Services	Table,	called		gBS	,	is	used	to	call	the	UEFI	Boot	Services		AllocatePages()		and		FreePages().	

Example	20-Allocate	and	free	pages	using	UEFI	Boot	Services	Table

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_PHYSICAL_ADDRESS	PhysicalBuffer;

UINTN	Pages;

VOID	*Buffer;

//

//	Allocate	the	number	of	pages	to	hold	Size	bytes	and

//	return	in	PhysicalBuffer

//

Pages	=	EFI_SIZE_TO_PAGES	(SIZE_16KB);

Status	=	gBS->AllocatePages	(

																AllocateAnyPages,

																EfiBootServicesData,

																Pages,

																&PhysicalBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Convert	the	physical	address	to	a	pointer.

//	This	method	works	for	all	support	CPU	architectures.

//

Buffer	=	(VOID	*)(UINTN)PhysicalBuffer;

//

//	Free	the	allocated	buffer

//

Status	=	gBS->FreePages	(PhysicalBuffer,	Pages);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	in	Example	21,	below,	shows	the	same	functionality	as	Example	20,	above,	but	uses
the	EDK	II	library		MemoryAllocationLib		to	simplify	the	implementation.

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

170DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The		MemoryAllocationLib		function		AllocatePages()		allocates	memory	of	type		EfiBootServicesData	.	If	memory	of
type		EfiRuntimeServicesData		is	required,	the		MemoryAllocationLib		function		AllocateRuntimePages()		should	be	used.

Example	21-Allocate	and	free	pages	using	MemoryAllocationLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

EXAMPLE_DEVICE	*Device;

UINTN	Pages;

//

//	Allocate	a	buffer	for	a	data	structure

//

Pages	=	EFI_SIZE_TO_PAGES	(sizeof	(EXAMPLE_DEVICE));

Device	=	(EXAMPLE_DEVICE	*)AllocatePages	(Pages);

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Free	the	allocated	buffer

//

FreePages	(Device,	Pages);

In	some	rare	circumstances,	a	UEFI	Driver	may	be	required	to	allocate	a	buffer	with	a	specific	alignment.
	AllocatePool()		provides	8-byte	alignment.		AllocatePages()		provides	4KB	alignment.	If	an	alignment	above
4KB	is	required,	the	preferred	technique	is	to	allocate	a	large	buffer	through		AllocatePages()	,	find	the
portion	of	the	allocated	buffer	that	meets	the	required	alignment,	and	free	the	unused	portions.	EDK	II
library		MemoryAllocationLib		provides	the	function	called		AllocateAlignedPages()		that	implements	this	technique.
The	code	fragment	in	the	example	below	allocates	a	16KB	buffer	aligned	on	a	64KB	boundary.

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

171DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	22-Allocate	and	free	aligned	pages	using	MemoryAllocationLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

VOID	*Buffer;

UINTN	Pages;

//

//	Allocate	a	buffer	for	a	data	structure

//

Pages	=	EFI_SIZE_TO_PAGES	(SIZE_16KB);

Buffer	=	(EXAMPLE_DEVICE	*)AllocateAlignedPages	(Pages,	SIZE_64KB);

if	(Buffer	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Free	the	allocated	buffer

//

FreePages	(Buffer,	Pages);

5.1.1	Memory	Allocation	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

172DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.2	Miscellaneous	Services

The		SetMem()		and		CopyMem()		UEFI	Boot	Services	are	used	by	UEFI	drivers	to	initialize	the	contents	of	a
buffer	or	copy	a	buffer	from	one	location	to	another.	The		SetMem()		service	is	most	commonly	used	to	fill
the	contents	of	a	buffer	with	zeros	after	it	is	allocated.	The		CopyMem()		service	handles	buffers	of	any
alignment	and	also	handles	the	rare	case	when	the	source	and	destination	buffer	overlap.	With
overlapping	buffers,	the	requirement	is	that	the	destination	buffer	on	exit	from	this	service	must	match
the	contents	of	the	source	buffer	on	entry	to	this	service.

The	code	fragments	in	this	section	also	show	examples	that	use	the	EDK	II	library	class		BaseMemoryLib		as
an	alternative	to	using	the	UEFI	Boot	Services	directly.	The	advantage	of	using	this	library	class	is	that
the	source	code	can	be	implemented	just	once.	The	EDK	II	DSC	file	used	to	build	a	UEFI	Driver	can
specify	mappings	to	different	implementations	of	the		BaseMemoryLib		library	class	that	meet	the
requirements	of	a	specific	target.	For	example,	the		MdePkg/Library/UefiMemoryLib		library	instance	uses	the
recommended	UEFI	Boot	Services		SetMem()		and		CopyMem()	are	for	best	performance	when	building	a	UEFI
Driver	for	EBC.	For	best	performance	on	IA32	or	X64,	use	the	SSE2	optimized		MdePkg/Library/BaseMemoryLibSse2	
library	instance.

5.1.2.1	Code	examples	for	SetMem()

Use	the		SetMem()		UEFI	Boot	Service	to	initialize	the	contents	of	a	buffer	with	a	specified	value.	UEFI
drivers	most	commonly	use	this	service	to	zero	an	allocated	buffer,	but	it	can	also	be	used	to	fill	a	buffer
with	other	values.	The	following	code	fragment	in	the	example	below	shows	the	same	example	from
Example	16,	but	uses		SetMem()		UEFI	Boot	Service	to	zero	the	contents	of	the	allocated	buffer.	The	EDK	II
library

	UefiBootServicesTableLib		provides	global	variables	for	the	UEFI	System	Table,	the	UEFI	Boot	Services	Table,
and	the	Image	Handle	for	the	currently	executing	driver.	Here,	the	global	variable	for	the	UEFI	Boot
Services	Table	called		gBS		is	used	to	call	the	UEFI	Boot	Services		AllocatePool()		and		SetMem().	

Example	23-Allocate	and	clear	a	buffer	using	UEFI	Boot	Services

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Status	=	gBS->AllocatePool	(

																EfiBootServicesData,

																sizeof	(EXAMPLE_DEVICE),

																(VOID	**)&Device

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Zero	the	contents	of	the	allocated	buffer

//

gBS->SetMem	(Device,	sizeof	(EXAMPLE_DEVICE),	0);

The	following	code	fragment	shows	the	same	example	from	Example	17,	but	uses	the		SetMem()		function
from	the	EDK	II	library	class		BaseMemoryLib		to	zero	the	contents	of	the	allocated	buffer.

Example	24-Allocate	and	clear	a	buffer	using	BaseMemoryLib

5.1.2	Miscellaneous	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

173DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/BaseMemoryLib.h>

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocatePool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Zero	the	contents	of	the	allocated	buffer

//

SetMem	(Device,	sizeof	(EXAMPLE_DEVICE),	0);

The	code	fragment	in	Example	25,	below,	shows	the	same	example	from	Example	17,	above,	but	uses
the		ZeroMem()		function	from	the	EDK	II	library	class		BaseMemoryLib		to	zero	the	contents	of	the	allocated
buffer.

Example	25-Allocate	and	clear	a	buffer	using	BaseMemoryLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/BaseMemoryLib.h>

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocatePool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Zero	the	contents	of	the	allocated	buffer

//

ZeroMem	(Device,	sizeof	(EXAMPLE_DEVICE));

5.1.2.2	Code	examples	for	CopyMem()

The	following	code	fragment	shows	an	example	of	how	the		CopyMem()		UEFI	Boot	Service	is	typically	used
to	copy	an	existing	buffer	into	a	newly	allocated	buffer.	The		AllocatePool()		function	from	the	EDK	II	library
	MemoryAllocationLib		is	used	to	allocate	a	new	buffer.	The	EDK	II	library		UefiBootServicesTableLib		provides	global
variables	for	the	UEFI	System	Table,	the	UEFI	Boot	Services	Table,	and	the	Image	Handle	for	the	currently
executing	driver.	In	this	example,	the	global	variable	for	the	UEFI	Boot	Services	Table	called		gBS		is	used
to	call	the	UEFI	Boot	Service		CopyMem()	.

Example	26-Allocate	and	copy	buffer

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EXAMPLE_DEVICE	*SourceDevice;

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

5.1.2	Miscellaneous	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

174DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

Device	=	(EXAMPLE_DEVICE	*)AllocatePool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Copy	contents	of	SourceDevice	to	the	allocated	Device

//

gBS->CopyMem	(Device,	SourceDevice,	sizeof	(EXAMPLE_DEVICE));

The	code	fragment	in	Example	27,	below,	shows	the	same	example	from	Example	26,	above,	but	uses
the		CopyMem()		function	from	the	EDK	II	library	class		BaseMemoryLib		to	copy	the	contents	of	an	existing	buffer
to	a	newly	allocated	buffer.

Example	27-Allocate	and	clear	a	buffer	using	BaseMemoryLib

#include	<Uefi.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/BaseMemoryLib.h>

EXAMPLE_DEVICE	*SourceDevice;

EXAMPLE_DEVICE	*Device;

//

//	Allocate	a	buffer	for	a	data	structure

//

Device	=	(EXAMPLE_DEVICE	*)AllocatePool	(sizeof	(EXAMPLE_DEVICE));

if	(Device	==	NULL)	{

		return	EFI_OUT_OF_RESOURCES;

}

//

//	Copy	contents	of	SourceDevice	to	the	allocated	Device

//

CopyMem	(Device,	SourceDevice,	sizeof	(EXAMPLE_DEVICE));

5.1.2	Miscellaneous	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

175DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.3	Handle	Database	and	Protocol	Services

There	are	several	UEFI	Boot	Services	used	to	add,	retrieve,	and	remove	contents	from	the	Handle
Database.	Concepts	of	the	Handle	Database	and	Protocols	are	introduced	in	Section	3.4.	This	section
provides	code	examples	for	the	UEFI	Boot	Services	commonly	used	by	UEFI	Drivers	to	manage	the
Handle	Database	and	include	the	following:

	InstallMultipleProtocolInterfaces()	

	UninstallMultipleProtocolInterfaces()	

	LocateHandleBuffer()	

	LocateProtocol()	

	OpenProtocol()	

	OpenProtocolInformation()	

	CloseProtocol()	

5.1.3.1	InstallMultipleProtocolInterfaces()	and	UninstallMultipleProtocolInterfaces()

These	services	are	used	to	do	the	following:

Create	new	handles	in	the	Handle	Database.

Remove	a	handle	from	the	Handle	Database.

Add	protocols	to	an	existing	handle	in	the	Handle	Database.

Remove	protocols	from	an	existing	handle	in	the	Handle	Database.

Extra	services	to	create	a	new	handle	in	the	Handle	Database	and	remove	an	existing	handle	from	the
Handle	Database	are	not	required.	Instead,	the	first	protocol	installed	onto	a	handle	automatically
creates	a	new	handle	and	adds	that	handle	to	the	Handle	Database.	The	last	protocol	removed	from	an
existing	handle	automatically	removes	the	handle	from	the	Handle	Database	and	destroys	the	handle.
This	means	it	is	not	possible	for	a	handle	to	be	present	in	the	Handle	Database	with	zero	protocols
installed.

Another	important	concept	is	that	a	single	handle	in	the	Handle	Database	is	not	allowed	to	have	more
than	one	instance	of	the	same	Protocol	installed	onto	that	handle.	If	a	UEFI	Driver	is	required	to
produce	more	than	one	instance	of	the	same	protocol,	then	the	Protocol	instances	must	be	installed
on	different	handles	in	the	Handle	Database.

UEFI	Drivers	tend	to	manage	more	than	one	protocol	at	a	time.	Because	of	this,	it	is	recommended	that
	InstallMultipleProtocolInterfaces()		and		UninstallMultipleProtocolInterfaces()		be	used	instead	of	the
	InstallProtocolInterface()		and		UninstallProtocolInterface()	.	This	results	in	source	code	that	is	easier	to
maintain	and	also	tends	to	produce	smaller	executables.	In	addition,		InstallMultipleProtocolInterfaces()	
provides	more	extensive	error	checking	than		InstallProtocolInterface()	,	which	allows	developers	to	catch
coding	errors	sooner,	and	results	in	higher	quality	UEFI	Driver	implementations.	The	main	difference	is
that		InstallMultipleProtocolInterfaces()		guarantees	that	a	duplicate	Device	Path

Protocol	is	never	be	added	to	the	Handle	Database.	Section	3.9	introduces	the	concept	of	Device	Paths
and	the	requirement	for	them	to	be	unique.

The		InstallMultipleProtocolInterfaces()		and		UninstallMultipleProtocolInterfaces()		services	support	adding	and
removing	more	than	one	protocol	at	a	time	through	the	use	of	a	variable	argument	list.	Protocols	are
represented	by	a	pair	of	pointers	to	a	protocol	GUID	and	a	protocol	interface.	These	services	parse
pairs	of	arguments	until	a		NULL		pointer	for	the	protocol	GUID	parameter	is	encountered.

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

176DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Note:	If	any	errors	are	generated	when	the	protocols	are	being	added	to	a	handle,	any	protocols
added	before	the	error	is	returned,	are	automatically	removed	by	InstallMultipleProtocolInterfaces().
This	means	the	state	of	the	handle	in	the	handle	database	is	identical	to	the	state	prior	to	the	call.

Note:	If	any	errors	are	generated	when	the	protocols	are	being	removed	from	a	handle,	any	protocols
removed	before	the	error	is	returned,	are	automatically	added	back	by
UninstallMultipleProtocolInterfaces().	This	means	the	state	of	the	handle	in	the	handle	database	is
identical	to	the	state	prior	to	the	call.

TIP:	If	unexpected	errors	are	returned	by	these	services,	try	converting	a	single	call	for	multiple
protocols	to	a	series	of	calls	that	process	one	protocol	at	a	time.	This	allows	the	specific	protocol
causing	the	error	condition	to	be	identified.	It	should	be	rare	for	these	services	to	return	an	error
condition.	If	an	error	condition	is	present	it	is	likely	due	to	a	duplicate	GUID,	a	duplicate	device	path,	or
an	invalid	handle.

Note:	When	an	attempt	is	made	to	remove	a	protocol	interface	from	a	handle	in	the	handle	database,
the	UEFI	core	firmware	checks	to	see	if	any	other	UEFI	drivers	are	currently	using	the	services	of	the
protocol	to	be	removed.	If	UEFI	drivers	are	using	that	protocol	interface,	the	UEFI	core	firmware
attempts	to	stop	those	UEFI	drivers	with	a	call	to	DisconnectController().	This	is	a	quick,	legal,	and	safe
way	to	shut	down	any	protocols	associated	with	this	driver's	stack.

Caution:	A	serious	issue	can	occur	when	a	user	removes	and	then	reattaches	a	device	on	a	bus	that
supports	hot-plugging.	Driver	writers	must	consider	this	when	writing	drivers	for	hot-plug	devices.

The	issue	occurs	when	other	controllers	are	also	using	one,	or	more,	of	a	driver's	protocols.	In	these
cases,	the		UninstallMultipleProtocolInterfaces		service	fails.

If	the	call	to		DisconnectController()		fails,	the	UEFI	core	firmware	then	calls		ConnectController()		to	put	the
handle	database	back	into	the	same	state	that	it	was	in	prior	to	the	original	call	to
	UninstallMultipleProtocolInterfaces()	.	This	call	to		ConnectController()		has	the	potential	to	cause	issues	upon	re-
entry	in	UEFI	drivers	that	must	be	handled	in	the	UEFI	driver.	These	issues	could	include	lost	or	missed
connected	pointer	linkages	resulting	in	lost	data,	confused	operation,	crashes	and	other	errors.	See
Chapter	31	in	this	guide	for	recommendations	on	how	to	test	UEFI	drivers.

5.1.3.1.1	Protocols	that	may	be	added	at	the	driver	entry	point

The	following	protocols	may	also	be	added	in	the	driver	entry	point	with	the
	InstallMultipleProtocolInterfaces()		service.	Please	see	Chapter	7	for	more	details	on	how	to	install	these
protocols	in	a	driver	entry	point	along	with	the	recommendations	on	when	each	of	these	protocols
should	be	installed	in	a	driver	entry	point.	Later	chapters	of	this	guide	cover	the	implementation	of
these	protocols	in	more	detail.

Driver	Binding	Protocol

Component	Name	Protocol

Component	Name	2	Protocol

Driver	Configuration	Protocol

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

177DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Driver	Configuration	2	Protocol

Driver	Diagnostics	Protocol

Driver	Diagnostics	2	Protocol

HII	Config	Access	Protocol

Driver	Health	Protocol

Driver	Family	Override	Protocol

Driver	Supported	EFI	Version	Protocol

5.1.3.1.2	Removing	protocols	when	a	driver	is	unloaded

If	a	UEFI	driver	is	unloadable,	then	the	protocols	that	were	added	in	the	driver	entry	point	must	be
removed	in	the	driver's		Unload()		function	using		UninstallMultipleProtocolInterfaces()	.

TIP:	Although	the		Unload()		function	is	optional,	uninstalling	the	protocols	in	the		Unload()		function	of	a
driver	is	not	optional.	The	install	and	uninstall	sections	must	mirror	each	other	for	the	protocols	used	by
the	driver.

TIP:	The		load		and		unload		UEFI	Shell	commands	may	be	used	to	test	driver	load	and	unload	services	for
handles	and	protocols.

5.1.3.1.3	Code	example

The	following	code	fragment	shows	how		InstallMultipleProtocolInterfaces()		can	be	used	from	the	entry	point
of	a	UEFI	Driver	to	install	driver	related	protocols.	This	example	installs	the	Driver	Binding	Protocol,
required	for	UEFI	Drivers	that	follow	the	UEFI	Driver	Model,	along	with	the	Component	Name	2	Protocol
which	is	optional	for	UEFI	Drivers	that	follow	the	UEFI	Driver	Model.	Both	protocols	are	installed	onto	the
image	handle	passed	into	the	entry	point	of	the	UEFI	Driver,	and	the	call	to
	InstallMultipleProtocolInterfaces()		uses	GUID/Pointer	pairs	terminated	by	a		NULL		GUID	value.	Additional
optional	protocols	could	be	added	to	this	one	call	to		InstallMultipleProtocolInterfaces()		depending	on	a
specific	UEFI	Driver	requirements	and	capabilities.

Example	28-Install	protocols	in	UEFI	Driver	entry	point.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

EFI_DRIVER_BINDING_PROTOCOL	gMyDriverBinding	=	{

		MySupported,

		MyStart,

		MyStop,	0x10,

		NULL,

		NULL

};

EFI_COMPONENT_NAME2_PROTOCOL	gMyComponentName2	=	{

		MyGetDriverName,

		MyGetControllerName,

		"en"

};

EFI_STATUS	Status;

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

178DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_HANDLE	ImageHandle;

//

//	Install	the	Driver	Binding	Protocol	and	the	Component	Name	2	Protocol

//	onto	the	image	handle	that	is	passed	into	the	driver	entry	point

//

Status	=	gBS->InstallMultipleProtocolInterfaces	(

																&ImageHandle,

																&gEfiDriverBindingProtocolGuid,

																&gMyDriverBinding,

																&gEfiComponentName2ProtocolGuid,

																&gMyComponentName2,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	in	Example	29	performs	the	same	work	as	the	example	above,	but	uses	the	EDK	II
	UefiLib		to	install	the	UEFI	Driver	Model	related	protocols.	In	this	specific	case,	the	Driver	Binding
Protocol,	Component	Name	Protocol,	and	Component	Name	2	Protocols	are	all	installed	using	the
	UefiLib		function		EfiLibInstallDriverBindingComponentName2()	.	The	Component	Name	Protocol	and	Component
Name	2	Protocol	implementations	use	the	same	functions	for	their	protocol	implementations,	thereby
reducing	the	size	overhead	for	supporting	both	name	protocols.

The	EDK	II		UefiLib		provides	4	functions	that	may	be	used	to	initialize	a	UEFI	Driver	that	follows	the	UEFI
Driver	Model.	The	Component	Name	Protocols	are	declared	with		GLOBAL_REMOVE_IF_UNREFERENCED		that
guarantees	the	protocol	structures	are	removed	from	the	final	binary	UEFI	Driver	image	if	the	EDK	II
build	is	configured	to	not	produce	the	Component	Name	Protocols.	It	does	not	make	sense	to	use	that
declaration	style	for	the	Driver	Binding	Protocol	since	that	protocol	must	always	be	produced	by	a	UEFI
Driver	that	follows	the	UEFI	Driver	Model.

The	EDK	II	library		UefiLib		uses	several	Platform	Configuration	Database	(PCD)	feature	flags	to	enable
and	disable	the	Component	Name	Protocols	at	build	time.	Chapter	30	covers	how	to	build	UEFI	Drivers	in
the	EDK	II	and	also	covers	configuration	of	UEFI	Drivers	through	PCD	settings.

Example	29-Install	protocols	in	UEFI	Driver	entry	point	using	UefiLib.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#define	MY_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gMyDriverBinding	=	{

		MySupported,	MyStart,

		MyStop,

		MY_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gMyComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)												MyGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)								MyGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gMyComponentName2	=	{

		MyGetDriverName,

		MyGetControllerName,

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

179DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		"en"

};

EFI_STATUS		Status;

EFI_HANDLE		ImageHandle;

//

//	Install	driver	model	protocol(s).

//

Status	=	EfiLibInstallDriverBindingComponentName2	(

												ImageHandle,

												SystemTable,

												&gMyDriverBinding,

												ImageHandle,

												&gMyComponentName

												&	gMyComponentName2

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how	the	protocols	installed	in	the	previous	example	would	be
uninstalled	in	a	UEFI	Driver's		Unload()		function.	A	UEFI	Driver	is	not	required	to	implement	the		Unload()	
capability,	but	if	the		Unload()		capability	is	implemented,	it	must	undo	the	work	performed	in	the	entry
point	of	the	UEFI	Driver	just	like		InstallMultipleProtocolInterfaces()	.		UninstallMultipleProtocolInterfaces()		allows
multiple	protocols	to	be	specified	in	a	single	call	using	a	set	of	GUID/Pointer	arguments	terminated	by	a
	NULL		GUID	value.

Example	30-Uninstall	protocols	in	UEFI	Driver	Unload()	function.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

EFI_STATUS	Status;

EFI_HANDLE	ImageHandle;

//

//	Uninstall	the	Driver	Binding	Protocol	and	the	Component	Name	Protocol

//	from	the	handle	that	is	passed	into	the	Unload()	function.

//

Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																ImageHandle,

																&gEfiDriverBindingProtocolGuid,

																&gMyDriverBinding,

																&gEfiComponentName2ProtocolGuid,

																&gMyComponentName2,

																&gEfiComponentNameProtocolGuid,

																&gMyComponentName,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

UEFI	device	drivers	add	protocols	for	I/O	services	to	existing	handles	in	the	handle	database	in	their
	Start()		function	and	remove	those	same	protocols	from	those	same	handles	in	their		Stop()		function.

UEFI	bus	drivers	may	add	protocols	to	existing	handles,	but	they	are	also	responsible	for	creating
handles	for	the	child	device	on	that	bus.	This	responsibility	means	that	the	UEFI	bus	driver	typically	adds
the		EFI_DEVICE_PATH_PROTOCOL		and	an	I/O	abstraction	for	the	bus	type	managed	by	that	bus	driver.	For

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

180DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

example,	the	PCI	bus	driver	creates	child	handles	with	both	the		EFI_DEVICE_PATH_PROTOCOL		and	the
	EFI_PCI_IO_PROTOCOL	.	The	bus	driver	may	also	optionally	add	the		EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		to	the
child	handles	if	the	bus	type	supports	a	standard	container	for	storing	UEFI	Drivers.

The	following	code	fragment	shows	an	example	of	a	how	a	child	handle	can	be	added	to	the	handle
database	with	a	Device	Path	Protocol	and	then	add	a	Block	I/O	Protocol	to	that	same	child	handle.
These	two	operations	could	also	be	combined	into	a	single	call	to		InstallMultipleProtocolInterfaces()	.

Example	31-Add	child	handle	to	handle	database

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/BlockIo.h>

EFI_STATUS																Status;

EFI_HANDLE																ChildHandle;

EFI_DEVICE_PATH_PROTOCOL		*DevicePath;

EFI_BLOCK_IO_PROTOCOL					*BlockIo;

//

//	Add	Device	Path	Protocol	to	a	new	handle

//

ChildHandle	=	NULL;

Status	=	gBS->InstallMultipleProtocolInterfaces	(

																&ChildHandle,

																&gEfiDevicePathProtocolGuid,

																DevicePath,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Add	the	Block	I/O	Protocol	to	the	handle	created	in	the	previous	call

//

Status	=	gBS->InstallMultipleProtocolInterfaces	(

																&ChildHandle,

																&gEfiBlockIoProtocolGuid,

																BlockIo,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	following	code	fragment	below	shows	an	example	of	a	how	the	child	handle	created	in	the	previous
example	can	be	destroyed	by	uninstalling	all	the	installed	protocols	in	a	single	call	to
	UninstallMultipleProtocolInterfaces()	.

Example	32-Remove	child	handle	from	handle	database.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/BlockIo.h>

EFI_STATUS	Status;

EFI_HANDLE	ChildHandle;

EFI_DEVICE_PATH_PROTOCOL			*DevicePath;

EFI_BLOCK_IO_PROTOCOL						*BlockIo;

//

//	Remove	Device	Path	Protocol	and	Block	I/O	Protocol	from	the	child

//	handle	created	above.	Because	this	call	removes	all	the

//	protocols	from	the	handle,	the	handle	is	removed	from	the

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

181DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	handle	database.

//

Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																ChildHandle,

																&gEfiDevicePathProtocolGuid,

																DevicePath,

																&gEfiBlockIoProtocolGuid,

																BlockIo,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

A	more	rare	use	case	of		InstallMultipleProtocolInterfaces()		is	installing	a	protocol	with	a		NULL		protocol
interface	pointer.	The	GUID	value	in	this	case	is	called	a	tag	GUID	because	there	are	no	data	fields	or
services	associated	with	the	GUID.

The	code	fragment	below	shows	an	example	of	adding	a	tag	GUID	to	the	handle	of	a	controller	that	a
UEFI	Driver	is	managing.	In	this	example,	the	tag	GUID	used	is	the	GUID	name	of	the	UEFI	Driver	itself
called		gEfiCallerIdGuid	.

Example	33-Add	tag	GUID	to	a	controller	handle.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS						Status;

EFI_HANDLE						ControllerHandle;

//

//	Add	tag	GUID	called	gEfiCallerIdGuid	to	ControllerHandle

//

Status	=	gBS->InstallMultipleProtocolInterfaces	(

																&ControllerHandle,

																&gEfiCallerIdGuid,

																NULL,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	following	code	fragment	shows	how	the	tag	GUID	added	in	the	previous	example	can	be	removed.

Example	34-Remove	tag	GUID	from	a	controller	handle.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS						Status;

EFI_HANDLE						ControllerHandle;

//

//	Remove	tag	GUID	called	gEfiCallerIdGuid	from	ControllerHandle

//

Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																ControllerHandle,

																&gEfiCallerIdGuid,

																NULL,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

182DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.3.2	LocateHandleBuffer()

This	service	retrieves	a	list	of	handles	that	meet	a	search	criterion	from	the	handle	database.	The
following	are	the	search	options:

Retrieve		AllHandles	:	Retrieve	all	handles	in	the	handle	database.

Retrieve		ByProtocol	:	Retrieve	all	handles	in	the	handle	database	that	support	a	specified	protocol.

Retrieve		ByRegisterNotify	:	Retrieve	the	handle	for	which	a	specific	protocol	was	just	installed	and
configured	for	register	notification	using		RegisterProtocolNotify()	.	This	search	option	is	strongly
discouraged	for	UEFI	Drivers.	It	was	used	with	previous	releases	of	the	EFI	Specification	before	the
introduction	of	the	UEFI	Driver	Model.

The	buffer	returned	by		LocateHandleBuffer()		is	allocated	by	the	service		AllocatePool()	.	A	UEFI	driver	using
this	service	is	responsible	for	freeing	the	returned	buffer	when	the	UEFI	driver	no	longer	requires	its
contents	use	the	service		FreePool()	.	The	following	code	fragment	shows	how	all	the	handles	in	the
handle	database	can	be	retrieved.

Example	35-Retrieve	all	handles	in	handle	database

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS						Status;

UINTN											HandleCount;

EFI_HANDLE						*HandleBuffer;

//

//	Retrieve	the	list	of	all	the	handles	in	the	handle	database.	The

//	number	of	handles	in	the	handle	database	is	returned	in	HandleCount,

//	and	the	array	of	handle	values	is	returned	in	HandleBuffer	which

//	is	allocated	using	AllocatePool().

//

Status	=	gBS->LocateHandleBuffer	(

																AllHandles,

																NULL,

																NULL,

																&HandleCount,

																&HandleBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Free	the	array	of	handles	allocated	by	gBS	>LocateHandleBuffer()

//

FreePool	(HandleBuffer);

The	code	fragment	below	shows	how	all	the	handles	that	support	the	Block	I/O	Protocol	can	be
retrieved	and	how	the	individual	Block	I/O	Protocol	instances	can	be	retrieved	using		OpenProtocol()	.

Example	36-Retrieve	all	Block	I/O	Protocols	in	handle	database

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Protocol/BlockIo.h>

EFI_STATUS													Status;

UINTN																		HandleCount;

EFI_HANDLE													*HandleBuffer;

UINTN	Index;

EFI_BLOCK_IO_PROTOCOL		*BlockIo;

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

183DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Retrieve	the	list	of	handles	that	support	the	Block	I/O

//	Protocol	from	the	handle	database.	The	number	of	handles

//	that	support	the	Block	I/O	Protocol	is	returned	in	HandleCount,

//	and	the	array	of	handle	values	is	returned	in	HandleBuffer

//	which	is	allocated	using	AlocatePool()

//

Status	=	gBS->LocateHandleBuffer	(

																ByProtocol,

																&gEfiBlockIoProtocolGuid,

																NULL,

																&HandleCount,

																&HandleBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Loop	through	all	the	handles	that	support	the	Block	I/O

//	Protocol,	and	retrieve	the	Block	I/O	Protocol	instance

//	from	each	handle.

//

for	(Index	=	0;	Index	<	HandleCount;	Index++)	{

		Status	=	gBS->OpenProtocol	(

																		HandleBuffer[Index],

																		&gEfiBlockIoProtocolGuid,

																		(VOID	**)&BlockIo,

																		gImageHandle,

																		NULL,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	BlockIo	can	be	used	here	to	make	Block	I/O	Protocol

		//	service	requests.

		//	

	}

		//

		//	Free	the	array	of	handles	allocated	by	gBS->LocateHandleBuffer()

		//

		FreePool	(HandleBuffer);

5.1.3.3	LocateProtocol()

This	service	finds	the	first	instance	of	a	protocol	interface	in	the	handle	database.	This	service	is
typically	used	by	UEFI	drivers	to	retrieve	service	protocols	on	service	handles	that	are	guaranteed	to
have,	at	most,	one	instance	of	the	protocol	in	the	handle	database.	The	UEFI	Specification	defines	the
following	service	protocols:

	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL	

	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL	

	EFI_UNICODE_COLLATION_PROTOCOL	

	EFI_DEBUG_SUPPORT_PROTOCOL	

	EFI_DECOMPRESS_PROTOCOL	

	EFI_ACPI_TABLE_PROTOCOL	

	EFI_EBC_PROTOCOL	

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

184DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	EFI_BIS_PROTOCOL	

	EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL	

	EFI_HII_FONT_PROTOCOL	

	EFI_HII_STRING_PROTOCOL	

	EFI_HII_IMAGE_PROTOCOL	

	EFI_HII_DATABASE_PROTOCOL	

	EFI_HII_CONFIG_ROUTING_PROTOCOL	

	EFI_FORM_BROWSER2_PROTOCOL	

	EFI_USER_MANAGER_PROTOCOL	

	EFI_DEFERRED_IMAGE_LOAD_PROTOCOL		-		EFI_FIRMWARE_MANAGEMENT_PROTOCOL	

This	service	also	supports	retrieving	protocols	that	have	been	notified	with		RegisterProtocolNotify()	,	but
use	of		RegisterProtocolNotify()		is	discouraged	in	UEFI	Drivers,	so	this	use	case	of		LocateProtocol()		is	not
covered.	See	Section	5.3.6	for	more	details	on		RegisterProtocolNotify()	.

The	following	code	fragment	shows	how	the		LocateProtocol()		service	can	be	used	to	retrieve	the	first
instance	of	a	service	protocol	in	the	handle	database.	In	this	example	the		EFI_DECOMPRESS_PROTOCOL		is	used.

Example	37-Locate	first	Decompress	Protocol	in	handle	database

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/Decompress.h>

EFI_STATUS	Status;

EFI_DECOMPRESS_PROTOCOL	*Decompress;

Status	=	gBS->LocateProtocol	(

																&gEfiDecompressProtocolGuid,

																NULL,

																(VOID	**)&Decompress

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3.4	OpenProtocol()	and	CloseProtocol()

The		OpenProtocol()		and		CloseProtocol()		services	are	used	by	UEFI	drivers	to	acquire	and	release	the
protocol	interfaces	from	the	handle	database	that	the	UEFI	drivers	require	to	produce	their	services.
The		OpenProtocol()		service	is	one	of	the	most	complex	UEFI	Boot	Services	because	it	is	required	to
support	all	of	the	various	UEFI	Driver	types.	UEFI	applications	and	UEFI	OS	loaders	may	also	use	these
services	to	lookup	and	use	protocol	interfaces	in	the	handle	database.

Caution:	Proper	use	of	'OpenProtocol()'	and	'CloseProtocol()'	is	required	for	interoperability	with	other
UEFI	components.	There	are	UEFI	Shell	commands	that	may	be	used	to	help	verify	the	proper	use	of
these	services	including	'dh',	'connect',	'disconnect',	'reconnect',	'drivers',	'devices',	'devtree',	and
'openinfo'.

	OpenProtocol()		is	typically	used	by	the		Supported()		and		Start()		functions	of	a	UEFI	driver	to	retrieve
protocol	interface(s)	that	are	installed	on	handles	in	the	handle	database.	The	code,	below,	shows	the
full	function	prototype	for	the	UEFI	Boot	Service		OpenProtocol()	

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

185DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The		CloseProtocol()		service	removes	an	element	from	the	list	of	agents	that	are	consuming	a	protocol
interface.	UEFI	drivers	must	close	each	protocol	they	open	when	the	UEFI	Driver	no	longer	requires	the
use	of	that	protocol.	Closing	protocols	is	typically	done	in	the		Stop()		function.

Example	38-OpenProtocol()	function	prototype

#define	EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL			0x00000001

#define	EFI_OPEN_PROTOCOL_GET_PROTOCOL									0x00000002

#define	EFI_OPEN_PROTOCOL_TEST_PROTOCOL								0x00000004

#define	EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER		0x00000008

#define	EFI_OPEN_PROTOCOL_BY_DRIVER												0x00000010

#define	EFI_OPEN_PROTOCOL_EXCLUSIVE												0x00000020

/**

		Queries	a	handle	to	determine	if	it	supports	a	specified	protocol.	

		If	the	protocol	is	supported	by	the	handle,	it	opens	the	protocol	on	behalf	of	the	calling	agent.

		@param		Handle																		The	handle	for	the	protocol	interface	that	is	being	opened.	

		@param	Protocol																	The	published	unique	identifier	of	the	protocol.

		@param		Interface															Supplies	the	address	where	a	pointer	to	the	corresponding	Protocol	Interface	

																																		is	returned.

		@param		AgentHandle													The	handle	of	the	agent	that	is	opening	the	protocol	interface	specified	by	

																																		Protocol	and	Interface.

		@param		ControllerHandle								If	the	agent	that	is	opening	a	protocol	is	a	driver	that	follows

																																		the	UEFI	Driver	Model,	then	this	parameter	is	the	controller	

																																		handle	that	requires	the	protocol	interface.	If	the	agent	does	not	

																																		follow	the	UEFI	Driver	Model,	then	this	parameter	is	optional	and	

																																		may	be	NULL.	@param	Attributes	The	open	mode	of	the	protocol	interface

																																		specified	by	Handle	and	Protocol.

		@retval		EFI_SUCCESS												An	item	was	added	to	the	open	list	for	the	protocol	interface,	

																																		and	the	protocol	interface	was	returned	in	Interface.	

																																		@retval	EFI_UNSUPPORTED	Handle	does	not	support	Protocol.

		@retval		EFI_INVALID_PARAMETER		One	or	more	parameters	are	invalid.

		@retval		EFI_ACCESS_DENIED						Required	attributes	can't	be	supported	in	current	environment.

		@retval		EFI_ALREADY_STARTED				Item	on	the	open	list	already	has	required	attributes	whose	

																																		agent	handle	is	the	same	as	AgentHandle.

**/

typedef

EFI_STATUS

(EFIAPI	*	EFI_OPEN_PROTOCOL)(

		IN	EFI_HANDLE		Handle,

		IN	EFI_GUID																					*Protocol,

		OUT	VOID																								**Interface,	OPTIONAL

		IN	EFI_HANDLE																			AgentHandle,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINT32																							Attributes

);

The		Handle		and		Protocol		parameters	specify	what	protocol	interface	is	being	opened.	The		AgentHandle	
and		ControllerHandle		specifies	who	is	opening	the	protocol	interface.

The		Attributes		parameter	specifies	why	a	protocol	interface	is	being	opened.	The		Interface		parameter	is
used	to	return	the	protocol	interface	if	it	is	successfully	opened,	and	the		EFI_STATUS		return	code	tells	if
the	protocol	interface	was	opened	or	not	and	if	not,	why	it	could	not	be	opened.	The	UEFI	core	records
these	input	parameter	values	to	track	how	each	protocol	interface	is	being	used.	This	tracking
information	can	be	retrieved	through	the		OpenProtocolInformation()		service.	The		EFI_STATUS		code	returned	by
	OpenProtocol()		is	very	important	and	must	be	examined	by	UEFI	drivers	that	use	this	service.	In	some
cases,	error	code	such	as		EFI_ALREADY_STARTED		may	be	the	expected	result	and	may	not	be	an	error	at	all
for	that	specific	UEFI	Driver.

Caution:	Make	sure	that	all	status	codes	returned	by		OpenProtocol()		are	properly	evaluated.

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

186DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

AgentHandle	and	ControllerHandle	describe	"who"	is	opening	the	protocol	interface.	For	UEFI	drivers,
the	AgentHandle	parameter	is	typically	the	DriverBindingHandle	field	from	the		EFI_DRIVER_BINDING_PROTOCOL	
produced	by	the	UEFI	Driver.	UEFI	Drivers	that	are	device	drivers	producing	additional	protocols	on	the
same	handle	typically	use	the	same	value	for	Handle	and	ControllerHandle.	UEFI	Drivers	that	are	bus
drivers	producing	child	handles	may	use		OpenProtocol()		with	Handle	set	to	the	handle	for	the	bus
controller	and	ControllerHandle	set	to	the	handle	of	a	child	controller.

The	Attributes	parameter	is	a	bitmask	that	describes	"why"	the	protocol	interface	is	being	opened.	The
	#define		values	used	to	build	an	Attributes	value	are	also	shown	in	Example	38	above.	They	are	the
	#define		statements.	A	summary	of	the	attribute	combinations	used	by	UEFI	drivers	is	listed	below.

Caution:	Make	sure	UEFI	Drivers	use	the	attributes	correctly.	If	the	attributes	are	used	incorrectly,	a
driver	may	not	function	properly	and	may	cause	problems	with	other	drivers.	There	are	UEFI	Shell
commands	to	help	verify	the	proper	use	of	attributes	including	dh,	connect,	disconnect,	reconnect,
drivers,	devices,	devtree,	and	openinfo.	EFI_OPEN_PROTOCOL_TEST_PROTOCOL

Tests	to	see	if	a	protocol	interface	is	present	on	a	handle.	Typically	used	in	the		Supported()		service	of	a
UEFI	driver	if	the	services	of	the	protocol	being	tested	are	not	required	to	complete	the	support	check.

EFI_OPEN_PROTOCOL_GET_PROTOCOL

Retrieves	a	protocol	interface	from	a	handle.	Typically	used	in	the		Supported()		and		Start()		services	of	a
UEFI	driver	to	make	use	of	the	services	of	a	protocol	that	is	allowed	to	be	used	by	more	than	one	UEFI
Driver.

EFI_OPEN_PROTOCOL_BY_DRIVER

Retrieves	a	protocol	interface	from	a	handle	and	marks	that	interface	so	it	cannot	be	opened	by	other
UEFI	drivers	or	UEFI	applications	unless	the	other	UEFI	driver	agrees	to	release	the	protocol	interface.
Typically	used	in	the		Supported()		and		Start()		services	of	a	UEFI	driver	to	use	the	services	of	a	protocol
that	is	not	allowed	to	be	used	by	more	than	one	UEFI	Driver.

EFI_OPEN_PROTOCOL_EXCLUSIVE

Typically	used	by	UEFI	Applications	to	gain	exclusive	access	to	a	protocol	interface.

If	any	drivers	have	the	same	protocol	interface	opened	with	an	attribute	of

	EFI_OPEN_PROTOCOL_BY_DRIVER	,	then	an	attempt	is	made	to	remove	them	by	calling		Stop()		function	in	that	UEFI
Driver.	If	a	UEFI	Driver	opens	a	protocol	interface	with	this	attribute,	no	other	drivers	are	allowed	to
open	the	same	protocol	interface	with	the		EFI_OPEN_PROTOCOL_BY_DRIVER		attribute.	This	attribute	is	used	very
rarely.		TIP:		For	good	coding	practices,	UEFI	Drivers	that	require	the	use	of	the		EFI_OPEN_PROTOCOL_EXCLUSIVE	
attribute	should	combine	it	with	the		EFI_OPEN_PROTOCOL_BY_DRIVER		attribute.

	EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE	

Retrieves	a	protocol	interface	from	a	handle	and	marks	the	interface	so	it	cannot	be	opened	by	other
UEFI	drivers	or	UEFI	applications.	This	protocol	is	not	released	until	the	driver	that	opened	this	attribute
chooses	to	close	it.	This	attribute	is	used	very	rarely.

EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER

Used	by	bus	drivers.	A	bus	driver	is	required	to	open	the	parent	I/O	abstraction	on	behalf	of	each	child
controller	that	the	bus	driver	produces.	This	requirement	allows	the	UEFI	core	to	keep	track	of	the
parent/child	relationships	no	matter	how	complex	the	bus	hierarchies	become.

EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

187DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Do	not	use	from	a	UEFI	Driver.	Only	provided	for	backwards	compatibility	with	older	versions	of	the	EFI
Specification.	Use		EFI_OPEN_PROTOCOL_GET_PROTOCOL		instead.

5.1.3.4.1	Using	EFI_OPEN_PROTOCOL_TEST_PROTOCOL

The	code	fragment	below	tests	for	the	presence	of	the	PCI	I/O	Protocol	using	the
EFI_OPEN_PROTOCOL_TEST_PROTOCOL	attribute.	When	this	attribute	is	used,	the	protocol	does	not
have	to	be	closed	because	a	protocol	interface	is	not	returned	when	this	open	mode	is	used.

Example	39-OpenProtocol()	TEST_PROTOCOL

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciIo.h>

EFI_STATUS																																								Status;

EFI_DRIVER_BINDING_PROTOCOL																							*This;

EFI_HANDLE																																								ControllerHandle;

//

//	Test	to	see	if	ControllerHandle	supports	the	PCI	I/O	Protocol

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,																	//	Handle

																&gEfiPciIoProtocolGuid,											//	Protocol

																NULL,																													//	Interface

																This->DriverBindingHandle,								//	AgentHandle

																ControllerHandle,																	//	ControllerHandle

																EFI_OPEN_PROTOCOL_TEST_PROTOCOL			//	Attributes

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3.4.2	Using	EFI_OPEN_PROTOCOL_GET_PROTOCOL

The	following	code	fragment	shows	the	same	example	as	above	but	retrieves	the	PCI	I/O	Protocol	using
the		EFI_OPEN_PROTOCOL_GET_PROTOCOL		attribute.	With	this	attribute,	the	protocol	does	not	have	to	be	closed.

Example	40-OpenProtocol()	GET_PROTOCOL

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciIo.h>

EFI_STATUS																																						Status;

EFI_DRIVER_BINDING_PROTOCOL																					*This;

EFI_HANDLE																																						ControllerHandle;

//

//	Retrieve	PCI	I/O	Protocol	interface	on	ControllerHandle

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,															//	Handle

																&gEfiPciIoProtocolGuid,									//	Protocol

																NULL,																											//	Interface

																This->DriverBindingHandle,						//	AgentHandle

																ControllerHandle,															//	ControllerHandle

																EFI_OPEN_PROTOCOL_GET_PROTOCOL		//	Attributes

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

188DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Caution:	It	can	be	dangerous	to	use	this	open	mode	(in	which	a	protocol	does	not	have	to	be	closed)
because	a	protocol	may	be	removed	at	any	time	without	notifying	the	UEFI	Driver	that	used	this	mode.
This	means	that	a	driver	using	EFIOPEN_PROTOCOL_GET_PROTOCOL	may	attempt	to	use	a	stale
protocol	interface	pointer	that	is	no	longer	valid._

TIP:	Use	EFI_OPEN_PROTOCOL_BY_DRIVER	first,	to	prevent	the	protocol	from	being	removed	while	a
driver	is	using	the	protocol.

The		EFI_OPEN_PROTOCOL_GET_PROTOCOL		attribute	can	then	be	used	to	retrieve	the	needed	protocol	interface.

A	UEFI	driver	should	be	designed	to	use		EFI_OPEN_PROTOCOL_	BYDRIVER	as	its	first	choice.	However,	there	are
cases	where	a	different	UEFI	driver	has	already	opened	the	protocol	that	is	required	by
`EFI_OPEN_PROTOCOL	BY_DRIVER.	In	these	cases,	use	EFIOPEN_PROTOCOL	GET_PROTOCOL.	This	scenario	may	occur	when
protocols	are	layered	on	top	of	each	other	so	that	each	layer	uses	the	services	of	the	layer	immediately	below.	Each	layer

immediately	below	is	opened	with	EFIOPEN_PROTOCOL`BY_DRIVER.

If	a	layer	needs	to	skip	a	layer	to	reach	a	lower-level	service,	then	it	is	safe	to	use
	EFI_OPEN_PROTOCOL_	GET_PROTOCOL	because	the	driver	is	informed	through	the	layers	if	the	lower-level
protocol	is	removed.

The	best	example	of	this	case	in	the	EDK	II	is	the	FAT	driver.	The	FAT	driver	uses	the	services	of	the	Disk
I/O	Protocol	to	access	the	contents	of	a	mass	storage	device.	However,	the	Disk	I/O	Protocol	does	not
have	a	flush	service.	Only	the	Block	I/O	Protocol	has	a	flush	service.	The	Disk	I/O	driver	opens	the	Block
I/O	Protocol		EFI_OPEN_PROTOCOL_BY_DRIVER	,	so	the	FAT	driver	is	also	not	allowed	to	open	the	Block	I/O	Protocol
	EFI_OPEN_PROTOCOL_BY_DRIVER	.	Instead,	the	FAT	driver	must	use		EFI_OPEN_PROTOCOL_GET_PROTOCOL	.	This	method	is	safe
because	the	FAT	driver	is	indirectly	notified	if	the	Block	I/O	Protocol	is	removed	when	the	Disk	I/O
Protocol	is	removed	in	response	to	the	Block	I/O	Protocol	being	removed.

5.1.3.4.3	Using	EFI_OPEN_PROTOCOL_BY_DRIVER

The	code	fragment	in	shows	the	same	example	as	above,	but	it	retrieves	the	PCI	I/O	Protocol	using	the
	EFI_OPEN_PROTOCOL_BY_DRIVER		attribute.	When	this	attribute	is	used,	the	protocol	must	be	closed	when	the
UEFI	Driver	no	longer	requires	the	services	of	the	PCI	I/O	Protocol.	This	example	also	shows
	CloseProtocol()		being	used	to	close	the	protocol,	which	is	commonly	found	in	implementations	of
	Supported()		and		Stop()	.	Notice	that	the	parameters	passed	to		CloseProtocol()		are	identical	to	the
parameters	passed	to		OpenProtocol()		with	the	Interface	and	Attributes	parameters	removed.

Example	41-OpenProtocol()	EFI_OPEN_PROTOCOL_BY_DRIVER

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciIo.h>

EFI_STATUS																																				Status;

EFI_DRIVER_BINDING_PROTOCOL																			*This;

EFI_HANDLE																																				ControllerHandle;

//

//	Retrieve	PCI	I/O	Protocol	interface	on	ControllerHandle

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,													//	Handle

																&gEfiPciIoProtocolGuid,							//	Protocol

																NULL,																									//	Interface

																This->DriverBindingHandle,				//	AgentHandle

																ControllerHandle,													//	ControllerHandle

																EFI_OPEN_PROTOCOL_BY_DRIVER			//	Attributes

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

189DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Close	PCI	I/O	Protocol	on	ControllerHandle

//

Status	=	gBS->CloseProtocol	(

																ControllerHandle,												//	Handle

																&gEfiPciIoProtocolGuid,						//	Protocol

																This->DriverBindingHandle,			//	AgentHandle

																ControllerHandle													//	ControllerHandle

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3.4.4	Using	EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE

The	following	code	fragment	in	shows	the	same	example	as	above,	but	it	retrieves	the	PCI	I/O	Protocol
using	both	the		EFI_OPEN_PROTOCOL_BY_DRIVER		attribute	and	the		EFI_OPEN_PROTOCOL_EXCLUSIVE		attribute,	which
requests	any	other	UEFI	Driver	that	are	using	the	PCI	I/O	Protocol	release	it.

There	are	only	a	very	few	instances	where	EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE	should	be	used.	These	are	

cases	where	a	UEFI	driver	actually	wants	to	gain	exclusive	access	to	a	protocol,	even	if	it	requires	stopping	other	UEFI	drive

rs	to	do	so.

This	combination	of	attributes	is	used	rarely.	One	example	in	the	EDK	II	is	the	debug	port	driver	that	opens	the	Serial	I/O	Pr

otocol	with	the	EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE	attribute.	This	attribute	allows	a	debugger	to	take	

control	of	a	serial	port	even	if	it	is	already	being	used	as	a	console	device.	If	this	device	is	the	only	console	device	in	th

e	system,	then	the	user	loses	the	only	console	device	when	the	debug	port	driver	is	started.

Caution:	This	open	mode	can	be	dangerous	if	the	system	requires	the	services	produced	by	the	UEFI
drivers	that	are	stopped.

Example	42-OpenProtocol()	EFI_OPEN_PROTOCOL_BY_DRIVER

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciIo.h>

EFI_STATUS																																						Status;

EFI_DRIVER_BINDING_PROTOCOL																					*This;

EFI_HANDLE																																						ControllerHandle;

//

//	Retrieve	PCI	I/O	Protocol	interface	on	ControllerHandle

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,															//	Handle

																&gEfiPciIoProtocolGuid,									//	Protocol

																NULL,	//	Interface

																This->DriverBindingHandle,						//	AgentHandle

																ControllerHandle,															//	ControllerHandle

																EFI_OPEN_PROTOCOL_BY_DRIVER	|			//	Attributes

																EFI_OPEN_PROTOCOL_EXCLUSIVE

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

190DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	Close	PCI	I/O	Protocol	on	ControllerHandle

//

Status	=	gBS->CloseProtocol	(

																ControllerHandle,														//	Handle

																&gEfiPciIoProtocolGuid,								//	Protocol

																This->DriverBindingHandle,					//	AgentHandle

																ControllerHandle															//	ControllerHandle

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

EFI_OPEN_PROTOCOL_EXCLUSIVE

5.1.3.4.5	Using	EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER

The	code	fragment	below	shows	an	example	that	may	be	used	by	a	UEFI	Bus	Driver	that	produces	child
handles.	This	specific	example	shows	the	PCI	bus	driver	creating	a	child	handle,	opening	the	PCI	Root
Bridge	I/O	Protocol	using	the		EFI_OPEN_PROTOCOL_BY_CHILD_CONROLLER		attribute	on	behalf	of	a	child	PCI	controller
that	the	PCI	bus	driver	created,	closing	the	PCI	Root	Bridge	I/O	Protocol,	and	destroying	the	child
handle.	These	operations	are	typically	spread	across	the	Start()	and	Stop()	functions.

Example	43-OpenProtocol()	EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciRootBridgeIo.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/PciIo.h>

EFI_STATUS																																												Status;

EFI_DRIVER_BINDING_PROTOCOL																											*This;

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL																							*PciRootBridgeIo;

EFI_DEVICE_PATH_PROTOCOL																														*DevicePath;

EFI_PCI_IO_PROTOCOL																																			*PciIo;

EFI_HANDLE																																												ControllerHandle;

EFI_HANDLE																																												ChildHandle;

//

//	Create	new	child	handle

//

ChildHandle	=	NULL;

Status	=	gBS->InstallMultipleProtocolInterfaces	(

																&ChildHandle,

																&gEfiDevicePathProtocolGuid,

																DevicePath,

																&gEfiPciIoProtocolGuid,

																PciIo,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Open	parent	PCI	Root	Bridge	I/O	Protocol

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,																					//Handle

																&gEfiPciRootBridgeIoProtocolGuid,					//Protocol

																(VOID	**)&PciRootBridgeIo,												//Interface

																This->DriverBindingHandle,												//AgentHandle

																ChildHandle,																										//ControllerHandle

																EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER	//Attributes

);

if	(EFI_ERROR	(Status))	{

		return	Status;

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

191DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}

//

//	Close	parent	PCI	Root	Bridge	I/O	Protocol

//

Status	=	gBS->CloseProtocol	(

																ControllerHandle,																					//	Handle

																&gEfiPciRootBridgeIoProtocolGuid,					//	Protocol

																This->DriverBindingHandle,												//	AgentHandle

																ChildHandle																											//	ControllerHandle

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Destroy	child	handle

//

Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																ChildHandle,

																&gEfiDevicePathProtocolGuid,

																DevicePath,

																&gEfiPciIoProtocolGuid,

																PciIo,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.3.5	OpenProtocolInformation()

This	service	retrieves	the	list	of	agents	currently	using	a	specific	protocol	interface	installed	on	a	handle
in	the	handle	database.	An	agent	may	be	a	UEFI	Driver	or	a	UEFI	Application	using	the	services	of	a
protocol	interface.	The		OpenProtocol()		service	adds	agents	to	the	list,	and	the		CloseProtocol()		service
removes	agents	from	the	list.	The	return	buffer	from	this	service	is	allocated	using		AllocatePool()	.	To
prevent	memory	leaks,	the	caller	must	free	the	return	buffer	with		FreePool()		when	it	no	longer	needs	it.

The	UEFI	Shell	command		openinfo		uses	this	service	to	view	the	results	from	OpenProtocolInformation()
for	any	protocol	installed	into	the	handle	database.	It	is	very	useful	when	debugging	UEFI	Drivers	to
evaluate	the	state	of	protocols	the	drivers	consume	and	produce	in	the	handle	database	and	to	verify
that	the	UEFI	Driver	is	using		OpenProtocol()		and		CloseProtocol()		properly.

A	UEFI	Driver	may	use	this	service	to	find	the	list	of	controllers	the	UEFI	Driver	is	managing	or	the	list	of
child	handles	that	the	UEFI	driver	has	produced	in	previous	calls	to	the		Start()	.	A	UEFI	Driver	may	also
choose	to	keep	track	of	this	type	of	information	itself	and	not	use	the	Protocol	Handler	Services	to
retrieve	this	type	of	information.

The	following	code	fragment	uses		LocateHandleBuffer()		to	retrieve	the	list	of	handles	that	support	the	PCI
Root	Bridge	I/O	Protocol.	It	then	uses		OpenProtocolInformation()		on	the	first	handle	that	supports	the	PCI
Root	Bridge	I/O	Protocol	to	retrieve	information	on	all	the	agents	that	are	using	that	specific	PCI	Root
Bridge	I/O	Protocol	instance.	This	example	then	loops	through	all	the	consumers	of	that	PCI	Root	Bridge
I/O	Protocol	and	counts	the	number	of	handles	that	have	opened	the	PCI	Root	Bridge	I/O	Protocol
instance	with	an	open	mode	of		EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER	.	This	open	mode	indicates	that	the
agent	is	a	child	handle.	The	result	is	the	total	number	of	PCI	controllers	that	are	attached	to	that
specific	PCI	Root	Bridge	I/O	Protocol	instance.

Example	44-Count	child	handles	using	OpenProtocolInformation()

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Protocol/PciRootBridgeIo.h>

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

192DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS																												Status;

UINTN																																	HandleCount;

EFI_HANDLE																												*HandleBuffer;

EFI_HANDLE																												ControllerHandle;

EFI_OPEN_PROTOCOL_INFORMATION_ENTRY			*OpenInfo;

UINTN																																	EntryCount;

UINTN																																	Index;

UINT32																																Attributes;

UINTN																																	NumberOfChildren;

//

//	Retrieve	array	of	handles	that	support	the	USB	I/O	Protocol

//

Status	=	gBS->LocateHandleBuffer	(

																ByProtocol,

																&gEfiPciRootBridgeIoProtocolGuid,

																NULL,

																&HandleCount,

																&HandleBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

if	(HandleCount	==	0)	{

		return	EFI_NOT_FOUND;

}

//

//	Assign	ControllerHandle	to	the	first	handle	in	the	array

//

ControllerHandle	=	HandleBuffer[0];

//

//	Free	the	array	of	handles

//

FreePool	(HandleBuffer);

//

//	Retrieve	information	about	how	the	PCI	Root	Bridge	I/O	Protocol

//	instance	on	ControllerHandle	is	being	used.

//

Status	=	gBS->OpenProtocolInformation	(

																ControllerHandle,

																&gEfiPciRootBridgeIoProtocolGuid,

																&OpenInfo,

																&EntryCount

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Count	the	number	child	handles	that	are	currently	using	the	PCI	Root

//	Bridge	I/O	Protocol	on	ControllerHandle	children

//

for	(Index	=	0,	NumberOfChildren	=	0;	Index	<	EntryCount;	Index++)	{

		Attributes	=	OpenInfo[Index].Attributes;

		if	((Attributes	&	EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER)	!=	0)	{

				NumberOfChildren++;

		}

}

//

//	Free	the	buffer	allocated	by	OpenProtocolInformation()

//

FreePool	(OpenInfo);

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

193DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.3	Handle	Database	and	Protocol	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

194DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.4	Task	Priority	Level(TPL)	Services

The	Task	Priority	Level	Services	provide	a	mechanism	for	code	to	execute	code	at	a	raised	priority	for
short	periods	of	time.	One	use	case	is	a	UEFI	Driver	that	is	required	to	raise	the	priority	because	the
implementation	of	a	service	of	a	specific	protocol	requires	execution	at	a	specific	TPL	to	be	UEFI
conformant.	Another	use	case	is	a	UEFI	Driver	that	needs	to	implement	a	simple	lock,	or	critical	section,
on	global	data	structures	maintained	by	the	UEFI	Driver.	Event	notification	functions,	covered	in	the	next
section,	always	execute	at	raised	priority	levels.

The	service		RaiseTPL()		is	used	to	raise	the	priority	level	from	its	current	level	to	a	higher	level	and	return
the	priority	level	before	it	was	raised.	The	service		RestoreTPL()		is	used	to	restore	a	the	priority	level	to	a
priority	level	returned	by		RaiseTPL()	.	These	two	services	are	always	used	in	pairs.

Note:	There	are	no	UEFI	services	provided	to	lower	the	TPL,	and	it	is	illegal	to	use		RaiseTPL()		to	attempt
to	raise	the	priority	level	to	a	level	below	the	current	priority	level.	If	attempted,	the	behavior	of	the
platform	is	indeterminate.

The	Event,	Timer,	and	Task	Priority	Services	section	of	the	UEFI	Specification	defines	four	TPL	levels.
These	are		TPL_APPLICATION	,		TPL_CALLBACK	,		TPL_NOTIFY	,	and		TPL_HIGH_LEVEL	.	UEFI	Driver	and	UEFI	Applications	are
started	at		TPL_APPLICATION	.	UEFI	Drivers	should	execute	code	at	the	lowest	possible	TPL	level	and	minimize
the	time	spent	at	raised	TPL	levels.

Note:	Only		TPL_APPLICATION	,		TPL_CALLBACK	,		TPL_NOTIFY	,	and		TPL_HIGH_LEVEL		may	be	used	by	UEFI	Drivers.	All
other	values	are	reserved	for	use	by	the	firmware.	Using	them	results	in	unpredictable	behavior.	Good
coding	practice	dictates	that	all	code	should	execute	at	its	lowest	possible	TPL	level,	and	the	use	of	TPL
levels	above		TPL_APPLICATION		must	be	minimized.	Executing	at	TPL	levels	above		TPL_APPLICATION		for	extended
periods	of	time	may	also	result	in	unpredictable	behavior.

UEFI	firmware,	applications,	and	drivers	all	run	on	one	thread	on	one	processor.	However,		UEFI	firmware
does			support	a	single	timer	interrupt	.	Because	UEFI	code	can	run	in	interrupt	context,	it	is	possible	that	a
global	data	structure	can	be	accessed	from	both	normal	context	and	interrupt	context.	As	a	result,
global	data	structures	that	are	accessed	from	both	normal	context	and	interrupt	context	must	be
protected	by	a	lock.

The	following	code	fragment	shows	how	the		RaiseTPL()		and		RestoreTPL()		services	can	be	used	to
implement	a	lock	when	the	contents	of	a	global	variable	are	modified.	The	timer	interrupt	is	blocked	at
	EFI_TPL_HIGH_LEVEL	,	so	most	locks	raise	to	this	level.

Example	45-Using	TPL	Services	for	a	Global	Lock

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

UINT32	gCounter;

EFI_TPL	OldTpl;

//

//	Raise	the	Task	Priority	Level	to	TPL_HIGH_LEVEL	to	block	timer

//	interrupts

//

OldTpl	=	gBS->RaiseTPL	(TPL_HIGH_LEVEL);

5.1.4	Task	Priority	Level(TPL)	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

195DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Increment	the	global	variable	now	that	it	is	safe	to	do	so.

//	gCounter++;

//

//	Restore	the	Task	Priority	Level	to	its	original	level

//

gBS->RestoreTPL	(OldTpl);

The	code	fragment	in	Example	46,	below,	has	the	same	functionality	as	Example	45,	above,	but	uses
the	lock	macros	and	functions	from	the	EDK	II	Library		UefiLib		that	use		RaiseTPL()		and		RestoreTPL()		to
implement	general	purpose	locks.	The	global	variable		gLock		is	an		EFI_LOCK		structure	that	is	initialized
using	the		EFI_INITIALIZE_LOCK_VARIABLE()		macro	that	specifies	the	use	of		TPL_HIGH_LEVEL		when	the	lock	is
acquired.	The		EfiAcquireLock()		and		EfiReleaseLock()		functions	hide	the	details	of	managing	TPL	levels.

Example	46-Using	UEFI	Library	for	a	Global	Lock

#include	<Uefi.h>

#include	<Library/UefiLib.h>

EFI_LOCK	gLock	=	EFI_INITIALIZE_LOCK_VARIABLE	(TPL_HIGH_LEVEL);

UINT32	gCounter;

//

//	Acquire	the	lock	to	block	timer	interrupts

//

EfiAcquireLock	(&gLock);

//

//	Increment	the	global	variable	now	that	it	is	safe	to	do	so.

//	gCounter++;

//

//	Release	the	lock

//

EfiReleaseLock	(&gLock);

The	algorithm	shown	in	these	two	global	lock	examples	also	applies	to	a	UEFI	Driver	that	is	required	to
implement	protocol	services	that	execute	at	a	specific	TPL	level.	For	example,	the	services	in	the	Block
I/O	Protocol	must	be	called	at	or	below		TPL_CALLBACK	.	This	means	that	the	implementation	of	the
	ReadBlocks()	,		WriteBlocks()	,	and		FlushBlocks()		services	should	raise	the	priority	level	to		TPL_CALLBACK	.	This
would	be	identical	to	Example	46,	above,	but	would	use		TPL_CALLBACK		instead	of		TPL_HIGH_LEVEL	.

5.1.4	Task	Priority	Level(TPL)	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

196DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.5	Event	services

UEFI	Boot	Services	are	provided	to	create,	manage,	and	close	UEFI	Events.	UEFI	Drivers	may	use	these
event	services	for	several	features	that	may	include	the	following:

Implementation	of	protocols	that	produce	an		EFI_EVENT		to	inform	protocol	consumers	when	input	is
available.

Notification	when		ExitBootServices()		is	called	by	an	OS	Loader	or	OS	Kernel	so	UEFI	Drivers	can	place
devices	in	a	quiescent	state	or	a	state	that	is	required	for	OS	compatibility.

Notification	when		SetVirtualAddressMap()		is	called	by	an	OS	Loader	or	OS	Kernel	so	a	UEFI	Runtime	Driver
can	translate	physical	addresses	to	virtual	addresses.

Timer	events	used	to	periodically	poll	for	I/O	completion	and/or	detect	timeout	conditions.

Implementation	of	protocols	that	provide	non-blocking	I/O	capabilities	where	notification	of	an	I/O
completion	utilizes	an		EFI_EVENT	.

5.1.5.1	CreateEvent(),	CreateEventEx(),	and	CloseEvent()

The		CreateEvent(),	CreateEventEx(),		and		CloseEvent()		services	are	used	to	create	and	close	events.	The
following	two	basic	types	of	events	can	be	created:

	EVT_NOTIFY_SIGNAL	

	EVT_NOTIFY_WAIT	

The	type	of	event	determines	when	an	event's	notification	function	is	invoked.	The	notification	function
for	signal	type	events	is	invoked	when	an	event	is	placed	into	the	signaled	state	with	a	call	to
	SignalEvent()	.	The	notification	function	for	wait	type	events	is	invoked	when	the	event	is	passed	to	the
	CheckEvent()		or		WaitForEvent()		services.

UEFI	Drivers	that	produce	protocols	providing	an		EFI_EVENT		field	to	indicate	when	input	is	available	are
required	to	create	events	of	type		EVT_NOTIFY_WAIT	.	Consumers	of	these	protocols	may	use		CheckEvent()		or
	WaitForEvent()		to	check	when	input	is	available.

Protocols	from	the	UEFI	Specification	containing	this	use	case	include	the	Simple	Text	Input	Protocols,
the	Pointer	Protocols,	and	the	Simple	Network	Protocol.	The	complete	list	follows:

	EFI_ABSOLUTE_POINTER_PROTOCOL	

	EFI_SIMPLE_NETWORK_PROTOCOL	

	EFI_SIMPLE_POINTER_PROTOCOL	

	EFI_SIMPLE_TEXT_INPUT_PROTOCOL	

	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	

Some	UEFI	drivers	are	required	to	place	their	controllers	in	a	quiescent	state	or	perform	other
controller-specific	actions	when	an	operating	system	is	about	to	take	full	control	of	the	platform.	In	this
case,	the	UEFI	driver	should	create	a	signal	type	event	that	is	notified	when		ExitBootServices()		is	called	by
the	operating	system.

UEFI	Runtime	Drivers	may	need	to	be	notified	when		SetVirtualAddressMap()		is	called	to	convert	physical
addresses	to	virtual	addresses.	A	complete	example	for	this	use	case,	including	the	use	of
	CreateEventEx()	,	is	shown	in	Section	5.2.9.

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

197DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

UEFI	Drivers	may	use	timer	events	to	periodically	poll	for	device	status	changes,	poll	for	an	I/O
completion	or	detect	timeouts.	A	complete	example	showing	how	to	create	periodic	and	one-shot	timer
events	using		CreateEventEx()		is	provided	in	Section	5.1.6.

Note:	_If	a	UEFI	Driver	creates	events	in	its	driver	entry	point,	those	events	must	be	closed	with
	CloseEvent()		in	the	UEFI	Driver's		Unload()		function.

Note:	If	a	UEFI	Driver	creates	events	in	its	Driver	Binding	Protocol		Start()		function	associated	with	a
device,	those	events	must	be	closed	with		CloseEvent()		in	its	Driver	Binding	Protocol	Stop()		function.

Note:	If	a	UEFI	Driver	creates	events	as	part	of	an	I/O	operation,	the	event	should	be	closed	with
	CloseEvent()		when	the	I/O	operation	is	completed.

Caution:	If	the		CloseEvent()		service	is	not	used	to	close	events	created	with		CreateEvent()		or
	CreateEventEx()	,the	event	consumes	memory	and	generates	a	memory	leak._

The	code	fragment	below	shows	an	example	of	a	wait	event	created	by	a	keyboard	driver	producing	the
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	.	The	first	part	of	the	code	fragment	is	the	event	notification	function	plus
an	internal	worker	function	that	are	called	when	the	status	of	the	wait	event	is	checked	with	the
	CheckEvent()		or	the		WaitForEvent()		services.	The	second	part	of	the	code	fragment	is	the	code	from	the
Driver	Binding	Protocol		Start()		and		Stop()		functions	that	create	and	close	the	wait	event.	Typically,	a
UEFI	application	or	the	UEFI	boot	manager	call		CheckEvent()		or		WaitForEvent()		to	see	if	a	key	has	been
pressed	on	a	input	device	that	supports	the	Simple	Text	Input	Ex	Protocol.	This	call	to		CheckEvent()		or
	WaitForEvent()		causes	the	notification	function	of	the	wait	event	in	the	Simple	Text	Input	Ex	Protocol	to	be
executed.	The	notification	function	checks	to	see	if	a	key	has	been	pressed	on	the	input	device.	If	the
key	has	been	pressed,	the	wait	event	is	signaled	with	a	call	to		SignalEvent()	.	If	the	wait	event	is	signaled,
the	UEFI	application	or	UEFI	boot	manager	then	receives	an		EFI_SUCCESS		return	code	and	the	UEFI
application	or	UEFI	boot	manager	calls	the		ReadKeyStroke()		service	of	the		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL		to
read	the	key	that	was	pressed.

Example	47-Create	and	close	a	wait	event

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/SimpleTextInEx.h>

EFI_STATUS

KeyboardCheckForKey	(

			VOID

)

{

		//

		//	Perform	hardware	specific	action	to	detect	if	a	key	on	a

		//	keyboard	has	been	pressed.

		//

		return	EFI_SUCCESS;

}

VOID

EFIAPI

NotifyKeyboardCheckForKey	(

		IN	EFI_EVENT																																									Event,

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

198DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	VOID																																														*Context

)

{

		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL																				*SimpleInputEx;

		SimpleInputEx	=	(EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL			*)Context;

		if	(!EFI_ERROR	(KeyboardCheckForKey	()))	{

				gBS->SignalEvent	(SimpleInputEx->WaitForKeyEx);

		}

}

EFI_STATUS	Status;

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL																						*SimpleInputEx;

//

//	Create	a	wait	event	for	a	Simple	Input	Protocol

//

Status	=	gBS->CreateEvent	(

																EVT_NOTIFY_WAIT,																							//	Type

																TPL_NOTIFY,																												//	NotifyTpl

																NotifyKeyboardCheckForKey,													//	NotifyFunction

																SimpleInputEx,																									//	NotifyContext

																&(SimpleInputEx->WaitForKeyEx)									//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Close	the	wait	event

//

Status	=	gBS->CloseEvent	(SimpleInputEx->WaitForKeyEx);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	in	the	following	example	shows	how	an	Exit	Boot	Services	event	is	created	using
	CreateEvent()		and	closed	using		CloseEvent()	.	In	this	example,	the		EFI_EVENT		is	a	global	variable.	This	is	the
typical	implementation	for	a	UEFI	Driver	because	events	of	this	type	are	usually	created	in	the	Driver
Binding	Protocol		Start()		function	and	closed	in	the	Driver	Binding	Protocol		Stop()		function,	and	the
global	variable	provides	an	easy	method	to	close	the	event	in	the	Driver	Binding	Protocol		Stop()	
function.

This	example	also	contains	the	function		NotifyExitBootService()	,	a	template	for	the	event	notification
function.	It	should	contain	the	set	of	UEFI	Driver	specific	actions	that	must	be	performed	when	the	OS
Load	or	OS	Kernel	calls		ExitBootServices()	.	This	notification	function	is	registered	in	the	call	to
	CreateEvent()	.	The	execution	priority	level	is		TPL_NOTIFY		and	the		NotifyContext		is		NULL		in	this	example.

Caution:	The	notification	function	for		ExitBootServices()		is	not	allowed	to	use	any	of	the	UEFI	Memory
Services,	either	directly	or	indirectly,	because	using	those	services	may	modify	the	UEFI	Memory	Map
and	force	an	error	to	be	returned	from	ExitBootServices().	An	OS	loader	or	OS	Kernel	that	calls
ExitBootServices()	needs	to	know	the	state	of	the	memory	map	at	the	time	ExitBootServices()	was
called.	The	OS	loader	retrieves	the	current	state	of	the	memory	map	by	calling		GetMemoryMap()	.	If	events
registered	on	ExitBootServices()	perform	memory	allocation	or	free	calls,	the	memory	map	may	be
modified,	and	may	cause	incorrect	memory	map	information	to	be	used	by	the	OS.	The	UEFI	memory
manager	detects	when	the	memory	map	is	modified,	so	the	OS	loader	always	knows	that	the	memory
map	was	not	modified		if	ExitBootServices()		returns	EFISUCCESS.	If	the	memory	map	was	modified,	the	OS
loader	must	call		GetMemoryMap()		again	to	get	the	current	memory	map	state,	and	then	retry	a	call	to
ExitBootServices().	The	modified	state	is	cleared	during	the	call	to	GetMemoryMap().

Example	48-Create	and	Close	an	Exit	Boot	Services	Event

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

199DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

//

//	Global	variable	for	Exit	Boot	Services	event

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

VOID

EFIAPI

NotifyExitBootServices	(

		IN	EFI_EVENT																																					Event,

		IN	VOID																																										*Context

)

{

		//

		//	Put	driver-specific	actions	here	to	place	controllers	into

		//	an	idle	state.	No	UEFI	Memory	Service	may	be	used	directly

		//	or	indirectly.

		//	

}

EFI_STATUS																																									Status;

//

//	Create	an	Exit	Boot	Services	event.

//

Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_EXIT_BOOT_SERVICES,			//	Type

																		TPL_NOTIFY,																						//	NotifyTpl

																		NotifyExitBootServices,										//	NotifyFunction

																		NULL,																												//	NotifyContext

																		&mExitBootServicesEvent										//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Close	the	Exit	Boot	Services	event

//

Status	=	gBS->CloseEvent	(mExitBootServicesEvent);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	following	code	fragment	has	the	same	functionality	as	Example	48,	above,	but	uses
CreateEventEx()	instead	of	CreateEvent()	to	create	an	event	that	is	signaled	when
ExitBootServices()	is	called.	CreateEventEx()	supports	event	groups	that	are	named	by	GUID.
The	Event,	Timer,	and	Task	Priority	Services	section	of	the	UEFI	Specification	defines	a	set	of
event	group	GUIDs	that	are	defined	in	the	EDK	II	in	the	MdePkg	include	file		<Guid/EventGuid.h>	.

Caution:	CreateEventEx()	allows	creation	of	more	than	one	timer	event	associated	with	the	same	event
group	GUID.	Because	there	is	no	mechanism	for	determining	which	of	the	timer	events	associated	with
the	same	event	group	GUID	was	signaled,	it	is	recommended	that	timer	events	be	created	with
	CreateEvent()		or	with		CreateEventEx()		using	a		NULL		EventGroup.

Example	49-Create	and	Close	an	Exit	Boot	Services	Event	Group

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Guid/EventGroup.h>

//

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

200DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	Global	variable	for	Exit	Boot	Services	event

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

VOID

EFIAPI

NotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		//

		//	Put	driver-specific	actions	here	to	place	controllers	into

		//	an	idle	state.	No	UEFI	Memory	Service	may	be	used	directly

		//	or	indirectly.

		//	

}

EFI_STATUS	Status;

//

//	Create	an	Exit	Boot	Services	event	using	event	group	GUID.

//

Status	=	gBS->CreateEventEx	(

																		EVT_NOTIFY_SIGNAL,														//	Type

																		TPL_NOTIFY,																					//	NotifyTpl

																		NotifyExitBootServices,									//	NotifyFunction

																		NULL,																											//	NotifyContext

																		&gEfiEventExitBootServicesGuid,	//	EventGroup

																		&mExitBootServicesEvent									//	Event

);

//

//	Close	the	Exit	Boot	Services	event

//

Status	=	gBS->CloseEvent	(mExitBootServicesEvent);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

Example	49,	above,	shows	how	the		CreateEventEx()		function	is	used	to	create	an	event	that	is	notified
when	an	event	group	named	by	GUID	is	signaled.	In	this	case,	notification	functions	are	called	when	the
OS	Loader	or	OS	Kernel	calls		ExitBootServices()	.		CreateEventEx()		also	supports	creating	an	event	for	an
event	group	named	by	GUID	that	causes	all	the	event	notification	functions	associated	with	that	same
event	group	to	be	executed	when	the	event	is	signaled	with		SignalEvent()	.

The	example	below	shows	the	simplest	method	of	creating,	signaling,	and	closing	an	event	group
named	by		gEfiExampleEventGroupGuid	.	Notice	that	Type	is	0	and	no	notification	function,	TPL,	or	context	is
specified.	Since	use	of	this	mechanism	is	usually	in	cases	where	one	UEFI	image	needs	to	signal	events
in	other	UEFI	images,	this	specific	usage	of		CreateEventEx()		is	rarely	used	by	UEFI	Drivers.

Example	50-Create	and	Signal	an	Event	Group

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Guid/ExampleEventGroup.h>

EFI_STATUS																																			Status;

EFI_EVENT																																				Event;

//

//	Create	event	that	is	used	to	signal	an	event	group

//

Status	=	gBS->CreateEventEx	(

																0,																											//	Type

																0,																											//	NotifyTpl

																NULL,																								//	NotifyFunction

																NULL,																								//	NotifyContext

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

201DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																&gEfiExampleEventGroupGuid,		//	EventGroup

																&Event																							//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Signal	the	event	causing	all	notification	functions	for	this

//	event	group	to	be	executed

//

Status	=	gBS->SignalEvent	(Event);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Close	the	event

//

Status	=	gBS->CloseEvent	(Event);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.5.2	SignalEvent()

This	service	places	an	event	in	the	signaled	state.	Use		SignalEvent()	in	implementations	of	protocols
containing	an		EFI_EVENT		field	informing	a	consumer	of	the	protocol	when	input	is	ready.	The	protocols
from	the	UEFI	Specification	containing	this	use	case	include	the	Simple	Text	Input	Protocols,	the	Pointer
Protocols,	and	the	Simple	Network	Protocol.	The	complete	list	follows:

	EFI_ABSOLUTE_POINTER_PROTOCOL	

	EFI_SIMPLE_NETWORK_PROTOCOL	

	EFI_SIMPLE_POINTER_PROTOCOL	

	EFI_SIMPLE_TEXT_INPUT_PROTOCOL	

	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	

The	example	below	shows	the	Simple	Text	Input	Ex	Protocol	that	signals	the		EFI_EVENT		in	that	protocol
when	a	key	press	has	been	detected.	The	function		KeyboardCheckForKey()		is	a	hardware	specific	function
that	returns		EFI_SUCCESS		if	a	key	has	been	pressed.	It	returns	an	error	code	if	a	key	has	not	been
pressed.	The	check	is	performed	at		TPL_NOTIFY		to	guarantee	that	hardware	action	checking	for	a	key
press	is	atomic.

Example	51-Signal	a	key	press	event

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Protocol/SimpleTextInEx.h>

EFI_STATUS

EFIAPI

KeyboardCheckForKey	(

			VOID

)

{

		//

		//	Perform	hardware	specific	action	to	detect	if	a	key	on	a

		//	keyboard	has	been	pressed.

		//

		return	EFI_SUCCESS;

}

EFI_STATUS																																	Status;

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

202DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL										*SimpleInputEx;

EFI_TPL																																				OldTpl;

//

//	Enter	critical	section

//

OldTpl	=	gBS->RaiseTPL	(TPL_NOTIFY);

//

//	Call	an	internal	function	to	see	if	a	key	has	been	pressed

//

if	(!EFI_ERROR	(KeyboardCheckForKey	()))	{

		//

		//	If	a	key	has	been	pressed,	then	signal	the	wait	event

		//

		Status	=	gBS->SignalEvent	(SimpleInputEx->WaitForKeyEx);

}

//

//	Leave	critical	section

//

gBS->RestoreTPL	(OldTpl);

	SignalEvent()		is	also	used	by	UEFI	Drivers	required	to	signal	an	event	associated	with	the	completion	of	a
non-blocking	I/O	operation.	The	protocols	in	the	UEFI	Specification	containing	this	use-case	include	the
Network	Protocols,	SCSI	Protocols,	ATA	Protocols,	and	the	Block	I/O	2	Protocol.	The	complete	list	follows:

	EFI_ARP_PROTOCOL	

	EFI_IPSEC_PROTOCOL	

	EFI_IPSEC2_PROTOCOL	

	EFI_IPSEC_CONFIG_PROTOCOL	

	EFI_MANAGED_NETWORK_PROTOCOL	

	EFI_ATA_PASS_THRU_PROTOCOL	

	EFI_BLOCK_IO2_PROTOCOL	

	EFI_SCSI_IO_PROTOCOL	

	EFI_EXT_SCSI_PASS_THRU_PROTOCOL	

	EFI_DHCP4_PROTOCOL	

	EFI_IP4_PROTOCOL	

	EFI_IP4_CONFIG_PROTOCOL	

	EFI_MTFTP4_PROTOCOL	

	EFI_TCP4_PROTOCOL		-		EFI_UDP4_PROTOCOL	

	EFI_FTP4_PROTOCOL	

	EFI_DHCP6_PROTOCOL	

	EFI_IP6_PROTOCOL	

	EFI_IP6_CONFIG_PROTOCOL	

	EFI_MTFTP6_PROTOCOL	

	EFI_TCP6_PROTOCOL	

	EFI_UDP6_PROTOCOL	

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

203DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.5.3	CheckEvent()

This	service	checks	to	see	if	an	event	is	in	the	waiting	state	or	the	signaled	state.	EFI	Drivers	creating
events	use	this	service	to	determine	when	an	event	has	been	signaled	with		SignalEvent()	.	Such	events
include	timer	events,	those	used	to	determine	when	input	is	available,	or	events	associated	with	non-
blocking	I/O	operations.

The	example	below	is	an	example	that	creates	a	one-shot	timer	event	signaled	4	seconds	in	the	future.
	CheckEvent()		is	called	in	a	loop	waiting	for	the	timer	event	to	be	signaled.

Example	52-Wait	for	one-shot	timer	event	to	be	signaled

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

EFI_STATUS	Status;

EFI_EVENT	TimerEvent;

Status	=	gBS->CreateEvent	(

																EVT_TIMER	|	EVT_NOTIFY_WAIT,			//	Type

																TPL_NOTIFY,																				//	NotifyTpl

																NULL,																										//	NotifyFunction

																NULL,																										//	NotifyContext

																&TimerEvent																				//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

Status	=	gBS->SetTimer	(

																TimerEvent,

																TimerRelative,

																EFI_TIMER_PERIOD_SECONDS	(4)

);

if	(EFI_ERROR	(Status))	{

		gBS->CloseEvent	(TimerEvent);

		return	Status;

}

do	{

		Status	=	gBS->CheckEvent	(TimerEvent);

}	while	(EFI_ERROR	(Status));

5.1.5	Event	servicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

204DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.6	SetTimer()

This	service	programs	a	timer	event	to	be	signaled	in	the	future.	The	time	is	specified	in	100
nanosecond	(ns)	units.	UEFI	supports	both	periodic	timer	events	and	one-shot	timer	events.	Use	these
timer	events	when	polling	for	I/O	completions,	detecting	hot	plug	events,	detecting	timeout	conditions
for	I/O	operations,	supporting	asynchronous	I/O	operations,	etc.

	Caution	:	The	units	used	for	timer	events	may	appear	to	have	better	accuracy	than	the		Stall()		service,
which	has	an	accuracy	of	1	μs,	but	that	may	not	be	the	case.	UEFI	uses	a	single	timer	interrupt	to
determine	when	to	signal	timer	events.	The	resolution	of	timer	events	is	dependent	on	the	frequency	of
the	timer	interrupt.

UEFI	system	firmware	uses	a	hardware	timer	interrupt	to	measure	time.	These.	These	time
measurements	are	used	to	determine	when	enough	time	has	passed	to	signal	a	timer	event
programmed	with		SetTimer()	.	In	most	systems,	the	timer	interrupt	is	generated	every	10	ms	to	50	ms,
but	the	UEFI	Specification	does	not	require	any	specific	interrupt	rate.	This	lack	of	specificity	means	that
a	periodic	timer	programmed	with	a	period	much	smaller	than	10	ms	may	only	be	signaled	every	10	ms
to	50	ms.	If	short	delays	much	smaller	than	10	ms	are	required,	use	the		Stall()		service.

TIP:	Timer	event	services	are	not	accurate	over	short	delays.	If	a	short,	accurate	delay,	is	required	then
the		Stall()		service	should	be	used.

The	code	fragment	in	Example	53	shows	how	to	create	a	timer	event	and	program	it	as	a	periodic	timer
with	a	period	of	100	ms.	When	the	created	event	is	signaled	every	100	ms,	the	notification	function
	TimerHandler()		is	called	at		TPL_NOTIFY		with	the		EXAMPLE_DEVICE		context	that	was	registered	when	the	event
was	created.	The	EDK	II	library		UefiLib		provides	macros	for	the	timer	periods	used	with	the		SetTimer()	
services.

These	macros	include		EFI_TIMER_PERIOD_MICROSECONDS()	,		EFI_TIMER_PERIOD_MILLISECONDS()	,	and		EFI_TIMER_PERIOD_SECONDS()	

The	Private	Context	Structure	a	UEFI	Driver	uses	to	store	device	specific	information	usually	contains
	EFI_EVENT		fields	for	the	events	the	UEFI	Driver	creates.	This	allows	a	UEFI	Driver	to	close	events	when	a
device	is	stopped	or	when	a	UEFI	Driver	is	unloaded.	In	this	example,	the	Private	Context	Structure
called		EXAMPLE_DEVICE		contains	an		EFI_EVENT		for	both	a	periodic	and	a	one-shot	timer.	The	Private	Context
Structure	is	also	typically	passed	in	as	the		Context		parameter	when	an	event	is	created.	This	provides
the	event	notification	function	with	the	device	specific	context	required	to	perform	the	device	specific
actions.

	Caution	:	Always	close	timer	events	with	the	UEFI	Boot	Service		CloseEvent()		whenever	a	device	is	stopped
or	a	UEFI	Driver	is	unloaded.	If	not	performed,	a	call	for	an	event	notification	no	longer	present	in
memory,	or	event	notification	function	for	a	device	no	longer	available,	may	cause	unexpected	failures.

Example	53-Create	periodic	timer	event

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Library/UefiLib.h>

typedef	struct	{

		UINTN	Signature;

		EFI_EVENT	PeriodicTimer;

		EFI_EVENT	OneShotTimer;

		//

		//	Other	device	specific	fields

		//

5.1.6	SetTimer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

205DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}	EXAMPLE_DEVICE;

VOID

TimerHandler	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		//

		//	Perform	a	UEFI	driver-specific	operation.

		//

}

EFI_STATUS	Status;

EXAMPLE_DEVICE	*Device;

Status	=	gBS->CreateEvent	(

																EVT_TIMER	|	EVT_NOTIFY_SIGNAL,		//	Type

																TPL_NOTIFY,																					//	NotifyTpl

																TimerHandler,																			//	NotifyFunction

																Device,																									//	NotifyContext

																&Device->PeriodicTimer										//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Program	the	timer	event	to	be	signaled	every	100	ms.

//

Status	=	gBS->SetTimer	(

																Device->PeriodicTimer,

																TimerPeriodic,

																EFI_TIMER_PERIOD_MILLISECONDS	(100)

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	following	code	fragment	shows	how	to	create	a	one-shot	timer	event	that	is	signaled	4	seconds	in
the	future.	When	the	created	event	is	signaled,	the	notification	function		TimerHandler()		is	called	at
	TPL_CALLBACK		with	the		EXAMPLE_DEVICE		context	that	was	registered	when	the	event	was	created.

Example	54-Create	one-shot	timer	event

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Library/UefiLib.h>

typedef	struct	{

		UINTN	Signature;

		EFI_EVENT	PeriodicTimer;

		EFI_EVENT	OneShotTimer;

		//

		//	Other	device	specific	fields

		//

}	EXAMPLE_DEVICE;

VOID

TimerHandler	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		//

		//	Perform	a	UEFI	driver-specific	operation.

		//

}

EFI_STATUS	Status;

5.1.6	SetTimer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

206DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EXAMPLE_DEVICE	*Device;

Status	=	gBS->CreateEvent	(

																EVT_TIMER	|	EVT_NOTIFY_SIGNAL,		//	Type

																TPL_CALLBACK,																			//	NotifyTpl

																TimerHandler,																			//	NotifyFunction

																Device,																									//	NotifyContext

																&Device->OneShotTimer											//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Program	the	timer	event	to	be	signaled	4	seconds	from	now.

//

Status	=	gBS->SetTimer	(

																Device->OneShotTimer,

																TimerRelative,

																EFI_TIMER_PERIOD_SECONDS	(4)

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how	to	cancel	and	close	the	one-shot	timer	created	in	Example	54
above.	If	the	UEFI	Driver	completes	an	I/O	operation	normally,	any	timer	events	used	to	detect	timeout
conditions	must	be	canceled.	If	the	timeout	condition	is	only	used	as	part	of	device	detection,	the	timer
event	may	not	be	required	again.	In	those	cases,	the	event	can	be	both	canceled	and	closed.

5.1.6	SetTimer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

207DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	55-Cancel	and	close	one-shot	timer	event

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Library/UefiLib.h>

typedef	struct	{

		UINTN	Signature;

		EFI_EVENT	PeriodicTimer;

		EFI_EVENT	OneShotTimer;

		//

		//	Other	device	specific	fields

		//

}	EXAMPLE_DEVICE;

EFI_STATUS	Status;

EXAMPLE_DEVICE	*Device;

//

//	Cancel	the	one-shot	timer	event.

//

Status	=	gBS->SetTimer	(Device->OneShotTimer,	TimerCancel,	0);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Close	the	one-shot	timer	event.

//

Status	=	gBS->CloseEvent	(Device->OneShotTimer);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.1.6	SetTimer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

208DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.1.7	Stall()

The		Stall()		service	waits	for	a	specified	number	of	microseconds.	In	32-bit	environments,	the	range	of
supported	delays	is	from	1	μs	to	a	little	over	an	hour.	In	64-bit	execution	environments,	the	range	of
supported	delays	is	from	1uS	to	about	500,000	years.	However,	the	delays	passed	into	this	service
should	be	short	and	are	typically	in	the	range	of	a	few	microseconds	to	a	few	milliseconds.

Caution:	Implementations	of	the		Stall()		service	may	disable	interrupts	and	may	block	execution	of
other	UEFI	drivers.	If	long	delays	are	required,	use	a	Timer	Event	instead.	See		CreateEvent()	,
	CreateEventEx()	,	and		SetTimer()		for	details._

The		Stall()		service	is	very	accurate	and	typically	uses	a	high	frequency	hardware	timer	or	a	calibrated
software	delay	loop	to	implement	the	stall	functionality.

Caution:		Stall()		may	use	a	different	timing	source	than	the	event	timer,	and	may	have	a	higher	or
lower	frequency	and,	hence,	different	accuracy.

For	hardware	devices	requiring	delays	between	register	accesses,	use	the		Stall()		service.	with	a	fixed
stall	value	based	in	a	hardware	specification	for	the	device	being	accessed.	The	following	example
shows	a	use-case	to	perform	a	fixed	delay	of	10	us	between	two	PCI	MMIO	register	writes.

Example	56-Fixed	delay	stall

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	Value;

//

//	Do	a	single	8-bit	MMIO	write	to	BAR	#1,	Offset	0x10	of	0xAA

//

Value	=	0xAA;

Status	=	PciIo->Mem.Write	(

																						PciIo,															//	This

																						EfiPciIoWidthUint8,		//	Width

																						1,																			//	BarIndex

																						0x10,																//	Offset

																						1,																			//	Count

																						&Value															//	Buffer

);

//

//	Wait	10	uS

//

gBS->Stall	(10);

//

//	Do	a	single	8-bit	MMIO	write	to	BAR	#1,	Offset	0x10	of	0x55

//

Value	=	0x55;

Status	=	PciIo->Mem.Write	(

																						PciIo,															//	This

																						EfiPciIoWidthUint8,		//	Width

																						1,																			//	BarIndex

5.1.7	Stall()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

209DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																						0x10,																//	Offset

																						1,																			//	Count

																						&Value															//	Buffer

);

In	this	example,	a	UEFI	drivers	sends	a	command	to	a	controller	and	then	waits	for	the	command	to
complete.	Use	the		Stall()		service	inside	a	loop	to	periodically	check	for	the	completion	status.	The
example	below	shows	how	to	poll	for	a	completion	status	every	millisecond	and	timeout	after	100	ms.

Example	57-Poll	for	completion	status	using	stalls

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

UINTN	TimeOut;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	Value;

//

//	Loop	waiting	for	the	register	at	Offset	0	of	Bar	#0	of	PciIo	to

//	become	0xE0	Wait	1	ms	between	each	check	of	this	register,	and

//	time	out	if	it	does	not	become	0xE0	after	100	mS.

//

for	(TimeOut	=	0;	TimeOut	<=	100000;	TimeOut	+=	1000)	{

		//

		//	Do	a	single	8-bit	MMIO	read	from	BAR	#0,	Offset	0	into	Value

		//

		Status	=	PciIo->Mem.Read	(

																								PciIo,															//	This

																								EfiPciIoWidthUint8,		//	Width

																								0,																			//	BarIndex

																								0,																			//	Offset

																								1,																			//	Count

																								&Value															//	Buffer

);

		if	(!EFI_ERROR	(Status)	&&	Value	==	0xE0)	{

				return	EFI_SUCCESS;

		}

		//

		//	Wait	1	ms

		//

		gBS->Stall	(1000);

}

return	EFI_TIMEOUT;

5.1.7	Stall()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

210DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2	Services	that	UEFI	drivers	rarely	use

Table	19	lists	UEFI	services	rarely	used	by	UEFI	drivers.	The	following	sub-topics	briefly	describe	each
service,	why	they	are	rarely	used,	or	the	particular	circumstance	in	which	they	are	useful.	The	code
examples	show	how	the	services	are	typically	used	by	UEFI	drivers	and	are	grouped	by	Service	Type.

Table	19-UEFI	services	that	are	rarely	used	by	UEFI	drivers

Service Type Service	Type Notes

ConnectController() Boot Protocol
Handler

Uses	a	set	of	precedence	rules	to
find	the	best	set	of	drivers	to	manage
a	controller.

DisconnectController() Boot Protocol
Handler

Informs	a	set	of	drivers	to	stop
managing	a	controller.

ReinstallProtocolInterface() Boot Protocol
Handler

Reinstalls	a	protocol	interface	on	a
device	handle.

LocateDevicePath() Boot Protocol
Handler

Locates	a	device	handle	supporting	a
specific	protocol	and	having	the
closest	matching	device	path.	UEFI
drivers	should	use	the	services	on
the		ControllerHandle		passed	into	the
	Supported()		and		Start()		functions	of
the	driver's		EFI_DRIVER_BINDING_PROTOCOL	.

LoadImage() Boot Image

Used	only	by	bus	drivers	that	can
load,	start,	and	potentially	unload
UEFI	drivers	stored	in	other	images	in
some	other	location	on	the	child
devices	of	the	bus.

StartImage() Boot Image

Used	only	by	bus	drivers	that	can
load,	start,	and	potentially	unload
UEFI	drivers	stored	in	other	images	in
some	other	location	on	the	child
devices	of	the	bus.

GetVariable() Runtime Variable Returns	the	value	of	a	variable.

SetVariable() Runtime Variable Sets	the	value	of	a	variable.

QueryVariableInfo() Runtime Variable Returns	information	about	the	EFI
variables.

GetTime() Runtime Time-related
Returns	the	current	time	and	date,
and	the	time-keeping	capabilities	of
the	platform.

CalculateCrc32() Boot Miscellaneous
Maintains	the	checksum	of	the	UEFI
System	Table,	UEFI	boot	services
table,	and	UEFI	runtime	services
table.

ConvertPointer() Runtime Miscellaneous
Sometimes	used	by	UEFI	runtime
drivers.	This	service	should	never	be
used	by	UEFI	boot	service	drivers.

InstallConfigurationTable() Boot Miscellaneous
Adds,	updates,	or	removes	a
configuration	table	from	the	UEFI
system	table.

WaitForEvent() Boot Event Stops	execution	until	an	event	is
signaled.

GetNextMonotonicCount() Boot Special Provides	a	64-bit	monotonic	counter

5.2	Services	that	UEFI	drivers	rarely	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

211DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

that	is	guaranteed	to	increase.

5.2	Services	that	UEFI	drivers	rarely	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

212DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.1	ConnectController()	and	DisconnectController()

These	services	request	UEFI	Drivers	to	start	or	stop	managing	controllers	in	a	platform.	They	are
typically	used	by	the	UEFI	Boot	Manager	to	connect	the	devices	required	to	boot	an	operating	system.
These	services	may	also	be	used	by	a	UEFI	Boot	Manager	to	connect	all	devices	in	the	platform	if	the
user	chooses	to	enter	platform	setup.	OS	Loaders	and	OS	Installers	may	also	use	these	services	to
connect	additional	devices	required	to	complete	an	OS	boot	or	OS	installation	operation.

Additionally,	UEFI	applications,	such	as	the	UEFI	Shell,	may	use	these	services	to	test	the	functionality	of
a	UEFI	Driver	under	test.	The	UEFI	Shell	commands	using	these	services	are		connect	,		disconnect	,	and
	reconnect	.	A	common	test	sequence	a	UEFI	Driver	developer	may	use	to	test	the	functionality	of	a	new
UEFI	Driver	is:

Load	the	UEFI	Driver.

Connect	the	UEFI	Driver.

Test	functionality	of	protocols	produced	by	the	UEFI	Driver.

Disconnect	the	UEFI	Driver.

Unload	the	UEFI	Driver.

Fix	known	issues	with	the	UEFI	Driver	and	repeat.

The	use	of		ConnectController()		and		DisconnectController()		in	UEFI	Driver	implementations	is	less	common	and
is	usually	restricted	to	UEFI	Drivers	managing	hot-plug	capable	busses	and	unloadable	UEFI	Drivers.

5.2.1.1	Hot	Plug	Operations

To	facilitate	a	hot-add	operation	on	a	hot-plug	capable	bus,	use		ConnectController()	to	connect	UEFI
Drivers	to	the	hot-added	device.	Likewise,	to	facilitate	a	hot-remove	operation	on	a	hot-plug	capable
bus,	use		DisconnectController()	to	request	that	UEFI	Drivers	stop	managing	the	removed	device.	Just
because	a	bus	is	capable	of	supporting	hot-plug	events	does	not	necessarily	mean	that	the	UEFI	driver
for	that	bus	type	must	support	those	hot-plug	events.	Support	for	hot-plug	events	in	the	pre-boot
environment	is	dependent	on	the	platform	requirements	for	each	bus	type.

The	best	example	of	the	hot-plug	this	use	case	in	the	EDK	II	is	the	USB	Bus	Driver	in
	MdeModulePkg/Bus/Usb/UsbBusDxe	.	The	USB	bus	driver	in	the	EDK	II	does	not	create	any	child	handles	in	its
Driver	Binding	Protocol		Start()		function.	Instead,	it	registers	a	periodic	timer	event.

When	the	timer	period	expires,	the	timer	event's	notification	function	is	called	and	that	notification
function	examines	all	USB	root	ports	and	USB	hubs	to	see	if	any	USB	devices	have	been	added	or
removed.	If	a	USB	device	is	added,	a	child	handle	is	created	with	a	Device	Path	Protocol	and	a	USB	I/O
Protocol.		ConnectController()		is	then	called	to	allow	USB	device	drivers	to	connect	to	the	newly	added	USB
device.	If	a	USB	device	has	been	removed,		DisconnectController()		is	called	to	stop	the	USB	device	drivers
from	managing	the	removed	USB	device.

The	following	code	fragment	shows	how		ConnectController()		is	used	to	perform	a	recursive	connect
operation	in	response	to	a	hot-add	operation.

5.2.1	ConnectController()	and	DisconnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

213DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	58-Recursive	connect	in	response	to	a	hot-add	operation

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_HANDLE	ChildHandle;

//

//	Recursively	connect	all	drivers	to	the	hot-added	device

//

Status	=	gBS->ConnectController	(ChildHandle,	NULL,	NULL,	TRUE);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how		DisconnectController()		is	used	to	perform	a	recursive	disconnect
operation	in	response	to	a	hot-remove	operation.

Example	59-Recursive	disconnect	in	response	to	a	hot-remove	operation

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_HANDLE	ChildHandle;

//

//	Recursively	disconnect	all	drivers	from	the	hot-removed	device

//

Status	=	gBS->DisconnectController	(

																ChildHandle,

																NULL,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.1.2	Driver	Unload	Operations

Use	the		DisconnectController()		service,	from	unloadable	UEFI	drivers,	to	disconnect	the	UEFI	driver	from	the
device(s)	it	is	managing.	The		DisconnectController()		service	is	called	from	the	Unload()	function	that	is
registered	in	the	Loaded	Image	Protocol	for	the	UEFI	Driver

The	following	code	fragment	shows	a	simple	algorithm	that	a	UEFI	Driver	can	use	to	disconnect	the	UEFI
Driver	from	all	the	devices	in	the	system	that	it	is	currently	managing.

It	first	retrieves	the	list	of	all	the	handles	in	the	handle	database,	then	disconnects	the	UEFI	driver	from
each	of	those	handles.

A	UEFI	Driver	could	implement	a	more	efficient	algorithm	if	the	UEFI	Driver	kept	a	list	of	the	controller
handles	it	manages.	It	could	then	call		DisconnectController()		for	each	of	the	controller	handles	in	that	list.

Example	60-Disconnect	a	UEFI	Driver	from	all	handles

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS	Status;

EFI_HANDLE	*HandleBuffer;

UINTN	HandleCount;

5.2.1	ConnectController()	and	DisconnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

214DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

UINTN	Index;

//

//	Retrieve	array	of	all	handles	in	the	handle	database

//

Status	=	gBS->LocateHandleBuffer	(

																AllHandles,

																NULL,

																NULL,

																&HandleCount,

																&HandleBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Disconnect	the	current	driver	from	all	handles	in	the	handle	database

//

for	(Index	=	0;	Index	<	HandleCount;	Index++)	{

		Status	=	gBS->DisconnectController	(

																		HandleBuffer[Index],

																		gImageHandle,

																		NULL

);

}

//

//	Free	the	array	of	handles

//

FreePool	(HandleBuffer);

5.2.1	ConnectController()	and	DisconnectController()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

215DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.2	ReinstallProtocolInterface()

This	service	should	be	used	only	to	indicate	media	change	events	and	when	a	device	path	is	modified	or
updated.	Some	examples	of	when	this	service	must	be	used	are:	-	A	UEFI	Driver	that	produces	the	Block
I/O	Protocol	for	a	removable	media	device	when	the	media	in	a	removable	media	device	is	changed	(i.e.
Floppy,	CD,	DVD).

A	UEFI	Driver	that	produces	the	Serial	I/O	Protocol	when	the	attributes	are	modified	using
	SetAttributes()	

A	UEFI	Driver	that	produces	the	Simple	Network	Protocol	when	the	MAC	address	of	the	network
interface	is	modified	using		StationAddress()	.

Internally,	this	service	performs	the	following	series	of	actions:

1.	 	UninstallProtocolInterface()	,	which	may	cause		DisconnectController()		to	be	called

2.	 	InstallProtocolInterface()	

3.	 	ConnectController()		to	allow	controllers	that	had	to	release	the	protocol	a	chance	to	connect	to	it
again

Caution:	This	service	may	induce	reentrancy	if	a	driver	makes	a	request	that	requires	a	UEFI

Driver	for	a	parent	device	to	call		ReinstallProtocolInterface()	.	In	this	case,	the	driver	making	the	request
may	not	realize	that	the	request	causes	the	driver	to	be	completely	stopped	and	completely	restarted
when	the	request	to	the	parent	device	is	made.

For	example,	consider	a	terminal	driver	that	wants	to	change	the	baud	rate	on	the	serial	port.	The	baud
rate	is	changed	with	a	call	to	the	Serial	I/O	Protocol's

	SetAttributes()	.	This	call	changes	the	baud	rate,	which	is	reflected	in	the	device	path	of	the	serial	device,
so	the	Device	Path	Protocol	is	reinstalled	by	the		SetAttributes()		service.	This	reinstallation	forces	the
terminal	driver	to	be	disconnected.	The	terminal	driver	then	attempts	to	connect	to	the	serial	device
again,	but	the	baud	rate	is	the	one	that	the	terminal	driver	expects,	so	the	terminal	driver	does	not
need	to	set	the	baud	rate	again.

Any	consumer	of	a	protocol	that	supports	this	media	change	concept	needs	to	be	aware	that	the
protocol	can	be	reinstalled	at	any	time	and	that	care	must	be	taken	in	the	design	of	drivers	that	use
this	type	of	protocol.

The	following	code	fragments	in	Example	61	show	what	a	UEFI	driver	that	produces	the	Block	I/O
Protocol	should	do	when	the	media	in	a	removable	media	device	is	changed.	The	exact	same	protocol	is
reinstalled	onto	the	controller	handle.	The	specific	action	that	detects	if	the	media	is	not	included	in
this	code	fragment.	The	original	Block	I/O	Media	structure	is	copied	so	it	can	be	compared	with	the
Block	I/O	Media	structure	after	the	media	change	detection	logic	is	executed.	The	Block	I/O	Protocol	is
reinstalled	if	the	Media	ID	is	different,	if	the	size	of	blocks	on	the	mass	storage	device	has	changed,	if
the	number	of	blocks	on	the	mass	storage	device	has	changed,	if	the	present	status	has	changed,	or	if
the	media	has	changed	from	read-only	to	read-write	or	vice	versa.

Example	61-Reinstall	Block	I/O	Protocol	for	media	change

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/BaseMemoryLib.h>

5.2.2	ReinstallProtocolInterface()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

216DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS	Status;

EFI_HANDLE	ControllerHandle;

EFI_BLOCK_IO_PROTOCOL	*BlockIo;

EFI_BLOCK_IO_MEDIA	OldMedia;

//

//	Make	a	copy	of	the	current	Block	I/O	Media	structure

//

CopyMem	(&OldMedia,	&(BlockIo->Media),	sizeof	(EFI_BLOCK_IO_MEDIA));

//

//	Perform	driver	specific	action(s)	required	to	detect	if	the

//	media	has	been	changed	and	update	Block	I/O	Media	structure.

//

//

//	Detect	whether	it	is	necessary	to	reinstall	the	Block	I/O	Protocol.

//

if	((BlockIo->Media->MediaId	!=	OldMedia.MediaId)	||

				(BlockIo->Media->MediaPresent	!=	OldMedia.MediaPresent)	||

				(BlockIo->Media->ReadOnly	!=	OldMedia.ReadOnly)	||

				(BlockIo->Media->BlockSize	!=	OldMedia.BlockSize)	||

				(BlockIo->Media->LastBlock	!=	OldMedia.LastBlock))	{

		Status	=	gBS->ReinstallProtocolInterface	(

																		ControllerHandle,

																		&gEfiBlockIoProtocolGuid,

																		BlockIo,

																		BlockIo

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

}

The	code	fragments	below	show	the	Device	Path	Protocol	for	a	Serial	I/O	device	being	reinstalled
because	the	serial	communication	parameters	that	are	expressed	in	a	UART	Device	Path	Node	have
been	modified	in	a	call	to	the		SetAttributes()		service	of	the	Serial	I/O	Protocol.

Example	62-Reinstall	Device	Path	Protocol	for	Serial	I/O	attributes	change

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_HANDLE	ControllerHandle;

EFI_DEVICE_PATH_PROTOCOL	*DevicePath;

//

//	Retrieve	the	Device	Path	Protocol	instance	on	ControllerHandle

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,

																&gEfiDevicePathProtocolGuid,

																(VOID	**)&DevicePath,

																gImageHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Check	to	see	if	the	UART	parameters	have	been	modified

//	and	update	UART	node	of	DevicePath

//

//

//

//

5.2.2	ReinstallProtocolInterface()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

217DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Status	=	gBS->ReinstallProtocolInterface	(

																ControllerHandle,

																&gEfiDevicePathProtocolGuid,

																DevicePath,

																DevicePath

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.2	ReinstallProtocolInterface()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

218DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.3	LocateDevicePath()

This	service	locates	a	device	handle	that	supports	a	specific	protocol	and	has	the	closest	matching
device	path.	Although	a	rare	requirement,	it	is	useful	when	a	UEFI	Driver	needs	to	find	an	I/O	abstraction
for	one	of	its	parent	controllers.

Normally,	a	UEFI	Driver	uses	the	services	on	the	ControllerHandle	that	is	passed	into	the		Supported()		and
	Start()		functions	of	the	EFI	driver's		EFI_DRIVER_BINDING_PROTOCOL	.	However,	if	a	UEFI	Driver	does	require	the
use	of	services	from	a	parent	controller,		LocateDevicePath()		can	be	used	to	find	the	handle	of	a	parent
controller.

For	example,	a	PCI	device	driver	normally	uses	the	PCI	I/O	Protocol	to	manage	a	PCI	controller.
Hypothetically,	if	a	PCI	device	driver	required	the	services	of	the	PCI	Root	Bridge	I/O	Protocol	of	which	the
PCI	controller	is	a	child,	then	the		gBS->LocateDevicePath()		function	can	be	used	to	find	the	parent	handle
that	supports	the	PCI	Root	Bridge	I/O	Protocol.	Then	the		gBS->OpenProtocol()		service	can	be	used	to
retrieve	the	PCI	Root	Bridge	I/O	Protocol	interface	from	that	handle.

The	code	fragment	below	shows	how	a	UEFI	Driver	for	a	PCI	Controller	can	retrieve	the	PCI	Root	Bridge
I/O	Protocol	of	which	the	PCI	controller	is	a	child.

Caution:	This	operation	is	provided	only	as	an	illustration	and	is	not	recommended	because	a	parent
bus	driver	typically	owns	the	parent	I/O	abstractions.	Directly	using	a	parent	I/O	may	cause	unintended
side	effects.

Section	18.4.2,	Example	175,	contains	another	example	showing	the	recommended	method	for	a	PCI
driver	to	access	the	resources	of	other	PCI	controllers	on	the	same	PCI	adapter	without	using	the	PCI
Root	Bridge	I/O	Protocol.

5.2.3	LocateDevicePath()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

219DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	63-Locate	Device	Path

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_HANDLE	ControllerHandle;

EFI_DEVICE_PATH_PROTOCOL	*DevicePath;

EFI_HANDLE	ParentHandle;

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	*PciRootBridgeIo;

//

//	Retrieve	the	Device	Path	Protocol	instance	on	ControllerHandle

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,

																&gEfiDevicePathProtocolGuid,

																(VOID	**)&DevicePath,

																gImageHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Find	a	parent	controller	that	supports	the

//	PCI	Root	Bridge	I/O	Protocol

//

Status	=	gBS->LocateDevicePath	(

																&gEfiPciRootBridgeIoProtocolGuid,

																&DevicePath,

																&ParentHandle

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Get	the	PCI	Root	Bridge	I/O	Protocol	instance	on	ParentHandle

//

Status	=	gBS->OpenProtocol	(

																ParentHandle,

																&gEfiPciRootBridgeIoProtocolGuid,

																(VOID	**)&PciRootBridgeIo,

																gImageHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.3	LocateDevicePath()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

220DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.4	LoadImage()	and	StartImage()

Use		LoadImage()	to	load	and	relocate	a	UEFI	Image	into	system	memory,	and	prepare	it	for	execution.	Use
	StartImage()	to	transfer	control	to	a	UEFI	Image	that	was	previously	loaded	into	system	memory	using
	LoadImage()	.	These	services	are	typically	used	by	the	UEFI	Boot	Manager	when	processing	load	options
for	UEFI	Drivers,	UEFI	Applications,	or	UEFI	OS	Loaders.	UEFI	drivers	do	not	typically	need	to	load	other
UEFI	Drivers	and/or	UEFI	applications.

One	exception	is	a	bus	driver	for	a	bus	type	that	provides	a	storage	container	for	UEFI	Drivers	and/or
UEFI	Applications.	A	PCI	Option	ROM	is	an	example	of	a	container	with	those	attributes.	A	PCI	Bus	Driver
is	required	to	discover	any	PCI	Option	ROM	containers	present	on	PCI	Adapters.	If	a	PCI	Option	ROM
contains	one	or	more	UEFI	Drivers	that	are	compatible	with	the	currently	executing	CPU,	then	the	PCI
Bus	Driver	is	required	to	load	and	start	those	UEFI	Drivers	using	the		LoadImage()		and		StartImage()		services.
The	EDK	II	PCI	Bus	Driver	that	performs	this	operation	can	be	found	in		MdeModulePkg/Bus/Pci/PciBusDxe	.

Another	exception	is	a	UEFI	Driver	that	needs	to	execute	a	UEFI	Application	for	the	purposes	of
extended	diagnostics	or	to	augment	driver	configuration.	There	are	UEFI	standard	methods	for	a	UEFI
Driver	to	provide	diagnostics	and	configuration	through	the	use	of	the		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		and
HII.	If	for	some	reason,	a	UEFI	Driver	requires	diagnostics	or	configuration	capabilities	that	cannot	be
expressed	using	these	standard	methods,	a	UEFI	Driver	could	choose	to	execute	a	UEFI	Application	that
provides	those	capabilities.	In	the	case	of	a	PCI	Adapter,	UEFI	Applications	could	be	stored	in	the	PCI
Option	ROM	container.	The	UEFI	Driver	would	use	the		LoadImage()		and		StartImage()		services	to	load	and
execute	those	UEFI	Applications	from	that	container.

The	following	code	fragment	in	Example	64	shows	an	example	of	a	UEFI	Driver	for	a	PCI	controller	that
uses	the		LoadImage()		and		StartImage()		service	to	load	and	execute	a	32	KB	UEFI	Application	that	is	stored
32	KB	into	the	PCI	Option	ROM	container	associated	with	the	PCI	controller.		PciControllerHandle		is	the
	EFI_HANDLE		for	the	PCI	Controller.

This	example	retrieves	both	the	PCI	I/O	Protocol	and	the	Device	Path	Protocol	associated	with
	PciControllerHandle	.	The	Device	Path	Protocol	is	used	to	construct	a	proper	device	path	for	the	UEFI
Application	stored	in	the	PCI	option	ROM.	Helper	functions	from	the	EDK	II	library		DevicePathLib		are	used
to	fill	in	the	contents	of	a	new	device	path	node	for	the	UEFI	Application	stored	in	the	PCI	Option	ROM
and	to	append	that	device	path	node	to	the	device	path	of	the	PCI	controller.	Use	the	PCI	I/O	Protocol	to
access	the	shadowed	copy	of	the	PCI	Option	ROM	contents	through	the		RomImage		field.	The	shadowed
copy	of	the	PCI	Option	ROM	was	created	when	the	PCI	bus	was	enumerated	and	the	PCI	I/O	Protocols
were	produced.

Note:	The	use	of	a	32	KB	offset	and	32	KB	length	simplifies	this	example.	An	addin	adapter	that	stores
UEFI	Applications	in	a	PCI	Option	ROM	container	would	likely	define	vendor	specific	descriptors	to
determine	the	offset	and	size	of	one	or	more	UEFI	Applications.

5.2.4	LoadImage()	and	StartImage()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

221DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	64-Load	and	Start	a	UEFI	Application	from	a	PCI	Option	ROM

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/DevicePathLib.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_HANDLE	PciControllerHandle;

EFI_PCI_IO_PROTOCOL	*PciIo;

EFI_DEVICE_PATH_PROTOCOL	*PciDevicePath;

MEDIA_RELATIVE_OFFSET_RANGE_DEVICE_PATH	OptionRomNode;

EFI_DEVICE_PATH_PROTOCOL	*PciOptionRomDevicePath;

EFI_HANDLE	NewImageHandle;

//

//	Retrieve	PCI	I/O	Protocol	associated	with	PciControllerHandle

//

Status	=	gBS->OpenProtocol	(

																PciControllerHandle,

																&gEfiPciIoProtocolGuid,

																(VOID	**)&PciIo,

																gImageHandle,

																NULL,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Retrieve	Device	Path	Protocol	associated	with	PciControllerHandle

//

Status	=	gBS->OpenProtocol	(

																PciControllerHandle,

																&gEfiDevicePathProtocolGuid,

																(VOID	**)&PciDevicePath,

																gImageHandle,

																NULL,

																EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Create	Device	Path	Protocol	to	UEFI	Application	in	PCI	Option	ROM

//

OptionRomNode.Header.Type	=	MEDIA_DEVICE_PATH;

OptionRomNode.Header.SubType	=	MEDIA_RELATIVE_OFFSET_RANGE_DP;

SetDevicePathNodeLength	(&OptionRomNode.Header,	sizeof	(OptionRomNode));

OptionRomNode.StartingOffset	=	BASE_32KB;

OptionRomNode.EndingOffset	=	BASE_64KB	-	1;

PciOptionRomDevicePath	=	AppendDevicePathNode	(

																											PciDevicePath,

																											&OptionRomNode.Header

);

//

//	Load	UEFI	Image	from	PCI	Option	ROM	container

//

Status	=	gBS->LoadImage	(

																FALSE,

																gImageHandle,

																PciOptionRomDevicePath,

																(UINT8	*)(PciIo->RomImage)	+	SIZE_32KB,

																SIZE_32KB,

																&NewImageHandle

);

5.2.4	LoadImage()	and	StartImage()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

222DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Start	UEFI	Image	from	PCI	Option	ROM	container

//

Status	=	gBS->StartImage	(NewImageHandle,	NULL,	NULL);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.4	LoadImage()	and	StartImage()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

223DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.5	GetVariable()	and	SetVariable()

Use		GetVariable()		and		SetVariable()		services	to	read	and	write	UEFI	variables.	UEFI	Drivers	for	add-in
adapters,	such	as	PCI	adapters,	should	not	use	these	services	to	access	configuration	information	for
the	adapter.	Instead,	the	add-in	adapter	should	provide	its	own	local	storage	for	configuration
information.	UEFI	Drivers	provided	with	UEFI	system	firmware	use	UEFI	variables	to	store	configuration
information.	Examples	found	in	the	EDK	II	of	UEFI	Drivers	use	UEFI	variables	to	store	configuration
information	include	the	IPv4	and	IPv6	network	stacks	in	the		MdeModulePkg/Universal/Network		and	the		NetworkPkg	.

Caution:	Add-in	cards	should	not	store	their	configuration	via	variables.	When	the	card	is	removed	from
the	system,	the	variables	related	to	its	configuration	become	ownerless.	There	is	no	way	to	safely
recover	that	data.	In	addition,	it	is	impossible	for	the	system	designer	to	determine	the	amount	of
configuration	data	each	card	consumes.	As	such,	there	may	simply	not	be	enough	space	to	store	the
configuration	in	a	particular	system's	variable	space.	To	ensure	proper	function,	each	card	must	store
its	own	configuration	on	the	add-in	card.

A	UEFI	Variable	is	specified	with	a	combination	of	a	GUID	and	a	Unicode	string.	The	GUID	prevents	name
collisions	between	different	vendors.	Each	vendor	may	create	GUIDs	for	their	own	storage	and	manage
their	own	namespace	of	Unicode	strings	for	the	GUID	they	create.	The	Boot	Manager	chapter	of	the
UEFI	Specification	defines	the	EFIGLOBAL_VARIABLE_GUID,	also	known	as		gEfiGlobalVariableGuid		in	the	EDK	II,
that	is	reserved	for	UEFI	variables	defined	by	the	_UEFI	Specification.	UEFI	Drivers	must	never	use	this
GUID	to	store	their	configuration	information.

Caution:	UEFI	Drivers	must	never	use	EFIGLOBAL_VARIBLE	GUID	or	gEfiGlobalVariableGuid	to	store
configuration	information.	This	GUID	is	reserved	for	use	by	the	UEFI	Specification._

When	UEFI	variables	are	stored,	there	are	attributes	that	describe	the	visibility	and	persistence	of	each
variable.	The	legal	combinations	of	attributes	include	the	following:

	BOOTSERVICE_ACCESS	

The	variable	is	available	for	read	and	write	access	in	the	pre-boot	environment	before
	ExitBootServices()		is	called.	The	variable	is	not	available	after	ExitBootServices()	is	called,	and
contents	are	also	lost	on	the	next	system	reset	or	power	cycle.	These	types	of	variables	are
typically	used	to	share	information	among	different	pre-boot	components.

	BOOTSERVICE_ACCESS	|	RUNTIME_ACCESS	

The	variable	is	available	for	read	and	write	access	in	the	pre-boot	environment	before
ExitBootServices()	is	called.	and	is	available	for	read-only	access	from	the	OS	runtime
environment	after	ExitBootServices()	is	called.	The	contents	are	lost	on	the	next	system	reset	or
power	cycle.	These	types	of	variable	are	typically	used	to	share	information	among	different	pre-
boot	components	and	pass	read-only	information	to	the	operating	system.

	NON_VOLATILE	|	BOOTSERVICE_ACCESS	

The	variable	is	available	for	read	and	write	access	in	the	pre-boot	environment	before
	ExitBootServices()		is	called	and	the	contents	are	persistent	across	system	resets	and	power
cycles.	These	types	of	variables	are	typically	used	to	share	persistent	information	among
different	pre-boot	components.

	NON_VOLATILE	|	BOOTSERVICE_ACCESS	|	RUNTIME_ACCESS	

5.2.5	GetVariable()	and	SetVariable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

224DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	variable	is	available	for	read	and	write	access	in	both	the	pre-boot	environment	and	the	OS
runtime	environment	and	the	contents	are	persistent	across	system	resets	and	power	cycles.
These	types	of	variables	are	typically	used	to	share	persistent	information	among	pre-boot
components	and	the	operating	system.

A	UEFI	Driver	that	is	required	to	use	UEFI	variables	to	store	configuration	information	typically	accesses
those	UEFI	variables	in	the	implementation	of	the	services	provided	by	a		EFI_HII_CONFIG_ACCESS_PROTOCOL	
protocol	instance.	The	services		GetVariable()		and		SetVariable()		are	used	to	get	and	set	configuration
information	associated	with	HII	setup	screens	provided	by	the	UEFI	Driver	using	the	UEFI	HII
infrastructure	that	is	described	in	more	detail	in	Chapter	12.

The	attribute	of	NON_VOLATILE	|	BOOTSEVICE_ACCESS	|	RUNTIME_ACCESS	is	used	to	store	configuration
information	that	persists	across	resets	and	power	cycles.	It	also	allows	for	updates	to	this	configuration
information	from	operating	systems	that	provide	support	for	OS-present	configuration	changes	using
the	HII	database	exported	by	the	UEFI	system	firmware.

The	attribute	of		BOOTSERVICE_ACCESS		should	be	used	with	a	UEFI	variable	used	as	a	mailbox	to	store	state
information	that	is	required	by	multiple	HII	forms	or	multiple	HII	callbacks.

The	following	code	fragment	shows	how	to	write	a	configuration	structure	to	a	UEFI	variable	whose
contents	are	preserved	across	resets	and	power	cycles.	The	GUID	value,	GUID	global	variable,	and	the
configuration	structure	associated	with	the	GUID	are	all	typically	declared	in	a	GUID	include	file	in	an
EDK	II	package	implemented	by	a	vendor.	The	structure		EXAMPLE_CONFIGURATION		from

Example	65-Write	configuration	structure	to	a	UEFI	variable

<	Guid	/	ExampleConfigurationVariable.h	>	is	shown	here	in	comments	to	provide	additional	context	for	this	specific	code

fragment.

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Guid/ExampleConfigurationVariable.h>

//

//	Example	configuration	structure	from	ExampleConfigurationVariable.h

//

//typedef	struct	{

//	UINT32	Question1;

//	UINT16	Question2;

//	UINT8	Question3;

//}	EXAMPLE_CONFIGURATION;

EFI_STATUS	Status;

EXAMPLE_CONFIGURATION	ExampleConfiguration;

Status	=	gRT->SetVariable	(

																L"ExampleConfiguration",															//	VariableName

																&gEfiExampleConfigurationVariableGuid,	//	VendorGuid

																EFI_VARIABLE_NON_VOLATILE	|

																EFI_VARIABLE_BOOTSERVICE_ACCESS	|

																EFI_VARIABLE_RUNTIME_ACCESS,

																																																							//	Attributes	

																sizeof	(EXAMPLE_CONFIGURATION),								//	DataSize

																&ExampleConfiguration																		//	Data

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how	to	use	the		GetVariable()		service	to	read	the	configuration	structure
from	the	UEFI	variable	written	in	the	previous	example.

Example	66-Read	configuration	structure	from	a	UEFI	variable

5.2.5	GetVariable()	and	SetVariable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

225DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Guid/ExampleConfigurationVariable.h>

EFI_STATUS	Status;

EXAMPLE_CONFIGURATION	ExampleConfiguration;

UINTN	DataSize;

UINT32	Attributes;

DataSize	=	sizeof	(EXAMPLE_CONFIGURATION);

Attributes	=	EFI_VARIABLE_NON_VOLATILE	|

													EFI_VARIABLE_BOOTSERVICE_ACCESS	|

													EFI_VARIABLE_RUNTIME_ACCESS;

Status	=	gRT->GetVariable	(

																L"ExampleConfiguration",																//	VariableName

																&gEfiExampleConfigurationVariableGuid,		//	VendorGuid

																&Attributes,																												//	Attributes

																&DataSize,																														//	DataSize

																&ExampleConfiguration																			//	Data

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	is	identical	in	functionality	to	the	previous	example,	but	uses	the		GetVariable()	
function	from	the	EDK	II	library		UefiLib		to	read	the	configuration	structure	from	the	UEFI	variable.	The
UEFI	variable	contents	are	allocated	from	pool,	so	the	variable	contents	must	be	freed	after	they	are
used.	The		UefiLib		function		GetVariable()		supports	reading	both	fixed	size	UEFI	variables	such	as	an
	EXAMPLE_CONFIGURATION		structure	and	UEFI	variables	whose	size	may	vary.

Example	67-Use	UefiLib	to	read	configuration	structure	from	a	UEFI	variable

#include	<Uefi.h>

#include	<Library/UefiLib.h>

#include	<Guid/ExampleConfigurationVariable.h>

EXAMPLE_CONFIGURATION	*ExampleConfiguration;

ExampleConfiguration	=	GetVariable	(

																									L"ExampleConfiguration",

																									&gEfiExampleConfigurationVariableGuid

);

if	(ExampleConfiguration	==	NULL)	{

		return	EFI_NOT_FOUND;

}

//

//	When	done,	free	the	UEFI	variable	contents

//

FreePool	(ExampleConfiguration);

5.2.5	GetVariable()	and	SetVariable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

226DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.6		QueryVariableInfo()	

Use	this	UEFI	Runtime	Service	to	retrieve	information	about	the	container	used	to	store	UEFI	variables
including	their	size,	available	space,	and	the	maximum	size	of	a	single	UEFI	variable.

In	general,	UEFI	Drivers	do	not	use	UEFI	variables,	and	those	UEFI	Drivers	that	do	use	UEFI	variables	are
provided	with	the	UEFI	system	firmware	where	this	type	of	information	is	usually	already	known.	As	a
result,	this	service	is	rarely	used	by	UEFI	Drivers.	It	is	more	typically	used	by	OS	installers	and	OS	kernels
to	determine	the	platform	storage	capabilities	for	UEFI	variables.

The	following	code	fragment	shows	how	the		QueryVariableInfo()		service	is	used	to	collect	information
storage	containers	for	UEFI	variables	that	persist	across	reboots	and	power	cycles	and	are	available	in
both	the	pre-boot	environment	and	by	the	OS.

Example	68-Collect	information	about	the	UEFI	variable	store

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

EFI_STATUS	Status;

UINT64	MaximumVariableStorageSize;

UINT64	RemainingVariableStorageSize;

UINT64	MaximumVariableSize;

Status	=	gRT->QueryVariableInfo	(

																EFI_VARIABLE_BOOTSERVICE_ACCESS	|

																EFI_VARIABLE_RUNTIME_ACCESS	|

																EFI_VARIABLE_NON_VOLATILE,

																&MaximumVariableStorageSize,

																&RemainingVariableStorageSize,

																&MaximumVariableSize

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.6	QueryVariableInfo	()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

227DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.7		GetTime()	

This	service	is	rarely	used.	Use	it	only	when	the	current	time	and	date	are	required,	such	as	marking
the	time	and	date	of	a	critical	error.

Caution:	This	service	is	typically	only	accurate	to	about	1	second.	As	a	result,	UEFI	drivers	should	not
use	this	service	to	poll	or	wait	for	an	event	from	a	device.	Instead,	the		Stall()		service	should	be	used
for	short	delays.	The		CreateEvent()	,		CreateEventEx()	,	and		SetTimer()		services	should	be	used	for	longer
delays.

Example	69	and	Example	70,	following,	are	two	examples	of	the		GetTime()		service.	The	first	retrieves	the
current	time	and	date	in	an		EFI_TIME		structure.	The	second	retrieves	both	the	current	time	and	date	in
an		EFI_TIME		structure	and	the	capabilities	of	the	realtime	clock	hardware	in	an		EFI_TIME_CAPABILITIES	
structure.

Example	69-Get	time	and	date

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

EFI_STATUS	Status;

EFI_TIME	Time;

Status	=	gRT->GetTime	(&Time,	NULL);

Example	70-Get	real	time	clock	capabilities

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

EFI_STATUS	Status;

EFI_TIME	Time;

EFI_TIME_CAPABILITIES	Capabilities;

Status	=	gRT->GetTime	(&Time,	&Capabilities);

5.2.7	GetTime()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

228DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.8		CalculateCrc32()	

Use	this	service	to	maintain	the	checksums	in	the	UEFI	System	Table,	UEFI	boot	services	table,	and	UEFI
runtime	services	table.	A	UEFI	driver	that	modifies	one	of	these	tables	should	use	this	service	to	update
the	checksums.	A	UEFI	driver	could	compute	the	32-bit	CRC	on	its	own,	but	the	UEFI	driver	is	smaller	if	it
takes	advantage	of	this	UEFI	boot	service.	This	service	can	also	be	used	to	compute	the	checksums	in
Guided	Partition	Table(GPT)	structures.

The	following	code	fragment	shows	how		CalculateCrc32()		can	be	used	to	calculate	and	update	the	32-bit
CRC	field	in	the	UEFI	System	Table	header.	The	EDK	II	library		UefiBootServicesTableLib		provides	global
variables	for	the	UEFI	System	Table,	the	UEFI	Boot	Services	Table,	and	the	Image	Handle	for	the	currently
executing	driver.	In	this	example,	the	global	variable	for	the	UEFI	System	Table	called		gST		and	the	global
variable	for	the	UEFI	Boot	Services	Table	called		gBS		are	used	to	reference	the	UEFI	System	Table	header
and	call	the	UEFI	Boot	Services		CalculateCrc32()	.	Since	the	CRC32	field	is	part	of	the	structure	for	which
the	32-bit	CRC	is	being	computed,	it	must	be	set	to	zero	before	calling		CalculateCrc32()	.

Example	71-Calculate	and	update	32-bit	CRC	in	UEFI	System	Table

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

gST->Hdr.CRC32	=	0;

Status	=	gBS->CalculateCrc32	(

																&gST->Hdr,

																gST->Hdr.HeaderSize,

																&gST->Hdr.CRC32

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how	to	calculate	a	32-bit	CRC	for	an		EXAMPLE_DEVICE		structure.	Since	the
computed	32-bit	CRC	is	not	stored	within	the		EXAMPLE_DEVICE		structure,	it	does	not	need	to	be	zeroed
before	calling	the		CalculateCrc32()		service.

Example	72-Calculate	and	32-bit	CRC	for	a	structure

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EXAMPLE_DEVICE	Device;

UINT32	Crc;

Status	=	gBS->CalculateCrc32	(&Device,	sizeof	(Device),	&Crc);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The		CalculateCrc32()		service	can	also	be	used	to	verify	a	32-bit	CRC	value.	The	code	fragment	below
shows	how	the	32-bit	CRC	for	the	UEFI	System	Table	header	can	be	verified.	This	algorithm	preserves	the
original	contents	of	the	UEFI	System	Table	header.	It	returns		TRUE		if	the	32-bit	CRC	is	good.	Otherwise,	it
returns		FALSE	.

Example	73-Verify	32-bit	CRC	in	UEFI	System	Table

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

5.2.8	CalculateCrc32()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

229DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS	Status;

UINT32	OriginalCrc32;

UINT32	Crc32;

OriginalCrc32	=	gST->Hdr.CRC32;

gST->Hdr.CRC32	=	0;

Status	=	gBS->CalculateCrc32	(

																&gST->Hdr,

																gST->Hdr.HeaderSize,

																&Crc32

);

gST->Hdr.CRC32	=	OriginalCrc32;

if	(EFI_ERROR	(Status))	{

		return	FALSE;

}

return	(Crc32	==	OriginalCrc32);

5.2.8	CalculateCrc32()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

230DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.9		ConvertPointer()	

UEFI	Boot	Service	drivers	must	never	use	this	service.

This	service	may	be	required	by	UEFI	Runtime	Drivers	if	the	UEFI	Runtime	Driver	is	required	to	convert
pointer	values	that	use	physical	addresses	to	pointer	values	that	use	virtual	addresses.	A	UEFI	Runtime
driver	must	only	call		ConvertPointer()		from	an	event	notification	function	for	an	event	of	type
	EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE		or	a	GUIDed	event	of	type		EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE	.

Caution:	Notification	functions	for	events	signaled	when	SetVirtualAddressMap()	is	called	by	an	OS
Loader	or	OS	Kernel	are	not	allowed	to	use	any	of	the	UEFI	boot	services,	UEFI	Console	Services,	or	UEFI
Protocol	Services	either	directly	or	indirectly	because	those	services	are	no	longer	available	when
	SetVirtualAddressMap()		is	called.	Instead,	this	type	of	notification	function	typically	uses		ConvertPointer()		to
convert	pointers	within	data	structures	that	are	managed	by	the	UEFI	runtime	driver	from	physical
addresses	to	virtual	addresses.

UEFI	system	firmware	takes	care	of	most	of	the	physical	to	virtual	address	translations	that	a	UEFI
Runtime	Driver	requires.	For	example,	all	of	the	code	and	data	sections	in	the	UEFI	Runtime	Driver	image
are	automatically	fixed	up	for	proper	execution	at	the	virtual	address	ranges	provided	by	the	operating
system	when	the	operating	system	calls	the	UEFI	Runtime	Service		SetVirtualAddressMap()	.

If	a	UEFI	Runtime	Driver	caches	pointer	values	in	global	variables,	or	a	UEFI	Runtime	Driver	allocates
buffers	from		EfiRuntimeServicesData	,	those	pointer	values	must	be	converted	from	physical	addresses	to
virtual	address	using	the	virtual	address	ranges	provided	by	the	operating	system	when	the	operating
system	calls	the	UEFI	Runtime	Service		SetVirtualAddressMap()	.	If	allocated	buffers	contain	more	pointers,
then	those	pointer	values	must	also	be	converted.

In	these	more	complex	scenarios,	the	order	of	the	conversions	is	critical	because	the	algorithm	in	the
UEFI	Runtime	Driver	must	guarantee	that	no	virtual	addresses	in	the	execution	of	the	notification
actually	function	because	the	event	notification	function	on		SetVirtualAddressMap()		only	executes	in
physical	mode.

The	following	code	fragment	shows	how	a	UEFI	Runtime	Driver	can	create	an	event	whose	notification
function	is	executed	in	physical	mode	when	the	OS	Loader	or	OS	Kernel	calls		SetVirtualAddressMap()	.	There
are	two	methods	to	create	a		SetVirtualAddressMap()		event.	This	example	shows	the	preferred	method	that
uses		CreateEventEx()		to	pass	in	the	GUID	of		gEfiEventVirtualAddressChangeGuid	.	The	alternate	method	uses
	CreateEvent()		or		CreateEventEx()		with	an	event	type	of		EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE	.	The	created	event	is
declared	as	a	global	variable.	and	makes	the	event	available	if	the	UEFI	Runtime	Driver	needs	to	close
the	event	if	UEFI	Runtime	Driver	is	unloaded.	The	code	fragments	that	follow	this	example	show	how
	ConvertPointer()		may	be	used	from		NotifySetVirtualAddressMap()	,	the	event	notification	function	from	this
example.

Example	74-Create	a	Set	Virtual	Address	Map	event

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Guid/EventGroup.h>

//

//	Global	variable	for	the	SetVirtualAddressMap	event

//

EFI_EVENT	mSetVirtualAddressMapEvent	=	NULL;

EFI_STATUS	Status;

5.2.9	ConvertPointer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

231DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Create	a	Set	Virtual	Address	Map	event.

//

Status	=	gBS->CreateEventEx	(

																EVT_NOTIFY_SIGNAL,																			//	Type

																TPL_NOTIFY,																										//	NotifyTpl

																NotifySetVirtualAddressMap,										//	NotifyFunction

																NULL,																																//	NotifyContext

																&gEfiEventVirtualAddressChangeGuid,		//	EventGroup

																&mSetVirtualAddressMapEvent										//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	following	code	fragment	shows	how		ConvertPointer()		is	used	to	convert	a	global	variable	functioning
as	a	pointer	from	a	physical	address	to	that	with	a	virtual	address.

The	flag		EFI_OPTIONAL_PTR		tells		ConvertPointer()		to	not	perform	a	conversion	if	the	physical	address	of	the
pointer	is		NULL	.	This	is	useful	if	it	is	legal	for	some	of	the	pointer	values	to	be		NULL		and	the		NULL		value
needs	to	be	preserved	after	the	conversion.	The	only	other	legal	value	for	this	field	is	0	The	conversion
should	be	performed	unconditionally.

Example	75-Convert	a	global	pointer	from	physical	to	virtual

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

VOID	*gGlobalPointer;

VOID

EFIAPI

NotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

		Status	=	gRT->ConvertPointer	(

																		EFI_OPTIONAL_PTR,

																		(VOID	**)&gGlobalPointer

);

}

The	code	fragment	in	Example	76,	below,	is	identical	to	75,	above,	but	uses	the	function
	EfiConvertPointer()		from	the	EDK	II	library		UefiRuntimeLib		to	call	the	UEFI	Runtime	Service		ConvertPointer()	.

#include	<Uefi.h>

#include	<Library/UefiRuntimeLib.h>

VOID	*gGlobalPointer;

VOID

EFIAPI

NotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

		Status	=	EfiConvertPointer	(

													EFI_OPTIONAL_PTR,

													(VOID	**)&gGlobalPointer

);

}

5.2.9	ConvertPointer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

232DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	76-Using	UefiRuntimeLib	to	convert	a	pointer

The	EDK	II	library		UefiRuntimeLib		also	provides	the	function		EfiConvertFunctionPointer()		to	convert	a	function
pointer	from	a	physical	address	to	a	virtual	address.	On	supported	CPU	architectures	where	there	is	no
distinction	between	a	data	pointer	and	a	function	pointer,		EfiConvertPointer()		and		EfiConvertFunctionPointer()	
are	identical.	On	other	CPU	architectures	such	as	IPF,	where	function	calls	are	made	through	a		PLABEL	,
converting	a	function	pointer	is	more	complex.	The	EDK	II	library		UefiRuntimeLib		helps	hide	these	CPU
specific	details	so	the	UEFI	Driver	sources	can	be	the	same	for	all	supported	CPU	architectures.

Since	the	UEFI	system	firmware	automatically	converts	functions	in	code	sections	of	a	UEFI	Runtime
Driver	image	from	physical	addresses	to	virtual	addresses,		EfiConvertFunctionPointer()		is	required	only	if	a
UEFI	Driver	caches	a	function	pointer	in	a	global	variable	or	an	allocated	buffer.

Example	77-Using	UefiRuntimeLib	to	convert	a	function	pointer

#include	<Uefi.h>

#include	<Library/UefiRuntimeLib.h>

typedef

VOID

(EFIAPI	*EFI_EXAMPLE_FUNCTION)(

		IN	VOID	*Context

);

EFI_EXAMPLE_FUNCTION	gGlobalFunctionPointer;

VOID

EFIAPI

NotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

		Status	=	EfiConvertFunctionPointer	(

													EFI_OPTIONAL_PTR,

													(VOID	**)&gGlobalFunctionPointer

);

}

The	EDK	II	library		UefiRuntimeLib		also	provides	helper	function	call		EfiConvertList()		to	convert	all	the	pointer
values	in	a	doubly	linked	list	of	type		LIST_ENTRY	.	All	the	nodes	in	the	linked	list	are	traversed	and	the
forward	and	backward	link	in	each	node	is	converted	from	a	physical	address	to	a	virtual	address.

Once	this	conversion	is	performed,	the	linked	list	cannot	be	accessed	again	in	this	function	because	all
the	pointer	values	are	now	virtual	addresses.	If	the	contents	of	the	linked	list	contain	structures	with
more	pointer	values	that	also	need	to	be	converted,	those	conversions	must	be	performed	prior	to
calling		EfiConvertList()	.

Example	78-Using	UefiRuntimeLib	to	convert	a	linked	list

#include	<Uefi.h>

#include	<Library/UefiRuntimeLib.h>

LIST_ENTRY	gGlobalList	=	INITIALIZE_LIST_HEAD_VARIABLE	(gGlobalList);

VOID

EFIAPI

NotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

5.2.9	ConvertPointer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

233DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		Status	=	EfiConvertList	(EFI_OPTIONAL_PTR,	&gGlobalList);

}

5.2.9	ConvertPointer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

234DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.2.10	InstallConfigurationTable()

This	service	is	used	to	add,	update,	or	remove	an	entry	in	the	list	of	configuration	table	entries
maintained	in	the	UEFI	System	Table.	These	entries	are	typically	used	to	pass	information	from	the	UEFI
pre-boot	environment	to	the	operating	system	environment.

The	configuration	table	entries	are	composed	of	a	GUID	and	a	pointer	to	a	buffer.	The	GUID	defines	the
type	of	memory	that	the	buffer	must	use.	If	an	operating	system	requires	a	configuration	table	entry
that	is	allocated	from	a	memory	type	that	is	not	preserved	after		ExitBootServices()	,	then	the	OS	Loader	or
OS	Kernel	must	make	a	copy	of	the	data	structure	prior	calling		ExitBootServices()	.

A	UEFI	Driver	has	a	limited	set	of	options	to	pass	information	into	the	operating	system	environment.
These	include:

Protocols

UEFI	Variables

Configuration	Table	Entries

The	services	required	to	locate	protocols	in	the	Handle	Database	are	not	available	after
	ExitBootServices()	,	so	information	passed	up	through	protocols	must	be	located	by	the	OS	Loader	or	OS
Kernel	prior	to	calling		ExitBootServices()	.	UEFI	Variables	are	good	for	small	amounts	of	data,	but	may
consume	the	scarce	variable	resources	and	access	to	variable	storage	may	be	slower	than	system
memory.	A	configuration	table	entry	is	good	for	larger	amounts	of	data	generated	each	boot	and	it	is
stored	in	system	memory.	The	UEFI	Specification	defines	a	set	of	GUIDs	for	standard	configuration	table
entries	that	includes:

ACPI	Tables

SMBIOS	Tables

SAL	System	Table	(IPF	only)

MPS	Tables

Debug	Image	Info	Tables

Image	Execution	Information	Table

Exported	HII	Database

User	Information	Table

Capsules

UNDI	Configuration	Table

Most	of	these	usages	are	handled	by	the	UEFI	system	firmware.	The	one	usage	impacting	UEFI	Drivers	is
the	UNDI	Configuration	Table	that	is	produced	by	a	UEFI	UNDI	Driver	for	a	Network	Interface	Controller
(NIC).	UEFI	Drivers	are	allowed	to	define	new	GUIDs	for	new	configuration	table	entries	to	pass
information	from	the	UEFI	pre-boot	environment	to	the	OS	environment.

The	following	code	fragment	shows	how	an	UNDI	driver	can	add	or	update	an	UNDI	Configuration	Table
entry	to	the	list	of	configuration	table	entries	maintained	in	the	UEFI	System	Table.

Example	79-Add	or	update	a	configuration	table	entry

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS	Status;

5.2.10	InstallConfigurationTable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

235DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

UNDI_CONFIG_TABLE	*UndiConfigTable;

//

//	Allocate	and	zero	UNDI_CONFIG_TABLE	from	EfiRuntimeServicesData

//

UndiConfigTable	=	(UNDI_CONFIG_TABLE	*)AllocateRuntimeZeroPool	(

																sizeof	(UNDI_CONFIG_TABLE)

);

//

//	Initialize	UNDI_CONFIG_TABLE

//

//

//	Add	or	update	a	configuration	table

//

Status	=	gBS->InstallConfigurationTable	(

																&gEfiNetworkInterfaceIdentifierProtocolGuid_31,

																&UndiConfigTable

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

The	code	fragment	below	shows	how	an	UNDI	driver	can	remove	an	UNDI

Configuration	Table	entry	from	the	list	of	configuration	table	entries	maintained	in	the	UEFI	System
Table.

Example	80-Add	or	update	a	configuration	table	entry

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

//

//	Remove	a	configuration	table

//

Status	=	gBS->InstallConfigurationTable	(

																&gEfiNetworkInterfaceIdentifierProtocolGuid_31,

																NULL

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.10.1	WaitForEvent()

This	service	stops	execution	until	an	event	is	signaled	and	is	only	allowed	to	be	called	at	a	priority	level
of		TPL_APPLICATION	.	This	means	that		WaitForEvent()		may	not	be	used	from	an	event	notification	function
because	event	notification	functions	always	execute	at	priority	levels	above		TPL_APPLICATION	.	If	a	UEFI
Driver	needs	to	know	the	current	state	of	an	event,	the		CheckEvent()		service	should	be	used	instead	of
	WaitForEvent()	.		WaitForEvent()		may	be	used	by	UEFI	Applications.	The	typical	use	case	is	to	wait	for	input
from	a	device	such	as	a	keyboard	or	mouse	as	part	of	a	user	interface.	There	are	a	few	older	protocols
that	UEFI	Drivers	may	produce	that	interact	with	the	user	and	the	implementation	of	these	protocols
could	use		WaitForEvent()	.	For	example,	the		SetOptions()		function	in	the	Driver	Configuration	Protocol.

The	following	code	fragment	shows	how		WaitForEvent()		is	used	to	wait	for	one	of	two	events	to	be
signaled.	One	event	is	signaled	if	a	key	is	pressed	on	the	console	input	device	from	the	UEFI	System
Table.	The	other	event	is	a	one-shot	timer	that	is	signaled	after	waiting	for	1	second.		WaitForEvent()		does

5.2.10	InstallConfigurationTable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

236DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

not	return	until	either	a	key	is	pressed	or	1	second	has	passed.	This	can	be	used	to	wait	for	a	key	and
also	update	the	console	with	status	information	once	a	second.	Status	is	set	to		EFI_SUCCESS		is	a	key	is
pressed	and		EFI_TIMEOUT		if	no	key	is	pressed.

Example	81-Wait	for	key	press	or	timer	event

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_EVENT	WaitList[2];

UINTN	Index;

//

//	Add	ConIn	event	from	the	UEFI	System	Table	to	the	array	of	events

//

WaitList[0]	=	&gST->ConIn->WaitForKey;

//

//	Add	timer	event	that	fires	in	1	second	to	the	array	of	events

//

Status	=	gBS->CreateEvent	(

																EVT_TIMER	|	EVT_NOTIFY_WAIT,		//	Type

																TPL_NOTIFY,																			//	NotifyTpl

																NULL,																									//	NotifyFunction

																NULL,																									//	NotifyContext

																&WaitList[1]																		//	Event

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

Status	=	gBS->SetTimer	(

																WaitList[1],

																TimerRelative,

																EFI_TIMER_PERIOD_SECONDS	(1)

);

if	(EFI_ERROR	(Status))	{

		gBS->CloseEvent	(WaitList[1]);

		return	Status;

}

//

//	Wait	for	the	console	input	or	the	timer	to	be	signaled

//

Status	=	gBS->WaitForEvent	(2,	WaitList,	&Index);

//

//	Close	the	timer	event

//

gBS->CloseEvent	(WaitList[1]);

//

//	If	the	timer	event	expired	return	EFI_TIMEOUT

//

if	(!EFI_ERROR	(Status)	&&	Index	==	1)	{

		Status	=	EFI_TIMEOUT;

}

5.2.10	InstallConfigurationTable()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

237DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	82-Retrieve	64-bit	monotonic	counter	value.

5.2.11	GetNextMonotonicCount()

This	service	provides	a	64-bit	monotonically	increasing	counter	that	is	guaranteed	to	provide	a	higher
value	each	time		GetNextMonotonicCount()		is	called.	This	64-bit	counter	is	not	related	to	any	time	source,	so
this	service	should	never	be	used	for	delays,	polling,	or	for	any	type	of	time	measurement.

	GetNextHighMonotonicCount()		is	related	to	this	same	64-bit	monotonic	counter,	but	that	service	is	only
intended	to	be	used	by	operating	systems	after		ExitBootServices()		is	called	to	manage	the	non-volatile
upper	32-bits	of	the	64-bit	monotonic	counter.	A	UEFI	Driver	should	only	use	the	UEFI	Boot	Service
	GetNextMonotonicCount()		because	it	manages	all	64-bits	of	the	monotonic	counter	before		ExitBootServices()		is
called.

The	code	fragment	below	show	how		GetNextMonotonicCount()		can	be	used	to	retrieve	the	next	64-bit	value
for	the	monotonic	counter.

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS		Status;

UINT64						MonotonicCount;

Status	=	gBS->GetNextMonotonicCount	(&MonotonicCount);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

5.2.11	GetNextMonotonicCount()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

238DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3	Services	that	UEFI	drivers	should	not	use

The	following	table	lists	the	UEFI	services	that	should	not	be	used	by	UEFI	drivers.	These	services	may
be	used	by	components	other	than	UEFI	Drivers,	or	these	services	may	have	been	replaced	by	newer
services	and	should	no	longer	be	used	by	UEFI	Drivers.	The	following	sections	describe	why	each	of
these	services	should	not	be	used	in	UEFI	drivers	and	are	grouped	by	Service	Type.

Table	20-UEFI	services	that	should	not	be	used	by	UEFI	drivers

Service Type Service
Type Notes

InstallProtocolInterface() Boot Protocol
Handler

Installs	a	protocol	interface	on	a	device
handle.	Replaced	by
InstallMultipleProtocolInterfaces().

UninstallProtocolInterface() Boot Protocol
Handler

Removes	a	protocol	interface	from	a
device	handle.	Replaced	by
UninstallMultipleProtocolInterfaces().

HandleProtocol() Boot Protocol
Handler

Queries	a	handle	to	determine	if	it
supports	a	specified	protocol.	Replaced
by	OpenProtocol().

LocateHandle() Boot Protocol
Handler

Returns	an	array	of	handles	that
support	a	specified	protocol.	This
service	has	been	replaced	by
LocateHandleBuffer().

ProtocolsPerHandle() Boot Protocol
Handler

Retrieves	the	list	of	protocols	installed
on	a	handle.	The	return	buffer	is
automatically	allocated.	This	service	has
been	replaced	with:	The	Start	function
in	the	UEFI	Driver	Binding	Protocol.

RegisterProtocolNotify() Boot Protocol
Handler

Registers	an	event	that	is	to	be	signaled
whenever	an	interface	is	installed	for	a
specified	protocol.	This	service	has
been	replaced	with:	The	Supported()
function	in	the	UEFI	Driver	Binding
Protocol.

UnloadImage() Boot Image Used	to	unload	a	previously	loaded	UEFI
Driver.

GetNextVariableName() Runtime Variable
Used	to	walk	the	list	of	UEFI	variables
that	are	maintained	through	the	UEFI
variable	services.	Use	of	this	service	is
not	usually	necessary.

SetWatchDogTimer() Boot Time-
related

Sets	the	current	local	time	and	date
information.	UEFI	drivers	should	not	use
this	service;	UEFI	drivers	should	not
modify	the	system	time	or	the	wakeup
timer.

SetTime() Runtime Time-
related

Sets	the	current	local	time	and	date
information.	UEFI	drivers	should	not	use
this	service;	UEFI	drivers	should	not
modify	the	system	time	or	the	wakeup
timer.

GetWakeupTime() Runtime Time-
related

Returns	the	current	wakeup	alarm	clock
setting.	UEFI	drivers	should	not	use	this
service;	the	watchdog	timer	is	managed
from	the	UEFI	boot	manager.

Sets	the	system	wakeup	alarm	clock

5.3	Services	that	UEFI	drivers	should	not	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

239DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

SetWakeupTime() Runtime Time-
related

time.	UEFI	drivers	should	not	use	this
service;	the	watchdog	timer	is	managed
from	the	UEFI	boot	manager.

GetMemoryMap() Boot Memory
Allocation

Returns	the	current	boot	services
memory	map	and	memory	map	key.

ExitBootServices() Boot Special
This	service	hands	control	of	the
platform	from	the	UEFI	conformant
firmware	to	an	OS.	UEFI	drivers	must
never	use	this	service.

SetVirtualAddressMap() Runtime Special

This	service	is	used	only	by	UEFI	OS
loaders	or	OS	kernels	for	operating
systems	that	wish	to	call	UEFI	runtime
services	using	virtual	addresses.	UEFI
drivers	must	never	use	this	service.

QueryCapsuleCapabilities() Runtime Special Test	to	see	if	a	capsule	or	capsules	can
be	updated	via	UpdateCapsule().

UpdateCapsule() Runtime Special Allows	the	operating	system	to	pass
information	to	firmware.

ResetSystem() Runtime Special

Resets	and	sets	a	watchdog	timer	used
during	boot	services	time.	UEFI	drivers
should	not	use	this	service;	the
watchdog	timer	is	managed	from	the
UEFI	boot	manager.

Exit() Boot Special
UEFI	drivers	should	not	use	this	service.
This	service	is	typically	used	by
applications.

GetNextHighMonotonicCount Runtime Special Provides	a	64-bit	monotonic	counter
that	is	guaranteed	to	increase.

5.3	Services	that	UEFI	drivers	should	not	useEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

240DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.1	InstallProtocolInterface()

This	service	adds	one	protocol	interface	to	an	existing	handle	or	creates	a	new	handle.	This	service	has
been	replaced	by	the		InstallMultipleProtocolInterfaces()		service,	so	all	UEFI	drivers	should	use	the
replacement	service.	Using	this	replacement	service	provides	additional	flexibility	and	additional	error
checking	and	produces	smaller	EFI	drivers.

5.3.1	InstallProtocolInterface()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

241DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.2	UninstallProtocolInterface()

This	service	removes	one	protocol	interface	from	a	handle	in	the	handle	database.	The	functionality	of
this	service	has	been	replaced	by		UninstallMultipleProtocolInterfaces()	.	This	service	uninstalls	one	or	more
protocol	interfaces	from	the	same	handle.	Using	this	replacement	service	provides	additional	flexibility
and	produces	smaller	UEFI	drivers.

5.3.2	UninstallProtocolInterface()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

242DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.3	HandleProtocol()

UEFI	drivers	should	not	use	this	service	because	a	UEFI	drivers	that	uses	this	service	to	lookup	protocol
is	not	conformant	with	the	UEFI	Driver	Model.	Instead,		OpenProtocol()		should	be	used	because	it	provides
equivalent	functionality,	and	it	also	allows	the	Handle	Database	to	track	the	components	that	are	using
different	protocol	interfaces	in	the	handle	database.

5.3.3	HandleProtocol()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

243DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.4	LocateHandle()

This	service	returns	an	array	of	handles	that	support	a	specified	protocol.	This	service	requires	the
caller	to	allocate	the	return	buffer.	The		LocateHandleBuffer()		service	is	easier	to	use	and	produces	smaller
executables	because	it	allocates	the	return	buffer	for	the	caller.

5.3.4	LocateHandle()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

244DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.5	ProtocolsPerHandle()

This	service	retrieves	the	list	of	protocols	that	are	installed	on	a	handle.	In	general,	UEFI	drivers	know
what	protocols	are	installed	on	the	handles	that	the	UEFI	driver	is	managing,	so	this	service	is	not
required	for	proper	UEFI	Driver	operation.	This	service	is	typically	used	by	UEFI	applications,	such	as
diagnostics	or	debug	utilities,	that	need	to	traverse	the	entire	contents	of	the	Handle	Database.

5.3.5	ProtocolsPerHandle()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

245DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.6	RegisterProtocolNotify()

This	service	registers	an	event	that	is	to	be	signaled	whenever	an	interface	is	installed	for	a	specified
protocol.	Using	this	service	is	strongly	discouraged.	This	service	was	previously	used	by	EFI	drivers	that
follow	the	EFI	1.02	Specification,	and	it	provided	a	simple	mechanism	for	drivers	to	layer	on	top	of
another	driver.	The	EFI	1.10	Specification	introduced	the	EFI	Driver	Model,	and	is	still	supported	in	the
current	versions	of	the	UEFI	Specification.	The	UEFI	Driver	Model	provides	a	more	flexible	mechanism	for
a	driver	to	layer	on	top	of	another	driver	that	eliminated	the	need	for		RegisterProtocolNotify()	.	The
	RegisterProtocolNotify()		service	is	still	supported	for	compatibility	with	previous	versions	of	the	EFI
Specification.

5.3.6	RegisterProtocolNotify()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

246DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.7	UnloadImage()

This	service	unloads	a	UEFI	Driver	from	memory	that	was	previously	loaded	using	the	UEFI	Boot	Service
	LoadImage()	.	There	are	currently	no	known	use	cases	for	this	service	from	a	UEFI	Driver.		UnloadImage()		is
typically	used	from	a	UEFI	Application	like	the	UEFI	Shell	to	manage	the	set	of	active	UEFI	Drivers.

Caution:	A	UEFI	Driver	must	never	use	this	service	to	unload	itself.	This	service	frees	all	the	memory
associated	with	the	UEFI	Driver	and	returns	control	to	the	location	the	UEFI	Driver	used	to	reside	in
memory,	thereby	producing	unexpected	results.

5.3.7	UnloadImage()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

247DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.8	GetNextVariableName()

This	service	is	used	to	traverse	the	list	of	UEFI	variables	that	are	maintained	through	the	UEFI	Variable
Services.	Since,	in	general,	UEFI	drivers	know	the	specific	UEFI	variables	that	the	UEFI	Driver	is	required
to	access,	there	is	no	need	for	a	UEFI	driver	to	traverse	the	list	of	all	the	UEFI	variables.	This	service	is
typically	used	by	UEFI	applications,	such	as	a	diagnostic	or	a	debug	utility,	to	show	the	contents	of	all
the	UEFI	Variables	present	in	a	platform.

The	example	below	shows	how	the		GetNextVariableName()		service	can	be	used	to	traverse	and	print	the
entire	contents	of	the	UEFI	variable	store.	It	uses	the	EDK	II		MemoryAllocationLib		to	allocate,	reallocate,	and
free	buffers;	the	EDK	II		UefiLib		to	print	formatted	strings	to	the	UEFI	console	output	device;	and	the	EDK
II		UefiRuntimeServicesTableLib		to	call	the		GetNextVariableName()		and		GetVariable()		runtime	services.

Example	83-Print	all	UEFI	variable	store	contents

#include	<Uefi.h>

#include	<Library/UefiLib.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS	Status;

EFI_GUID	Guid;

UINTN	NameBufferSize;

UINTN	NameSize;

CHAR16	*Name;

UINTN	DataSize;

UINT8	*Data;

UINTN	Index;

//

//	Initialize	the	variable	name	and	data	buffer	variables

//	to	retrieve	the	first	variable	name	in	the	variable	store

//

NameBufferSize	=	sizeof	(CHAR16);

Name	=	AllocateZeroPool	(NameBufferSize);

//

//	Loop	through	all	variables	in	the	variable	store

//

while	(TRUE)	{

		//

		//	Loop	until	a	large	a	large	enough	variable	name	buffer	is	allocated

		//	do	{

		NameSize	=	NameBufferSize;

		Status	=	gRT->GetNextVariableName	(&NameSize,	Name,	&Guid);

		if	(Status	==	EFI_BUFFER_TOO_SMALL)	{

				//

				//	Grow	the	buffer	Name	to	NameSize	bytes

				//

				Name	=	ReallocatePool	(NameBufferSize,	NameSize,	Name);

				if	(Name	==	NULL)	{

						return	EFI_OUT_OF_RESOURCES;

				}

				NameBufferSize	=	NameSize;

		}

}

while	(Status	==	EFI_BUFFER_TOO_SMALL);

//

//	Exit	main	loop	after	last	variable	name	is	retrieved

//

if	(EFI_ERROR	(Status))	{

		FreePool	(Name);

		return	Status;

}

5.3.8	GetNextVariableName()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

248DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Print	variable	guid	and	name

//

Print	(L"%g	:	%s",	&Guid,	Name);

//

//	Initialize	variable	data	buffer	as	an	empty	buffer

//

DataSize	=	0;

Data	=	NULL;

//

//	Loop	until	a	large	enough	variable	data	buffer	is	allocated

//

do	{

		Status	=	gRT->GetVariable	(Name,	&Guid,	NULL,	&DataSize,	Data);

		if	(Status	==	EFI_BUFFER_TOO_SMALL)	{

				//

				//	Allocate	new	buffer	for	the	variable	data

				//

				Data	=	AllocatePool	(DataSize);

				if	(Data	==	NULL)	{

						FreePool	(Name);

						return	EFI_OUT_OF_RESOURCES;

				}

		}

}	while	(Status	==	EFI_BUFFER_TOO_SMALL);

if	(EFI_ERROR	(Status))	{

		FreePool	(Data);

		FreePool	(Name);

		return	Status;

}

//

//	Print	variable	data

//

for	(Index	=	0;	Index	<	DataSize;	Index++)	{

		if	((Index	&	0x0f)	==	0)	{

				Print	(L"\n	");

		}

		Print	(L"%02x	",	Data[Index]);

}

Print	(L"\n");

FreePool	(Data);

}

5.3.8	GetNextVariableName()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

249DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.9	SetWatchdogTimer()

UEFI	drivers	should	not	use	this	service.	The	watchdog	timer	is	managed	by	the	UEFI	boot	manager.

5.3.9	SetWatchdogTimer()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

250DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.10	SetTime(),	GetWakeupTime(),	and	SetWakeupTime()

UEFI	drivers	should	not	modify	the	system	time	or	the	wakeup	timer.	The	management	of	these	timer
services	should	be	left	to	the	UEFI	boot	manager,	an	OEM-provided	utility,	or	an	operating	system.

5.3.10	SetTime(),	GetWakeupTime(),	and	SetWakeupTime()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

251DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.11	GetMemoryMap()

UEFI	drivers	should	not	use	this	service	because	UEFI	drivers	should	not	depend	upon	the	physical
memory	map	of	the	platform.	The		AllocatePool()		and		AllocatePages()		services	allow	a	UEFI	driver	to	allocate
system	memory.	The		FreePool()		and		FreePages()		services	allow	an	UEFI	driver	to	free	previously	allocated
memory.

If	there	are	limitations	on	the	memory	areas	that	a	specific	device	may	use,	then	those	limitations
should	be	managed	by	a	parent	I/O	abstraction	that	understands	the	details	of	the	platform	hardware.

For	example,	PCI	device	drivers	should	use	the	services	of	the	PCI	I/O	Protocol	to	manage	DMA	buffers.
The	PCI	I/O	Protocol	is	produced	by	the	PCI	bus	driver	that	uses	the	services	if	the	PCI	Root	Bridge	I/O
Protocol	to	manage	DMA	buffers.	The	PCI	Root	Bridge	I/O	Protocol	is	chipset	and	platform	specific,	so
the	component	that	produces	the	PCI	Root	Bridge	I/O	Protocol	understands	what	memory	regions	can
be	used	for	DMA	operations.	By	pushing	the	responsibility	into	the	chipset-	and	platform-specific
components,	the	PCI	device	drivers	and	PCI	bus	drivers	are	easier	to	implement	and	are	portable	across
a	wide	variety	of	platforms.

This	service	is	typically	used	by	a	UEFI	OS	Loader	to	retrieve	the	memory	map	just	before	the	OS	takes
control	of	the	platform	by	calling		ExitBootServices()	.	It	may	also	be	used	by	UEFI	applications,	such	as
diagnostics	or	debug	utilities,	to	show	how	platform	memory	has	been	allocated.

5.3.11	GetMemoryMap()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

252DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.12	ExitBootServices()

This	service	hands	control	of	the	platform	from	UEFI	conformant	firmware	to	a	UEFI	conformant
operating	system.	It	should	be	invoked	only	by	UEFI	OS	loaders	or	OS	kernels.	It	should	never	be	called
by	a	UEFI	driver.	Refer	to	the	Image	Services	section	in	the	UEFI	Specification	for	more	information	about
this	service.

5.3.12	ExitBootServices()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

253DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.13	SetVirtualAddressMap()

This	service	is	used	only	by	UEFI	OS	loaders	or	OS	kernels	when	an	operating	system	requests	UEFI
Runtime	Services	be	mapped	using	virtual	addresses.	It	must	be	called	after		ExitBootServices()		is	called.
As	a	result,	it	is	not	legal	for	UEFI	drivers	to	call	this	service.

5.3.13	SetVirtualAddressMap()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

254DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.14	QueryCapsuleCapabilities()

UEFI	drivers	should	not	use	this	service.	It	is	typically	used	by	an	operating	system	or	an	OEM	provided
utility	to	test	to	see	if	a	capsule	or	capsules	can	be	updated	via		UpdateCapsule()		service	as	part	of	a
capsule	update	action.

5.3.14	QueryCapsuleCapabilities()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

255DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.15	UpdateCapsule()

UEFI	drivers	should	not	use	this	service.	It	is	typically	used	by	an	operating	system	or	an	OEM	provided
utility	to	pass	a	capsule	to	the	firmware	as	part	of	a	capsule	update	action.

5.3.15	UpdateCapsule()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

256DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.16	ResetSystem()

In	general,	UEFI	drivers	should	not	use	this	service.	System	resets	should	be	managed	from	the	UEFI
boot	manager	or	OEM-provided	utilities.	The	only	exceptions	in	the	EDK	II	are	keyboard	drivers	that
detect	the	CTRL-ALT-DEL	key	sequence	in	keyboard	drivers	to	reset	the	platform.

The	following	code	fragment	shows	how	the	UEFI	Runtime	Service		ResetSystem()		is	used	to	request	a	warm
reset	of	the	platform.	The	EDK	II	library		UefiRuntimeServicesTableLib		provides	a	global	variable	for	the	UEFI
Runtime	Services	Table	for	the	currently	executing	driver.	In	this	example,	the	global	variable	for	the	UEFI
Runtime	Services	Table,		gRT	,	is	used	to	call	the	UEFI	Runtime	Service		ResetSystem().	

Example	84-ResetSystem

#include	<Uefi.h>

#include	<Library/UefiRuntimeServicesTableLib.h>

#include	<Library/BaseLib.h>

//

//	Perform	a	warm	reset	of	the	platform

//

gRT->ResetSystem	(EfiResetWarm,	EFI_SUCCESS,	0,	NULL);

//

//	Halt.	ResetSystem	should	never	return.

//

CpuDeadLoop	();

5.3.16	ResetSystem()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

257DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.17	Exit()

The		Exit()		service	is	typically	only	used	by	UEFI	applications.	UEFI	drivers	usually	have	simple	driver
entry	point	implementations	and	typically	return	an		EFI_STATUS		code	from	their	entry	point	function.	This
is	the	recommended	style	for	UEFI	driver	implementations.	If		EFI_SUCCESS		is	returned	by	a	UEFI	driver,	then
the	UEFI	driver	remains	loaded	in	system	memory.	If	an	error	status	is	returned,	then	the	UEFI	driver	is
unloaded	from	system	memory.

The		Exit()		service	allows	a	UEFI	image	to	exit	without	having	to	return	an		EFI_STATUS		value	from	the	UEFI
image's	entry	point.	A	UEFI	driver	with	more	complex	logic	in	its	entry	point	may	discover	a	condition	that
requires	the	UEFI	driver	to	exit	immediately.	In	this	rare	condition,	the		Exit()		service	could	be	used.
However,	the	UEFI	driver	implementation	must	take	care	to	free	any	allocated	resources	and	uninstall
all	protocols	before	returning	an	error	code	through	the		Exit()		service.	The	following	example	shows
how	the		Exit()		service	could	be	used	by	a	UEFI	driver	to	exit	with	a	status	code	of		EFI_UNSUPPORTED	.	The
EDK	II	library		UefiBootServicesTableLib		provides	the	global		gBS	―a	pointer	to	the	UEFI	Boot	Services	Table
and		gImageHandle	―the	Image	Handle	of	the	currently	executing	UEFI	image.

Example	85-Exit	from	a	UEFI	Driver

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

//

//	Exit	the	current	UEFI	image	with	a	status	of	EFI_UNSUPPORTED

//

gBS->Exit	(gImageHandle,	EFI_UNSUPPORTED,	0,	NULL);

5.3.17	Exit()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

258DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

5.3.18	GetNextHighMonotonicCount()

There	are	no	use	cases	for	this	service	by	a	UEFI	Driver.	It	should	never	be	called.

This	service	is	only	used	by	operating	systems	to	manage	the	upper	32-bits	of	the	64-bit	monotonic
counter	after	the	operating	system	has	called		ExitBootServices()	.	An	operating	system	that	chooses	to
use	the	UEFI	provided	64-bit	monotonic	counter	should	acquire	the	value	of	the	64-bit	monotonic
counter	before		ExitBootServices()		using	the	UEFI	Boot	Service		GetNextMonotonicCount()	.	The	operating	system
can	manage	the	volatile	lower	32-bits	of	the	64-bit	monotonic	counter	on	its	own.	If	a	32bit	rollover
condition	occurs,	then	the	operating	system	can	use	the	UEFI	Runtime	Service		GetNextHighMonotonicCount()	
to	increment	the	upper	32-bits	of	the	64-bit	monotonic	counter.	The	upper	32-bits	are	non-volatile	and
it	is	the	responsibility	of	the	UEFI	firmware	to	guarantee	that	the	upper	32-bits	of	the	64-bit	monotonic
counter	are	preserved	across	system	resets	and	power	cycles.

5.3.18	GetNextHighMonotonicCount()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

259DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6	UEFI	Driver	Categories
The	different	categories	of	UEFI	drivers	are	introduced	in	Chapter	3	of	this	guide.	These	driver
categories	are	discussed	throughout	this	document,	but	emphasis	is	placed	on	drivers	that	follow	the
UEFI	driver	model	because	they	are	the	most	commonly	implemented.	The	driver	categories	that	follow
the	UEFI	driver	model	include:

Device	drivers

Bus	drivers

Hybrid	drivers

There	are	several	subtypes	and	optional	features	for	the	three	categories	of	drivers.	This	chapter
introduces	the	subtypes	and	optional	features	of	drivers	that	follow	the	UEFI	driver	model.
Understanding	the	different	categories	of	UEFI	drivers	helps	driver	writers	identify	the	category	of	driver
to	implement	and	the	algorithms	used	in	their	implementation.	The	less	common	service	drivers,	root
bridge	drivers	and	initializing	drivers	are	also	discussed.	Appendix	B	contains	a	table	of	example	drivers
from	the	EDK	II	along	with	the	features	that	each	implement.

6	UEFI	Driver	CategoriesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

260DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1	Device	drivers

All	device	drivers	following	the	UEFI	driver	model	share	a	set	of	common	characteristics.	The	next	two
sections	describe	the	required	and	optional	features	for	device	drivers.	These	sections	are	followed	by
a	detailed	description	of	device	drivers	that	produce	both	single	and	multiple	instances	of	the	Driver
Binding	Protocol.

6.1	Device	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

261DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.1	Required	Device	Driver	Features

Device	drivers	are	required	to	implement	the	following	features:

A	driver	entry	point	that	installs	one	or	more	instances	of	the	Driver	Binding	Protocol.

Manages	one	or	more	controller	handles.	Even	if	a	driver	writer	is	convinced	that	the	driver
manages	only	a	single	controller,	it	is	strongly	recommended	that	the	driver	be	designed	to	manage
multiple	controllers.	The	overhead	for	this	functionality	is	low,	and	it	makes	the	driver	more	portable.

Does	not	produce	any	child	handles.	This	feature	is	the	main	distinction	between	device	drivers	and
bus/hybrid	drivers.

Ignores	the	RemainingDevicePath	parameter	that	is	passed	into	the		Supported()		and		Start()		services
of	the	Driver	Binding	Protocol.

Consumes	one	or	more	I/O-related	protocols	from	the	controller	handle.

Produces	one	or	more	I/O-related	protocols	on	the	same	controller	handle.

6.1.1	Required	Device	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

262DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.2	Optional	Device	Driver	Features

The	following	lists	features	that	a	device	driver	can	optionally	implement.

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME2_PROTOCOL		in	the	driver's	entry	point.

Implementing	this	feature	is	strongly	recommended.	It	allows	a	driver	to	provide	human-readable
names	for	the	name	of	the	driver	and	the	controllers	that	the	driver	manages.

Register	one	or	more	HII	packages	in	the	driver's	entry	point.

HII	packages	provide	strings,	fonts,	and	forms	that	allow	users	(such	as	IT	administrators)	to
change	the	driver's	configuration.	They	are	only	required	if	a	driver	must	provide	the	ability	for	a
user	to	change	configuration	settings	for	a	device.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		in	the	driver's	entry	point.

If	a	driver	needs	to	provide	diagnostics	for	the	controllers	that	the	driver	manages,	this	protocol	is
required.

Provide	an		EFI_LOADED_IMAGE_PROTOCOL.Unload()		service	so	the	driver	can	be	dynamically	unloaded.

It	is		recommended		that	this	feature	be	implemented	during	driver	development,	driver	debug,	and
system	integration.	It	is		strongly	recommended		that	this	service	remain	in	drivers	for	add-in	adapters	to
help	debug	interaction	issues	during	system	integration.

Install	one	or	more	instances	of	the		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	only	if	a	driver	needs	a	higher	priority	rule	for	connecting	drivers	to
controllers	through	the	UEFI	Boot	Service		ConnectController()	.

Install	one	or	more	instances	of	the		EFI_DRIVER_HEALTH_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	only	required	for	drivers	that	manage	devices	that	can	be	in	a	bad	state	that	is
recoverable	through	either	a	repair	operation	or	a	configuration	operation.

Install	an	instance	of	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	for	PCI	controller	or	other	plug-in	cards.	Implementation	of	this	feature	is
	recommended	.

Create	an	Exit	Boot	Services	event	in	the	driver's	entry	point.

This	feature	is	required	only	if	the	driver	is	required	to	place	the	devices	it	manages	in	a	specific
state	just	before	control	is	handed	to	an	operating	system.

Creates	a	Set	Virtual	Address	Map	event	in	the	driver's	entry	point.

This	feature	is	required	only	for	a	device	driver	that	is	a	UEFI	runtime	driver.

6.1.2	Optional	Device	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

263DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.3	Compatibility	with	Older	EFI/UEFI	Specifications

The	following	lists	features	that	a	device	driver	can	optionally	implement	to	provide	compatibility	with
older	versions	of	the	EFI	and	UEFI	Specifications.

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME_PROTOCOL		in	the	driver's	entry	point.

Implementing	this	feature	is	strongly	recommended	for	drivers	required	to	be	compatible	with	EFI
1.10	It	allows	a	driver	to	provide	human-readable	names	for	the	name	of	the	driver	and	the
controllers	that	the	driver	is	managing.	The	EDK	II	libraries	provide	easy	methods	to	produce	both
the	Component	Name	Protocol	and	the	Component	Name	2	Protocol	with	very	little	additional
overhead.

Installs	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION_PROTOCOL		in	the	driver's	entry	point.

If	a	driver	must	be	compatible	with	EFI	1.10,	and	has	any	configurable	options,	this	protocol	is
required.

Installs	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION2_PROTOCOL		in	the	driver's	entry	point.

If	a	driver	must	be	compatible	with	UEFI	2.0	and	has	any	configurable	options,	this	protocol	is
required.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS_PROTOCOL		in	the	driver's	entry	point.

If	a	driver	must	be	compatible	with	EFI	1.10	and	provide	diagnostics	for	the	controllers	that	the
driver	manages,	this	protocols	is	required.

6.1.3	Compatibility	with	Older	EFI/UEFI	SpecificationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

264DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.4	Device	drivers	with	one	driver	binding	protocol

Most	device	drivers	produce	a	single	instance	of	the		EFI_DRIVER_BINDING_PROTOCOL	.	These	drivers	are	the
simplest	among	those	that	follow	the	UEFI	driver	model	and	all	other	driver	types	have	their	roots	in	this
type	of	device	driver.

A	device	driver	is	loaded	into	memory	with	the		LoadImage()		Boot	Service	and	invoked	with	the		StartImage()	
Boot	Service.	The		LoadImage()		service	automatically	creates	an	image	handle	and	installs	the
	EFI_LOADED_IMAGE_PROTOCOL		onto	the	image	handle.	The		EFI_LOADED_IMAGE_PROTOCOL		describes	the	location	from
where	the	device	driver	was	loaded	and	the	location	in	system	memory	to	where	the	device	driver	was
placed.	The		Unload()		service	of	the		EFI_LOADED_IMAGE_PROTOCOL		is	initialized	to		NULL		by		LoadImage()	.	This	setting
means	that	by	default	the	driver	does	not	have	an	unload	function.

The		StartImage()		service	transfers	control	to	the	driver's	entry	point	as	described	in	the	PE/COFF	header
of	the	UEFI	Driver	image.	The	PE/COFF	header	layout	is	defined	in	the	Microsoft	Portable	Executable	and
Common	Object	File	Format	Specification.

The	driver	entry	point	is	responsible	for	installing	the	Driver	Binding	Protocol	onto	the	driver's	image
handle.	The	figure	below	shows	the	state	of	the	system	before	a	device	driver	is	loaded,	just	before	it	is
started,	and	after	the	driver's	entry	point	has	been	executed.

Figure	9-Device	driver	with	single	Driver	Binding	Protocol

The	following	figure	is	the	same	as	the	figure	above,	except	this	device	driver	has	also	implemented
optional	features.	This	difference	means	the	following:

Additional	protocols	are	installed	onto	the	driver's	image	handle.

An		Unload()		service	is	registered	in	the		EFI_LOADED_IMAGE_PROTOCOL	.

An	Exit	Boot	Services	event	and	Set	Virtual	Address	Map	event	have	been	created.	These	are	part	of
the	driver's	initialization	(the	driver's	entry	point).

Figure	10-Device	driver	with	optional	features

6.1.4	Device	drivers	with	one	driver	binding	protocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

265DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.4	Device	drivers	with	one	driver	binding	protocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

266DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.5	Device	drivers	with	multiple	driver	binding	protocols

A	more	complex	device	driver	is	one	that	produces	more	than	one	instance	of	the	driver	binding
protocol.	The	first	instance	of		EFI_DRIVER_BINDING_PROTOCOL		is	installed	onto	the	driver's	image	handle,	and
the	additional	instances	of	the	Driver	Binding	Protocol	are	installed	onto	newly	created	driver	binding
handles.

The	figure	below	shows	the	state	of	the	handle	database	before	a	driver	is	loaded,	before	it	is	started,
and	after	its	driver	entry	point	has	been	executed.	This	specific	driver	produces	three	instances	of	the
Driver	Binding	Protocol.

Figure	11-Device	driver	with	multiple	driver	binding	protocols

Any	device	driver	that	produces	multiple	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL		can	be	broken	up	into
multiple	drivers.	Each	driver	would	then	produce	a	single	instance	of	the		EFI_DRIVER_BINDING_PROTOCOL	.
However,	there	are	advantages	if	a	driver	produces	multiple	instances	of	the	Driver	Binding	Protocol.

First,	it	may	reduce	the	overall	size	of	the	drivers.	If	two	related	drivers	are	combined,	and	those	two
drivers	can	share	internal	functions,	the	executable	image	size	of	the	single	driver	may	be	smaller	than
the	sum	of	the	two	individual	drivers.

Combining	drivers	can	also	help	manage	platform	features.	A	single	platform's	features	may	require
several	drivers.	If	the	drivers	are	separate,	multiple	drivers	have	to	be	dealt	with	individually	to	add	or
remove	that	single	feature.

6.1.5	Device	drivers	with	multiple	driver	binding	protocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

267DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

An	example	device	driver	in	EDK	II	that	produces	multiple	instances	of	the	Driver	Binding	Protocol	is	the
console	platform	driver	in	the		MdeModulePkg/Universal/Console/ConPlatformDxe		subdirectory.	This	driver	implements
the	platform	policy	for	managing	multiple	console	input	and	output	devices.	It	produces	one	Driver
Binding	Protocol	for	the	console	output	devices,	and	another	Driver	Binding	Protocol	for	the	console
input	devices.	The	management	of	console	devices	needs	to	be	centralized,	so	it	makes	sense	to
combine	these	two	functions	into	a	single	driver	so	the	platform	vendor	needs	to	update	only	one	driver
to	adjust	the	platform	policy	for	managing	console	devices.

6.1.5	Device	drivers	with	multiple	driver	binding	protocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

268DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.6	Device	driver	protocol	management

Device	drivers	consume	one	or	more	I/O-related	protocols	and	use	the	services	of	those	protocols	to
produce	one	or	more	I/O-related	protocols.	The		Supported()		and		Start()		functions	of	the	Driver	Binding
Protocol	are	responsible	for	opening	the	I/Orelated	protocols	being	consumed	using	the	EFI	Boot
Service		OpenProtocol()	.	The		Stop()		function	is	responsible	for	closing	the	consumed	I/O-related	protocols
using		CloseProtocol()	.

A	protocol	can	be	opened	in	several	different	modes,	but	the	most	common	is		EFI_OPEN_PROTOCOL_BY_DRIVER	.
When	a	protocol	is	opened	by		EFI_OPEN_PROTOCOL_BY_DRIVER	,	a	test	is	made	to	see	if	that	protocol	is	already
being	consumed	by	any	other	drivers.	The	open	operation	succeeds	only	if	the	protocol	is	not	being
consumed	by	any	other	drivers.

Caution:	Using	the		OpenProtocol()		service	with	EFIOPEN_PROTOCOL_BY_DRIVER	is	how	resource
conflicts	are	avoided	in	the	UEFI	driver	model.	However,	it	requires	that	every	driver	present	in	the
system	follow	the	driver	interoperability	rules	for	all	resource	conflicts	to	be	avoided._

The	following	figure	shows	the	image	handle	for	a	device	driver	as		LoadImage()		and		StartImage()		are	called.
In	addition,	it	shows	the	states	of	three	different	controller	handles	as	the	Driver	Binding	Protocol
services		Supported()	,		Start()	,	and		Stop()		are	called.		Controller	Handle	1		and		Controller	Handle	3		pass	the
	Supported()		test,	so	the		Start()		function	can	be	called.	In	this	case,	the		Supported()		service	tests	to	see	if
the	controller	handle	supports	Protocol	A.		Start()		is	then	called	for		Controller	Handle	1		and		Controller	Handle
3	.	In	the		Start()		function,		Protocol	A		is	opened		EFI_OPEN_PROTOCOL_BY_DRIVER	,	and		Protocol	B		is	installed	onto
the	same	controller	handle.	The	implementation	of		Protocol	B		uses	the	services	of		Protocol	A		to	produce
the	services	of		Protocol	B	.

All	drivers	that	follow	the	UEFI	driver	model	must	support	the		Stop()		service.	The		Stop()		service	must	put
the	handles	back	into	their	previous	state,	before		Start()		was	called,	so	the		Stop()		service	uninstalls
	Protocol	B		and	closes		Protocol	A	.

6.1.6	Device	driver	protocol	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

269DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	12-Device	driver	protocol	management

The	figure	below	shows	a	more	complex	device	driver	that	requires		Protocol	A		and		Protocol	B		to	produce
	Protocol	C	.	Notice	that	the	controller	handles	that	do	not	support	either		Protocol	A		or		Protocol	B		do	not
pass	the		Supported()		test.	In	addition,	controller	handles	that	only	support		Protocol	A		or	only		Protocol	B	
also	do	not	pass	the		Supported()		test.	Finally,	note	that		Controller	Handle	6		already	has		Protocol	A		opened
by		EFI_OPEN_PROTOCOL_BY_DRIVER	,	so	this	device	driver	requiring	both		Protocol	A		and		Protocol	B		also	does	not
pass	the		Supported()		test.

This	example	highlights	some	of	the	flexibility	of	the	UEFI	driver	model.	Because	the		Supported()		and
	Start()		services	are	functions,	a	driver	writer	can	implement	simple	or	complex	algorithms	to	test	driver
support	for	a	specific	controller	handle.

6.1.6	Device	driver	protocol	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

270DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.1.6	Device	driver	protocol	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

271DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	13-Complex	device	driver	protocol	management

TIP:	The	best	way	to	design	the	algorithm	for	the	opening	protocols	is	to	write	a	Boolean	expression	for
the	protocols	that	a	device	driver	consumes.	Then,	expand	this	Boolean	expression	into	the	sum	of
products	form.	Each	product	in	the	expanded	expression	requires	its	own	Driver	Binding	Protocol.

This	scenario	is	another	way	that	a	device	driver	may	be	required	to	produce	multiple	instances	of	the
Driver	Binding	Protocol.	The		Supported()		service	for	each	Driver	Binding	Protocol	attempts	to	open	each
protocol	in	a	product	term.	If	any	of	those	open	operations	fail,	then		Supported()		fails.	If	all	the	opens
succeed,	then	the		Supported()		test	passes.	The		Start()		function	should	open	each	protocol	in	the
product	term,	and	the		Stop()		function	should	close	each	protocol	in	the	product	term.

For	example,	the	two	examples	above	would	have	the	following	Boolean	expressions:

(Protocol	A)

6.1.6	Device	driver	protocol	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

272DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

(Protocol	A		AND		Protocol	B)

These	two	expressions	have	only	one	product	term,	so	only	one		EFI_DRIVER_BINDING_PROTOCOL		is	required.	A
more	complex	expression	would	be	as	follows:

(Protocol	A		AND	(Protocol	B		OR		Protocol	C))

If	this	Boolean	expression	is	expanded	into	a	sum	of	product	form,	it	would	yield	the	following:

((Protocol	A		AND		Protocol	C)	OR	(Protocol	B		AND		Protocol	C))

This	expression	would	require	a	driver	with	two	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL	.	One	would	test
for		Protocol	A		and		Protocol	C	,	and	the	other	would	test	for		Protocol	B		and		Protocol	C	

6.1.6	Device	driver	protocol	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

273DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2	Bus	drivers

All	bus	drivers	that	follow	the	UEFI	driver	model	share	a	set	of	common	characteristics.	The	following	two
discussions	describe	the	required	and	optional	features	for	bus	drivers.	These	sections	are	followed	by
a	detailed	description	of	bus	drivers	that	do	the	following:

Produce	a	single	instance	of	the	Driver	Binding	Protocol

Produce	multiple	instances	of	the	Driver	Binding	Protocol

Produce	all	of	their	child	devices	in	their		Start()		function

Are	able	to	produce	a	single	child	device	in	their		Start()		function

Produce	at	most	one	child	device	from	their		Start()		function

Bus	drivers	that	do	not	produce	any	child	devices	in	their		Start()		function

Produce	child	devices	with	multiple	parent	devices

6.2	Bus	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

274DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.1	Required	Bus	Driver	Features

Bus	drivers	are	required	to	implement	the	following	features:

Install	one	or	more	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL		in	the	driver's	entry	point.

Manage	one	or	more	controller	handles.	Even	if	a	driver	writer	is	convinced	that	the	driver	manages
only	a	single	bus	controller,	the	driver	should	be	designed	to	manage	multiple	bus	controllers.	The
overhead	for	this	functionality	is	low,	and	it	makes	the	driver	more	portable.

Produce	any	child	handles.	This	feature	is	the	key	distinction	between	device	drivers	and	bus
drivers.	(Device	drivers	do	not	produce	child	handles.)

Consumes	one	or	more	I/O-related	protocols	from	a	controller	handle.

Produces	one	or	more	I/O-related	protocols	on	each	child	handle.

6.2.1	Required	Bus	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

275DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.2	Optional	Bus	Driver	Features

The	following	lists	features	that	a	bus	driver	can	optionally	implement.	Optional	recommended	features
are	noted	below.

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME2_PROTOCOL		in	the	driver's	entry	point.	Implementing
this	feature	is		strongly			recommended	.	It	allows	a	driver	to	provide	human-readable	names	for	the	name
of	the	driver	and	the	controllers	that	the	driver	is	managing.

Register	one	or	more	HII	packages	in	the	driver's	entry	point.	HII	packages	provide	strings,	fonts,
and	forms	that	allow	users	(such	as	IT	administrators)	to	change	the	driver's	configuration.	HII
packages	are	only	required	if	a	driver	must	provide	the	ability	for	a	user	to	change	configuration
settings	for	a	device.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		in	the	driver's	entry	point.	If	a	driver
needs	to	provide	diagnostics	for	the	controllers	that	it	manages,	this	protocol	is	required.

Provide	an		EFI_LOADED_IMAGE_PROTOCOL.Unload()		service,	so	the	driver	can	be	dynamically	unloaded.	It	is
	recommended		that	this	feature	be	implemented	during	driver	development,	driver	debug,	and	system
integration.	It	is		strongly	recommended		that	this	service	remain	in	drivers	for	add-in	adapters	to	help
debug	interaction	issues	during	system	integration.

Parses	the		RemainingDevicePath		parameter	that	is	passed	into	the

	Supported()		and		Start()		services	of	the	Driver	Binding	Protocol	if	it	is	not		NULL	.	This	is		strongly	recommended	
so	a	bus	driver	can	start	only	the	one	child	specified	by		RemainingDevicePath	.	Implementing	this	feature	may
significantly	improve	platform	boot	performance.

Install	an		EFI_DEVICE_PATH_PROTOCOL		on	each	child	handle	that	is	created.	This	is	required	only	if	the	child
handle	represents	a	physical	device.	If	child	handle	represents	a	virtual	device,	then	an
	EFI_DEVICE_PATH_PROTOCOL		is	not	required.

Install	one	or	more	instances	of	the		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		in	the	driver's	entry	point.	This
protocol	is	required	only	if	a	higher	priority	rule	for	connecting	drivers	to	a	controller	through	the
UEFI	Boot	Service		ConnectController()	is	needed.

Install	one	or	more	instances	of	the		EFI_DRIVER_HEALTH_PROTOCOL		in	the	driver's	entry	point.	This	protocol
is	required	only	for	drivers	that	manage	devices	that	can	be	in	a	bad	state	that	is	recoverable
through	either	a	repair	operation	or	configuration	operation.	-	Install	one	or	more	instances	of	the

	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		in	the	driver's	entry	point.	This	protocol	is	required	only	with	bus
drivers	for	a	bus	type	where	the	devices	on	the	bus	can	provide	a	container	for	more	than	one	UEFI
Driver.	An	example	bus	type	is	PCI	where	PCI	Option	ROMs	on	PCI	Adapters	may	contain	more	than	one
UEFI	Driver.

Install	an	instance	of	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		in	the	driver's	entry	point.	This	protocol
is	required	for	PCI	controllers	or	other	plug-in	cards.	Implementation	of	this	feature	is		recommended	.

Create	an	Exit	Boot	Services	event	in	the	driver's	entry	point.	This	feature	is	required	only	if	the
driver	is	required	to	place	the	devices	it	manages	in	a	specific	state	just	before	control	is	handed	to
an	operating	system.

Creates	a	Set	Virtual	Address	Map	event	in	the	driver's	entry	point.	This	feature	is	required	only	for	a
device	driver	that	is	a	UEFI	runtime	driver.

6.2.2.1	Compatibility	with	Older	EFI/UEFI	Specifications

The	following	lists	the	features	a	bus	driver	can	optionally	implement	to	provide	compatibility	with	older
versions	of	the	EFI	Specification	and	UEFI	Specification.

6.2.2	Optional	Bus	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

276DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME_PROTOCOL		in	the	driver's	entry	point.	Implementing
this	feature	is		strongly	recommended		for	drivers	that	are	required	to	be	compatible	with	EFI	1.10	It	allows
a	driver	to	provide	human-readable	names	for	the	name	of	the	driver	and	the	controllers	the	driver
manages.	The	EDK	II	libraries	provide	easy	methods	to	produce	both	the	Component	Name	Protocol
and	the	Component	Name	2	Protocol	with	very	little	additional	overhead.

Install	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION_PROTOCOL		in	the	driver's	entry	point.	If	a	driver
must	be	compatible	with	EFI	1.10,	and	has	any	configurable	options,	this	protocol	is	required.

Install	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION2_PROTOCOL		in	the	driver's	entry	point.	If	a
driver	must	be	compatible	with	UEFI	2.0	and	has	any	configurable	options,	this	protocol	is	required.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS_PROTOCOL		in	the	driver's	entry	point.	If	a	driver
must	be	compatible	with	EFI	1.10	and	provide	diagnostics	for	the	controllers	that	the	driver
manages,	this	protocols	is	required.

6.2.2	Optional	Bus	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

277DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.3	Bus	drivers	with	one	driver	binding	protocol

The	driver	entry	point	of	a	bus	driver	is	very	similar	to	the	driver	entry	point	of	a	device	driver.	The
discussion	in	Section	6.1.4	applies	equally	well	to	both	bus	drivers	and	device	drivers.	The	differences
between	bus	drivers	and	device	drivers	are	exposed	in	the	implementations	of	the	Driver	Binding
Protocol.	The	following	sections	describe	the	behaviors	of	the		Start()		function	of	the	Driver	Binding
Protocol	for	each	type	of	bus	driver.

6.2.3	Bus	drivers	with	one	driver	binding	protocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

278DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.4	Bus	drivers	with	multiple	driver	binding	protocols

The	driver	entry	point	of	a	bus	driver	is	very	similar	to	the	driver	entry	point	of	a	device	driver.	The
discussion	in	Section	6.1.5	applies	equally	well	to	both	bus	drivers	and	device	drivers.	The	differences
between	bus	drivers	and	device	drivers	are	exposed	in	the	implementations	of	the	Driver	Binding
Protocol.	The	following	discussions	describe	the	behaviors	of	the		Start()		function	of	the	Driver	Binding
Protocol	for	each	type	of	bus	driver.

An	example	bus	driver	in	EDK	II	that	produces	multiple	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL	,	is	the
console	splitter	driver	in	the		MdeModulePkg/Universal/Console/ConSplitterDxe		subdirectory.	This	driver	multiplexes
multiple	console	output	and	console	input	devices	into	a	single	virtual	console	device.	It	produces
instances	of	the	Driver	Binding	Protocol	for	the	following:

Console	input	device

Console	output	devices

Standard	error	device

Simple	pointer	devices

Absolute	pointer	devices

This	driver	is	an	example	of	a	single	feature	that	can	be	added	or	removed	from	a	platform	by	adding	or
removing	a	single	component.	It	could	have	been	implemented	as	five	different	drivers,	but	there	were
many	common	functions	between	the	drivers,	so	it	also	saved	code	space	to	combine	these	five
functions.

6.2.4	Bus	drivers	with	multiple	driver	binding	protocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

279DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.5	Bus	driver	protocol	and	child	management

The	management	of	I/O-related	protocols	by	a	bus	driver	is	very	similar	to	the	management	of	I/O-related
protocol	for	device	drivers	described	in	Section	6.1.6.	A	bus	driver	opens	one	or	more	I/O-related
protocols	on	the	controller	handle	for	the	bus	controller,	creates	one	or	more	child	handles	and	installs
one	or	more	I/O-related	protocols.	If	the	child	handle	represents	a	physical	device,	a	Device	Path
Protocol	must	also	be	installed	onto	the	child	handle.	The	child	handle	is	also	required	to	open	the
parent	I/O	protocol	with	an	attribute	of		EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER	.

Some	types	of	bus	drivers	can	produce	a	single	child	handle	each	time		Start()		is	called,	but	only	if	the
RemainingDevicePath	passed	into		Start()		represents	a	valid	child	device.	This	distinction	means	that	it
may	take	multiple	calls	to		Start()		to	produce	all	the	child	handles.	If	RemainingDevicePath	is		NULL	,	all
remaining	child	handles	are	created	at	once.

When	a	bus	driver	opens	an	I/O-related	protocol	on	the	controller	handle,	it	typically	uses	an	open	mode
of		EFI_OPEN_PROTOCOL_BY_DRIVER	.	However,	depending	on	the	type	of	bus	driver,	a	return	code	of
	EFI_ALREADY_STARTED		from		OpenProtocol()		may	be	acceptable.	If	a	device	driver	gets	this	return	code,	then	the
device	driver	should	not	manage	the	controller	handle.	If	a	bus	driver	gets	this	return	code,	then	it
means	that	the	bus	driver	has	already	connected	to	the	controller	handle.

The	figure	below	shows	a	simple	bus	driver	that	consumes		Protocol	A		from	a	bus	controller	handle	and
creates	N	child	handles	with	a		Device	Path	Protocol		and		Protocol	B	.	The		Stop()		function	is	responsible	for
destroying	the	child	handles	by	removing	Protocol	B	and	the		Device	Path	Protocol	.		Protocol	A		is	first
opened		EFI_OPEN_PROTOCOL_BY_DRIVER		so	Protocol	A	cannot	be	requested	by	any	other	drivers.	Then,	as	each
child	handle	is	created,	the	child	handle	opens		Protocol	A			EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER	.	Using	this
attribute	records	the	parent-child	relationship	in	the	handle	database,	so	this	information	can	be
extracted	if	needed.	The	parent-child	links	are	used	by		DisconnectController()		when	a	request	is	made	to
stop	a	bus	controller.

6.2.5	Bus	driver	protocol	and	child	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

280DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	14-Bus	driver	protocol	management

The	following	sections	describe	the	subtle	differences	in	child	handle	creation	for	each	of	the	bus	driver
types.

6.2.5	Bus	driver	protocol	and	child	managementEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

281DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.6	Bus	drivers	that	produce	one	child	in	Start()

If	the	RemainingDevicePath	parameter	passed	into		Supported()		and		Start()		is		NULL	,	the	bus	driver	must
produce	child	handles	for	all	children.	If	RemainingDevicePath	is	not		NULL	,	the	bus	driver	should	parse
RemainingDevicePath	and	attempt	to	produce	only	the	one	child	device	described	by
RemainingDevicePath.	If	the	driver	does	not	recognize	the	device	path	node	in	RemainingDevicePath,	or
if	the	device	described	by	the	device	path	node	does	not	match	any	of	the	children	currently	attached
to	the	bus	controller,	the		Supported()		and		Start()		services	should	fail.	If	the	RemainingDevicePath	is
recognized,	and	the	device	path	node	does	match	a	child	device	that	is	attached	to	the	bus	controller,
a	child	handle	should	be	created	for	that	one	child	device.

Note:	This	step	does	not	make	sense	for	all	bus	types	because	some	require	the	entire	bus	to	be
enumerated	to	produce	even	a	single	child.	In	these	cases,	the	RemainingDevicePath	should	be
ignored.

If	a	bus	type	has	the	ability	to	produce	a	child	handle	without	enumerating	the	entire	bus,	this	ability
should	be	implemented.	Implementing	this	feature	provides	faster	boot	times	and	is	one	of	the	major
advantages	of	the	UEFI	driver	model.

The	UEFI	boot	manager	may	pass	the	RemainingDevicePath	of	the	console	device	and	boot	devices	to
	ConnectController()	,	and		ConnectController()		then	pass	this	same	RemainingDevicePath	into	the		Supported()	
and		Start()		services	of	the	Driver	Binding	Protocol.	This	design	allows	the	minimum	number	of	drivers	to
be	started	to	boot	an	operating	system.	The	process	can	be	repeated,	so	one	additional	child	handle
can	be	produced	in	each	call	to		Start()	.

Also,	a	few	child	handles	can	be	created	from	the	first	few	calls	to		Start()		and	then	a
RemainingDevicePath	of		NULL		may	be	passed	in,	which	would	require	the	rest	of	the	child	handle	to	be
produced.	For	example,	most	SCSI	buses	do	not	need	to	be	scanned	to	create	a	handle	for	a	SCSI
device	when	SCSI	PUN	and	SCSI	LUN	are	known	ahead	of	time.	By	starting	only	the	single	mass	storage
boot	device,	on	the	OS	required	SCSI	boot	channel,	scanning	of	all	the	other	SCSI	devices	can	be
eliminated.

6.2.6	Bus	drivers	that	produce	one	child	in	Start()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

282DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.7	Bus	drivers	that	produce	all	children	in	Start()

If	a	bus	driver	is	always	required	to	enumerate	all	of	its	child	devices,	then	the	RemainingDevicePath
parameter	should	be	ignored	in	the		Supported()		and		Start()		services	of	the		EFI_DRIVER_BINDING_PROTOCOL	.	All	of
the	child	handles	should	be	produced	in	the	first	call	to		Start()	.

6.2.7	Bus	drivers	that	produce	all	children	in	Start()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

283DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.8	Bus	drivers	that	produce	at	most	one	child	in	Start()

Some	bus	drivers	are	for	bus	controllers	that	have	only	a	single	port,	so	they	have	at	most	one	child
handle.	If	RemainingDevicePath	is		NULL	,	then	that	one	child	handle	should	be	produced.	If
RemainingDevicePath	is	not		NULL	,	then	the	RemainingDevicePath	should	be	parsed	to	see	if	it	matches
a	device	path	node	that	the	bus	driver	knows	how	to	produce.

For	example,	a	serial	port	can	have	only	one	device	attached	to	it.	This	device	may	be	a	terminal,	a
mouse,	or	a	drill	press,	for	example.	The	driver	that	consumes	the	Serial	I/O	Protocol	from	a	handle	must
create	a	child	handle	with	the	produced	protocol	that	uses	the	services	of	the	Serial	I/O	Protocol.

6.2.8	Bus	drivers	that	produce	at	most	one	child	in	Start()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

284DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.9	Bus	drivers	that	produce	no	children	in	Start()

If	a	bus	controller	supports	hot-plug	devices	and	the	UEFI	driver	wants	to	support	hotplug	events,	then
no	child	handles	should	be	produced	in		Start()	.	Instead,	a	periodic	timer	event	should	be	created,	and
each	time	the	notification	function	for	the	periodic	timer	event	is	called,	the	bus	driver	should	check	to
see	if	any	devices	have	been	hot	added	or	hot	removed	from	the	bus.	Any	devices	that	were	already
plugged	into	the	bus	when	the	driver	was	first	started	look	like	they	were	just	hot	added.	This	means
that	for	the	devices	that	were	already	plugged	into	the	bus,	the	child	handles	are	produced	the	first
time	the	notification	function	is	executed.

The	USB	bus	driver	is	an	example	driver	in	the	EDK	II	that	produces	no	children	in	the		Start()		service	of
the	Driver	Binding	Protocol.	This	driver	is	located	at		MdeModulePkg\Bus\Usb\UsbBusDxe		directory.

6.2.9	Bus	drivers	that	produce	no	children	in	Start()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

285DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.2.10	Bus	drivers	that	produce	children	with	multiple	parents

Sometimes	a	bus	driver	may	produce	a	child	handle,	and	that	child	handle	actually	uses	the	services	of
multiple	parent	controllers.	This	design	is	useful	for	multiplexing	a	group	of	parent	controllers.

The	bus	driver,	in	this	case,	manages	multiple	parent	controllers	and	produces	a	single	child	handle.
The	services	produced	on	that	single	child	handle	make	use	of	the	services	from	each	of	the	parent
controllers.	Typically,	the	child	device	is	a	virtual	device,	so	a	Device	Path	Protocol	would	not	be	installed
onto	the	child	handle.

The	console	splitter	bus	driver	is	an	example	driver	in	the	EDK	II	that	produces	children	with	multiple
parent	controllers	in	the		Start()		service	of	the	Driver	Binding	Protocol.	This	driver	is	in	the
	\MdeModulePkg\Universal\Console\ConSplitterDxe		directory.

6.2.10	Bus	drivers	that	produce	children	with	multiple	parentsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

286DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.3	Hybrid	drivers

A	hybrid	driver	has	features	of	both	a	device	driver	and	a	bus	driver.	The	main	distinction	between	a
device	driver	and	a	bus	driver	is	that	a	bus	driver	creates	child	handles	and	a	device	driver	does	not.	In
addition,	a	bus	driver	is	allowed	only	to	install	produced	protocols	on	the	newly	created	child	handles.	A
hybrid	driver	does	the	following:

Creates	new	child	handles.

Installs	produced	protocols	on	the	child	handles.

Installs	produced	protocols	onto	the	bus	controller	handle.

A	driver	for	a	multi-channel	RAID	SCSI	host	controller	is	a	hybrid	driver.	It	produces	the	Extended	SCSI
Pass	Thru	Protocol	(with	the	logical	bit	on)	on	the	controller	handle	and	creates	child	handles	with
Extended	SCSI	Pass	Thru	Protocol	for	each	physical	channel	(with	the	logical	bit	off).

6.3	Hybrid	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

287DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.3.1	Required	Hybrid	Driver	Features

Hybrid	drivers	are	required	to	implement	the	following	features:

Installation	of	one	or	more	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL		in	a	driver's	entry	point.

Management	of	one	or	more	controller	handles.

Even	if	a	driver	writer	is	convinced	the	driver	manages	only	a	single	bus	controller,	the	driver	should	be
designed	to	manage	multiple	bus	controllers.	The	overhead	for	this	functionality	is	low,	and	it	makes	the
driver	more	portable.

Production	of	child	handles.

This	feature	is	the	key	distinction	between	device	drivers	and	bus	drivers.

Consumption	of	one	or	more	I/O-related	protocols	from	a	controller	handle.

Production	of	one	or	more	I/O-related	protocols	on	the	same	controller	handle.

Production	of	one	or	more	I/O-related	protocols	on	each	child	handle.

6.3.1	Required	Hybrid	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

288DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.3.2	Optional	Hybrid	Driver	Features

The	following	is	a	list	of	features	a	hybrid	driver	can	optionally	implement.	Those	recommended	are
noted	below.

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME2_PROTOCOL		in	the	driver's	entry	point.	Implementing
this	feature	is		strongly			recommended	

It	allows	a	driver	to	provide	human-readable	names	for	the	name	of	the	driver	and	the	controllers	that
the	driver	is	managing.

Register	one	or	more	HII	packages	in	the	driver's	entry	point.

These	HII	packages	provide	strings,	fonts	and	forms	that	allow	users	(such	as	IT	administrators)	to
change	the	driver's	configuration.	These	HII	packages	are	required	only	if	a	driver	must	provide	the
ability	for	a	user	to	change	configuration	settings	for	a	device.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		in	the	driver's	entry	point.

If	a	driver	needs	to	provide	diagnostics	for	the	controllers	the	driver	manages,	this	protocol	is	required.

Provide	an		EFI_LOADED_IMAGE_PROTOCOL.Unload()		service,	so	the	driver	can	be	dynamically	unloaded.

It	is		recommended		that	this	feature	be	implemented	during	driver	development,	driver	debug,	and	system
integration.	It	is		strongly	recommended		that	this	service	remain	in	drivers	for	add-in	adapters	to	help	debug
interaction	issues	during	system	integration.

Parses	the		RemainingDevicePath		parameter	that	is	passed	into	the		Supported()		and		Start()		services	of
the	Driver	Binding	Protocol	if	it	is	not		NULL	.

This	is		strongly	recommended		so	a	bus	driver	can	start	only	the	one	child	specified	by		RemainingDevicePath	.
Implementing	this	feature	may	significantly	improve	platform	boot	performance.

Install	an		EFI_DEVICE_PATH_PROTOCOL		on	each	child	handle	that	is	created.

This	feature	is	required	only	if	the	child	handle	represents	a	physical	device.	If	the	child	handle
represents	a	virtual	device,	then	an		EFI_DEVICE_PATH_PROTOCOL		is	not	required.

Install	one	or	more	instances	of	the		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	only	if	a	higher	priority	rule	for	connecting	drivers	to	a	controller	through	the
UEFI	Boot	Service		ConnectController()	is	needed.

Install	one	or	more	instances	of	the		EFI_DRIVER_HEALTH_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	only	for	drivers	that	manage	devices	that	can	be	in	a	recoverably	bad	state
through	either	a	repair	operation	or	a	configuration	operation.

Install	one	or	more	instances	of	the

	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	only	for	bus	drivers	for	a	bus	type	where	the	devices	on	the	bus	can	provide	a
container	for	more	than	one	UEFI	Driver.	An	example	of	such	a	bus	type	is	PCI,	with	PCI	Option	ROMs	on
PCI	Adapters	containing	more	than	one	UEFI	Driver.

Install	an	instance	of	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		in	the	driver's	entry	point.

This	protocol	is	required	for	PCI	controller	or	other	plug-in	cards	Implementation	of	this	feature	is
	recommended	.

Create	an	Exit	Boot	Services	event	in	the	driver's	entry	point.

6.3.2	Optional	Hybrid	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

289DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

This	feature	is	required	only	if	the	driver	is	required	to	place	the	devices	it	manages	in	a	specific	state
just	before	control	is	handed	to	an	operating	system.

Creates	a	Set	Virtual	Address	Map	event	in	the	driver's	entry	point.

This	feature	is	required	only	for	a	device	driver	that	is	a	UEFI	runtime	driver.

6.3.2.1	Compatibility	with	Older	EFI/UEFI	Specifications

The	following	is	the	list	of	features	a	hybrid	driver	can	optionally	implement	to	provide	compatibility	with
older	versions	of	the	EFI	Specification	and	UEFI	Specification.

Install	one	or	more	instances	of	the		EFI_COMPONENT_NAME_PROTOCOL		in	the	driver's	entry	point.

Implementing	this	feature	is		strongly	recommended		for	drivers	that	are	required	to	be	compatible	with	EFI
1.10	It	allows	a	driver	to	provide	human-readable	names	for	the	name	of	the	driver	and	the	controllers	it
manages.	The	EDK	II	libraries	provide	easy	methods	to	produce	both	the	Component	Name	Protocol	and
the	Component	Name	2	Protocol	with	very	little	additional	overhead.

Install	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION_PROTOCOL		in	the	driver's	entry	point.

It	is	required	if	a	driver	must	be	compatible	with	EFI	1.10	and	has	any	configurable	options.

Install	one	or	more	instances	of	the		EFI_DRIVER_CONFIGURATION2_PROTOCOL		in	the	driver's	entry	point.

It	is	required	if	a	driver	must	be	compatible	with	UEFI	2.0	and	has	any	configurable	options.

Install	one	or	more	instances	of	the		EFI_DRIVER_DIAGNOSTICS_PROTOCOL		in	the	driver's	entry	point.

It	is	required	if	a	driver	must	be	compatible	with	EFI	1.10	and	provide	diagnostics	for	the	controllers	that
the	driver	manages.

6.3.2	Optional	Hybrid	Driver	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

290DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.4	Service	Drivers

A	service	driver	does	not	manage	any	devices	nor	does	it	produce	any	instances	of	the
	EFI_DRIVER_BINDING_PROTOCOL	.	It	is	a	simple	driver	that	produces	one	or	more	protocols	on	one	or	more	new
service	handles.	These	service	handles	do	not	have	a	Device	Path	Protocol	because	they	do	not
represent	physical	devices.	The	driver	entry	point	returns		EFI_SUCCESS		after	the	service	handles	are
created	and	the	protocols	are	installed,	leaving	the	driver	resident	in	system	memory.	The	list	of
features	that	a	service	driver	can	optionally	implement	follows.	Recommended	and	optional	features	are
noted	below.

Register	one	or	more	HII	packages	in	the	driver's	entry	point.

These	HII	packages	provide	strings,	fonts,	and	forms	that	allow	users	(such	as	IT	administrators)	to
change	the	driver's	configuration.	These	HII	packages	are	required	only	if	a	driver	must	provide	the
ability	for	a	user	to	change	configuration	settings.

Install	one	or	more	instances	of	the		EFI_HII_CONFIG_ACCESS_PROTOCOL		in	the	driver's	entry	point.

This	protocol	provides	the	services	to	save	and	restore	configuration	settings	for	a	device.	This	protocol
is	required	only	if	a	driver	must	provide	the	ability	for	a	user	to	change	configuration	settings.

Install	an	instance	of	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		in	the	driver's	entry	point.

The	UEFI	Specification	requires	this	protocol	for	PCI	controllers	or	other	plug-in	cards.	Even	though	this
requirement	does	not	apply	to	Service	Drivers,	implementation	of	this	feature	is	still		recommended	.

6.4	Service	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

291DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.5	Root	Bridge	Drivers

A	root	bridge	driver	does	not	produce	any	instances	of	the		EFI_DRIVER_BINDING_PROTOCOL	.	It	is	responsible	for
initializing	and	immediately	creating	physical	controller	handles	for	the	root	bridge	controllers	in	a
platform.	It	is	the	UEFI	driver's	responsibility	to	install	the	Device	Path	Protocol	onto	the	physical
controller	handles	because	the	root	bridge	controllers	represent	physical	devices.

The	most	common	example	of	a	root	bridge	driver	is	a	driver	that	produces	the	PCI	Root	Bridge	I/O
Protocol	and	a	Device	Path	Protocol	for	each	PCI	Root	Bridge	in	a	platform	supporting	PCI.

A	list	of	features	a	root	bridge	driver	can	optionally	implement	follows.	Recommended	and	optional
features	are	noted	below.

Register	one	or	more	HII	packages	in	the	driver's	entry	point.

These	HII	packages	provide	strings,	fonts,	and	forms	that	allow	users	(such	as	IT	administrators)	to
change	the	driver's	configuration.	These	HII	packages	are	required	only	if	a	driver	must	provide	the
ability	for	a	user	to	change	configuration	settings	for	a	device.

Install	one	or	more	instances	of	the		EFI_HII_CONFIG_ACCESS_PROTOCOL		in	the	driver's	entry	point.

This	protocol	provides	the	services	to	save	and	restore	configuration	settings	for	a	device.	It	is	required
only	if	a	driver	must	provide	the	ability	for	a	user	to	change	configuration	settings	for	a	device.

Install	an	instance	of	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		in	the	driver's	entry	point.

The	UEFI	Specification	requires	this	protocol	for	PCI	controllers	or	other	plug-in	cards.	Even	though	this
requirement	does	not	apply	to	Root	Bridge	Drivers,	implementation	of	this	feature	is	still		recommended	.

6.5	Root	Bridge	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

292DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

6.6	Initializing	Drivers

An	initializing	driver	does	not	create	any	handles	and	it	does	not	add	any	protocols	to	the	handle
database.	Instead,	this	type	of	driver	performs	some	initialization	operations	and	then	intentionally
returns	an	error	code	so	the	driver	is	unloaded	from	system	memory.	There	are	currently	no	examples	of
initializing	drivers	in	the	EDK	II.

6.6	Initializing	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

293DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7	Driver	Entry	Point
This	chapter	covers	the	entry	point	for	the	different	categories	of	UEFI	drivers	and	their	optional
features	impacting	the	implementation	of	the	driver	entry	point.	The	most	common	category	of	UEFI
driver	is	one	that	follows	the	UEFI	driver	model.	This	category	of	driver	is	discussed	first,	followed	by	the
other	major	types	of	drivers	and	the	optional	features	those	drivers	may	choose	to	implement.	The
following	categories	of	UEFI	drivers	are	discussed:

UEFI	Driver	that	follows	the	UEFI	Driver	Model

UEFI	Runtime	Driver

Initializing	driver

Root	bridge	driver

Service	driver

The	driver	entry	point	is	the	function	called	when	a	UEFI	driver	is	started	with	the		StartImage()		service.	At
this	point	the	driver	has	already	been	loaded	into	memory	with	the		LoadImage()		service.

UEFI	drivers	use	the	PE/COFF	image	format	that	is	defined	in	the	Microsoft	Portable	Executable	and
Common	Object	File	Format	Specification.	This	format	supports	a	single	entry	point	in	the	code	section
of	the	image.	The		StartImage()		service	transfers	control	to	the	UEFI	driver	at	this	entry	point.

The	example	below	shows	the	entry	point	to	a	UEFI	driver	called		AbcDriverEntryPoint()	.	This	example	is
expanded	upon	as	each	of	UEFI	driver	categories	and	features	are	discussed.	The	entry	point	to	a	UEFI
driver	is	identical	to	the	standard	UEFI	image	entry	point	that	is	discussed	in	the	UEFI	Image	Entry	Point
section	of	the	UEFI	Specification.	The	image	handle	of	the	UEFI	driver	and	a	pointer	to	the	UEFI	system
table	are	passed	into	every	UEFI	driver.	The	image	handle	allows	the	UEFI	driver	to	discover	information
about	itself,	and	the	pointer	to	the	UEFI	system	table	allows	the	UEFI	driver	to	make	UEFI	Boot	Service
and	UEFI	Runtime	Service	calls.

The	UEFI	driver	can	use	the	UEFI	boot	services	to	access	the	protocol	interfaces	that	are	installed	in
the	handle	database,	which	allows	the	UEFI	driver	to	use	the	services	that	are	provided	through	the
various	protocol	interfaces.

Example	86-UEFI	Driver	Entry	Point

#include	<Uefi.h>

/**

		This	is	the	declaration	of	an	EFI	image	entry	point.	This	entry	point

		Is	the	same	for	UEFI	Applications,	UEFI	OS	Loaders,	and	UEFI	Drivers	including	both	device	drivers	and	bus	drivers.

		@param		ImageHandle		The	firmware	allocated	handle	for	the	UEFI	image.	@param	SystemTable	A	pointer	to	the	EFI	System	Table.

		@retval		EFI_SUCCESS		The	operation	completed	successfully.	@retval	Others	An	unexpected	error	occurred.

**/

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		return	EFI_SUCCESS;

}

The	name	of	the	driver	entry	point	function	must	be	declared	in	the		[Defines]		section	of	the	INF	file
associated	with	the	UEFI	Driver.	The	example	below	shows	the	INF	file	that	defines		ENTRY_POINT		to	the
	AbcDriverEntryPoint()		function	shown	in	the	previous	example.	Where	applicable,	this	INF	file	example	is

7	Driver	Entry	PointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

294DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

expanded	upon	as	each	of	UEFI	driver	categories	and	features	are	discussed.	See	Section	30.3	for
more	details	on	UEFI	Driver	INF	files	and	Appendix	A	for	a	complete	template	of	an	INF	file	for	a	UEFI
Driver.

Example	87-UEFI	Driver	INF	File

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	AbcDriverMinimum

		FILE_GUID						=	DA87D340-15C0-4824-9BF3-D52286674BEF

		MODULE_TYPE				=	UEFI_DRIVER

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	AbcDriverEntryPoint

[Sources]

		Abc.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiDriverEntryPoint

7	Driver	Entry	PointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

295DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.1	Optional	Features

This	section	summarizes	optional	features	impacting	the	implementation	of	the	driver	entry	point	of	a
UEFI	Driver.	This	is	not	a	complete	summary	of	all	the	optional	UEFI	driver	features.

Table	21	below	provides	the	list	of	optional	features	and	set	of	UEFI	driver	categories.

If	an	entry	in	the	table	is	empty,	the	feature	does	not	ever	apply	to	that	category	of	UEFI	Driver	and
must	never	be	implemented.	If	the	entry	in	the	table	contains	a	value	such	as	1.1	or	2.0,	it	means	the
feature	optionally	applies	to	that	category	of	UEFI	Driver	if,	and	only	if,	the	UEFI	Driver	is	required	to	run
correctly	on	platform	firmware	that	conforms	to	that	specific	version	of	the	EFI	Specification	or	UEFI
Specification.

For	example,	2.0	refers	to	the	UEFI	2.0	Specification,	and	1.02	refers	to	the	EFI	1.02	Specification.	If	the
entry	in	the	table	contains	a	value	followed	by	a	'+'	such	as	1.1+	or	2.1+,	then	that	means	the	feature
optionally	applies	to	that	category	of	UEFI	Driver	if	the	UEFI	Driver	is	required	to	run	correctly	on
platform	firmware	that	conforms	to	the	version	of	the	EFI	Specification	or	UEFI	Specification	specified	by
the	value	or	higher	values.	For	example,	2.0+	refers	to	the	UEFI	2.0,	2.1,	2.2,	2.3,	and	2.3.1
Specifications.

This	table	can	be	used	to	select	features	that	apply	to	a	specific	UEFI	Driver	implementation	once	the
UEFI	Driver	writer	knows	what	types	of	UEFI	platforms	with	which	the	UEFI	Driver	must	be	compatible	as
well	as	the	set	of	optional	features	the	UEFI	Driver	must	support.

For	example,	if	a	UEFI	Driver	is	required	to	run	on	platforms	that	support	UEFI	2.1	or	higher,	the
Component	Name	Protocol,	Driver	Configuration	Protocol,	Driver	Configuration	2	Protocol,	and	Driver
Diagnostics	Protocol	need	not	be	implemented	because	they	apply	only	to	UEFI	platforms	prior	to	UEFI
2.1.

The	Driver	Health	Protocol	may	be	optionally	implemented,	but	the	Driver	Health	Protocol	is	expected	to
be	used	only	by	a	platform	that	is	UEFI	2.2	or	higher.	In	this	case,	the	UEFI	Driver	must	not	depend	on
the	Driver	Health	Protocol	being	called	to	function	correctly	because	it	is	not	called	by	a	UEFI	2.1
platform.

7.1	Optional	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

296DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	21-UEFI	Driver	Feature	Selection	Matrix

UEFI	Driver	Model Non-UEFI	Driver	Model

Driver	Binding	Protocol 1.1+ 1.1+ 1.1+ 1.1+

Component	Name	2
Protocol 2.0+ 2.0+ 2.0+ 2.0+

HII	Packages 2.1+ 2.1+ 2.1+ 2.1+ 2.1+ 2.1+ 2.1+

HII	Config	Access	Protocol 2.1+ 2.1+ 2.1+

Driver	Health	Protocol 2.2+ 2.2+ 2.2+ 2.2+

Driver	Diagnostics	2
Protocol 2.0+ 2.0+ 2.0+ 2.0+

Driver	Family	Override
Protocol 2.1+ 2.1+ 2.1+ 2.1+

Driver	Supported	EFI
Version	Protocol 2.1+ 2.1+ 2.1+ 2.1+ 2.1+ 2.1+ 2.1+

Unload() 1.02+ 1.02
+ 1.02+ 1.02

+
1.02
+ 1.02+ 1.02+

Exit	Boot	Services	Event 1.02+ 1.02
+ 1.02+ 1.02

+
1.02
+ 1.02+ 1.02+

Set	Virtual	Address	Map
Event

1.02
+

1.02
+

Component	Name	Protocol 1.1 1.1 1.1 1.1

Driver	Configuration
Protocol 1.1 1.1 1.1 1.1

Driver	Configuration	2
Protocol 2.0 2.0 2.0 2.0

Driver	Diagnostics
Protocol 1.1 1.1 1.1 1.1

7.1	Optional	FeaturesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

297DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2	UEFI	Driver	Model

Drivers	that	follow	the	UEFI	driver	model	are	not	allowed	to	touch	any	hardware	in	their	driver	entry
point.	In	fact,	these	types	of	drivers	do	very	little	in	their	driver	entry	point.

They	are	required	to	register	protocol	interfaces	in	the	Handle	Database	and	may	also	choose	to
register	HII	packages	in	the	HII	Database,	register	an		Unload()		service	in	the	UEFI	Driver's	Loaded	Image
Protocol,	and	create	events	that	are	signaled	when	an	operating	system	calls		ExitBootServices()		or
	SetVirtualAddressMap()	.	This	design	allows	these	types	of	drivers	to	be	loaded	at	any	point	in	the	system
initialization	sequence	because	their	driver	entry	points	depend	only	on	a	few	of	the	UEFI	boot	services.
The	items	registered	in	the	driver	entry	point	are	used	later	in	the	boot	sequence	to	initialize,	configure,
or	diagnose	devices	required	to	boot	an	operating	system.

All	UEFI	drivers	following	the	UEFI	driver	model	must	install	one	or	more	instances	of	the	Driver	Binding
Protocol	onto	handles	in	the	handle	database.	The	first	Driver	Binding	Protocol	is	typically	installed	onto
the	ImageHandle	passed	into	the	UEFI	Driver	entry	point.	Additional	instances	of	the	Driver	Binding
Protocol	must	be	installed	onto	new	handles	in	the	Handle	Database.

The	EDK	II	library		UefiLib		provides	four	functions	that	simplify	the	implementation	of	the	driver	entry
point	of	a	UEFI	driver.	The	examples	in	this	section	make	use	of	these	driver	initialization	functions	as
shown	in	the	following	example.

Example	88-EDK	II	UefiLib	driver	initialization	functions

EFI_STATUS

EFIAPI

EfiLibInstallDriverBinding	(

		IN	CONST	EFI_HANDLE	ImageHandle,

		IN	CONST	EFI_SYSTEM_TABLE							*SystemTable,

		IN	EFI_DRIVER_BINDING_PROTOCOL		*DriverBinding,

		IN	EFI_HANDLE	DriverBindingHandle

);

EFI_STATUS

EFIAPI

EfiLibInstallAllDriverProtocols	(

		IN	CONST	EFI_HANDLE																																		ImageHandle,

		IN	CONST	EFI_SYSTEM_TABLE																												*SystemTable,

		IN	EFI_DRIVER_BINDING_PROTOCOL																							*DriverBinding,

		IN	EFI_HANDLE																																								DriverBindingHandle,

		IN	CONST	EFI_COMPONENT_NAME_PROTOCOL																	*ComponentName,

		OPTIONAL	IN	CONST	EFI_DRIVER_CONFIGURATION_PROTOCOL		*DriverConfiguration,	OPTIONAL

		IN	CONST	EFI_DRIVER_DIAGNOSTICS_PROTOCOL													*DriverDiagnostics	OPTIONAL

);

EFI_STATUS

EFIAPI

EfiLibInstallDriverBindingComponentName2	(

		IN	CONST	EFI_HANDLE																				ImageHandle,

		IN	CONST	EFI_SYSTEM_TABLE														*SystemTable,

		IN	EFI_DRIVER_BINDING_PROTOCOL									*DriverBinding,

		IN	EFI_HANDLE																										DriverBindingHandle,

		IN	CONST	EFI_COMPONENT_NAME_PROTOCOL			*ComponentName,	OPTIONAL

		IN	CONST	EFI_COMPONENT_NAME2_PROTOCOL		*ComponentName2	OPTIONAL

);

EFI_STATUS

EFIAPI

EfiLibInstallAllDriverProtocols2	(

		IN	CONST	EFI_HANDLE																										ImageHandle,

		IN	CONST	EFI_SYSTEM_TABLE																				*SystemTable,

		IN	EFI_DRIVER_BINDING_PROTOCOL															*DriverBinding,

		IN	EFI_HANDLE																																DriverBindingHandle,

7.2	UEFI	Driver	ModelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

298DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	CONST	EFI_COMPONENT_NAME_PROTOCOL									*ComponentName,	OPTIONAL

		IN	CONST	EFI_COMPONENT_NAME2_PROTOCOL								*ComponentName2,	OPTIONAL

		IN	CONST	EFI_DRIVER_CONFIGURATION_PROTOCOL			*DriverConfiguration,	OPTIONAL

		IN	CONST	EFI_DRIVER_CONFIGURATION2_PROTOCOL		*DriverConfiguration2,	OPTIONAL

		IN	CONST	EFI_DRIVER_DIAGNOSTICS_PROTOCOL					*DriverDiagnostics,	OPTIONAL

		IN	CONST	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL				*DriverDiagnostics2	OPTIONAL

);

	EfiLibInstallDriverBinding()		installs	the	Driver	Binding	Protocol	onto	the	handle	specified	by
DriverBindingHandle.	DriverBindingHandle	is	typically	the	same	as	ImageHandle,	but	if	it	is		NULL	,	the
Driver	Binding	Protocol	is	installed	onto	a	newly	created	handle.	This	function	is	typically	used	by	a	UEFI
Driver	that	does	not	implement	any	of	the	optional	driver	features.

	EfiLibInstallAllDriverProtocols()		installs	the	Driver	Binding	Protocol,	and	the	driverrelated	protocols	from	the
older	UEFI	Specification	(and	EFI	Specification),	onto	the	handle	specified	by	DriverBindingHandle.	The
optional	driver-related	protocols	are	defined	as		OPTIONAL		because	they	can	be		NULL		if	a	driver	is	not
producing	that	specific	optional	protocol.	Once	again,	the	DriverBindingHandle	is	typically	the	same	as
ImageHandle,	but	if	it	is		NULL	,	all	driver-related	protocols	are	installed	onto	a	newly	created	handle.	This
function	is	typically	used	by	a	UEFI	Driver	required	to	be	compatible	with	the	EFI	1.10	Specification.

	EfiLibInstallDriverBindingComponentName2()		installs	the	Driver	Binding	Protocol	and	the	Component	Name
Protocols	onto	the	handle	specified	by	DriverBindingHandle.	The	optional	driver-related	protocols	are
defined	as		OPTIONAL		because	they	can	be		NULL		if	a	driver	is	not	producing	that	specific	optional	protocol.
Once	again,	the	DriverBindingHandle	is	typically	the	same	as	ImageHandle,	but	if	it	is		NULL	,	all
driverrelated	protocols	are	installed	onto	a	newly	created	handle.	This	function	is	typically	used	by	a
UEFI	Driver	that	implements	the	Component	Name	Protocols	that	are		strongly	recommended	.

	EfiLibInstallAllDriverProtocols2()		installs	the	Driver	Binding	Protocol,	Component	Name	Protocols,	Driver
Configuration	Protocols,	and	Driver	Diagnostics	Protocols	onto	the	handle	specified	by
DriverBindingHandle.	The	optional	driver-related	protocols	are	defined	as		OPTIONAL		because	they	can	be
	NULL		if	a	driver	is	not	producing	that	specific	optional	protocol.	Once	again,	the	DriverBindingHandle	is
typically	the	same	as	ImageHandle,	but	if	it	is		NULL	,	all	driver-related	protocols	are	installed	onto	a	newly
created	handle.	This	function	is	typically	used	by	a	UEFI	Driver	required	to	be	compatible	with	all
versions	of	the	UEFI	Specification	and	EFI	Specification.

7.2	UEFI	Driver	ModelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

299DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2.1	Single	Driver	Binding	Protocol

The	following	is	an	example	of	the	entry	point	to	the		Abc		driver	that	installs	the	Driver	Binding	Protocol
	gAbcDriverBinding	,	the	Component	Name	2	Protocol		gAbcComponentName2	,	and	the	Component	Name	Protocol
	gAbcComponentName		onto	the		Abc		driver's	image	handle	and	does	not	install	any	of	the	other	optional	driver-
related	protocols	or	features.	This	driver	returns	the	status	from	the	UEFI	driver	library	function
	EfiLibInstallDriverBindingComponentName2()	.	See	Chapter	9	for	details	on	the	services	and	data	fields	produced
by	the	Driver	Binding	Protocol	and	Chapter	11	for	details	on	the	Component	Name	2	Protocol	and	the
Component	Name	Protocol.

Notice	that	the	Component	Name	Protocol	and	the	Component	Name	2	Protocol	use	the	same	function
pointers	for	their	services	called		AbcGetDriverName()		and		AbcGetControllerName()	.	This	is	a	size	reduction
technique	supported	by	the	EDK	II	that	reduces	the	overhead	for	a	single	UEFI	Driver	to	support	both
Component	Name	Protocols.

Also	note	that	the	optional	protocol	structures	are	declared	with		GLOBAL_REMOVE_IF_UNREFERENCED	.	This	style
allows	these	structures	and	the	associated	services	to	be	removed	if	the	Component	Name	feature	is
disabled	when	this	UEFI	driver	is	compiled.	The	EDK	II	library		UefiLib		uses	several	Platform	Configuration
Database	(PCD)	feature	flags	to	enable	and	disable	the	Component	Name	Protocols	and	Driver
Diagnostics	Protocols	at	build	time.	This	allows	a	developer	to	implement	all	of	these	in	the	UEFI	Driver
sources	and	select	the	ones	that	are	actually	needed	for	a	specific	release	at	build	time.	Chapter	30
covers	how	to	build	UEFI	Drivers	in	the	EDK	II	and	also	covers	configuration	of	UEFI	Drivers	through	PCD
settings.

Note:	This	example	and	many	other	examples	throughout	this	guide	make	use	of	the	EDK	II	library
	DebugLib		that	provides		DEBUG()		and		ASSERT()		related	macros.	These	macros	are	very	useful	during
development	and	debug.	However,		ASSERT()		related	macros	must	be	disabled	when	UEFI	Drivers	are
released.	Chapter	31	covers	the	PCD	setting	to	enable	and	disable	the	macros	provided	by		DebugLib	.

Example	89-Single	Driver	Binding	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

7.2.1	Single	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

300DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																						ImageHandle,

		IN	EFI_SYSTEM_TABLE																*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	driver	model	protocol(s)	onto	ImageHandle

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,												//	ImageHandle

													SystemTable,												//	SystemTable

													&gAbcDriverBinding,					//	DriverBinding

													ImageHandle,												//	DriverBindingHandle

													&gAbcComponentName,					//	ComponentName

													&gAbcComponentName2					//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

The	following	example	shows	another	example	of	the	entry	point	to	the		Abc		driver	that	installs	the
Driver	Binding	Protocol		gAbcDriverBinding		onto	the		Abc		driver's	image	handle	and	the	optional	driver-
related	protocols.	This	driver	returns	the	status	from	the	UEFI	driver	library	function
	EfiLibInstallAllDriverProtocols2()	.	This	library	function	is	used	if	one	or	more	of	the	optional	driver	related
protocols	are	being	installed.

See	Chapters	9,	11,	12,	and	13	for	details	on	the	services	and	data	fields	produced	by	the	Driver
Binding	Protocol,	Component	Name	Protocols,	Driver	Configuration	Protocols,	and	Driver	Diagnostics
Protocols.

Example	90-Single	Driver	Binding	Protocol	with	optional	features

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Protocol/DriverDiagnostics.h>

#include	<Protocol/DriverDiagnostics2.h>

#include	<Protocol/DriverConfiguration.h>

#include	<Protocol/DriverConfiguration2.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

7.2.1	Single	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

301DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_CONFIGURATION_PROTOCOL	gAbcDriverConfiguration	=	{

		(EFI_DRIVER_CONFIGURATION_SET_OPTIONS)	AbcDriverConfigurationSetOptions,

		(EFI_DRIVER_CONFIGURATION_OPTIONS_VALID)	AbcDriverConfigurationOptionsValid,

		(EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS)AbcDriverConfigurationForceDefaults,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_CONFIGURATION2_PROTOCOL	gAbcDriverConfiguration2	=	{

		AbcDriverConfigurationSetOptions,

		AbcDriverConfigurationOptionsValid,

		AbcDriverConfigurationForceDefaults,

		"en"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS_PROTOCOL	gAbcDriverDiagnostics	=	{

		(EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS)	AbcRunDiagnostics,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	gAbcDriverDiagnostics2	=	{

		AbcRunDiagnostics,

		"en"

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																									ImageHandle,

		IN	EFI_SYSTEM_TABLE																			*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	driver	model	protocol(s)	onto	ImageHandle.

		//

		Status	=	EfiLibInstallAllDriverProtocols2	(

													ImageHandle,															//	ImageHandle

													SystemTable,															//	SystemTable

													&gAbcDriverBinding,								//	DriverBinding

													ImageHandle,															//	DriverBindingHandle

													&gAbcComponentName,								//	ComponentName2

													&gAbcComponentName2,							//	ComponentName2

													&gAbcDriverConfiguration,		//	DriverConfiguration

													&gAbcDriverConfiguration2,	//	DriverConfiguration2

													&gAbcDriverDiagnostics,				//	DriverDiagnostics

													&gAbcDriverDiagnostics2				//	DriverDiagnostics2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.2.1	Single	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

302DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2.1	Single	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

303DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2.2	Multiple	Driver	Binding	Protocols

If	a	UEFI	driver	supports	more	than	one	parent	I/O	abstraction,	the	driver	should	produce	a	Driver
Binding	Protocol	for	each	of	the	parent	I/O	abstractions.	For	example,	a	UEFI	driver	could	be	written	to
support	more	than	one	type	of	hardware	device	(for	example,	USB	and	PCI).	If	code	can	be	shared	for
the	common	features	of	a	hardware	device,	then	such	a	driver	might	save	space	and	reduce
maintenance.	Example	drivers	in	the	EDK	II	that	produce	more	than	one	Driver	Binding	Protocol	are	the
console	platform	driver	and	the	console	splitter	driver.	These	drivers	contain	multiple	Driver	Binding
Protocols	because	they	depend	on	multiple	console-related	parent	I/O	abstractions.

The	first	Driver	Binding	Protocol	is	typically	installed	onto	the	ImageHandle	of	the	UEFI	driver	and
additional	Driver	Binding	Protocols	are	installed	onto	new	handles.	The	UEFI	driver	library	functions	used
in	the	previous	two	examples	support	the	creation	of	new	handles	by	passing	in	a		NULL		for	the	fourth
argument.	The	example	below	shows	the	driver	entry	point	for	a	driver	that	produces	two	instances	of
the	Driver	Binding	Protocol	with	no	optional	driver-related	protocols.	When	multiple	Driver	Binding
Protocols	are	produced	by	a	single	driver,	the	optional	driver-related	protocols	are	installed	onto	the
same	handles	as	those	of	the	Driver	Binding	Protocols.

Example	91-Multiple	Driver	Binding	Protocols

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcFooDriverBinding	=	{

		AbcFooSupported,

		AbcFooStart,

		AbcFooStop,

		ABC_VERSION,

		NULL,

		NULL

};

EFI_DRIVER_BINDING_PROTOCOL	gAbcBarDriverBinding	=	{

		AbcBarSupported,

		AbcBarStart,

		AbcBarStop,

		ABC_VERSION,

		NULL,

		NULL

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	first	Driver	Binding	Protocol	onto	ImageHandle

		//

		Status	=	EfiLibInstallDriverBinding	(

													ImageHandle,																			//	ImageHandle

													SystemTable,																			//	SystemTable

													&gAbcFooDriverBinding,									//	DriverBinding

													ImageHandle																				//	DriverBindingHandle

);

		ASSERT_EFI_ERROR	(Status);

7.2.2	Multiple	Driver	Binding	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

304DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		//	Install	second	Driver	Binding	Protocol	onto	a	new	handle

		//

		Status	=	EfiLibInstallDriverBinding	(

													ImageHandle,																		//	ImageHandle

													SystemTable,																		//	SystemTable

													&gAbcBarDriverBinding,								//	DriverBinding

													NULL																										//	DriverBindingHandle

);

		ASSERT_EFI_ERROR	(Status);

		return	EFI_SUCCESS;

}

7.2.2	Multiple	Driver	Binding	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

305DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2.3	Adding	Driver	Health	Protocol	Feature

The	Driver	Health	Protocol	provides	services	allowing	a	UEFI	Driver	to	express	the	health	status	of	a
controller,	return	status	messages	associated	with	the	health	status,	perform	repair	operations	and
request	configuration	changes	required	to	place	the	controller	in	a	usable	state.	This	protocol	is
required	only	for	devices	that	may	be	in	a	bad	state	which	can	be	recovered	through	a	repair	operation
or	a	configuration	change.	If	a	device	can	never	be	in	a	bad	state,	or	a	device	can	be	in	a	bad	state	for
which	there	is	no	recovery	possible,	this	protocol	should	not	be	installed.

There	are	no	EDK	II	library	functions	to	help	install	the	Driver	Health	Protocol.	Instead,	the	UEFI	Driver
that	requires	this	feature	must	install	the	Driver	Health	Protocol	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	Example	92,	below,	expands	Example	91,	above,	and	adds	a	Driver
Health	Protocol	instance	to	ImageHandle,	the	same	handle	on	which	the	Driver	Binding	Protocol	is
installed.

Example	92-Driver	Heath	Protocol	Feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Protocol/DriverHealth.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_HEALTH_PROTOCOL	gAbcDriverHealth	=	{

		AbcGetHealthStatus,

		AbcRepair

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

7.2.3	Adding	Driver	Health	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

306DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,																	//	ImageHandle

													SystemTable,																	//	SystemTable

													&gAbcDriverBinding,										//	DriverBinding

													ImageHandle,																	//	DriverBindingHandle

													&gAbcComponentName,										//	ComponentName

													&gAbcComponentName2										//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	Driver	Health	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverHealthProtocolGuid,

																		&gAbcDriverHealth,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.2.3	Adding	Driver	Health	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

307DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.2.4	Adding	Driver	Family	Override	Protocol	Feature

The		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		is	optional.	It	is	typically	produced	by	UEFI	Drivers	associated	with	a
set	of	similar	controllers	where	multiple	versions	of	a	UEFI	Driver	for	the	set	of	similar	controllers	may	be
simultaneously	present	in	a	platform.	This	protocol	allows	each	UEFI	Driver	to	advertise	a	version
number	such	that	the	UEFI	Driver	with	the	highest	version	is	selected	to	manage	all	the	controllers	in
the	set	of	similar	controllers.

	PCI	Use	Case	:	If	a	platform	has	3	PCI	SCSI	adapters	from	the	same	manufacturer,	and	the	manufacturer
requires	the	PCI	SCSI	adapter	having	the	highest	version	UEFI	Driver	to	manage	all	3	PCI	SCSI	adapters,
the	Driver	Family	Override	Protocol	is	required	and	provides	the	version	value	used	to	make	the
selection.	If	the	Driver	Family	Override	Protocol	is	not	produced,	the	Bus	Specific	Driver	Override	Protocol
for	PCI	selects	the	UEFI	Driver	from	the	adapter's	PCI	Option	ROM	to	manage	each	adapter.

There	are	no	EDK	II	library	functions	to	help	install	the	Driver	Family	Override	Protocol.	Instead,	the	UEFI
Driver	requiring	this	feature	must	install	the	Driver	Family	Override	Protocol	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	Example	93,	below,	expands	Example	92,	above,	and	adds	a	Driver	Family
Override	Protocol	instance	to	ImageHandle,	the	same	handle	on	which	the	Driver	Binding	Protocol	is
installed.

Example	93-Driver	Family	Override	Protocol	Feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Protocol/DriverFamilyOverride.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{	AbcGetDriverName,

																AbcGetControllerName,

																"en"

																};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL	gAbcDriverFamilyOverride	=	{

		AbcGetVersion

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

7.2.4	Adding	Driver	Family	Override	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

308DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

)

{

		EFI_STATUS		Status;

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,																				//	ImageHandle

													SystemTable,																				//	SystemTable

													&gAbcDriverBinding,													//	DriverBinding

													ImageHandle,																				//	DriverBindingHandle

													&gAbcComponentName,													//	ComponentName

													&gAbcComponentName2													//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	Driver	Family	Override	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverFamilyOverrideProtocolGuid,

																		&gAbcDriverFamilyOverride,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.2.4	Adding	Driver	Family	Override	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

309DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.3	Adding	the	Driver	Supported	EFI	Version	Protocol	Feature

This	feature	provides	information	on	the	version	of	the	UEFI	Specification	to	which	the	UEFI	Driver
conforms.	The	version	information	follows	the	same	format	as	the	version	field	in	the	EFI	System	Table.
This	feature	is	required	for	UEFI	Drivers	on	PCI	and	other	plug	in	cards.

There	are	no	EDK	II	library	functions	to	help	install	the	Driver	Supported	EFI	Version	Protocol.	Instead,
the	UEFI	Driver	requiring	this	feature	must	install	the	Driver	Supported	EFI	Version	Protocol	using	the
UEFI	Boot	Service		InstallMultipleProtocolInterfaces()	.	A	UEFI	Driver	must	install,	at	most,	one	instance	of	this
protocol	and,	if	it	is	produced,	it	must	be	installed	onto	the	ImageHandle.	This	protocol	is	composed	of
only	data	fields,	so	no	functions	need	be	implemented	to	complete	its	implementation.	Example	94,
below,	expands	Example	93,	above,	and	adds	a	Driver	Supported	EFI	Version	Protocol	instance	to
ImageHandle.	The	Driver	Supported	EFI	Version	Protocol	instance	in	this	example	specifies	that	this	UEFI
Driver	follows	the	UEFI	2.3.1	Specification.

Example	94-Driver	Supported	EFI	Version	Protocol	Feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Protocol/DriverSupportedEfiVersion.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL	gAbcDriverSupportedEfiVersion	=	{

		sizeof	(EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL),

		EFI_2_31_SYSTEM_TABLE_REVISION

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

7.3	Adding	the	Driver	Supported	EFI	Version	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

310DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		//	Install	Driver	Supported	EFI	Version	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverSupportedEfiVersionProtocolGuid,

																		&	gAbcDriverSupportedEfiVersion,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,																				//	ImageHandle

													SystemTable,																				//	SystemTable

													&gAbcDriverBinding,													//	DriverBinding

													ImageHandle,																				//	DriverBindingHandle

													&gAbcComponentName,													//	ComponentName

													&gAbcComponentName2													//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.3	Adding	the	Driver	Supported	EFI	Version	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

311DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.4	Adding	HII	Packages	Feature

HII	packages	provide	strings,	fonts,	and	forms	that	allow	users	(such	as	IT	administrators)	to	change
the	configuration	of	UEFI	managed	devices.	These	HII	packages	are	required	only	if	a	driver	must
provide	the	ability	for	a	user	to	change	configuration	settings	for	a	device.	A	UEFI	Driver	registers	HII
packages	in	the	HII	Database.

The	Image	Services	and	the	Human	Interface	Infrastructure	Overview	sections	of	the	UEFI	Specification
define	a	method	for	HII	packages	associated	with	a	UEFI	Driver	to	be	automatically	installed	as	a
protocol	on	ImageHandle	when	the	UEFI	Driver	is	loaded	using	the	UEFI	Boot	Service		LoadImage()	.	The	HII
packages	are	stored	in	a	resource	section	of	the	PE/COFF	image.	The	driver	entry	point	of	a	UEFI	Driver
is	responsible	for	looking	up	the	HII	Package	List	on	ImageHandle	and	registering	that	list	of	HII
packages	into	the	HII	Database.	The	example	below	shows	an	example	of	a	driver	entry	point	that
performs	such	a	registration	process.

Example	95-HII	Packages	feature

#include	<Uefi.h>

#include	<Protocol/HiiDatabase.h>

#include	<Protocol/HiiPackageList.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/DebugLib.h>

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS																			Status;

		EFI_HII_PACKAGE_LIST_HEADER		*PackageListHeader;

		EFI_HII_DATABASE_PROTOCOL				*HiiDatabase;

		EFI_HII_HANDLE															HiiHandle;

		//

		//	Retrieve	HII	Package	List	Header	on	ImageHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ImageHandle,

																		&gEfiHiiPackageListProtocolGuid,

																		(VOID	**)&PackageListHeader,

																		ImageHandle,

																		NULL,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Retrieve	the	pointer	to	the	UEFI	HII	Database	Protocol

		//

		Status	=	gBS->LocateProtocol	(

																		&gEfiHiiDatabaseProtocolGuid,

																		NULL,

																		(VOID	**)&HiiDatabase

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Register	list	of	HII	packages	in	the	HII	Database

		//

		Status	=	HiiDatabase->NewPackageList	(

																										HiiDatabase,

																										PackageListHeader,

																										NULL,

7.4	Adding	HII	Packages	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

312DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																										&HiiHandle

);

		ASSERT_EFI_ERROR	(Status);

		return	EFI_SUCCESS;

}

The	EDK	II	provides	a	simple	way	for	a	UEFI	Driver	to	declare	that	HII	packages	are	provided	by	setting
	UEFI_HII_RESOURCE_SECTION		to		TRUE		in	the		[Defines]		section	of	the	INF	file.	This	informs	an	EDK	II	build	that	the
UEFI	Driver	implementation	provides	UNI	and	VFR	source	files	that	must	be	converted	into	HII	packages
stored	in	the	PE/COFF	resource	section	of	the	UEFI	Driver	image.	See	Chapter	12	for	more	details	on	the
implementation	of	UNI	and	VFR	files.	The	following	example	shows	the	INF	file	that	defines
	UEFI_HII_RESOURCE_SECTION		to		TRUE	.	See	Section	30.3	for	more	details	on	UEFI	Driver	INF	files	and	Appendix	A
for	a	complete	template	of	the	INF	file	for	a	UEFI	Driver.

Example	96-UEFI	Driver	INF	File	with	HII	Packages	feature

[Defines]

		INF_VERSION															=	0x00010005

		BASE_NAME																	=	AbcDriverHiiPackage

		FILE_GUID																	=	0E474237-D123-40c2-A585-CD46279879D4

		MODULE_TYPE															=	UEFI_DRIVER

		VERSION_STRING												=	1.0

		ENTRY_POINT															=	AbcDriverEntryPoint

		UEFI_HII_RESOURCE_SECTION	=	TRUE

[Sources]

		Abc.c

		AbcStrings.uni

		AbcForms.vfr

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiDriverEntryPoint

[Protocols]

		gEfiHiiPackageListProtocolGuid	gEfiHiiDatabaseProtocolGuid

7.4	Adding	HII	Packages	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

313DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.5	Adding	HII	Config	Access	Protocol	Feature

This	protocol	provides	the	services	to	save	and	restore	configuration	settings	for	a	device.	For	drivers
following	the	UEFI	Driver	Model,	this	protocol	is	typically	installed	in	the	Driver	Binding	Protocol		Start()	
function	for	each	device	the	driver	manages.	Only	UEFI	Drivers	not	following	the	UEFI	Driver	Model	would
install	this	protocol	in	the	driver	entry	point.	As	a	result,	only	the	Service	Drivers	and	Root	Bridge	Drivers
required	to	save	and	restore	configuration	settings	can	install	the	HII	Config	Access	Protocol	in	the
driver	entry	point.

There	are	no	EDK	II	library	functions	to	help	install	the	HII	Config	Access	Protocol.	Instead,	the	UEFI
Driver	requiring	this	feature	must	install	the	HII	Config	Access	Protocol	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	Example	97,	below,	expands	Example	96,	above,	and	adds	an	HII	Config
Access	Protocol	instance	to	ImageHandle.

Example	97-HII	Config	Access	Protocol	Feature

#include	<Uefi.h>

#include	<Protocol/HiiConfigAccess.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/DebugLib.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_HII_CONFIG_ACCESS_PROTOCOL	gAbcHiiConfigAccess	=	{

		AbcExtractConfig,

		AbcRouteConfig,

		AbcRouteCallback

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	HII	Config	Access	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiHiiConfigAccessProtocolGuid,

																		&gAbcHiiConfigAccess,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.5	Adding	HII	Config	Access	Protocol	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

314DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.6	Adding	the	Unload	Feature

Any	UEFI	driver	can	be	made	unloadable.	This	feature	is	useful	for	some	driver	categories,	but	it	may	not
be	useful	at	all	for	other	driver	categories.	It	does	not	make	sense	to	add	the	unload	feature	to	an
initializing	driver	because	this	category	of	driver	already	returns	an	error	from	the	driver	entry	point,
which	forces	the	UEFI	Image	Services	to	automatically	unload	the	initializing	driver.

Similarly,	it	usually	doesn't	make	sense	for	root	bridge	drivers	or	service	drivers	to	add	the	unload
feature.	These	categories	of	driver	typically	produce	protocols	consumed	by	other	UEFI	drivers	to
produce	basic	console	functions	and	boot	device	abstractions.	If	a	root	bridge	driver	or	a	service	driver
is	unloaded,	any	UEFI	driver	using	the	protocols	from	those	drivers	would	start	to	fail.	If	a	root	bridge
driver	or	service	driver	guarantees	that	it	is	not	being	used	by	any	other	UEFI	components,	they	may	be
unloaded	without	any	adverse	side	effects.

Still,	the		Unload()		function	can	be	very	helpful.	It	allows	the	"unload"	command	in	the	UEFI	Shell	to
completely	remove	a	UEFI	driver	image	from	memory	and	remove	all	of	the	driver's	handles	and
protocols	from	the	handle	database.	If	a	driver	is	suspected	of	causing	a	bug,	it	is	often	helpful	to
"unload"	the	driver	from	the	UEFI	Shell	and	then	run	tests	knowing	that	the	driver	is	no	longer	present
in	the	platform.	In	these	cases,	the	Unload()	feature	is	superior	to	simply	stopping	the	driver	with	the
disconnect	UEFI	Shell	command.	If	a	driver	is	just	disconnected,	the	UEFI	Shell	commands	"connect"	and
"reconnect"	may	inadvertently	restart	the	driver.

The	unload	feature	is	also	very	helpful	when	testing	and	developing	new	versions	of	the	driver.	The	old
version	can	be	completely	unloaded	(removed	from	the	system)	and	new	versions	of	the	driver,	even
those	having	the	same	version	number,	can	safely	be	installed	in	the	system	without	concern	the	older
version	of	the	driver	may	be	invoked	during	the	next	connect	or	reconnect	operation.

Be	mindful	that,	because		Unload()		completely	removes	the	driver	from	system	memory,	it	might	not	be
possible	to	load	it	back	into	the	system	in	the	same	session.	For	example,	if	the	driver	is	stored	in
system	firmware	or	in	a	PCI	option	ROM,	no	method	may	be	available	for	reloading	the	driver	without
completely	rebooting	the	system.

The		Unload()		service	is	one	of	the	fields	in	the		EFI_LOADED_IMAGE_PROTOCOL	.	This	protocol	is	automatically
created	and	installed	when	a	UEFI	image	is	loaded	with	the	EFI	Boot	Service		LoadImage()	.	When	the
	EFI_LOADED_IMAGE_PROTOCOL		is	created	by		LoadImage()	,	the		Unload()		service	is	initialized	to		NULL	.	It	is	the	driver
entry	point's	responsibility	to	register	the		Unload()		function	in	the		EFI_LOADED_IMAGE_PROTOCOL	.

It	is		recommended		that	UEFI	drivers	following	the	UEFI	driver	model	add	the	unload	feature.	It	is	very	useful
during	driver	development,	driver	debug,	and	system	integration.	It	is	strongly	recommended	that	this
service	remain	in	drivers	for	add-in	adapters	to	help	debug	interaction	issues	during	system	integration.

Example	98,	below,	shows	the	same	driver	entry	point	from	Example	89	(earlier	in	this	section)	with	the
unload	feature	added.	Example	98	shows	only	a	template	for	the		Unload()		function	because	the
implementation	of	this	service	varies	from	driver	to	driver.	The		Unload()		service	is	responsible	for
cleaning	up	everything	the	driver	has	done	since	initialization.	This	responsibility	means	that	the
	Unload()		service	should	do	the	following:

Free	any	resources	that	were	allocated.

Remove	any	protocols	that	were	added.

Destroy	any	handles	that	were	created.

If	the		Unload()		service	does	not	want	to	unload	the	driver	at	the	time	the		Unload()		service	is	called,	it
may	return	an	error	and	not	unload	the	driver.	The	only	way	a	driver	can	actually	be	unloaded	is	by
ensuring	that	the		Unload()		service	has	been	registered	in	the		EFI_LOADED_IMAGE_PROTOCOL		and	that	it	returns
	EFI_SUCCESS	.

7.6	Adding	the	Unload	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

315DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	98-Add	the	Unload	feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

EFI_STATUS	EFIAPI

AbcUnload	(

		IN	EFI_HANDLE		ImageHandle

)

{

		return	EFI_SUCCESS;

}

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																					ImageHandle,

		IN	EFI_SYSTEM_TABLE															*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	driver	model	protocol(s).

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,											//	ImageHandle

													SystemTable,											//	SystemTable

													&gAbcDriverBinding,				//	DriverBinding

													ImageHandle,											//	DriverBindingHandle

													&gAbcComponentName,				//	ComponentName

													&gAbcComponentName2				//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

7.6	Adding	the	Unload	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

316DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	EDK	II	provides	an	easy	method	to	declare	the	name	of	the	UEFI	driver-specific		Unload()		function	in
the		[Defines]		section	of	the	INF	file	for	the	UEFI	Driver.	Example	99,	below,	shows	the	INF	file	that	defines
	UNLOAD_IMAGE		to	the		AbcUnload()		function	shown	in	the	previous	example.	The	specified		Unload()		function
automatically	registers	in	the		EFI_LOADED_IMAGE_PROTOCOL		before	the	entry	point	of	the	UEFI	Driver	is	called.
See	Section	30.3	for	more	details	on	UEFI	Driver	INF	files	and	Appendix	A	for	a	complete	template	of	the
INF	file	for	a	UEFI	Driver.

Example	99-UEFI	Driver	INF	File	with	Unload	feature

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	Abc

		FILE_GUID						=	DA87D340-15C0-4824-9BF3-D52286674BEF

		MODULE_TYPE				=	UEFI_DRIVER

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	AbcDriverEntryPoint

		UNLOAD_IMAGE			=	AbcUnload

[Sources]

		Abc.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiDriverEntryPoint

		UefiBootServicesTableLib

		UefiLib

		DebugLib

		MemoryAllocationLib

Example	100,	below,	shows	one	possible	implementation	of	the		Unload()		function	for	a	UEFI	driver
following	the	UEFI	driver	model.	It	finds	all	the	devices	it	manages	and	disconnects	the	driver	from	those
devices.	Next,	the	protocol	interfaces	installed	in	the	driver	entry	point	must	be	removed.	The	example
shown	here	matches	the	driver	entry	point	from	Example	98,	above.	There	are	many	possible	algorithms
that	can	be	implemented	in	the		Unload()		service.	A	driver	may	choose	to	be	unloadable	if,	and	only	if,	it
is	not	managing	any	devices	at	all.	A	driver	may	also	choose	to	keep	track	of	the	devices	it	is	managing
internally	so	it	can	selectively	disconnect	itself	from	those	devices	when	it	is	unloaded.

Example	100-UEFI	Driver	Model	Unload	Feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS	EFIAPI

AbcUnload	(

		IN	EFI_HANDLE		ImageHandle

)

{

		EFI_STATUS		Status;

		EFI_HANDLE		*HandleBuffer;

		UINTN							HandleCount;

		UINTN							Index;

		//

		//	Retrieve	array	of	all	handles	in	the	handle	database

		//

		Status	=	gBS->LocateHandleBuffer	(

																		AllHandles,

																		NULL,

																		NULL,

7.6	Adding	the	Unload	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

317DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																		&HandleCount,

																		&HandleBuffer

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Disconnect	the	current	driver	from	handles	in	the	handle	database

		//

		for	(Index	=	0;

							Index	<	HandleCount;	Index++)	{

				Status	=	gBS->DisconnectController	(

																				HandleBuffer[Index],

																				gImageHandle,

																				NULL

);

		}

		//

		//	Free	the	array	of	handles

		//

		FreePool	(HandleBuffer);

		//

		//	Uninstall	protocols	installed	in	the	driver	entry	point

		//

		Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																		ImageHandle,

																		&gEfiDriverBindingProtocolGuid,

																		&gAbcDriverBinding,

																		&gEfiComponentNameProtocolGuid,

																		&gAbcComponentName,

																		&gEfiComponentName2ProtocolGuid,

																		&gAbcComponentName2,

																		NULL

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Do	any	additional	cleanup	that	is	required	for	this	driver

		//

		return	EFI_SUCCESS;

}

7.6	Adding	the	Unload	FeatureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

318DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.7	Adding	the	Exit	Boot	Services	feature

Some	UEFI	drivers	may	need	to	put	their	devices	into	a	quiescent	state	or	a	known	state	prior	to
booting	an	operating	system.	This	case	is	considered	to	be	very	rare	because	the	OS-present	drivers
should	not	depend	on	a	UEFI	driver	running	at	all.	Not	depending	on	a	running	UEFI	driver	means	that
an	OS-present	driver	should	be	able	to	handle	the	following:

A	device	in	its	power-on	reset	state

A	device	that	was	recently	hot	added	while	the	OS	is	running

A	device	that	was	managed	by	a	UEFI	driver	up	to	the	point	the	OS	was	booted

A	device	that	was	managed	for	a	short	period	of	time	by	a	UEFI	driver

In	the	rare	case	when	a	UEFI	driver	is	required	to	place	a	device	in	a	quiescent	or	known	state	before
booting	an	operating	system,	the	driver	can	use	a	special	event	type	called	an	Exit	Boot	Services	event.
This	event	is	signaled	when	an	OS	loader	or	OS	kernel	calls	the	UEFI	boot	service		ExitBootServices()	.	This
call	is	the	point	in	time	where	the	system	firmware	still	owns	the	platform,	but	the	system	firmware	is
just	about	to	transfer	system	ownership	to	the	operating	system.	In	this	transition	time,	no
modifications	to	the	UEFI	memory	map	are	allowed	(see	the	Image	Services	section	of	the	UEFI
Specification).	This	requirement	means	that	the	notification	function	for	an	Exit	Boot	Services	event	is
not	allowed	to	directly	or	indirectly	allocate	or	free	and	memory	through	the	UEFI	memory	services.

Examples	from	the	EDK	II	that	use	this	feature	are	the	PCI	device	drivers	for	USB	Host	Controllers.	Some
USB	Host	Controllers	are	PCI	Bus	Masters	that	continuously	access	a	memory	buffer	to	poll	for	operation
requests.	Access	to	this	memory	buffer	by	a	USB	Host	Controller	may	be	required	to	boot	an	operation
system,	but	this	activity	must	be	terminated	when	the	OS	calls		ExitBootServices()	.	The	typical	action	in	the
Exit	Boot	Services	Event	for	these	types	of	drivers	is	to	disable	the	PCI	bus	master	and	place	the	USB
Host	Controller	into	a	halted	state

Example	101,	below,	shows	the	same	example	as	in	Example	100,	above,	but	an	Exit	Boot	Services
event	is	also	created.	The	template	for	the	notification	function	for	the	Exit	Boot	Services	event	is	also
shown.	This	notification	function	typically	contains	code	to	find	the	list	of	device	handles	that	the	driver
is	currently	managing,	and	it	then	performs	operations	on	those	handles	to	make	sure	they	are	in	the
proper	OS	handoff	state.	Remember	that	no	memory	allocation	or	free	operations	can	be	performed
from	this	notification	function.

Example	101-Adding	the	Exit	Boot	Services	feature

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

//

//	Global	variable	for	Exit	Boot	Services	event.

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

//

//	Driver	Binding	Protocol	Instance

//

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

7.7	Adding	the	Exit	Boot	Services	featureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

319DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

//

//	Component	Name	Protocol	Instance

//

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

//

//	Component	Name	2	Protocol	Instance

//

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

VOID

EFIAPI

AbcNotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		//

		//	Put	driver-specific	actions	here.

		//	No	EFI	Memory	Service	may	be	used	directly	or	indirectly.

		//

}

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Create	an	Exit	Boot	Services	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_EXIT_BOOT_SERVICES,				//	Type

																		TPL_NOTIFY,																							//	NotifyTpl

																		AbcNotifyExitBootServices,								//	NotifyFunction

																		NULL,																													//	NotifyContext

																		&mExitBootServicesEvent											//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	driver	model	protocol(s).

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,																										//	ImageHandle

													SystemTable,																										//	SystemTable

													&gAbcDriverBinding,																			//	DriverBinding

													ImageHandle,																										//	DriverBindingHandle

													&gAbcComponentName,																			//	ComponentName

													&gAbcComponentName2																			//	ComponentName2

);

7.7	Adding	the	Exit	Boot	Services	featureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

320DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

If	a	UEFI	driver	supports	both	the	unload	feature	and	the	Exit	Boot	Services	feature,	the		Unload()	
function	must	close	the	Exit	Boot	Services	event	by	calling		CloseEvent()	.	This	event	is	typically	declared	as
a	global	variable	so	it	can	be	easily	accessed	from	the		Unload()		function.	The	following	example	is	the
same	as	the	previous	example,	except	the	entry	point	looks	up	the		EFI_LOADED_IMAGE_PROTOCOL		associated
with	ImageHandle	and	registers	the		Unload()		function	called		AbcUnload()	.		AbcUnload()		closes	the	event
created	in	the	driver	entry	point	using	the	UEFI	Boot	Service		CloseEvent()	.

Example	102-Add	the	Unload	and	Exit	Boot	Services	event	features

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

//

//	Global	variable	for	Exit	Boot	Services	event.

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

//

//	Driver	Binding	Protocol	Instance

//

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

//

//	Component	Name	Protocol	Instance

//

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"eng"

};

//

//	Component	Name	2	Protocol	Instance

//

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en"

};

VOID

EFIAPI

AbcNotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

7.7	Adding	the	Exit	Boot	Services	featureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

321DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		//	Put	driver-specific	actions	here.

		//	No	EFI	Memory	Service	may	be	used	directly	or	indirectly.

		//

}

EFI_STATUS	EFIAPI

AbcUnload	(

		IN	EFI_HANDLE			ImageHandle

)

{

		EFI_STATUS						Status;

		//

		//	Uninstall	protocols	installed	in	the	driver	entry	point

		//

		Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																		ImageHandle,

																		&gEfiDriverBindingProtocolGuid,

																		&gAbcDriverBinding,

																		&gEfiComponentNameProtocolGuid,

																		&gAbcComponentName,

																		&gEfiComponentName2ProtocolGuid,

																		&gAbcComponentName2,

																		NULL

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Close	Exit	Boot	Services	event	created	in	the	driver	entry	point

		//

		gBS->CloseEvent	(mExitBootServicesEvent);

		return	EFI_SUCCESS;

}

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Create	an	Exit	Boot	Services	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_EXIT_BOOT_SERVICES,	//	Type

																		TPL_NOTIFY,																				//	NotifyTpl

																		AbcNotifyExitBootServices,					//	NotifyFunction

																		NULL,																										//	NotifyContext

																		&mExitBootServicesEvent								//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	driver	model	protocol(s).

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,																								//	ImageHandle

													SystemTable,																								//	SystemTable

													&gAbcDriverBinding,																	//	DriverBinding

													ImageHandle,																								//	DriverBindingHandle

													&gAbcComponentName,																	//	ComponentName

													&gAbcComponentName2																	//	ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

7.7	Adding	the	Exit	Boot	Services	featureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

322DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}

7.7	Adding	the	Exit	Boot	Services	featureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

323DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.8	Initializing	Driver	entry	point

The	example	below	shows	an	initializing	driver	called		Abc	.	This	driver	initializes	one	or	more	components
in	the	platform	and	exits.	It	does	not	produce	any	services	that	are	required	after	the	entry	point	has
been	executed.	This	type	of	driver	returns	an	error	from	the	entry	point	so	the	driver	is	unloaded	by	the
UEFI	image	services.	An	initializing	driver	never	registers	an		Unload()		service	because	an	initializing	driver
is	always	unloaded	after	the	driver	entry	point	is	executed.	This	type	is	typically	used	by	OEMs	and	IBVs
to	initialize	the	state	of	a	hardware	component	in	the	platform	such	as	a	processor	or	chipset
component.

Example	103-Initializing	driver	entry	point

#include	<Uefi.h>

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Perform	some	platform	initialization	operations	here

		//

		return	EFI_ABORTED;

}

7.8	Initializing	Driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

324DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.9	Service	Driver	entry	point

A	service	driver	produces	one	or	more	protocol	interfaces	on	the	driver's	image	handle	or	on	newly
created	handles.	The	example	below,	shows	the	Decompress	Protocol	being	installed	onto	the	driver's
image	handle.	A	service	driver	may	produce	an		Unload()		service,	and	that	service	would	be	required	to
uninstall	the	protocols	that	were	installed	in	the	driver's	entry	point.

Caution:	The		Unload()		service	for	a	service	driver	may	be	a	dangerous	operation	because	there	is	no
way	for	the	service	driver	to	know	if	the	protocols	that	it	installed	are	being	used	by	other	UEFI
components.	If	the	service	driver	is	unloaded	and	other	UEFI	components	are	still	using	the	protocols
that	were	produced	by	the	unloaded	driver,	then	the	system	is	likely	to	fail.

Example	104-Service	driver	entry	point	using	image	handle

#include	<Uefi.h>

#include	<Protocol/Decompress.h>

#include	<Library/UefiBootServicesTableLib.h>

//

//	Decompress	Protocol	instance

//

EFI_DECOMPRESS_PROTOCOL	gAbcDecompress	=	{

		AbcGetInfo,

		AbcDecompress

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Install	Decompress	Protocol	onto	UEFI	Driver's	ImageHandle

		//

		return	gBS->InstallMultipleProtocolInterfaces	(

																&ImageHandle,

																&gEfiDecompressProtocolGuid,

																&gAbcDecompress,

																NULL

);

}

A	service	driver	may	also	install	its	protocol	interfaces	onto	one	or	more	new	handles	in	the	Handle
Database.	The	following	example	shows	a	template	for	a	service	driver	called		Abc		that	produces	the
Decompress	Protocol	on	a	new	handle.

Example	105-Service	driver	entry	point	creating	new	handle

#include	<Uefi.h>

#include	<Protocol/Decompress.h>

#include	<Library/UefiBootServicesTableLib.h>

//

//	Handle	for	the	Decompress	Protocol

//

EFI_HANDLE	gAbcDecompressHandle	=	NULL;

7.9	Service	Driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

325DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Decompress	Protocol	instance

//

EFI_DECOMPRESS_PROTOCOL	gAbcDecompress	=	{

		AbcGetInfo,

		AbcDecompress

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Install	Decompress	Protocol	onto	a	new	handle

		//

		return	gBS->InstallMultipleProtocolInterfaces	(

																&gAbcDecompressHandle,

																&gEfiDecompressProtocolGuid,

																&gAbcDecompress,

																NULL

);

}

7.9	Service	Driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

326DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.10	Root	bridge	driver	entry	point

Root	bridge	drivers	produce	handles	and	software	abstractions	for	the	bus	types	directly	produced	by	a
core	chipset.	The	PCI	Root	Bridge	I/O	Protocol	is	an	example	of	a	software	abstraction	for	root	bridges
that	is	defined	in	the	PCI	Bus	Support	chapter	of	the	UEFI	Specification.

UEFI	drivers	that	produce	root	bridge	abstractions	do	not	follow	the	UEFI	driver	model.	Instead,	they
initialize	hardware	and	directly	produce	the	handles	and	protocols	in	the	driver	entry	point.	Root	bridge
drivers	are	slightly	different	from	service	drivers	in	the	following	ways:

Root	bridge	drivers	always	creates	new	handles.

It	installs	a	software	abstraction	for	each	root	bridge,	such	as	the	PCI	Root	Bridge	I/O	Protocol

It	installs	a	Device	Path	Protocol	for	each	root	bridge	that	describes	the	programmatic	path	to	the
root	bridge	device.

A	root	bridge	driver	may	register	an		Unload()		service,	and	that	service	would	be	required	to	uninstall	the
protocols	that	were	installed	in	the	driver's	entry	point.

Caution:	The		Unload()		service	for	a	root	bridge	driver	may	be	a	dangerous	operation	because	there	is
no	way	for	the	root	bridge	driver	to	know	if	the	protocols	it	installed	are	being	used	by	other	UEFI
components.	If	the	root	bridge	driver	is	unloaded	and	other	UEFI	components	are	still	using	the
protocols	that	were	produced	by	the	unloaded	driver,	then	the	system	is	likely	to	fail.

The	example,	below	shows	an	example	of	a	root	bridge	driver	that	produces	one	handle	for	a	system
with	a	single	PCI	root	bridge.	A	Device	Path	Protocol	with	an	ACPI	device	path	node	and	the	PCI	Root
Bridge	I/O	Protocol	are	installed	onto	a	newly	created	handle.	The	ACPI	device	path	node	for	the	PCI	root
bridge	must	match	the	description	of	the	PCI	root	bridge	in	the	ACPI	table	for	the	platform.

In	this	example,	the	Device	Path	Protocol	and	PCI	Root	Bridge	I/O	Protocol	are	declared	as	global
variables.	Additional	private	data	may	need	to	be	required	to	properly	manage	a	PCI	root	bridge.

Example	106-Single	PCI	root	bridge	driver	entry	point

#include	<Uefi.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/PciRootBridgeIo.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/DevicePathLib.h>

//

//	Structure	defintion	for	the	device	path	of	a	PCI	Root	Bridge

//

typedef	struct	{

		ACPI_HID_DEVICE_PATH	AcpiDevicePath;

		EFI_DEVICE_PATH_PROTOCOL	EndDevicePath;

}	EFI_PCI_ROOT_BRIDGE_DEVICE_PATH;

//

//	Handle	for	the	PCI	Root	Bridge

//

EFI_HANDLE	gAbcPciRootBridgeIoHandle	=	NULL;

//

//	Device	Path	Protocol	instance	for	the	PCI	Root	Bridge

//

EFI_PCI_ROOT_BRIDGE_DEVICE_PATH	gAbcPciRootBridgeIoDevicePath	=	{

7.10	Root	bridge	driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

327DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	{

				ACPI_DEVICE_PATH,																														//	Type

				ACPI_DP,																																							//	Subtype

				(UINT8)(sizeof	(ACPI_HID_DEVICE_PATH)),								//	Length	lower

				(UINT8)((sizeof	(ACPI_HID_DEVICE_PATH))	>>	8),	//	Length	upper

				EISA_PNP_ID	(0x0A03),																										//	HID

				0																																														//	UID

		},

		{

				END_DEVICE_PATH_TYPE,																										//	Type

				END_ENTIRE_DEVICE_PATH_SUBTYPE,																//	Subtype

				END_DEVICE_PATH_LENGTH,																								//	Length

				0																																														//	Length

		}

};

//

//	PCI	Root	Bridge	I/O	Protocol	instance	for	the	PCI	Root	Bridge

//

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	gAbcPciRootBridgeIo	=	{

		NULL,																																								//	ParentHandle

		AbcPciRootBridgeIoPollMem,																			//	PollMem()

		AbcPciRootBridgeIoPollIo,																				//	PolIo()

		{

				AbcPciRootBridgeIoMemRead,																	//	Mem.Read()

				AbcPciRootBridgeIoMemWrite																	//	Mem.Write()

		},

		{

				AbcPciRootBridgeIoIoRead,																		//	Io.Read()

				AbcPciRootBridgeIoIoWrite,																	//	Io.Write()

		},

		{

				AbcPciRootBridgeIoPciRead,																	//	Pci.Read()

				AbcPciRootBridgeIoPciWrite,																//	Pci.Write()

		},

		AbcPciRootBridgeIoCopyMem,																			//	CopyMem()

		AbcPciRootBridgeIoMap,																							//	Map()

		AbcPciRootBridgeIoUnmap,																					//	Unmap()

		AbcPciRootBridgeIoAllocateBuffer,												//	AllocateBuffer()

		AbcPciRootBridgeIoFreeBuffer,																//	FreeBuffer()

		AbcPciRootBridgeIoFlush,																					//	Flush()

		AbcPciRootBridgeIoGetAttributes,													//	GetAttributes()

		AbcPciRootBridgeIoSetAttributes,													//	SetAttributes()

		AbcPciRootBridgeIoConfiguration,													//	Configuration()

		0																																												//	SegmentNumber

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																																ImageHandle,

		IN	EFI_SYSTEM_TABLE																										*SystemTable

)

{

		//

		//	Perform	PCI	Root	Bridge	initialization	operations	here

		//

		//

		//	Install	the	Device	Path	Protocol	and	PCI	Root	Bridge	I/O	Protocol

		//	onto	a	new	handle.

		//

		return	gBS->InstallMultipleProtocolInterfaces	(

																&gAbcPciRootBridgeIoHandle,

																&gEfiDevicePathProtocolGuid,

																&gAbcPciRootBridgeIoDevicePath,

																&gEfiPciRootBridgeIoProtocolGuid,

																&gAbcPciRootBridgeIo,

																NULL

);

}

7.10	Root	bridge	driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

328DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	example	below,	shows	an	example	for	a	root	bridge	driver	that	produces	four	handles	for	a	system
with	four	PCI	root	bridges.	A	Device	Path	Protocol	with	an	ACPI	device	path	node	and	the	PCI	Root	Bridge
I/O	Protocol	are	installed	onto	each	of	the	newly	created	handles.	The	ACPI	device	path	nodes	for	each
of	the	PCI	root	bridges	must	match	the	description	of	the	PCI	root	bridges	in	the	ACPI	tables	for	the
platform.

In	this	example,	the	_UID	field	for	the	root	bridges	has	the	values	of	0,	1,	2,	and	3	However,	there	is	no
requirement	that	the	_UID	field	starts	at	0	or	that	they	are	contiguous.	The	only	requirement	is	that	the
_UID	field	for	each	root	bridge	matches	the	_UID	field	in	the	ACPI	table	describing	the	same	root	bridge
controller.

Templates	for	the	Device	Path	Protocol	and	PCI	Root	Bridge	I/O	Protocol	are	declared	as	global	variables,
and	copies	of	those	global	variable	template	are	made	for	each	PCI	root	bridge	using	the
	AllocateCopyPool()		function	in	the	EDK	II	library		MemoryAllocationLib	.	Additional	private	data	may	need	to	be
required	to	properly	manage	a	group	of	PCI	root	bridges.

Example	107-Multiple	PCI	root	bridge	driver	entry	point

#include	<Uefi.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/PciRootBridgeIo.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/DevicePathLib.h>

#include	<Library/DebugLib.h>

//

//	Structure	defintion	for	the	device	path	of	a	PCI	Root	Bridge

//

typedef	struct	{

		ACPI_HID_DEVICE_PATH	AcpiDevicePath;

		EFI_DEVICE_PATH_PROTOCOL	EndDevicePath;

}	EFI_PCI_ROOT_BRIDGE_DEVICE_PATH;

//

//	Device	Path	Protocol	instance	for	the	PCI	Root	Bridge

//

EFI_PCI_ROOT_BRIDGE_DEVICE_PATH	gAbcPciRootBridgeIoDevicePathTemplate	=	{

		{

				ACPI_DEVICE_PATH,																															//	Type

				ACPI_DP,																																								//	Subtype

				(UINT8)(sizeof	(ACPI_HID_DEVICE_PATH)),									//	Length	lower

				(UINT8)((sizeof	(ACPI_HID_DEVICE_PATH))	>>	8),		//	Length	upper

				EISA_PNP_ID	(0x0A03),																											//	HID

				0																																															//	UID

		},

		{

				END_DEVICE_PATH_TYPE,																											//	Type

				END_ENTIRE_DEVICE_PATH_SUBTYPE,																	//	Subtype

				END_DEVICE_PATH_LENGTH,																									//	Length

				0																																															//	Length

		}

};

//

//	PCI	Root	Bridge	I/O	Protocol	instance	for	the	PCI	Root	Bridge

//

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	gAbcPciRootBridgeIoTemplate	=	{

		NULL,																													//	ParentHandle

		AbcPciRootBridgeIoPollMem,								//	PollMem()

		AbcPciRootBridgeIoPollIo,									//	PolIo()	{

		AbcPciRootBridgeIoMemRead,								//	Mem.Read()

		AbcPciRootBridgeIoMemWrite								//	Mem.Write()

		},

		{

				AbcPciRootBridgeIoIoRead,							//	Io.Read()

				AbcPciRootBridgeIoIoWrite,						//	Io.Write()

7.10	Root	bridge	driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

329DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		},

		{

		AbcPciRootBridgeIoPciRead,								//	Pci.Read()

		AbcPciRootBridgeIoPciWrite,							//	Pci.Write()	},

		AbcPciRootBridgeIoCopyMem,								//	CopyMem()

		AbcPciRootBridgeIoMap,												//	Map()

		AbcPciRootBridgeIoUnmap,										//	Unmap()

		AbcPciRootBridgeIoAllocateBuffer,	//	AllocateBuffer()

		AbcPciRootBridgeIoFreeBuffer,					//	FreeBuffer()

		AbcPciRootBridgeIoFlush,										//	Flush()

		AbcPciRootBridgeIoGetAttributes,		//	GetAttributes()

		AbcPciRootBridgeIoSetAttributes,		//	SetAttributes()

		AbcPciRootBridgeIoConfiguration,		//	Configuration()

		0																																	//	SegmentNumber

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS																							Status;

		UINTN																												Index;

		EFI_HANDLE																							NewHandle;

		EFI_PCI_ROOT_BRIDGE_DEVICE_PATH		*DevicePath;

		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		*PciRootBridgeIo;

		//

		//	Perform	PCI	Root	Bridge	initialization	operations	here

		//

		for	(Index	=	0;

							Index	<	4;	Index++)	{

				//

				//	Allocate	and	initialize	Device	Path	Protocol

				//

				DevicePath	=	AllocateCopyPool	(

																			sizeof	(gAbcPciRootBridgeIoDevicePathTemplate),

																			&gAbcPciRootBridgeIoDevicePathTemplate

);

				ASSERT	(DevicePath	!=	NULL);

				DevicePath->AcpiDevicePath.UID	=	(UINT32)Index;

				//

				//	Allocate	and	initialize	PCI	Root	Bridge	I/O	Protocol

				//

				PciRootBridgeIo	=	AllocateCopyPool	(

																								sizeof	(gAbcPciRootBridgeIoTemplate),

																								&gAbcPciRootBridgeIoTemplate

);

				ASSERT	(PciRootBridgeIo	!=	NULL);

				//

				//	Install	the	Device	Path	Protocol	and	PCI	Root	Bridge	I/O	Protocol

				//	onto	a	new	handle.

				//

				NewHandle	=	NULL;

				Status	=	gBS->InstallMultipleProtocolInterfaces	(

																				&NewHandle,

																				&gEfiDevicePathProtocolGuid,

																				DevicePath,

																				&gEfiPciRootBridgeIoProtocolGuid,

																				PciRootBridgeIo,

																				NULL

);

				ASSERT_EFI_ERROR	(Status);

		}

		return	EFI_SUCCESS;

}

7.10	Root	bridge	driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

330DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.10	Root	bridge	driver	entry	pointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

331DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

7.11	Runtime	Drivers

UEFI	Runtime	Drivers	are	not	common.	If	a	UEFI	Driver	does	not	need	to	provide	services	after
	ExitBootServices()	,	the	UEFI	Driver	should	not	use	the	techniques	described	in	this	section.	The	best
example	of	a	runtime	driver	following	the	UEFI	driver	model	is	an	UNDI	driver	providing	services	for	a
network	interface	controller	(NIC).

A	UEFI	Runtime	Driver	provides	services	that	are	available	after		ExitBootServices()		has	been	called.	UEFI
Drivers	of	this	category	are	much	more	difficult	to	implement	and	validate	because	they	are	required	to
execute	in	both	the	pre-boot	environment,	where	the	system	firmware	owns	the	platform,	and	in	the
post-boot	environment,	where	an	operating	system	owns	the	platform.

An	OS	may	choose	to	execute	in	a	virtual	addressing	mode	and,	as	a	result,	may	prefer	to	call	firmware
services	provided	by	UEFI	Runtime	Drivers	in	a	virtual	addressing	mode.	A	UEFI	Runtime	Driver	must	not
make	any	assumptions	about	the	type	of	operating	system	to	be	booted,	so	the	driver	must	always	be
able	to	switch	from	using	physical	addresses	to	using	virtual	addresses	if	the	operating	system	calls
	SetVirtualAddressMap()	.

In	addition,	because	all	memory	regions	marked	as	boot	services	memory	in	the	UEFI	memory	map	are
converted	to	available	memory	when	the	OS	boots,	a	UEFI	Runtime	Driver	must	allocate	memory	buffers
required	by	the	services	provided	after		ExitBootServices()		in	order	to	be	allocated	from	runtime	memory.

A	UEFI	Runtime	Driver	typically	creates	the	following	two	events	so	the	driver	is	notified	when	these
important	transitions	occur:

Exit	Boot	Services	event
Set	Virtual	Address	Map	event

The	Exit	Boot	Services	event	is	signaled	when	the	OS	loader	or	OS	kernel	calls		ExitBootServices()	.	After
this	point,	the	UEFI	driver	is	not	allowed	to	use	any	of	the	UEFI	boot	services.	The	UEFI	runtime	services
and	services	from	other	runtime	drivers	are	still	available.

The	Set	Virtual	Address	Map	event	is	signaled	when	the	OS	loader	or	OS	kernel	calls		SetVirtualAddressMap()	.
If	this	event	is	signaled,	the	OS	loader	or	OS	kernel	requests	that	all	runtime	components	be	converted
from	their	physical	address	mapping	to	the	virtual	address	mappings	that	are	then	passed	to
	SetVirtualAddressMap()	.

The	UEFI	firmware	below	the	UEFI	Driver	performs	most	of	the	work	here	by	relocating	all	the	UEFI
images	from	their	physically	addressed	code	and	data	segments	to	their	virtually	addressed	code	and
data	segments.	However,	the	UEFI	firmware	below	the	UEFI	Driver	is	not	aware	of	runtime	memory
buffers	have	been	allocated	by	a	UEFI	Runtime	Driver.	UEFI	firmware	below	the	UEFI	Driver	is	also	not
aware	if	there	are	any	pointer	values	within	those	allocated	buffers	that	must	be	converted	from
physical	addresses	to	virtual	addresses.

Caution:	The	notification	function	for	the	Set	Virtual	Address	Map	event	is	required	to	use	the

UEFI	Runtime	Service		ConvertPointer()		to	convert	all	pointers	in	global	variables	and	allocated	runtime
buffers	from	physical	address	to	virtual	addresses.	This	code	may	be	complex	and	difficult	to	get	correct
because,	at	this	time,	no	tools	are	available	to	help	know	when	all	the	pointers	have	been	converted.
When	not	done	correctly,	the	only	symptom	noticed	may	be	that	the	OS	crashes	or	hangs	due	to	a
condition	in	the	middle	of	a	call	to	a	service	produced	by	a	runtime	driver.

7.11	Runtime	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

332DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Note:	The	algorithm	to	convert	pointers	can	be	especially	complex	if	the	UEFI

_Runtime	Driver	manages	linked	lists	or	nested	structures.	The		SetVirtualAddressMap()		event	executes	in
physical	mode,	so	all	linked	list	and	structure	traversals	must	be	performed	with	the	physical	versions	of
the	pointer	values.	Once	a	pointer	value	is	converted	from	a	physical	address	to	a	virtual	address,	that
pointer	value	cannot	be	used	again	within	the		SetVirtualAddressMap()		event.	The	typical	approach	is	to
convert	the	pointers	to	the	leaf	structures	first	and	work	towards	the	root.

The	following	example	shows	the	driver	entry	point	for	a	UEFI	Runtime	Driver	that	creates	an	Exit	Boot
Services	event	and	a	Set	Virtual	Address	Map	event.	These	events	are	typically	declared	as	global
variables.	The	notification	function	for	the	Exit	Boot	Services	event	sets	a	global	variable		gAtRuntime		to
	TRUE	,	allowing	the	code	in	other	functions	to	know	if	the	UEFI	boot	services	are	available	or	not.	This
global	variable	is	initialized	to		FALSE		in	its	declaration.	The	notification	function	for	the	Set	Virtual
Address	Map	event	converts	one	global	pointer	from	a	physical	address	to	a	virtual	address	as	an
example	using	a	the		EfiConvertPointer()		function	from	the	EDK	II	library		UefiRuntimeLib	.	A	real	driver	might
have	many	more	pointers	to	convert.	In	general,	a	UEFI	Runtime	Driver	should	be	designed	to	reduce	or
eliminate	pointers	that	need	to	be	converted	to	minimize	the	likelihood	of	missing	a	pointer	conversion.

Example	108-UEFI	Runtime	Driver	entry	point

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiRuntimeLib.h>

#include	<Library/DebugLib.h>

//

//	Global	variable	for	Exit	Boot	Services	event.

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

//

//	Global	variable	for	Set	Virtual	Address	Map	event.

//

EFI_EVENT	mSetVirtualAddressMapEvent	=	NULL;

//

//	Global	variable	updated	when	Exit	Boot	Services	is	signaled.

//

BOOLEAN	gAtRuntime	=	FALSE;

//

//	Global	pointer	that	is	converted	to	a	virtual	address	when

//	Set	Virtual	Address	Map	is	signaled.

//

VOID	*gGlobalPointer;

VOID

EFIAPI

AbcNotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		gAtRuntime	=	TRUE;

}

VOID

EFIAPI

AbcNotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

7.11	Runtime	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

333DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		Status	=	EfiConvertPointer	(

													EFI_OPTIONAL_PTR,

													(VOID	**)&gGlobalPointer

);

}

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Create	an	Exit	Boot	Services	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_EXIT_BOOT_SERVICES,					//	Type

																		TPL_NOTIFY,																								//	NotifyTpl

																		AbcNotifyExitBootServices,									//	NotifyFunction

																		NULL,																														//	NotifyContext

																		&mExitBootServicesEvent												//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Create	a	Set	Virtual	Address	Map	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,	//	Type

																		TPL_NOTIFY,																								//	NotifyTpl

																		AbcNotifySetVirtualAddressMap,					//	NotifyFunction

																		NULL,																														//	NotifyContext

																		&mSetVirtualAddressMapEvent								//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Perform	additional	driver	initialization	here

		//

		return	EFI_SUCCESS;

}

A	UEFI	Runtime	Driver	must	have	the	required	subsystem	type	in	the	PE/COFF	image	for	the	UEFI	Boot
Service		LoadImage()		to	allocate	memory	for	the	code	and	data	sections	from	runtime	memory.	In	the	EDK	II
this	is	done	by	setting		MODULE_TYPE		in	the		[Defines]		section	of	the	INF	file	to		DXE_RUNTIME_DRIVER	.	In	addition,	a
	MODULE_TYPE		of		DXE_RUNTIME_DRIVER		is	required	to	have	a		[Depex]		section	in	the	INF	file.	UEFI	Runtime	Driver
must	use	the	same		[Depex]		section	contents.	The	example	below	shows	the	INF	file	for	a	UEFI	Runtime
Driver	with	a		MODULE_TYPE		of		DXE_RUNTIME_DRIVER		and	the	required		[Depex]		section.

Example	109-UEFI	Runtime	Driver	INF	File

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	AbcRuntimeDriver

		FILE_GUID						=	D3A3F14B-8ED4-438c-B7B7-FAF3F639B160

		MODULE_TYPE				=	DXE_RUNTIME_DRIVER

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	AbcDriverEntryPoint

[Sources]

		Abc.c

[Packages]

		MdePkg/MdePkg.dec

7.11	Runtime	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

334DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

[LibraryClasses]

		UefiDriverEntryPoint

		UefiBootServicesTableLib

		UefiRuntimeLib

		DebugLib

[Depex]

		gEfiBdsArchProtocolGuid	AND

		gEfiCpuArchProtocolGuid	AND

		gEfiMetronomeArchProtocolGuid	AND

		gEfiMonotonicCounterArchProtocolGuid	AND

		gEfiRealTimeClockArchProtocolGuid	AND

		gEfiResetArchProtocolGuid	AND

		gEfiRuntimeArchProtocolGuid	AND

		gEfiSecurityArchProtocolGuid	AND

		gEfiTimerArchProtocolGuid	AND

		gEfiVariableWriteArchProtocolGuid	AND

		gEfiVariableArchProtocolGuid	AND

		gEfiWatchdogTimerArchProtocolGuid

If	a	UEFI	Runtime	Driver	also	supports	the	unload	feature,	the		Unload()		function	must	close	the	Exit	Boot
Services	and	Set	Virtual	Address	Map	events	by	calling	the	UEFI	Boot	Service		CloseEvent()	.	These	events
are	typically	declared	as	global	variables	so	they	can	be	easily	accessed	from	the		Unload()		function.	The
example	below	shows	an	unloadable	runtime	driver.	It	is	the	same	as	the	previous	example,	except	the
entry	point	looks	up	the		EFI_LOADED_IMAGE_PROTOCOL		associated	with	ImageHandle	and	registers	the	Unload()
function	called		AbcUnload()	.		AbcUnload()		closes	the	events	that	were	created	in	the	driver	entry	point	using
the	UEFI	Boot	Service		CloseEvent()	.

Example	110-UEFI	Runtime	Driver	entry	point	with	Unload	feature

#include	<Uefi.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiRuntimeLib.h>

#include	<Library/DebugLib.h>

//

//	Global	variable	for	Exit	Boot	Services	event.

//

EFI_EVENT	mExitBootServicesEvent	=	NULL;

//

//	Global	variable	for	Set	Virtual	Address	Map	event.

//

EFI_EVENT	mSetVirtualAddressMapEvent	=	NULL;

//

//	Global	variable	updated	when	Exit	Boot	Services	is	signaled.

//

BOOLEAN	gAtRuntime	=	FALSE;

//

//	Global	pointer	that	is	converted	to	a	virtual	address	when

//	Set	Virtual	Address	Map	is	signaled.

//

VOID	*gGlobalPointer;

VOID

EFIAPI

AbcNotifyExitBootServices	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		gAtRuntime	=	TRUE;

}

VOID

7.11	Runtime	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

335DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFIAPI

AbcNotifySetVirtualAddressMap	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		EFI_STATUS		Status;

		Status	=	EfiConvertPointer	(

													EFI_OPTIONAL_PTR,

													(VOID	**)&gGlobalPointer

);

}

EFI_STATUS	EFIAPI

AbcUnload	(

		IN	EFI_HANDLE		ImageHandle

)

{

		gBS->CloseEvent	(mExitBootServicesEvent);

		gBS->CloseEvent	(mSetVirtualAddressMapEvent);

		return	EFI_SUCCESS;

}

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Create	an	Exit	Boot	Services	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_EXIT_BOOT_SERVICES,					//	Type

																		TPL_NOTIFY,																								//	NotifyTpl

																		AbcNotifyExitBootServices,									//	NotifyFunction

																		NULL,																														//	NotifyContext

																		&mExitBootServicesEvent												//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Create	a	Set	Virtual	Address	Map	event.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,	//	Type

																		TPL_NOTIFY,																								//	NotifyTpl

																		AbcNotifySetVirtualAddressMap,					//	NotifyFunction

																		NULL,																														//	NotifyContext

																		&mSetVirtualAddressMapEvent								//	Event

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Perform	additional	driver	initialization	here

		//

		return	EFI_SUCCESS;

}

7.11	Runtime	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

336DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8	Private	Context	Data	Structures
UEFI	drivers	managing	more	than	one	controller	need	to	be	designed	with	reentrancy	in	mind.	This
means	that	global	variables	should	not	be	used	to	track	information	about	individual	controllers.
Instead,	data	structures	should	be	allocated	with	the	UEFI	memory	services	for	each	controller,	and
those	data	structures	should	contain	all	the	information	that	the	driver	requires	to	manage	each
individual	controller.

This	chapter	introduces	some	object-oriented	programming	techniques	that	can	be	applied	to	drivers
managing	controllers.	These	techniques	can	simplify	driver	design	and	implementation.	The	concept	of
a	private	context	data	structure	containing	all	the	information	required	to	manage	a	controller	is
introduced.	This	data	structure	contains	the	public	data	fields,	public	services,	private	data	fields,	and
private	services	a	UEFI	driver	may	require	to	manage	a	controller.

Some	categories	of	UEFI	drivers	do	not	require	the	use	of	these	data	structures.	If	a	UEFI	driver	only
produces	a	single	protocol,	or	it	manages,	at	most,	one	device,	the	techniques	presented	here	are	not
required.	An	initializing	driver	does	not	produce	any	services	and	does	not	manage	any	devices,	so	it
does	not	use	this	technique.	A	service	driver	that	produces	a	single	protocol	and	does	not	manage	any
devices	does	not	likely	use	this	technique.	A	root	bridge	driver	that	manages	a	single	root	bridge	device
does	not	likely	use	this	technique,	but	a	root	bridge	driver	that	manages	more	than	one	root	bridge
device	may	use	this	technique.

Finally,	all	UEFI	drivers	that	follow	the	UEFI	driver	model	should	use	this	technique.	Even	if	the	driver
writer	is	convinced	that	the	UEFI	driver	manages	only	a	single	device	in	a	platform,	this	technique
should	still	be	used	because	it	simplifies	the	process	of	updating	the	driver	to	manage	more	than	one
device.	The	driver	writer	should	make	as	few	device	and	platform	assumptions	as	possible	when
designing	a	new	driver.

Implementations	of	Hybrid	drivers	that	follow	the	UEFI	Driver	Model	may	define	two	different	private
context	data	structures―one	for	the	bus	controller	and	another	one	for	the	child	controllers	it
produces.

It	is	possible	to	use	other	techniques	to	track	the	information	required	to	manage	multiple	controllers	in
a	re-entrant-safe	manner,	but	those	techniques	likely	require	more	overhead	in	the	driver	itself	to
manage	this	information.	The	techniques	presented	here	are	intended	to	produce	small	driver
executables.	These	techniques	are	used	throughout	the	drivers	in	EDK	II.

8	Private	Context	Data	StructuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

337DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.1	Containing	Record	Macro

The	containing	record	macro,	called		CR()	,	enables	good	object-oriented	programming	practices.	It
returns	a	pointer	to	the	structure	using	a	pointer	to	one	of	the	structure's	fields.	Protocol	producing
UEFI	drivers	use	this	macro	to	retrieve	the	private	context	data	structure	from	a	pointer	to	a	produced
protocol	interface.	Protocol	functions	are	required	to	pass	in	a	pointer	to	the	protocol	instance	as	the
first	argument	to	the	function.	C++	does	this	automatically,	and	the	pointer	to	the	object	instance	is
called	a	this	pointer.	Since	UEFI	drivers	are	written	in	C,	a	close	equivalent	is	implemented	by	requiring
that	the	first	argument	of	every	protocol	function	be	the	pointer	to	the	protocol's	instance	structure
called	"This."	Each	protocol	function	then	uses	the		CR()		macro	to	retrieve	a	pointer	to	the	private
context	data	structure	from	this	first	argument	called	This.

The	example	below	is	the	definition	of	the		CR()		macro	from	the	EDK	II	library		DebugLib	.	The		CR()		macro	is
provided	a	pointer	to	the	following:

A	field	in	a	data	structure

The	name	of	the	field

It	uses	this	information	to	compute	the	offset	of	the	field	in	the	data	structure	and	subtracts	this	offset
from	the	pointer	to	the	field.	This	calculation	results	in	a	pointer	to	the	data	structure	that	contains	the
specified	field.		BASE_CR()		returns	a	pointer	to	the	data	structure	that	contains	the	specified	field.	For
debug	builds,		CR()		also	does	an	additional	check	to	verify	a	signature	value.	If	the	signature	value	does
not	match,	an		ASSERT()		message	is	generated	and	the	system	is	halted	or	generates	a	breakpoint.	For
production	builds,	the	signature	checks	are	typically	disabled.	Most	UEFI	drivers	define	additional
macros	based	on	the		CR()		macro	that	retrieves	the	private	context	data	structure	based	on	a	This
pointer	to	a	produced	protocol.	These	additional	macros	are	typically	given	names	that	make	it	easier
to	understand	in	the	source	code	that	the	This	pointer	is	being	used	to	retrieve	the	private	context
data	structure	defined	by	the	UEFI	Driver.

Example	111-Containing	record	macro	definitions

/**

		Macro	that	calls	DebugAssert()	if	the	containing	record	does	not	have	a	matching	signature.	If	the	signatures	matches,	then	

a	pointer	to	the	data	structure	that	contains	a	specified	field	of	that	data	structure	is	returned.	This	is	a	lightweight	meth

od	that	hides	information	by	placing	a	public	data	structure	inside	a	larger	private	data	structure	and	using	a	pointer	to	the

	public	data	structure	to	retrieve	a	pointer	to	the	private	data	structure.

		If	the	data	type	specified	by	TYPE	does	not	contain	the	field	specified	by	Field,	then	the	module	will	not	compile.

		If	TYPE	does	not	contain	a	field	called	Signature,	then	the	module	will	not	compile.

		@param		Record									The	pointer	to	the	field	specified	by	Field	within	a	data	structure	of	type	TYPE.

		@param		TYPE											The	name	of	the	data	structure	type	to	return

																									This	data	structure	must	contain	the	field	specified	by	Field.

		@param		Field										The	name	of	the	field	in	the	data	structure	specified	by	TYPE	to	which	Record	points.

		@param		TestSignature		The	32-bit	signature	value	to	match.

**/

#if	!defined(MDEPKG_NDEBUG)

		#define	CR(Record,	TYPE,	Field,	TestSignature)																					\

				(DebugAssertEnabled	()	&&																																								\

						(BASE_CR	(Record,	TYPE,	Field)->Signature	!=	TestSignature))	?	\

				(TYPE	*)(_ASSERT	(CR	has	Bad	Signature),	Record)	:															\

				BASE_CR	(Record,	TYPE,	Field)

#else

		#define	CR(Record,	TYPE,	Field,	TestSignature)																					\

				BASE_CR	(Record,	TYPE,	Field)

#endif

8.1	Containing	Record	MacroEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

338DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	following	example	shows	the	definition	of	the		BASE_CR()		macro	from	the	EDK	II	that	is	used	to
implement	the		CR()		macro	above.	The		BASE_CR()		macro	does	not	perform	any	signature	checking	or
handle	any	error	conditions.	This	macro	may	be	used	with	data	structures	that	do	not	have	a	Signature
field.

Example	112-Containing	record	macro	definitions

/**

		Macro	that	returns	a	pointer	to	the	data	structure	that	contains	a	specified	field	of	that	data	structure.	This	is	a	lightwe

ight	method	to	hide	information	by	placing	a	public	data	structure	inside	a	larger	private	data	structure	and	using	a	pointer	

to	the	public	data	structure	to	retrieve	a	pointer	to	the	private	data	structure.

		This	function	computes	the	offset,	in	bytes,	of	field	specified	by	Field	from	the	beginning	of	the	data	structure	specified	

by	TYPE.	This	offset	is	subtracted	from	Record,	and	is	used	to	return	a	pointer	to	a	data	structure	of	the	type	specified	by	T

YPE.	If	the	data	type	specified	by	TYPE	does	not	contain	the	field	specified	by	Field,	then	the	module	will	not	compile.

		@param		Record		Pointer	to	the	field	specified	by	Field	within	a	

																		data	structure	of	type	TYPE.

		@param		TYPE				The	name	of	the	data	structure	type	to	return.	This

																		data	structure	must	contain	the	field	specified	by	

																		Field.

		@param		Field			The	name	of	the	field	in	the	data	structure	specified	

																		by	TYPE	to	which	Record	points.

		@return									A	pointer	to	the	structure	from	one	of	it's	elements.

**/

#define	BASE_CR(Record,	TYPE,	Field)																																			\

		((TYPE	*)((CHAR8	*)(Record)	-	(CHAR8	*)	&(((TYPE	*)	0)->Field)))

8.1	Containing	Record	MacroEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

339DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.2	Data	structure	design

Proper	data	structure	design	is	one	of	the	keys	to	making	UEFI	Drivers	both	simple	and	easy	to
maintain.	If	a	UEFI	Driver	writer	fails	to	include	fields	in	a	private	context	data	structure,	then	it	may
require	a	complex	algorithm	to	retrieve	the	required	data	through	the	various	UEFI	services.	By
designing-in	the	proper	fields,	these	complex	algorithms	are	avoided,	resulting	in	a	driver	with	a	smaller
executable	footprint.	Static	data,	commonly	accessed	data,	and	services	related	to	the	management	of
a	device	should	all	be	placed	in	a	private	context	data	structure.

Another	key	requirement	is	that	the	private	context	data	structure	must	be	easy	to	find	when	an	I/O
service	produced	by	the	driver	is	called.	The	I/O	services	produced	by	a	driver	are	exported	through
protocol	interfaces,	and	all	protocol	interfaces	include	a	This	parameter	as	the	first	argument.	The	This
parameter	is	a	pointer	to	the	protocol	interface	containing	the	I/O	service	being	called.	The	data
structure	design	presented	here	shows	how	the	This	pointer	passed	into	an	I/O	service	can	be	used	to
easily	gain	access	to	the	private	context	data	structure.

A	private	context	data	structure	is	typically	composed	of	the	following	types	of	fields:

A	signature	for	the	data	structure
The	handle	of	the	controller	or	the	child	that	is	being	managed	or	produced
The	group	of	protocol	interfaces	that	are	being	consumed
The	group	of	protocol	interfaces	that	are	being	produced
Private	data	fields	and	services	that	are	used	to	manage	a	specific	controller

The	signature	is	useful	when	debugging	UEFI	drivers.	Signatures	are	composed	of	four	ASCII	characters
in	a	data	field	of	type		UINTN		and	must	be	the	first	field	of	the	structure	with	the	field	name	of	Signature.
When	memory	dumps	are	performed,	signatures	stand	out	by	making	the	beginning	of	specific	data
structures	easy	to	identify.	Memory	dump	tools	with	search	capabilities	can	also	be	used	to	find	specific
private	context	data	structures	in	memory.	In	addition,	debug	builds	of	UEFI	drivers	can	perform
signature	checks	whenever	these	private	context	data	structures	are	accessed.	If	the	signature	does
not	match,	then	an		ASSERT()		may	be	generated.	If	one	of	these		ASSERT()		messages	is	observed,	a	UEFI
driver	was	likely	passed	in	a	bad	or	corrupt	This	pointer	or	the	contents	of	the	data	structure	that	This
refers	too	has	been	corrupted.

Device	drivers	typically	store	the	handle	of	the	device	they	are	managing	in	a	private	context	data
structure.	This	mechanism	provides	quick	access	to	the	device	handle	if	needed	during	I/O	operations
or	driver-related	operations.	Root	bridge	drivers	and	bus	drivers	typically	store	the	handle	of	the	child
that	was	created,	and	a	hybrid	driver	typically	stores	both	the	handle	of	the	bus	controller	and	the
handle	of	the	child	controller	produced.

The	group	of	consumed	protocol	interfaces	is	the	set	of	pointers	to	the	protocol	interfaces	that	are
opened	in	the		Start()		function	of	the	driver's		EFI_DRIVER_BINDING_PROTOCOL	.	As	each	protocol	interface	is
opened	using	the	UEFI	Boot	Service		OpenProtocol()	,	a	pointer	to	the	consumed	protocol	interface	is
stored	in	the	private	context	data	structure.	These	same	protocols	must	be	closed	in	the		Stop()	
function	of	the	driver's		EFI_DRIVER_BINDING_PROTOCOL		with	calls	to	the	UEFI	Boot	Service		CloseProtocol()	.
Basically,	the	stop	section	should	mirror	the	start	section	of	the	driver,	closing	all	protocols	that	were
started.

The	group	of	produced	protocol	interfaces	declares	the	storage	for	the	protocols	that	the	driver
produces.	These	protocols	typically	provide	software	abstractions	for	consoles	or	boot	devices.

The	number	and	type	of	private	data	fields	vary	from	driver	to	driver.	These	fields	contain	the	context
information	for	a	device	that	is	not	contained	in	the	consumed	or	produced	protocols.	For	example,	a
driver	for	a	mass	storage	device	may	store	information	about	the	characteristics	of	the	mass	storage

8.2	Data	structure	designEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

340DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

device	such	as	the	number	of	cylinders,	number	of	heads,	and	number	of	sectors	on	the	physical	mass
storage	device	managed	by	the	driver.

Appendix	A	contains	the	generic	template	for	the		<<DriverName>>	.h	file	with	the	declaration	of	a	private
context	data	structure	that	can	be	used	for	root	bridge	drivers,	device	drivers,	bus	drivers,	or	hybrid
drivers.	The	#define	statement	above	the	private	context	data	structure	declaration	using	the
SIGNATURE_32()	macro	is	used	to	initialize	the	Signature	field	when	the	private	context	data	structure	is
allocated.	This	same	#define	statement	is	used	to	verify	the	Signature	field	whenever	a	driver	accesses
the	private	context	data	structure.

A	set	of	macros	below	the	private	context	data	structure	declaration	help	retrieve	a	pointer	to	the
private	context	data	structure	from	a	This	pointer	for	each	of	the	produced	protocols	using	the		CR()	
macro	introduced	above.	These	macros	are	the	simple	mechanisms	that	allow	private	data	fields	to	be
accessed	from	the	services	in	each	of	the	produced	protocols.

The	example	below	shows	an	example	of	the	private	context	data	structure	from	the		DiskIoDxe		driver	in
the		MdeModulePkg	.	It	contains	the		#define		statement	for	the	data	structure's	signature.	In	this	case,	the
signature	is	the	ASCII	string	"	dskI	".	The	example	also	contains	a	pointer	to	the	only	protocol	that	this
driver	consumes;	the	Block	I/O	Protocol.	It	contains	storage	for	the	only	protocol	this	driver	produces;
the	Disk	I/O	Protocol.	It	does	not	have	any	additional	private	data	fields.	The	macro	at	the	bottom
retrieves	the	private	context	data	structure	from	a	pointer	to	the	field	called		DiskIo		that	is	a	pointer	to
the	one	protocol	that	this	driver	produces.

Example	113-Simple	private	context	data	structure

#define	DISK_IO_PRIVATE_DATA_SIGNATURE	SIGNATURE_32	('d','s','k','I')

typedef	struct	{

		UINTN	Signature;

		EFI_DISK_IO_PROTOCOL	DiskIo;

		EFI_BLOCK_IO_PROTOCOL	*BlockIo;

}	DISK_IO_PRIVATE_DATA;

#define	DISK_IO_PRIVATE_DATA_FROM_THIS(a)	\

		CR	(a,	DISK_IO_PRIVATE_DATA,	DiskIo,	DISK_IO_PRIVATE_DATA_SIGNATURE)

The	following	example	shows	a	more	complex	private	context	data	structure	from	the		EhciDxe		driver	in
the		MdeModulePkg		that	manages	PCI	EHCI	controllers	and	produces

USB	Host	Controller	2	Protocols.	It	contains	the	Signature	field	that	is	set	to	"	ehci	".	It	also	contains
pointers	to	the	consumed	protocol;	the	PCI	I/O	Protocol,	and	storage	for	the	USB	Host	Controller	2
Protocol	that	is	produced	by	this	driver.	In	addition,	there	are	a	large	number	of	private	data	fields	that
are	used	during	initialization	and	all	supported	USB	transaction	types.	Details	on	how	these	private
fields	are	used	can	be	found	in	the	source	code	to	the	EHCI	driver	in	EDK	II.

Example	114-Complex	private	context	data	structure

#define	USB2_HC_DEV_SIGNATURE	SIGNATURE_32	('e',	'h',	'c',	'i')

typedef	struct	{

		UINTN	Signature;

		EFI_USB2_HC_PROTOCOL	Usb2Hc;

		EFI_PCI_IO_PROTOCOL	*PciIo;

		UINT64	OriginalPciAttributes;

		USBHC_MEM_POOL	*MemPool;

		EHC_QTD	*ShortReadStop;

		EFI_EVENT	PollTimer;

		EFI_EVENT	ExitBootServiceEvent;

		EHC_QH	*ReclaimHead;

		VOID	*PeriodFrame;

		VOID	*PeriodFrameHost;

		VOID	*PeriodFrameMap;

8.2	Data	structure	designEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

341DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		EHC_QH	*PeriodOne;

		LIST_ENTRY	AsyncIntTransfers;

		UINT32	HcStructParams;

		UINT32	HcCapParams;

		UINT32	CapLen;

		EFI_UNICODE_STRING_TABLE	*ControllerNameTable;

}	USB2_HC_DEV;

#define	EHC_FROM_THIS(a)	\

		CR(a,	USB2_HC_DEV,	Usb2Hc,	USB2_HC_DEV_SIGNATURE)

8.2	Data	structure	designEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

342DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.3	Allocating	private	context	data	structures

Private	context	data	structures	are	allocated	in	the		Start()		function	of	the	Driver	Binding	Protocol.	The
service	that	is	typically	used	to	allocate	the	private	context	data	structures	is	the	UEFI	Boot	Service
	AllocatePool()	.	The	following	example	shows	the	generic	template	for	allocating	and	zeroing	a	private
context	data	structure	in	the		Start()		function	of	the	Driver	Binding	Protocol.	In	this	example,	the	UEFI
Boot	Service		SetMem()		is	used	to	fill	the	allocated	buffer	with	zeros.	This	code	example	shows	only	a
fragment	from	the		Start()		function.	Chapter	9	of	this	guide	covers	the	services	that	are	produced	by
the	Driver	Binding	Protocol	in	more	detail.	The	code	examples	that	follow	show	how	the	implementation
of		Start()		can	be	simplified	by	using	the	EDK	II	library		MemoryAllocationLib	.

Example	115-Allocation	of	a	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DevicePath.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS

EFIAPI

<<DriverName>>DriverBindingStart	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS		Status;

		<<DRIVER_NAME>>_PRIVATE_DATA	Private;

		//

		//	Allocate	the	private	context	data	structure

		//

		Status	=	gBS->AllocatePool	(

																		EfiBootServicesData,

																		sizeof	(<<DRIVER_NAME>>_PRIVATE_DATA),

																		(VOID	**)&Private

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Clear	the	contents	of	the	allocated	buffer

		//

		gBS->SetMem	(Private,sizeof(<<DRIVER_NAME>>_PRIVATE_DATA),0);

}

The	example	below	shows	the	same	generic	template	for	the		Start()		function	above	except	that	it	uses
the	EDK	II	library		MemoryAllocationLib		to	allocate	and	zero	the	private	context	data	structure.

Example	116-Library	allocation	of	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DevicePath.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS

EFIAPI

<<DriverName>>DriverBindingStart	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

8.3	Allocating	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

343DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

)

{

		<<DRIVER_NAME>>_PRIVATE_DATA	Private;

		//

		//	Allocate	and	zero	the	private	context	data	structure

		//

		Private	=	AllocateZeroPool	(sizeof	(<<DRIVER_NAME>>_PRIVATE_DATA));

		if	(Private	==	NULL)	{

				return	EFI_OUT_OF_RESOURCES;

		}

}

The	following	example	shows	a	code	fragment	from	the		DiskIoDxe		driver	in	the		MdeModulePkg		that	allocates
and	initializes	the	private	context	data	structure	from	a	template	structure.	A	template	structure	is	an
instance	of	the	private	context	structure	with	most	of	the	fields	pre-initialized.	This	style	produces	UEFI
Drivers	that	execute	faster	and	produce	smaller	executables	than	UEFI	Drivers	that	initialize	each	field
of	the	private	context	data	structure	in	the		Start()		function.

Example	117-Disk	I/O	allocation	of	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DevicePath.h>

#include	<Protocol/DiskIo.h>

#include	<Library/MemoryAllocationLib.h>

//

//	Template	for	DiskIo	private	data	structure.

//	The	pointer	to	BlockIo	protocol	interface	is	assigned	dynamically.

//

DISK_IO_PRIVATE_DATA	gDiskIoPrivateDataTemplate	=	{

		DISK_IO_PRIVATE_DATA_SIGNATURE,

		{

				EFI_DISK_IO_PROTOCOL_REVISION,

				DiskIoReadDisk,

				DiskIoWriteDisk

		},

		NULL

};

EFI_STATUS

EFIAPI

DiskIoDriverBindingStart	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS												Status;

		DISK_IO_PRIVATE_DATA		*Private;

		//

		//	Initialize	the	Disk	IO	device	instance.

		//

		Private	=	AllocateCopyPool	(

														sizeof	(DISK_IO_PRIVATE_DATA),

														&gDiskIoPrivateDataTemplate

);

		if	(Private	==	NULL)	{

				Status	=	EFI_OUT_OF_RESOURCES;

				goto	ErrorExit;

		}

}

8.3	Allocating	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

344DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.3	Allocating	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

345DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.4	Freeing	private	context	data	structures

The	private	context	data	structures	are	freed	in	the		Stop()		function	of	the	driver's	Driver	Binding
Protocol.	The	service	typically	used	to	free	the	private	context	data	structures	is		FreePool()		from	the	EDK
II	library		MemoryAllocationLib	.

Shown	below	is	a	generic	template	for	freeing	a	private	context	data	structure	in	the		Stop()	function	of
the	Driver	Binding	Protocol.	This	code	example	shows	only	a	fragment	from	the		Stop()		service.	Chapter	9
covers	the	services	that	are	produced	by	the	Driver	Binding	Protocol	in	more	detail.

Example	118-Free	a	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS

EFIAPI

				<<DriverName>>DriverBindingStop	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINTN																								NumberOfChildren,

		IN	EFI_HANDLE																			*ChildHandleBuffer

)

{

		EFI_STATUS		Status;

		EFI_<<PROTOCOL_NAME_Pm>>_PROTOCOL	*	<<ProtocolNamePm>>;

		<<DRIVER_NAME>>_PRIVATE_DATA	Private;

		//

		//	Look	up	one	of	the	driver's	produced	protocols

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfi	<<ProtocolNamePm>>ProtocolGuid,

																		(VOID	**)&	<<ProtocolNamePm>>,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		if	(EFI_ERROR	(Status))	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Retrieve	the	private	context	data	structure	from	the

		//	produced	protocol

		//

		Private	=	<<DRIVER_NAME	>	_PRIVATE_DATA_FROM_	<<PROTOCOL_NAME_Pm>>_THIS	(

																<<ProtocolNamePm>>

);

		//

		//	Free	the	private	context	data	structure

		//

		FreePool	(Private);

		return	Status;

}

The	following	example	shows	a	code	fragment	from	the		DiskIoDxe		driver	in	the		MdeModulePkg		that	frees	the
private	context	data	structure.

Example	119-Disk	I/O	free	of	a	private	context	data	structure

8.4	Freeing	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

346DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DiskIo.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS

EFIAPI

DiskIoDriverBindingStop	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINTN																								NumberOfChildren,

		IN	EFI_HANDLE																			*ChildHandleBuffer

)

{

		EFI_STATUS																						Status;

		EFI_DISK_IO_PROTOCOL												*DiskIo;

		DISK_IO_PRIVATE_DATA												*Private;

		//

		//	Get	our	context	back.

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiDiskIoProtocolGuid,

																		(VOID	**)&DiskIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		if	(EFI_ERROR	(Status))	{

				return	EFI_UNSUPPORTED;

		}

		Private	=	DISK_IO_PRIVATE_DATA_FROM_THIS	(DiskIo);

		FreePool	(Private);

		return	Status;

}

8.4	Freeing	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

347DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

8.5	Retrieving	private	context	data	structures

The	protocol	functions	produced	by	a	UEFI	driver	need	to	access	the	private	context	data	structure.
These	functions	typically	use	the	set	of	consumed	protocols	and	the	private	data	fields	to	perform	the
protocol	function's	required	operation.

Appendix	A	contains	a	template	for	a		<<ProtocolName>>	.c	file	for	the	implementation	of	a	protocol
function	that	retrieves	the	private	context	data	structure	using	the	CR()	based	macro	and
the	This	pointer	for	the	produced	protocol.

The	following	example	shows	a	code	fragment	from	the		ReadDisk()		service	of	the		EFI_DISK_IO_PROTOCOL		that
is	produced	by	the		DiskIoDxe		driver	in	the		MdeModulePkg	.	It	uses	the		CR()		based	macro	called
	DISK_IO_PRIVATE_DATA_FROM_THIS()		and	the	This	pointer	to	the		EFI_DISK_IO_PROTOCOL		to	retrieve	the
	DISK_IO_PRIVATE_DATA		private	context	data	structure.

Example	120-Retrieving	the	Disk	I/O	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/DiskIo.h>

EFI_STATUS

EFIAPI

DiskIoReadDisk	(

		IN		EFI_DISK_IO_PROTOCOL		*This,

		IN		UINT32																MediaId,

		IN		UINT64																Offset,

		IN		UINTN																	BufferSize,

		OUT	VOID																		*Buffer

)

{

		DISK_IO_PRIVATE_DATA		*Private;

		Private	=	DISK_IO_PRIVATE_DATA_FROM_THIS	(This);

}

The		Stop()		function	from	the		EFI_DRIVER_BINDING_PROTOCOL		uses	the	same		CR()		based	macro	to	retrieve	the
private	context	data	structure.	The	only	difference	is	that	the	This	pointer	is	not	passed	into	the		Stop()	
function.	Instead,	the		Stop()		function	uses	ControllerHandle	to	retrieve	one	of	the	produced	protocols
and	then	uses	the		CR()		based	macro	with	that	protocol	interface	pointer	to	retrieve	the	private	context
data	structure.

The	example	below	shows	a	code	fragment	from	the	Driver	Binding	Protocol		Stop()		service	of	the
	DiskIoDxe		driver	in	the		MdeModulePkg	.	It	uses	the		CR()		based	macro	called		DISK_IO_PRIVATE_DATA_FROM_THIS()		and
	EFI_DISK_IO_PROTOCOL		retrieved	from	ControllerHandle	using	the	UEFI	Boot	Service		OpenProtocol()		to	retrieve
the		DISK_IO_PRIVATE_DATA		private	context	data	structure.

Example	121-Retrieving	the	disk	I/O	private	context	data	structure	in	Stop()

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DiskIo.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS

EFIAPI

DiskIoDriverBindingStop	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINTN																								NumberOfChildren,

		IN	EFI_HANDLE																			*ChildHandleBuffer

)

8.5	Retrieving	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

348DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

{

		EFI_STATUS												Status;

		EFI_DISK_IO_PROTOCOL		*DiskIo;

		DISK_IO_PRIVATE_DATA		*Private;

		//

		//	Get	our	context	back.

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiDiskIoProtocolGuid,

																		(VOID	**)&DiskIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		if	(EFI_ERROR	(Status))	{

				return	EFI_UNSUPPORTED;

		}

		Private	=	DISK_IO_PRIVATE_DATA_FROM_THIS	(DiskIo);

}

8.5	Retrieving	private	context	data	structuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

349DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

9	Driver	Binding	Protocol
The	Driver	Binding	Protocol	provides	services	to	do	the	following:

Connect	a	driver	to	a	controller.

Disconnect	a	driver	from	a	controller.

UEFI	drivers	following	the	UEFI	driver	model	are	required	to	implement	the	Driver	Binding	Protocol.	This
requirement	includes	the	following	drivers:

Device	drivers

Bus	drivers

Hybrid	drivers

Root	bridge	driver,	service	drivers,	and	initializing	drivers	do	not	produce	this	protocol.

The	Driver	Binding	Protocol	is	the	most	important	protocol	that	a	driver	produces.	It	is	the	one	protocol
used	by	the	UEFI	boot	services		ConnectController()		and		DisconnectController()	.	These	UEFI	boot	services	are
used	by	the	UEFI	boot	manager	to	connect	the	console	and	boot	devices	required	to	boot	an	operating
system.	The	implementation	of	the	Driver	Binding	Protocol	varies	depending	upon	the	driver's	category.
Chapter	6	of	this	guide	describes	the	various	driver	categories.

9	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

350DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

9.1	Driver	Binding	Protocol	Implementations

The	implementation	of	the	Driver	Binding	Protocol	for	a	specific	driver	is	typically	found	in	the	file
	<<DriverName>>	.c.	Appendix	A	contains	a	template	for	a		<<DriverName>>	.c	file	for	a	UEFI	Driver.	This	file
typically	performs	and	contains	the	following:

Adds	a	global	variable	for	the		EFI_DRIVER_BINDING_PROTOCOL		instance	to		<<DriverName>>.c	.

An	implementation	of	the		Supported()		service

An	implementation	of	the		Start()		service

An	implementation	of	the		Stop()		service

Installs	all	the	Driver	Binding	Protocols	in	the	driver	entry	point

If	the	UEFI	Driver	supports	the	unload	feature,	it	then	uninstalls	all	the	Driver	Binding	Protocols	in
the		Unload()		function.

The	example	below	shows	the	protocol	interface	structure	for	the	Driver	Binding	Protocol	for	reference.
It	is	composed	of	the	three	services	called		Supported()	,		Start()	,	and		Stop()	,	along	with	the	three	data
fields	called		Version	,		ImageHandle	,	and		DriverBindingHandle	.

Example	122-Driver	Binding	Protocol

typedef	struct	_EFI_DRIVER_BINDING_PROTOCOL	EFI_DRIVER_BINDING_PROTOCOL;

///

///	This	protocol	provides	the	services	required	to	determine	if	a	driver

///	supports	a	given	controller.	If	a	controller	is	supported,	then	it

///	also	provides	routines	to	start	and	stop	the	controller.

///

struct	_EFI_DRIVER_BINDING_PROTOCOL	{

		EFI_DRIVER_BINDING_SUPPORTED	Supported;

		EFI_DRIVER_BINDING_START	Start;

		EFI_DRIVER_BINDING_STOP	Stop;

		///

		///	The	version	number	of	the	UEFI	driver	that	produced	the

		///	EFI_DRIVER_BINDING_PROTOCOL.	This	field	is	used	by

		///	the	EFI	boot	service	ConnectController()	to	determine

		///	the	order	that	driver's	Supported()	service	will	be	used	when

		///	a	controller	needs	to	be	started.	EFI	Driver	Binding	Protocol

		///	instances	with	higher	Version	values	will	be	used	before	ones

		///	with	lower	Version	values.	The	Version	values	of	0x0-

		///	0x0f	and	0xfffffff0-0xffffffff	are	reserved	for

		///	platform/OEM	specific	drivers.	The	Version	values	of	0x10-

		///	0xffffffef	are	reserved	for	IHV-developed	drivers.

		///

		UINT32	Version;

		///

		///	The	image	handle	of	the	UEFI	driver	that	produced	this	instance

		///	of	the	EFI_DRIVER_BINDING_PROTOCOL.

		///

		EFI_HANDLE	ImageHandle;

		///

		///	The	handle	on	which	this	instance	of	the

		///	EFI_DRIVER_BINDING_PROTOCOL	is	installed.	In	most

		///	cases,	this	is	the	same	handle	as	ImageHandle.	However,	for

		///	UEFI	drivers	that	produce	more	than	one	instance	of	the

		///	EFI_DRIVER_BINDING_PROTOCOL,	this	value	may	not	be

		///	the	same	as	ImageHandle.

		///

		EFI_HANDLE	DriverBindingHandle;

9.1	Driver	Binding	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

351DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

};

UEFI	Drivers	declare	a	global	variables	for	the	Driver	Binding	Protocol	instances	produced.	The
ImageHandle	and	DriverBindingHandle	fields	are	pre-initialized	to		NULL	.	A	UEFI	Driver	can	initialize	the
ImageHandle	and	DriverBindingHandle	fields	in	the	driver	entry	point,	or	use	the	EDK	II	library		UefiLib	
functions	to	help	initialize	UEFI	Drivers	that	fill	and	initialize	the	ImageHandle	and	DriverBindingHandle
fields	automatically.	The	Version	field	must	be	initialized	by	the	UEFI	Driver.	Higher	Version	values	signify
a	newer	driver.	This	field	is	a	32-bit	value,	but	the	values	0x0-0x0F	and	0xFFFFFFF0-	0xFFFFFFFF	are
reserved	for	UEFI	drivers	written	by	OEMs.	IHVs	may	use	the	values	0x10-0xFFFFFFEF.	Each	time	a	new
version	of	a	UEFI	driver	is	released,	the	Version	field	must	be	increased.	The	following	example	shows
how	a	Driver	Binding	Protocol	is	typically	declared	in	a	driver.

Example	123-Driver	Binding	Protocol	declaration

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,										//	Supported()

		AbcStart,														//	Start()

		AbcStop,															//	Stop()

		0x10,																		//	Version

		NULL,																		//	ImageHandle

		NULL																			//	DriverBindingHandle	};

The	implementations	of	the	Driver	Binding	Protocol	change	in	complexity	depending	on	the	driver	type.	A
device	driver	is	the	simplest	to	implement.	A	bus	driver	or	a	hybrid	driver	may	be	more	complex	because
it	has	to	manage	both	the	bus	controller	and	child	controllers.

The		EFI_DRIVER_BINDING_PROTOCOL		is	installed	onto	the	driver's	image	handle.	It	is	possible	for	a	driver	to
produce	more	than	one	instance	of	the	Driver	Binding	Protocol.	All	additional	instances	of	the	Driver
Binding	Protocol	must	be	installed	onto	new	handles.

The	Driver	Binding	Protocol	can	be	installed	directly	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	However,	the	EDK	II	library		UefiLib		also	provides	a	number	of	helper
functions	to	install	the	Driver	Binding	Protocol	and	the	optional	UEFI	Driver	Model	related	protocols.	The
following	helper	functions	are	covered	in	more	detail	in	Chapter	7:

	EfiLibInstallDriverBinding()	

	EfiLibInstallAllDriverProtocols()	

	EfiLibInstallDriverBindingComponentName2()	

	EfiLibInstallAllDriverProtocols2()	

If	an	error	is	generated	when	installing	any	of	the	Driver	Binding	Protocol	instances,	the	entire	driver
should	fail	and	return	a	error	status	such	as		EFI_ABORTED	.	If	a	UEFI	Driver	implements	the		Unload()		feature,
any	Driver	Binding	Protocol	instances	installed	in	the	driver	entry	point	must	be	uninstalled	in	the
	Unload()		function.

9.1	Driver	Binding	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

352DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

9.2	Driver	Binding	Protocol	Template

The	implementation	of	the	Driver	Binding	Protocol	for	a	specific	driver	is	typically	found	in	the	file
	<<DriverName>>	.c.	This	file	contains	the	instance	of	the		EFI_DRIVER_BINDING_PROTOCOL		along	with	the
implementation	of	the		Supported()	,		Start()	,	and		Stop()		services.	Appendix	A	contains	the	template	for	a
UEFI	Driver	and	includes	the	declaration	of	the	Driver	Binding	Protocol	instance,	the	Driver	Binding
Protocol	services	and	the	driver	entry	point	that	uses	the	EDK	II	library		UefiLib		functions	to	install	the
Driver	Binding	Protocol	into	the	handle	database	and	complete	the	initialization	of	the	Driver	Binding
Protocol	data	fields.

The		Supported()	,		Start()	,	and		Stop()		services	are	covered	in	detail	in	the	EFI	Driver	Binding	Protocol
section	of	the	UEFI	Specification.	Also	included	are	code	examples	and	the	detailed	algorithms	to
implement	these	services	for	device	drivers	and	bus	drivers	If	a	UEFI	Driver	produces	multiple	instances
of	the	Driver	Binding	Protocol,	they	are	all	installed	in	the	driver	entry	point.	Each	instance	of	the	Driver
Binding	Protocol	is	implemented	using	the	same	guidelines.	The	different	instances	may	share	worker
functions	to	reduce	the	size	of	the	driver.

The		Supported()		service	performs	a	quick	check	to	see	if	a	driver	supports	a	controller.	The		Supported()	
service		must			not		modify	the	state	of	the	controller	because	the	controller	may	already	be	managed	by
a	different	driver.	If	the		Supported()		service	passes,	the		Start()		service	is	called	to	ask	the	driver	to	bind
to	a	specific	controller.	The		Stop()		service	does	the	opposite	of		Start()	.	It	disconnects	a	driver	from	a
controller	and	frees	any	resources	allocated	in	the		Start()		services.

TIP:	Although	the	thought	of	initializing	something	as	soon	as	it	is	supported	in	the		Supported()		service
of	the	driver	seems	to	make	sense,	the		Supported()		service	is	intended	only	to	be	a	quick	check	to	find
out	if	a	driver	can	make	a	connection	to	the	specified	controller,	find	out	if	it	has	already	been	called
(started	and	in	use),	or	if	it	is	in	use	exclusively	by	another	component.	The		Supported()		service	must
return	an	error	if	the	controller	is	already	in	use	or	is	in	use	exclusively	by	another	component.

Initializing	or	modifying	tasks	should	only	be	done	in	the		Start()		service	of	the	driver,	not	in	the
	Supported()		service.

Tip:	This	guide	provides	additional	recommendations	for	implementing	the	Driver	Binding	Protocol	for
devices	on	industry	standard	busses	such	as	PCI,	USB,	SCSI,	and	SATA.	Please	see	the	chapter	on	the
specific	bus	type	for	additional	details.	-----

None	of	the	Driver	Binding	Protocol	services	are	allowed	to	use	the	console	I/O	protocols.	A	UEFI	Driver
may	use	the		DEBUG()		and		ASSERT()		macros	from	the	EDK	II	library		DebugLib		to	send	messages	to	the
standard	error	console	if	it	is	active.	These	macros	are	usually	enabled	during	UEFI	Driver	development
and	are	disabled	when	a	UEFI	Driver	is	released.

9.2	Driver	Binding	Protocol	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

353DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

9.3	Testing	Driver	Binding	Protocol

Once	a	Driver	Binding	Protocol	is	implemented,	it	can	be	tested	use	UEFI	Shell	commands.	Use	the	UEFI
Shell	to	load	a	UEFI	Driver	into	memory	and	verify	that	the	Driver	Binding	Protocol	has	been	installed	into
the	Handle	Database	correctly.	The	UEFI	Shell	also	provides	commands	to	connect	a	driver	to	a	device
exercising	the		Supported()		and		Start()		services,	disconnect	a	driver	from	a	device	that	exercises	the
	Stop()		service,	and	reconnect	a	driver	to	a	device	that	exercises	all	the	Driver	Binding	Protocol	services.
The	details	on	each	UEFI	Shell	command	that	may	be	used	to	test	UEFI	Drivers	can	be	found	in	Chapter
31	of	this	guide.

Full	testing	of	a	UEFI	Driver	is	performed	by	booting	UEFI	operating	systems	and	running	the	UEFI	Self
Certification	Tests.

9.3	Testing	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

354DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

10	UEFI	Service	Binding	Protocol
The	Service	Binding	Protocol	is	not	associated	with	a	single	GUID	value.	Instead,	each	Service	Binding
Protocol	GUID	value	is	paired	with	another	protocol	providing	a	specific	set	of	services.	The	protocol
interfaces	for	all	Service	Binding	Protocols	are	identical	and	contain	the	services		CreateChild()		and
	DestroyChild()	.	When		CreateChild()		is	called,	a	new	handle	is	created	with	the	associated	protocol
installed.	When		DestroyChild()		is	called,	the	associated	protocol	is	uninstalled	and	the	handle	is	freed.

The	UEFI	Specification	defines	the	following	Service	Binding	Protocol	GUIDs.

Table	22-Service	Binding	Protocols

Service	Binding	Protocol Associated	Protocol

	EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL	 	EFI_MANAGED_NETWORK_PROTOCOL	

	EFI_ARP_SERVICE_BINDING_PROTOCOL	 	EFI_ARP_PROTOCOL	

	EFI_EAP_SERVICE_BINDING_PROTOCOL	 	EFI_EAP_PROTOCOL	

	EFI_IP4_SERVICE_BINDING_PROTOCOL	 	EFI_IP4_PROTOCOL	

	EFI_IP6_SERVICE_BINDING_PROTOCOL	 	EFI_IP6_PROTOCOL	

	EFI_TCP4_SERVICE_BINDING_PROTOCOL	 	EFI_TCP4_PROTOCOL	

	EFI_TCP6_SERVICE_BINDING_PROTOCOL	 	EFI_TCP6_PROTOCOL	

	EFI_UDP4_SERVICE_BINDING_PROTOCOL	 	EFI_UDP4_PROTOCOL	

	EFI_UDP6_SERVICE_BINDING_PROTOCOL	 	EFI_UDP6_PROTOCOL	

	EFI_MTFTP4_SERVICE_BINDING_PROTOCOL	 	EFI_MTFTP4_PROTOCOL	

	EFI_MTFTP6_SERVICE_BINDING_PROTOCOL	 	EFI_MTFTP6_PROTOCOL	

	EFI_DHCP4_SERVICE_BINDING_PROTOCOL	 	EFI_DHCP4_PROTOCOL	

	EFI_DHCP6_SERVICE_BINDING_PROTOCOL	 	EFI_DHCP6_PROTOCOL	

	EFI_HASH_SERVICE_BINDING_PROTOCOL	 	EFI_HASH_PROTOCOL	

The	Service	Binding	Protocol	feature	is	required	only	if	the	associated	protocol	requires	a	Service
Binding	Protocol	to	produce	its	services	and	it	defines	a	GUID	value	for	that	Service	Binding	Protocol.
The	table	above	lists	the	protocols	defined	in	the	UEFI	Specification	requiring	the	Service	Binding
Protocol	feature.	None	of	the	other	protocols	defined	by	the	UEFI	Specification	require	a	Service	Binding
Protocol.

For	new	protocols,	a	decision	must	be	made	to	determine	if	the	new	protocol	requires	a	Service	Binding
Protocol.	The	Driver	Binding	Protocol	is	usually	sufficient	for	managing	devices	on	common	bus
topologies	and	for	the	simple	layering	of	protocols	on	a	single	device.	When	more	complex	tree	or	graph
topologies	are	required	and,	with	the	expectation	that	services	of	the	new	protocol	be	required	by
multiple	consumers,	a	Service	Binding	Protocol	should	be	considered.

10	UEFI	Service	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

355DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

10.1	Service	Binding	Protocol	Implementations

The	implementation	of	the	Service	Binding	Protocol	for	a	specific	driver	is	typically	found	in	the	file
	<<DriverName>>	.c.	This	file	typically	contains	the	following:

Add	global	variable	for	the		EFI_SRVICE_BINDING_PROTOCOL		instance	to		<<DriverName>>.c	.
Implementation	of	the		CreateChild()		service.
Implementation	of	the		DestroyChild()		service.
If	the	UEFI	Driver	follows	the	UEFI	Driver	Model,	install	all	the	Service	Binding	Protocol	in	the	Driver
Binding	Protocol		Start()		function.
If	the	UEFI	Driver	follows	the	UEFI	Driver	Model,	uninstall	all	the	Service	Binding	Protocol	in	the	Driver
Binding	Protocol		Stop()		function.
If	the	UEFI	Driver	is	a	Service	Driver,	install	all	the	Service	Binding	Protocol	in	the	driver	entry	point.
If	the	UEFI	Driver	is	a	Service	Driver	that	supports	the	unload	feature,	then	uninstall	all	the	Service
Binding	Protocol	in	the		Unload()		function.

The	example	below	shows	the	protocol	interface	structure	for	the	Service	Binding	Protocol	for
reference.	It	is	composed	of	the	two	services	called		CreateChild()		and		DestroyChild()	.

Example	124-Service	Binding	Protocol

typedef	struct	_EFI_SERVICE_BINDING_PROTOCOL

		EFI_SERVICE_BINDING_PROTOCOL;

///

///	The	EFI_SERVICE_BINDING_PROTOCOL	provides	member	functions	to	create

///	and	destroy	child	handles.	A	driver	is	responsible	for	adding

///	protocols	to	the	child	handle	in	CreateChild()	and	removing	protocols

///	in	DestroyChild().	It	is	also	required	that	the	CreateChild()

///	function	opens	the	parent	protocol	BY_CHILD_CONTROLLER	to	establish

///	the	parent-child	relationship,	and	closes	the	protocol	in

///	DestroyChild().	The	pseudo	code	for	CreateChild()	and	DestroyChild()

///	is	provided	to	specify	the	required	behavior,	not	to	specify	the

///	required	implementation.	Each	consumer	of	a	software	protocol	is

///	responsible	for	calling	CreateChild()	when	it	requires	the	protocol

///	and	calling	DestroyChild()	when	it	is	finished	with	that	protocol.

///

struct	_EFI_SERVICE_BINDING_PROTOCOL	{

		EFI_SERVICE_BINDING_CREATE_CHILD	CreateChild;

		EFI_SERVICE_BINDING_DESTROY_CHILD	DestroyChild;

};

10.1	Service	Binding	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

356DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

10.2	Service	Driver

If	the	UEFI	Driver	is	a	Service	Driver,	the	Service	Binding	Protocol	is	installed	in	the	driver	entry	point.	The
following	example	shows	an	implementation	of	a	Service	Binding	Protocol	that	is	installed	into	the
Handle	Database	in	the	driver	entry	point.	A	Service	Binding	Protocol	is	always	paired	with	another
protocol	so,	for	this	example,	the	paired	protocol	is	the		ABC_PROTOCOL	.

Global	variables	are	declared	for	the	handle	on	which	the	Service	Binding	Protocol	is	installed,	the
instance	of	the	Service	Binding	Protocol,	and	an	instance	of	the		ABC_PROTOCOL	.	The		ABC_PROTOCOL		instance	is
installed	onto	a	new	handle	every	time	the	Service	Binding	Protocol	service		CreateChild()		is	called.	The
	ABC_PROTOCOL		is	uninstalled	from	a	child	handle	every	time	the	Service	Binding	Protocol	service
	DestroyChild()		is	called.

Example	125-Service	Binding	Protocol	for	Service	Driver

#include	<Uefi.h>

#include	<Protocol/ServiceBinding.h>

#include	<Library/UefiBootServicesTableLib.h>

typedef	struct	{

		UINT32	AbcField;

}	ABC_PROTOCOL;

EFI_HANDLE	gAbcServiceBindingHandle	=	NULL;

EFI_SERVICE_BINDING_PROTOCOL	gAbcServiceBinding	=	{

		AbcCreateChild,

		AbcDestroyChild

};

ABC_PROTOCOL	gAbc	=	{

		0

};

EFI_STATUS

EFIAPI

AbcCreateChild	(

		IN					EFI_SERVICE_BINDING_PROTOCOL		*This,

		IN	OUT	EFI_HANDLE																				*ChildHandle

)

{

		EFI_HANDLE		NewHandle;

		NewHandle	=	NULL;

		return	gBS->InstallMultipleProtocolInterfaces	(

																&NewHandle,

																&gAbcProtocolGuid,

																&gAbc,

																NULL

);

}

EFI_STATUS

EFIAPI

AbcDestroyChild	(

		IN	EFI_SERVICE_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																				ChildHandle

)

{

		return	gBS->UninstallMultipleProtocolInterfaces	(

																ChildHandle,

																&gAbcProtocolGuid,

																&gAbc,

																NULL

);

}

10.2	Service	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

357DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Install	Service	Binding	Protocol	for	ABC	onto	a	new	handle

		//

		return	gBS->InstallMultipleProtocolInterfaces	(

																&gAbcServiceBindingHandle,

																&gAbcServiceBindingProtocolGuid,

																&gAbcServiceBinding,

																NULL

);

}

10.2	Service	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

358DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

10.3	UEFI	Driver	Model	Driver

If	the	UEFI	Driver	follows	the	UEFI	Driver	Model,	the	Service	Binding	Protocol	is	installed	in	the	Driver
Binding	Protocol		Start()		function	and	uninstalled	in	the	Driver	Binding	Protocol		Stop()		function.	This	use
case	is	covered	in	detail	in	the	Service	Binding	Protocol	section	of	the	UEFI	Specification	and	includes
pseudo-code	for	implementations	of	the		CreateChild()		and		DestroyChild()		services.	The	EDK	II	also	provides
the	following	complete	implementations	of	the	Service	Binding	Protocol	in	drivers	that	follow	the	UEFI
Driver	Model:

	MdeModulePkg\Universal\Network\MnpDxe	

	MdeModulePkg\Universal\Network\ArpDxe	

	MdeModulePkg\Universal\Network\Ip4Dxe	

	NetworkPkg\Ip6Dxe	

	MdeModulePkg\Universal\Network\Tcp4Dxe	

	NetworkPkg\TcpDxe	

	MdeModulePkg\Universal\Network\Udp4Dxe	

	NetworkPkg\Udp6Dxe	

	MdeModulePkg\Universal\Network\Mtftp4Dxe	

	NetworkPkg\Mtftp6Dxe	

	MdeModulePkg\Universal\Network\Dhcp4Dxe	

	NetworkPkg\Dhcp6Dxe	

10.3	UEFI	Driver	Model	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

359DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11	UEFI	Driver	and	Controller	Names
Both	Component	Name	Protocols	are	optional	features	that	allow	UEFI	Drivers	following	the	UEFI	Driver
Model	to	provide	a	localized	Unicode	name	string	for	the	UEFI	Driver	and	the	devices	the	UEFI	Driver
manages.	Use	of	these	protocols	depends	on	the	UEFI	Driver	Model	concepts.	Service	Drivers,	Root
Bridge	Drivers,	and	Initializing	Drivers	never	produce	the	Component	Name	Protocols.	Implementation	of
this	optional	feature	is		recommended		for	all	UEFI	Drivers	that	follow	the	UEFI	Driver	Model.

Note:	Human-readable	names	should	be	limited	to	about	40	Unicode	characters	in	length.	This	makes
it	easier	for	consumers	of	this	protocol	to	display	these	names	on	standard	console	devices.

The	Component	Name	Protocol	and	the	Component	Name	2	Protocol	are	very	similar.	The	only
difference	is	the	format	of	language	code	passed	into	the	protocol	services	to	request	the	name	of	a
UEFI	Driver	or	the	name	of	a	device	that	a	UEFI	Driver	manages.	The	use	of	a	language	code	allows	the
implementation	of	the	Component	Name	Protocols	to	provide	names	of	drivers	and	devices	in	many
different	languages.

The	Component	Name	Protocol	uses	ISO	639-2	language	codes	(i.e.		eng	,		fra).	The	Component	Name	2
Protocol	uses	RFC	4646	language	codes	(i.e.		en	,		en-US	,		fr).	If	names	are	provided	for	platforms
conforming	to	the	EFI	1.10	Specification,	the	Component	Name	s	Protocol	is	required.	If	names	are
provided	for	platforms	that	conforming	to	the	UEFI	2.0	Specification	or	above,	the	Component	Name	2
Protocol	is	required.	Since	the	only	difference	is	the	language	code	for	the	names,	UEFI	Drivers	required
to	provide	names	typically	produce	both	protocols	and	the	both	use	the	same	underlying	functions	and
Unicode	name	strings.

The	Component	Name	Protocols	are	installed	onto	handles	in	the	driver	entry	point	of	a	UEFI	Driver.
Chapter	7	describes	details	on	the	EDK	II	library		UefiLib		that	provides	helper	functions	to	initialize	UEFI
Drivers	following	the	UEFI	Driver	Model	including	installation	of	Component	Name	Protocols.

Component	Name	Protocols	may	be	used	by	a	UEFI	Boot	Manager	to	display	human	readable	names	for
drivers	and	devices	in	a	specific	language.	A	platform	vendor	may	also	take	advantage	of	Component
Name	Protocols	from	UEFI	Applications,	such	as	system	utilities	or	diagnostics,	when	human	readable
names	of	UEFI	drivers	or	devices	are	required.

The	UEFI	Shell	provides	several	commands	that	use	the	Component	Name	Protocols.	For	example,	the
	drivers		command	displays	the	inventory	of	UEFI	drivers	in	a	platform	and	uses	the	Component	Name
Protocols	to	display	the	name	of	a	UEFI	Driver	if	the	UEFI	Driver	produced	the	Component	Name
Protocols.	Likewise,	the	UEFI	Shell	command		devices		displays	the	inventory	of	devices	in	a	platform	and
uses	the	Component	Name	Protocols	to	display	the	name	of	the	devices	if	a	UEFI	Driver	managing	the
device	produced	the	Component	Name	Protocols.

If	a	controller	is	managed	by	more	than	one	UEFI	Driver,	there	may	be	multiple	instances	of	the
Component	Name	Protocols	that	apply	to	a	single	controller.	The	consumers	of	the	Component	Name
Protocols	have	to	decide	how	the	multiple	drivers	providing	names	are	presented	to	the	user.	For
example,	a	PCI	bus	driver	may	produce	a	name	for	a	PCI	slot	such	as	"PCI	Slot	#2,"	and	the	driver	for	a
SCSI	adapter	that	is	inserted	into	that	same	PCI	slot	may	produce	a	name	like	"XYZ	SCSI	Host
Controller."	Both	names	describe	the	same	physical	device	from	each	driver's	perspective,	and	both
names	are	useful	depending	on	how	they	are	used.

11	UEFI	Driver	and	Controller	NamesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

360DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Appendix	B	contains	a	table	of	example	drivers	from	the	EDK	II	along	with	the	features	that	each
implement.	The	EDK	II	provides	example	drivers	with	full	implementations	of	the	Component	Name
Protocols.

11	UEFI	Driver	and	Controller	NamesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

361DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.1	Component	Name	Protocol	Implementations

The	implementation	of	the	Component	Name	Protocols	for	a	specific	driver	is	typically	found	in	the	file
ComponentName.c.	Appendix	A	contains	a	template	for	a	ComponentName.c	file	for	a	UEFI	Driver.	This
file	typically	contains	the	following:

Add	global	variable	for	the		EFI_COMPONENT_NAME_PROTOCOL		instance	to		ComponentName.c	.	-	Add	global	variable
for	the		EFI_COMPONENT_NAME2_PROTOCOL		instance	to		ComponentName.c	.
	EFI_COMPONENT_NAME2_PROTOCOL		instance
Add	static	table	of	UEFI	Driver	names	as	Unicode	strings	to		ComponentName.c	.
Add	static	table	of	controller	names	as	Unicode	strings	to		ComponentName.c	.
Implementation	of	the		GetDriverName()		service
Implementation	of	the		GetControllerName()		service
Install	all	the	Component	Name	Protocols	in	the	driver	entry	point.
If	the	UEFI	Driver	supports	the	unload	feature,	uninstall	all	the	Component	Name	Protocols	in	the
	Unload()		function.

The	Component	Name	Protocols	provide	names	in	one	or	more	languages.	At	a	minimum,	the	protocols
should	support	the	English	language.	The	Component	Name	Protocols	advertise	the	languages	they
supports	in	a	data	field	called	SupportedLanguages.	This	data	filed	is	a	null-terminated	ASCII	string	that
contains	one	or	more	3	character	ISO	639-2	language	codes	with	no	separator	character.	The
Component	Name	2	Protocol	also	advertises	the	languages	it	supports	in	a	data	field	called
SupportedLanguages.	This	data	filed	is	a	null-terminated	ASCII	string	that	contains	one	or	more	RFC
4646	language	codes	separated	by	semicolons	(';').

A	consumer	of	the	Component	Name	Protocols	may	parse	the	SupportedLanguages	data	field	to
determine	if	the	protocol	supports	a	language	in	which	the	consumer	is	interested.	This	data	field	can
also	be	used	by	the	implementation	of	the	Component	Name	Protocols	to	see	if	names	are	available	in
the	requested	language.

For	reference,	Example	126,	below,	shows	the	protocol	interface	structure	for	the	Component	Name
Protocol	and	Example	127	shows	the	protocol	interface	structure	for	the	Component	Name	2	Protocol.
Both	are	composed	of	the	two	services	called		GetDriverName()		and		GetControllerName()		and	a	data	field
called		SupportedLanguages	

Example	126-Component	Name	Protocol

typedef	struct	_EFI_COMPONENT_NAME_PROTOCOL	EFI_COMPONENT_NAME_PROTOCOL;

///

///	This	protocol	is	used	to	retrieve	user	readable	names	of	drivers

///	and	controllers	managed	by	UEFI	Drivers.

///

struct	_EFI_COMPONENT_NAME_PROTOCOL	{

		EFI_COMPONENT_NAME_GET_DRIVER_NAME	GetDriverName;

		EFI_COMPONENT_NAME_GET_CONTROLLER_NAME	GetControllerName;

		///

		///	A	Null-terminated	ASCII	string	that	contains	one	or	more

		///	ISO	639-2	language	codes.	This	is	the	list	of	language	codes

		///	that	this	protocol	supports.

		///

		CHAR8	*SupportedLanguages;

};

Example	127-Component	Name	2	Protocol

typedef	struct	_EFI_COMPONENT_NAME2_PROTOCOL		

		EFI_COMPONENT_NAME2_PROTOCOL;

11.1	Component	Name	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

362DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

///

///	This	protocol	is	used	to	retrieve	user	readable	names	of	drivers

///	and	controllers	managed	by	UEFI	Drivers.

///

struct	_EFI_COMPONENT_NAME2_PROTOCOL	{

		EFI_COMPONENT_NAME2_GET_DRIVER_NAME	GetDriverName;

		EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME	GetControllerName;

		///

		///	A	Null-terminated	ASCII	string	array	that	contains	one	or	more

		///	supported	language	codes.	This	is	the	list	of	language	codes	that

		///	this	protocol	supports.	The	number	of	languages	supported	by	a

		///	driver	is	up	to	the	driver	writer.	SupportedLanguages	is

		///	specified	in	RFC	4646	format.

		///

		CHAR8																																			*SupportedLanguages;

};

Example	128-Driver	Diagnostics	Protocol	declaration

UEFI	Drivers	declare	global	variables	for	the	Component	Name	Protocol	and	Component	Name	2
Protocol	instances	that	are	produced.	The	SupportedLanguages	fields	are	typically	initialized	by	the
UEFI	Driver	in	the	declaration	for	the	specific	set	of	languages	the	UEFI	Driver	supports.	The	following
following	example	shows	how	the	Component	Name	Protocols	are	typically	declared	in	a	driver	and,	in
this	case,	declared	to	support	both	English	and	French.

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/ComponentName.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	gAbcComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	AbcGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	AbcGetControllerName,

		"engfra"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	gAbcComponentName2	=	{

		AbcGetDriverName,

		AbcGetControllerName,

		"en;fr"

};

The	implementations	of	the	Component	Name	Protocols	change	in	complexity	depending	on	the	type	of
UEFI	Driver	Model	driver	and	the	specific	Component	Name	Protocol	features	implemented.	A	device
driver	is	the	simplest	to	implement.	A	bus	driver	or	a	hybrid	driver	may	be	more	complex	because	it	may
provide	names	for	both	the	bus	controller	and	the	child	controllers.	These	implementations	are
discussed	later	in	this	section.

The		EFI_COMPONENT_NAME_PROTOCOL		and		EFI_COMPONENT_NAME2_PROTOCOL		are	installed	onto	the	driver's	image	handle.	It
is	possible	for	a	driver	to	produce	more	than	one	instance	of	the	Component	Name	Protocols.	All
additional	instances	of	the	Component	Name	Protocols	must	be	installed	onto	new	handles.

The	Component	Name	Protocols	can	be	installed	directly	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	However,	the	EDK	II	library		UefiLib		provides	a	number	of	helper	functions
to	install	the	Component	Name	Protocols.	The	helper	functions	covered	in	more	detail	in	Chapter	7	are:

	EfiLibInstallDriverBinding()	

	EfiLibInstallAllDriverProtocols()	

	EfiLibInstallDriverBindingComponentName2()	

	EfiLibInstallAllDriverProtocols2()	

11.1	Component	Name	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

363DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

If	an	error	is	generated	installing	any	of	the	Component	Name	Protocol	instances	the	entire	driver
should	fail	and	return	an	error	status	such	as		EFI_ABORTED	.	If	a	UEFI	Driver	implements	the		Unload()	
feature,	any	Component	Name	Protocol	instances	installed	in	the	driver	entry	point	must	be	uninstalled
in	the		Unload()		function.

The	simplest	implementation	of	the	Component	Name	Protocols	provides	the	name	of	the	UEFI	Driver.
The	next	most	complex	implementation	is	that	for	a	device	driver	providing	both	the	name	of	the	UEFI
Driver	and	the	names	of	the	controllers	under	UEFI	Driver	management.	The	most	complex
implementation	is	that	of	a	bus	or	a	hybrid	driver	producing	names	for	the	UEFI	Driver,	names	for	the
bus	controllers	it	is	managing,	and	names	for	the	child	controllers	the	driver	has	produced.	All	three	of
these	implementations	are	discussed	in	the	sections	that	follow.

The	EDK	II	library		UefiLib		provides	functions	to	simplify	the	implementation	of	the	Component	Name
Protocols.	These	library	functions	provide	services	to	register	Unicode	strings	in	a	table,	lookup	Unicode
strings	in	a	table,	and	free	tables	of	Unicode	strings.	Some	UEFI	Drivers	have	fixed	names	for	the	UEFI
Driver	itself	and	the	controllers	that	they	manage.	Other	UEFI	Drivers	may	dynamically	create	names
based	on	information	retrieved	from	the	platform	or	the	controller	itself.	The	EDK	II	library		UefiLib	
functions	managing	tables	of	Unicode	strings	are:

	LookupUnicodeString()	

	LookupUnicodeString2()	

	AddUnicodeString()	

	AddUnicodeString2()	

	FreeUnicodeStringTable()	

UEFI	Drivers	producing	dynamic	names	for	controllers	or	children	register	those	dynamic	names	in	the
Driver	Binding	Protocol		Start()		function	and	are	freed	in	the	Driver	Binding		Stop()		function.	In	addition,
dynamic	name	tables	require	extra	fields	in	the	driver's	private	context	data	structure	pointing	to	the
dynamic	name	tables.	See	Chapter	8	of	this	guide	for	details	on	the	design	of	private	context	data
structures.

11.1	Component	Name	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

364DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.2	GetDriverName()	Implementations

The		GetDriverName()		service	retrieves	the	name	of	a	UEFI	Driver.	It	may	be	used	to	retrieve	the	name	of	a
UEFI	Driver	even	if	the	UEFI	Driver	is	not	managing	any	devices.	Example	129,	below,	shows	a	typical
implementation	of	the		GetDriverName()		service	for	the	Component	Name	2	Protocol	along	with	a	table	of
Unicode	strings	for	the	UEFI	Driver	name	in	English,	French,	and	Spanish.	The	recommended
implementation	style	shown	here	allows	the	same		GetDriverName()		service	implementation	to	be	shared
between	the	Component	Name	Protocol	and	the	Component	Name	2	Protocol.	The		UefiLib		function
	LookupUnicodeString2()		supports	looking	up	strings	using	either	ISO	639-2	or	RFC	4646	language	code
formats.

The	static	table	of	driver	names	contains	two	elements	per	entry.	The	first	is	an	ASCII	string	containing
one	or	more	language	codes	separated	by	';'	characters.	The	language	codes	may	be	in	the	ISO639-2
or	the	RFC	4646	format.

The	second	element	is	a	Unicode	string	representing	the	name	of	the	UEFI	Driver	for	the	set	of
languages	specified	by	the	first	element.	The	static	table	is	terminated	by	two		NULL		elements.	The
format	is	very	size	efficient	because	each	Unicode	string	name	for	the	UEFI	Driver	can	be	associated
with	many	language	codes.

Example	129-GetDriverName()	for	Device,	Bus,	or	Hybrid	Driver

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

#include	<Library/UefiLib.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_UNICODE_STRING_TABLE	mAbcDriverNameTable[]	=	{

		{	"eng;en",	(CHAR16	*)L"ABC	Driver	in	English"},

		{	"fra;fr",	(CHAR16	*)L"ABC	Driver	in	French"},

		{	"spa;sp",	(CHAR16	*)L"ABC	Driver	in	Spanish"},

		{	NULL,	NULL	}

};

EFI_STATUS

EFIAPI

AbcGetDriverName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**DriverName

)

{

		return	LookupUnicodeString2	(

											Language,

											This->SupportedLanguages,

											mAbcDriverNameTable,

											DriverName,

											(BOOLEAN)(This	!=	&gAbcComponentName2)

);

}

11.2	GetDriverName()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

365DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.3	GetControllerName()	Implementations

The		GetControllerName()		service	retrieves	the	name	of	a	controller	a	driver	is	managing	or	a	child	the	driver
has	produced.	The	example	below	shows	an	empty	implementation	of	the		GetControllerName()		service	for
the	Component	Name	2	Protocol.	The	recommended	implementation	style	shown	here	allows	the	same
	GetControllerName()		service	implementation	to	be	shared	between	both	the	Component	Name	Protocol	and
the	Component	Name	2	Protocol.

Example	130-GetControllerName	()	Service

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

EFI_STATUS

EFIAPI

AbcGetControllerName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		EFI_HANDLE																				ControllerHandle,

		IN		EFI_HANDLE																				ChildHandle,							OPTIONAL

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**ControllerName

)

{

}

The	Component	Name	Protocols	are	available	only	for	devices	currently	under	a	driver's	management.
Because	UEFI	supports	connecting	the	minimum	number	of	drivers	and	devices	required	to	establish
console	and	gain	access	to	the	boot	device,	there	may	be	many	unconnected	devices	for	which	a	name
may	not	be	retrieved.

11.3	GetControllerName()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

366DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.3.1	Device	Drivers

Device	drivers	implementing		GetControllerName()		must	verify	that	ChildHandle	is		NULL		and	that
ControllerHandle	represents	a	device	the	device	driver	is	currently	managing.	In	addition,
	GetControllerName()		must	verify	that	the	requested	Language	is	in	the	set	of	languages	the	UEFI	Driver
supports.	The	example	below	shows	the	steps	required	to	check	these	parameters.	If	the	checks	pass,
the	name	of	the	controller	is	returned.	In	this	specific	example,	the	driver	opens	the	PCI	I/O	Protocol	in
its	Driver	Binding		Start()		function.	This	is	why		gEfiPciIoProtocolGuid		is	used	in	the	call	to	the	EDK	II	Library
	UefiLib		function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI	Drivers	providing	the		GetControllerName()	
service	is	currently	managing	ControllerHandle.	Just	like	the		GetDriverName()		example	in	the	previous
section,	a	static	table	of	Unicode	strings	for	the	controller	names	is	declared	as	a	global	variable	and
the		LookupUnicodeString2()		service	is	used	to	lookup	the	name	of	the	controller	in	the	requested	Language.

Example	131-GetControllerName()	for	a	Device	Driver

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_UNICODE_STRING_TABLE	mAbcControllerNameTable[]	=	{

		{	"eng;en",	(CHAR16	*)L"ABC	Controller	in	English"},

		{	"fra;fr",	(CHAR16	*)L"ABC	Controller	in	French"},

		{	"spa;sp",	(CHAR16	*)L"ABC	Controller	in	Spanish"},

		{	NULL,	NULL	}

};

EFI_STATUS

EFIAPI

AbcGetControllerName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		EFI_HANDLE																				ControllerHandle,

		IN		EFI_HANDLE																				ChildHandle,							OPTIONAL

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**ControllerName

)

{

		EFI_STATUS		Status;

		//

		//	ChildHandle	must	be	NULL	for	a	Device	Driver

		//

		if	(ChildHandle	!=	NULL)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		return	LookupUnicodeString2	(

											Language,

											This->SupportedLanguages,

											mAbcControllerNameTable,

											ControllerName,

											(BOOLEAN)(This	!=	&gAbcComponentName2)

);

11.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

367DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}

If	the	private	context	structure	is	required,	use	the	UEFI	Boot	Service		OpenProtocol()	to	open	one	of	the
protocols	on	ControllerHandle	produced	by	the	UEFI	Driver	and	then	use	a		CR()		based	macro	to	retrieve
a	pointer	to	the	private	context	structure.

Some	device	drivers	can	extract	name	information	from	the	devices	they	manage	and	are	then	able	to
provide	more	specific	device	names.	The	dynamic	generation	of	controller	names	does	increase	the
complexity	of	the	UEFI	Driver	implementation,	but	it	may	provide	users	with	the	detailed	information	they
require	to	identify	a	specific	device.	For	example,	a	driver	for	a	mass	storage	device	may	be	able	to
produce	a	static	name	such	as	"Hard	Disk,"	but	a	more	specific	name,	such	as	"XYZ	Manufacturer	SATA
Model	123	Hard	Disk",	may	be	much	more	useful.

To	support	the	dynamic	generation	of	controller	names,	a	few	additional	steps	must	be	taken.	First,	a
pointer	to	the	dynamic	table	of	names	must	be	added	to	the	private	context	data	structure	for	the
controllers	a	device	driver	manages.	The	example	below	shows	the	addition	of	an		EFI_UNICODE_STRING_TABLE	
field	to	the	private	context	data	structure	discussed	in	Chapter	8	of	this	guide.

Example	132-Controller	names	in	private	context	data	structure

#define	ABC_PRIVATE_DATA_SIGNATURE	SIGNATURE_32	('A','B','C','	')

typedef	struct	{

		UINTN																					Signature;

		EFI_PCI_IO_PROTOCOL							*PciIo;

		//

		//	Dynamically	allocated	table	of	controller	names

		//

		EFI_UNICODE_STRING_TABLE		*ControllerNameTable;

}	ABC_PRIVATE_DATA;

#define	ABC_PRIVATE_DATA_FROM_PCI_IO_THIS(a)	\

CR	(a,	ABC_PRIVATE_DATA,	PciIo,	ABC_PRIVATE_DATA_SIGNATURE)

The	next	update	is	to	the		Start()		service	of	the	Driver	Binding	Protocol.	It	needs	to	add	a	controller
name	in	each	supported	language	to	ControllerNameTable	in	the	private	context	data	structure.	Use
the		UefiLib		function		AddUnicodeString2()		to	add	one	or	more	names	to	a	table.	The	ControllerNameTable
must	be	initialized	to		NULL		before	the	first	name	is	added.

The	following	example	shows	the	addition	of	an	English	name	to	a	dynamically	allocated	table	of
Unicode	names.	If	more	than	one	language	is	supported,	then		AddUnicodeString2()		is	called	for	each
language.	The	construction	of	the	Unicode	string	for	each	language	is	not	covered	here.	The	format	of
names	stored	with	devices	varies	depending	on	the	bus	type,	and	the	translation	from	a	bus-specific
name	format	to	a	Unicode	string	cannot	be	standardized.

Example	133-Adding	a	controller	name	to	a	dynamic	controller	name	table

#include	<Uefi.h>

#include	<Library/UefiLib.h>

ABC_PRIVATE_DATA	*Private

CHAR16	*ControllerName

//

//	Get	dynamic	name	from	the	device	being	managed

//

//

//	Convert	the	device	name	to	a	Unicode	string	in	a	supported	language

//

//

//	Add	the	device	name	to	the	table	of	names	stored	in	the	private

11.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

368DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	context	data	structure	using	ISO	639-2	language	code

//

AddUnicodeString2	(

		"eng",

		gAbcComponentName.SupportedLanguages,

		&Private->ControllerNameTable,

		ControllerName,

		TRUE

);

//

//	Add	the	device	name	to	the	table	of	names	stored	in	the	private

//	context	data	structure	using	RFC	4646	language	code

//

AddUnicodeString2	(

		"en",

		gAbcComponentName2.SupportedLanguages,

		&Private->ControllerNameTable,

		ControllerName,

		FALSE

);

The		Stop()		service	of	the	Driver	Binding	Protocol	also	needs	to	be	updated.	When	a	request	is	made	for
a	driver	to	stop	managing	a	controller,	the	table	of	controller	names	built	in	the		Start()		service	must	be
freed.	Use	the	UEFI	driver	library	function		FreeUnicodeStringTable()	to	free	the	table	of	controller	names.

The	code	to	add	to	the	Driver	Binding	Protocol		Stop()		service	follows.	The	private	context	data	structure
is	required	by	the		Stop()		service	so	the	private	context	data	structure	can	be	freed.	The	call	to
	FreeUnicodeStringTable()	should	be	made	just	before	the	private	context	data	structure	is	freed.

Example	134-Freeing	a	dynamic	controller	name	table

#include	<Uefi.h>

#include	<Library/UefiLib.h>

ABC_PRIVATE_DATA	*Private

FreeUnicodeStringTable	(Private->ControllerNameTable);

Lastly,	the		GetControllerName()		service	is	slightly	different	because	the	dynamic	table	of	controller	names
from	the	private	context	structure	is	used	instead	of	the	static	table	of	controller	names.	Because	the
table	of	controller	names	is	now	maintained	in	the	private	context	data	structure,	the	private	context
data	structure	needs	to	be	retrieved	based	on	the	parameters	passed	into		GetControllerName()	.	This
retrieval	is	achieved	by	looking	up	a	protocol	that	the	driver	has	produced	on	ControllerHandle	and
using	a	pointer	to	that	protocol	and	a		CR()		macro	to	retrieve	a	pointer	to	the	private	context	data
structure.	The	private	context	data	structure	can	then	be	used	with	the		UefiLib		function
	LookupUnicodeString2()		to	look	up	the	controller's	name	in	the	dynamic	table	of	controller	names.

The	example	below	shows	the		GetControllerName()		service	that	retrieves	the	controller	name	from	a
dynamic	table	stored	in	the	private	context	data	structure.

Example	135-Device	driver	with	dynamic	controller	names

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

AbcGetControllerName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		EFI_HANDLE																				ControllerHandle,

		IN		EFI_HANDLE																				ChildHandle,							OPTIONAL

11.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

369DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**ControllerName

)

{

		EFI_STATUS											Status;

		EFI_PCI_IO_PROTOCOL		*PciIo;

		ABC_PRIVATE_DATA					*Private;

		//

		//	ChildHandle	must	be	NULL	for	a	Device	Driver

		//

		if	(ChildHandle	!=	NULL)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Retrieve	an	instance	of	a	produced	protocol	from	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiPciIoProtocolGuid,

																		(VOID	**)&PciIo,

																		gAbcDriverBinding.DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_GET_PROTOCOL

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Retrieve	the	private	context	data	structure	for	ControllerHandle

		//

		Private	=	ABC_PRIVATE_DATA_FROM_PCI_IO_THIS	(PciIo);

		//

		//	Look	up	the	controller	name	from	a	dynamic	table	of	controller	names

		//

		return	LookupUnicodeString2	(

											Language,

											This->SupportedLanguages,

											Private->ControllerNameTable,

											ControllerName,

											(BOOLEAN)(This	!=	&gAbcComponentName2)

);

}

11.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

370DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.3.2	Bus	Drivers	and	Hybrid	Drivers

There	are	many	levels	of	support	a	bus	driver	or	hybrid	driver	may	provide	for	the	Component	Name
Protocols.	These	drivers	can	choose	to	provide	a	driver	name	as	described	in	the	section	of	this
chapter	on		GetDriverName()	.	They	can	also	choose	to	provide	names	for	the	bus	controllers	they	manage
and	to	not	provide	any	names	for	the	children	they	produce	(such	as	the	device	drivers	described	the
previous	section).	This	discussion	explains	what	bus	drivers	and	hybrid	drivers	need	to	do	to	provide
human-readable	names	for	the	child	handles	they	produce.	The	human-readable	names	for	child
handles	can	be	provided	through	static	or	dynamic	controller	name	tables.

Note:	It	is	recommended	that	bus	drivers	and	hybrid	drivers	provide	controller	names	for	both	the	bus
controller	and	the	child	controllers	these	types	of	drivers	produce.	Implementing	controller	names	for
only	the	bus	controller	or	only	the	child	controllers	is	discouraged.

Bus	drivers	and	hybrid	drivers	implementing	the	Component	Name	Protocols	must	verify	that
ControllerHandle	and	ChildHandle	represent	a	device	the	driver	is	currently	managing.	In	addition,
	GetControllerName()		must	verify	the	requested	Language	is	in	the	set	of	languages	the	UEFI	Driver
supports.	The	following	example	shows	the	steps	required	to	check	these	parameters.	If	these	checks
pass,	the	controller	name	is	returned	in	the	requested	language.	In	this	specific	example,	the	driver
opens	the	PCI	I/O	Protocol	in	its	Driver	Binding	Start()	function.	This	is	why		gEfiPciIoProtocolGuid		is	used	in
the	call	to	the	EDK	II	Library		UefiLib		function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI	Drivers
providing	the		GetControllerName()		service	is	currently	managing	ControllerHandle.	If	the	private	context
structure	is	required,	then	typically	the	UEFI	Boot	Service		OpenProtocol()		is	used	to	open	one	of	the
protocols	on	ControllerHandle	that	the	UEFI	Driver	produced	and	then	uses	a		CR()		based	macro	to
retrieve	a	pointer	to	the	private	context	structure.

Note:	If	ChildHandle	is	NULL,	a	request	is	made	for	the	name	of	the	bus	controller.	If	ChildHandle	is	not
NULL,	a	request	is	made	for	the	name	of	a	child	controller	managed	by	the	UEFI	Driver.

Example	136-GetControllerName()	for	a	Bus	Driver	or	Hybrid	Driver

#include	<Uefi.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_UNICODE_STRING_TABLE	mAbcControllerNameTable[]	=	{

		{	"eng;en",	(CHAR16	*)L"ABC	Bus	Controller	in	English"},

		{	"fra;fr",	(CHAR16	*)L"ABC	Bus	Controller	in	French"},

		{	"spa;sp",	(CHAR16	*)L"ABC	Bus	Controller	in	Spanish"},

		{	NULL,	NULL	}

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_UNICODE_STRING_TABLE	mAbcChildNameTable[]	=	{

		{	"eng;en",	(CHAR16	*)L"ABC	Child	Controller	in	English"},

		{	"fra;fr",	(CHAR16	*)L"ABC	Child	Controller	in	French"},

		{	"spa;sp",	(CHAR16	*)L"ABC	Child	Controller	in	Spanish"},

		{	NULL,	NULL	}

};

EFI_STATUS

11.3.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

371DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFIAPI

AbcGetControllerName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		EFI_HANDLE																				ControllerHandle,

		IN		EFI_HANDLE																				ChildHandle,							OPTIONAL

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**ControllerName

)

{

		EFI_STATUS																								Status;

		EFI_UNICODE_STRING_TABLE										*NameTable;

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		if	(ChildHandle	==	NULL)	{

				NameTable	=	mAbcControllerNameTable;

		}	else	{

				//

				//	If	ChildHandle	is	not	NULL,	then	make	sure	this	driver	produced	ChildHandle

				//

				Status	=	EfiTestChildHandle	(

															ControllerHandle,

															ChildHandle,

															&gEfiPciIoProtocolGuid

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				NameTable	=	mAbcChildNameTable;

		}

		return	LookupUnicodeString2	(

											Language,

											This->SupportedLanguages,

											NameTable,

											ControllerName,

											(BOOLEAN)(This	!=	&gAbcComponentName2)

);

}

The	static	tables	for	the	controller	names	and	the	child	names	can	be	substituted	with	dynamic	tables.
This	substitution	requires	the	private	context	structure	to	be	updated	along	with	the		Start()		and		Stop()	
services	of	the	Driver	Binding	Protocol.	The	previous	section	explains	how	this	update	is	done	for	the
controller	names.	The	exact	same	technique	can	be	applied	to	child	controllers.

11.3.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

372DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

11.4	Testing	Component	Name	Protocols

Use	the	UEFI	Shell's		drivers		and		devices		commands	to	exercise	the	Component	Name	Protocols.
Running	these	commands	with	no	options	shows	the	sets	of	drivers	and	devices	in	the	platform	The
names	are	shown	in	the	currently	set	platform	language.

These	commands	also	support	a	-l	option	to	request	names	in	an	alternate	language.	Figure	15,
following,	shows	an	example	using	the	UEFI	Shell	command		drivers		on	the	EDK	II	Nt32	platform.	Figure
16	then	shows	an	example	of	using	the	UEFI	Shell	command		devices		on	the	EDK	II	Nt32	platform.	The
details	on	each	UEFI	Shell	command	available	to	test	UEFI	Drivers	can	be	found	in	Chapter	31	of	this
guide.

Figure	15-Testing	Component	Name	Protocol	GetDriverName()

11.4	Testing	Component	Name	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

373DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	16-Testing	Component	Name	Protocol	GetControllerName()

11.4	Testing	Component	Name	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

374DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12	UEFI	Driver	Configuration
The	configuration	of	UEFI	Drivers	is	typically	provided	through	HII.	If	a	UEFI	Driver	requires	interaction
with	a	user	to	properly	configure	a	device	for	use	in	the	UEFI	preboot	environment,	HII	packages	must
be	registered	and	the	HII	Config	Access	Protocol	must	be	implemented.	The	requirement	for	HII
packages	and	the	HII	Config	Access	Protocol	applies	to	UEFI	Drivers	required	to	be	compatible	with
platforms	conformant	with	the	UEFI	2.1	Specification	or	higher.	This	chapter	focuses	on	guidelines	for
UEFI	Drivers	required	to	produce	HII	based	configuration	methods.

If	a	UEFI	Driver	is	required	to	be	compatible	with	platforms	conformant	with	the	UEFI	2.0	Specification,
the	Driver	Configuration	2	Protocol	must	be	implemented.	If	a	UEFI	Driver	is	required	to	be	compatible
with	platforms	conformant	with	the	UEFI	1.1	Specification,	the	Driver	Configuration	Protocol	must	be
implemented.

UEFI	platform	firmware	supporting	HII	provides	an	HII	forms	browser.	This	component	uses	UEFI	consoles
to	display	configuration	forms	to	the	user	and	allows	the	user	to	navigate	between	forms	and	within
forms	to	answer	questions	related	to	the	configuration	of	devices.

12	UEFI	Driver	ConfigurationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

375DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.1	HII	overview

A	UEFI	driver	is	not	allowed	to	directly	invoke	a	platform's	forms	browser.	Instead,	a	UEFI	Driver	provides
sets	of	forms	(the	equivalent	of	Web	pages)	to	HII.	If	and	when	the	forms	browser	is	run,	the	web	pages
are	displayed	and	configuration	takes	place.	The	benefits	of	using	forms	instead	of	the	Simple	Text
Input	Protocol	and	Simple	Text	Output	Protocols	include	that:

The	forms	allow	use	of	a	pre-existing	GUI―the	system	already	has	a	browser.	This	means	a	UEFI
Driver	can	take	advantage	of	the	browser's	features	and	allows	the	system	to	have	a	more
consistent	look	and	feel	for	the	user.
The	forms	are	device-neutral.	The	browser	can	manage	the	forms	appropriately	for	any	device―for
instance,	a	smart	phone	versus	a	laptop.
The	forms	allow	for	remote	configuration	of	devices.	Instead	of	requiring	that	the	user	to	go	the
physical	machine	and	press	(for	example)	Ctrl-Alt-F4,	the	text	input	can	be	handled	remotely	via	the
browser.

HII	is	designed	to	enable	support	of	the	data	structures	required	to	support	fully	localized	text	and
graphical	user	interfaces	to	the	user.	This	consists	of	four	types	of	support:

1.	 	Keyboard:		HII	supports	keyboard	mappings―the	keyboard	reflects	the	language	the	user	is	expecting
to	use.	For	example,	French	and	English	mappings	differ	in	the	Q,	A,	and	Z	keys.	Keyboards	simply
return	the	location	of	the	key,	not	its	Unicode	value.	The	HII	support	for	key	mapping	allows
translation	from	key	location	to	Unicode	value.	There	is	no	support	for	IMEs.

2.	 	Fonts:		HII	supports	fonts	for	the	approximately	37,000	Unicode	printable	characters	in	Unicode	UCS-
2	The	system	carries	the	Latin-1	(Western	European)	character	set.	Other	characters	must	be
provided	if	they	are	to	be	displayed.	HII	also	supports	narrow	and	wide	characters	to	support
logographic	languages	(such	as	Chinese,	Japanese,	and	Korean).

3.	 	Strings:		HII	expects	strings	to	be	compressed	Unicode	stored	by	language.	Drivers	reference	strings
by	IDs,	which	requires	less	storage.	The	actual	string	selected	is	defined	by	the	ID	and	by	the
selected	language.

4.	 	Forms:		HII	defines	its	own	forms	language	known	as	IFR.	Although	similar	to	web-based	forms
languages	(such	as	HTML),	IFR	is	stored	in	binary.	IFR	supports	the	usual	tags,	headers,	and	so	on,
found	in	a	normal	forms	markup	language.	However,	IFR	also	has	special	support	for	items	common
to	configuration	including	multiple	defaults	and	context-sensitive	help.	Unlike	most	forms	languages,
HII	refers	to	strings	via	ID,	so	the	same	form	can	be	used	for	multiple	languages.	HII	also	supports	a
rich	set	of	operations	for	validating	results.	If	all	else	fails,	HII	can	reference	callbacks	into	the
submitting	driver's	code.

Note:	IFR	is	a	variable-length	encoding	of	HTML-like	tags.	While	experts	can	write	in	this	language	(a	bit
like	using	DBs	to	write	assembly	language),	most	developers	use	a	high	level	language	known	as	VFR.
VFR	compiles	into	IFR	and	makes	writing	UEFI	forms	similar	to	writing	HTML.	The	EDK	II	build	tools	provide
full	support	for	VFR	along	with	a	VFR	to	IFR	compiler.

HII	data	is	stored	in	a	central	HII	database	dynamically	created	upon	each	reboot.	HII	protocols	allow	for
a	driver's	HII	data	to	be	submitted,	manipulated,	and	extracted.

Configuration	in	a	UEFI	system	is	the	province	of	a	single	setup	browser.	Drivers	submit	their	HII	data	to
the	HII	protocols.	The	browser	then	parses	through	the	forms	in	the	same	way	an	internet	browser
would	parse	web	data.	The	setup	browser	communicates	with	the	drivers	to	obtain	current

12.1	HII	overviewEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

376DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

configuration	information	and	to	provide	updates	when	the	session	completes.

12.1	HII	overviewEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

377DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.1.1	HII	Database	and	Package	Lists

The	HII	database	is	built	dynamically	as	the	system	boots.	A	UEFI	Driver	is	required	to	register	lists	of	HII
packages	into	the	HII	Database.	A	package	list	is	a	list	of	packages	providing	different	types	of	binary
data.	The	data	types	supported	include	font,	string,	image,	keyboard,	and	forms	data.

Note:	The	package	could	also	contain	some	keyboard	data	but	keyboard	layouts	are	typically	outside
the	scope	of	a	driver	(and	typically	up	to	the	platform	to	determine).	For	example,	keyboard	data	could
represent	the	French	keyboard,	a	simplified	set	of	Hiragana	and	Katakana	characters	for	a	Japanese
keyboard,	and	so	on.	The	Unicode	values	of	keyboard	data	are	mapped	to	the	characters	of	each
supported	language	and	displayed	to	the	screen.

The	goal	of	the	package	is	to	create	a	single	form	with	multiple	sets	of	strings.	For	example,	the	goal	for
fonts	is	to	create	a	single	form	with	multiple	sets	of	strings,	each	set	for	a	different	supported
language.	The	sets	of	strings	are	published	to	the	HII	database,	which	also	contains	the	strings,	fonts,
and	characters	from	other	drivers.	The	setup	browser	can	then	access	the	HII	Database	to	display	the
forms	in	the	appropriate	language	and	font.

In	general,	data	in	a	package	is	not	modified	after	it	is	registered.	For	example,	data	that	probably
won't	change	during	configuration	include	the	questions	that	are	presented	to	a	user,	the	layout	of	the
forms,	the	font	list,	and	so	on.

12.1.1	HII	Database	and	Package	ListsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

378DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.2	General	steps	for	implementing	HII	functionality

To	include	HII	functionality	in	a	driver,	follow	these	general	steps:

1.	 Decide	if	the	user	should	be	allowed	to	change	configuration	data.
2.	 Identify	a	set	of	options	that	can	be	changed.	These	options	are	stored	in	NVRAM.	The	NVRAM
storage	may	be	either	local	to	the	device	being	configured	(recommended),	or	it	may	be	global	to
the	platform	such	as	UEFI	Variables	(not	recommended).	UEFI	Variables	must	be	used	only	to	store
configuration	data	for	UEFI	Drivers	integrated	into	a	platform.

3.	 Define	the	C	data	structure	for	the	configurable	data.	Drivers	have	flexibility	on	how	they	process
configurable	data.	For	example,	data	can	be	managed	as	name,	value	pairs	or	as	a	data	structure.
The	full	C	data	structure	is	defined	in	a	.h	file	for	the	UEFI	Driver	usually	in		<<DriverName>>	.h.

4.	 Determine	the	order	of	the	questions	presented	to	the	user-for	example,	the	order	in	which	to
present	the	fields	and	their	values.	For	example,	select	on	or	off,	yes	or	no,	or	enter	a	specific
value,	and	so	on.	This	information	is	typically	stored	in	the	file	called		<<DriverName>>		.Vfr.	The	order	in
which	the	information	is	listed	in	the		<<DriverName>>	.Vfr	file	is	the	order	in	which	each	configurable
field	is	displayed	in	the	form.

TIP:	When	designing	questions,	remember	that	the	way	the	user	sees	the	data	may	vary
considerably	depending	on	the	device	used.	For	example,	it	could	vary	from	a	few	lines	on	a	plasma
display	on	the	front	panel	of	a	home	electronics	device	to	a	full,	rich	GUI	interface	on	a	remote
console.

5.	 Define	the	strings	for	the	form	including	the	title	of	the	form,	help	information	for	the	form	title;	the
titles	for	each	configurable	field	and	the	help	information	(if	any)	for	each	configurable	field.	This
information	is	typically	stored	in	the		<<DriverName>>	.Uni.	The	example	below	shows	a	portion	of	the
Unicode	string	file	from	a	sample	driver	in	the	MdeModulePkg	on	the	path
MdeModulePkg/Universal/DriverSampleDxe.

Example	137-Example	of	a	Unicode	string	file

#langdef	en-US	"English"

#langdef	fr-FR	"Francais"

#string	STR_FORM_SET_TITLE							#language	en-US	"Browser	Testcase	Engine"

																																	#language	fr-FR	"Browser	Testcase	Engine"	

#string	STR_FORM_SET_TITLE_HELP		#language	en-US	"This	is	a	sample	driver	which	is	used	to	test	the	browser

op-code	operations.	This	is	for	development	purposes	and	not	to	be	distributed

in	any	form	other	than	a	test	application.	Here	is	a	set	of	wide

\wideAAAAAAAAA\narrow	and	narrow	AAA!"

																																	#language	fr-FR	"This	is	a	sample	driver	which	is	used	to	test	the	browser

op-code	operations.	This	is	for	development	purposes	and	not	to	be	distributed

in	any	form	other	than	a	test	application.	Here	is	a	set	of	wide

\wideAAAAAAAAA\narrow	and	narrow	AAA!"		

#string	STR_FORM1_TITLE

																																	#language	en-US	"My	First	Setup	Page"

																																	#language	fr-FR	"Mi	Primero	Arreglo	P``na"`

#string	STR_FORM2_TITLE										#language	en-US	"My	Second	Setup	Page"

																																	#language	fr-FR	"Mi	Segunda	Paginacie	la	Disposiciuot;

#string	STR_FORM3_TITLE										#language	en-US	"My	Third	Setup	Page"

																																	#language	fr-FR	"Mi	Tercera	Paginacie	la	Disposiciuot;

#string	STR_DYNAMIC_TITLE								#language	en-US	"My	Dynamic	Page"

																																	#language	fr-FR	"My	Dynamic	Page	Spanish"

#string	STR_SUBTITLE_TEXT								#language	en-US	"My	subtitle	text"

																																	#language	fr-FR	"Mi	texto	del	subtlo"

#string	STR_SUBTITLE_TEXT2							#language	en-US	"	"

																																	#language	fr-FR	"	"

12.2	General	steps	for	implementing	HII	functionalityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

379DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#string	STR_CPU_STRING											#language	en-US	"My	CPU	Speed	is	"

																																	#language	fr-FR	"My	CPU	Speed	is	"

#string	STR_CPU_STRING2										#language	en-US	"	"

																																	#language	fr-FR	"	"

6.	Determine	if	the	driver	must	be	localized:	Does	it	need	to	support	more	than	one	language?	If	so,	the
strings	must	be	translated.	Determine	if	the	languages	can	be	displayed	using	the	Latin-1	character	set
(European).	If	not,	obtain	fonts	for	the	characters	in	the	languages	the	driver	supports.

At	this	point,	a	.uni	file,	a	.vfr	file,	and	a	.h	file	have	been	produced.	Typically,	there	is	only	one	.uni	file	and	one	.vfr

	file	per	driver.	More	than	one	.uni	file	may	be	required	if	the	driver	presents	multiple	forms	or	menus.	More	than	one	.vfr	f

ile	may	be	required	in	certain	circumstances,	for	example,	to	simplify	maintenance	by	holding	an	area	of	functionality	in	a	se

parate	.vfr	file	that	changes	often.

7.	Implement	HII	Config	Access	Protocol	to	retrieve	and	save	configuration	information	associated	with
the	HII	forms.	The	implementation	of	the	HII	Config	Access	Protocol	is	typically	found	in	the	file
HiiConfigAccess.c.	Appendix	A	contains	a	template	for	a	HiiConfigAccess.c	file	for	a	UEFI	Driver.	The
Config	Access	Protocol	contains	three	services:	ExtractConfig(),	RouteConfig(),	and	DriverCallback().	The
following	example	shows	the	definition	of	the	HII	Config	Access	Protocol	for	reference.	When	the	HII
setup	browser	is	called,	these	functions	are	used	to	retrieve	and	store	configuration	setting	as	well	as
to	retrieve	default	settings.

Note:	This	is	still	the	init	section.	The	driver	has	not	attached	to	those	protocols	yet.

Example	138-Example	of	a	Unicode	string	file

typedef	struct	_EFI_HII_CONFIG_ACCESS_PROTOCOL	EFI_HII_CONFIG_ACCESS_PROTOCOL;

///

///	This	protocol	provides	a	callable	interface	between	the	HII	and

///	drivers.	Only	drivers	which	provide	IFR	data	to	HII	are	required

///	to	publish	this	protocol.

///

struct	_EFI_HII_CONFIG_ACCESS_PROTOCOL	{

		EFI_HII_ACCESS_EXTRACT_CONFIG	ExtractConfig;

		EFI_HII_ACCESS_ROUTE_CONFIG	RouteConfig;

		EFI_HII_ACCESS_FORM_CALLBACK	Callback;

}	;

extern	EFI_GUID	gEfiHiiConfigAccessProtocolGuid;

8.	Register	all	the	packages	from	the	driver	entry	point	following	the	example	in	Chapter	7	on	adding	HII
packages.

9.	If	the	UEFI	Driver	does	not	follow	the	UEFI	Driver	Model,	install	the	HII	Config	Access	Protocol	from	the
driver	entry	point	following	the	example	in	Chapter	7.	If	the	UEFI	Driver	does	follow	the	UEFI	Driver	Model,
the	HII	Config	Access	Protocol	is	installed	in	the	Driver	Binding	Protocol	Start()	function	on	each	handle
the	UEFI	Driver	manages	and	provides	configuration.

At	this	point,	the	driver's	init	part	is	done.	When	the	form	is	displayed	to	the	user,	the	calls	to	the	HII
Config	Access	Protocol	are	made	to	retrieve	and	save	configuration	settings.	It	is	up	to	the
implementation	of	the	HII	Config	Access	Protocol	to	store	configuration	settings	in	NVRAM	so	they	are
available	the	next	time	the	platform	boots.

12.2	General	steps	for	implementing	HII	functionalityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

380DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.2	General	steps	for	implementing	HII	functionalityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

381DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3	HII	Protocols

Some	protocols	must	be	clearly	understood	in	order	to	successfully	implement	a	UEFI	driver	with	HII
functionality.	The	basic	protocols	consist	of	four	consumable	protocols	and	the	HII	Config	Access
Protocol	produced	by	a	UEFI	Driver.	They	need	not	be	used	in	any	particular	order.	The		MdeModulePkg	
provides	the		UefiHiiServicesLib		that	automatically	looks	up	consumed	HII	protocols	and	makes	them
available	to	a	UEFI	Driver	requiring	the	services	they	provide.	A	UEFI	platform	is	not	required	to	produce
all	of	these	protocols.	The	following	is	the	list	of	protocols	and	the	global	variable	provided	by	the
	UefiHiiServicesLib	.	If	a	global	variable	is	set	to		NULL	,	it	means	that	the	platform	does	not	produce	that
specific	protocol.	UEFI	Drivers	must	handle	all	platform	configurations,	so	it	is	important	for	a	UEFI	Driver
to	continue	to	function	both	when	an	HII	related	protocol	is	present	and	when	an	HII	related	protocol	is
absent.

1.	 	EFI_HII_DATABASE_PROTOCOL	gHiiDatabase	

2.	 	EFI_HII_STRING_PROTOCOL	gHiiString	

3.	 	EFI_HII_FONT_PROTOCOL	gHiiFont	

4.	 	EFI_HII_IMAGE_PROTOCOL	gHiiImage	

12.3	HII	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

382DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3.1	HII	Database	Protocol	and	HII	String	Protocol

Use	the	database	protocol	to	submit	the	package	of	strings,	fonts,	forms,	and	so	on,	to	the	HII
database.	It	is	the	most	important	of	the	HII	protocols.	Because	the	package	is	created	at	build	time,
and	most	of	the	package	does	not	change,	the	driver	does	not	have	to	call	much	later.	This	can
significantly	speed	up	boot	time.

The	strings	protocol	allows	the	general	purpose	forms	to	adapt	to	the	configuration	of	a	specific
platform.	This	includes	configuration	information	typed	in	by	the	user.	The	forms	themselves	are	created
by	the	VFR	during	build.

Basically,	the	string	and	database	protocols	facilitate	database	and	string	management.	The	browser
simply	gets	things	out	of	the	database	after	the	driver	uses	the	set	functions	to	put	data	into	the
database.	The	browser	doesn't	need	to	know	how	to	parse	the	database	or	even	know	how	strings	are
stored;	it	needs	to	know	only	how	to	parse	the	forms.

The	EDK	II	provides	a	library,	in	the		MdeModulePkg	,	called		HiiLib		that	provides	helper	functions	to	simplify
the	use	of	the	HII	Database	and	HII	String	protocols.	It	also	provides	services	to	dynamically	generate
forms.

12.3.1.1	HII	Database	Protocol

HII	data	is	contained	in	HII	packages.	For	example,	A	driver	might	have	a	string	package,	a	form
package,	and	a	small	font	package.	HII	supports	package	lists	as	a	way	to	combine	HII	packages	to
create	a	single	data	structure	for	all	the	user	interface	HII	data	necessary	for	the	driver.	Rather	than
requiring	the	driver	to	split	the	packs	up	to,	for	example,	provide	the	string	pack	to	the	string	protocol
and	the	font	pack	to	the	font	protocol,	the	HII	Database	Protocol	consumes	the	entire	package	list	and
portions	it	out	to	the	various	parts	of	the	HII	database.	The	package	list	format	is	described	in	the
Human	Interface	Infrastructure	Overview	chapter	of	the	UEFI	Specification.

When	a	package	list	is	submitted	to	the	database	(via	NewPackageList),	an	ID,	known	as	an	HII	handle,
is	associated	with	the	data.	This	handle	is	required	to	manipulate	the	pack	list's	data	to	ensure
uniqueness.	For	example,	if	two	drivers	submit	string	packs	to	the	database,	each	have	a	string	with	an
ID	of	1	but	they	are	different.	The	handle	indicates	which	string	with	an	ID	of	1	to	access.

One	parameter	to	NewPackageList	deserves	special	attention:	DriverHandle.	The	driver	handle	indicates
the	handle	on	which	the	driver	has	put	an	instance	of	the	CONFIGURATION_ACCESS_PROTOCOL.	This
protocol	is	used	to	obtain	("extract")	the	current	configuration	of	a	driver	and	to	provide	new
configurations	to	it.

UpdatePackageList	allows	a	driver	to	associate	more	than	one	package	list	with	the	same	handle.	This
may	simplify	complex	configurations	by	splitting	the	package	into	a	common	piece	and	additional
configurations	depending	upon	the	cards	SKU.

The	Database	protocol	also	supports	methods	to	extract	pieces	from	the	database	up	to	and	including
the	entire	database	as	well	as	ListPackageLists	and	ExportPackageLists.	These	functions	are	rarely
useful	for	a	driver	but	are	the	mechanisms	by	which	the	system	places	the	HII	data	into	the	system
table	and	also	how	the	Setup	browser	obtains	the	data	used	to	present	its	screens.	The	database
protocol	also	supports	notification	functions	for	consumers	of	database	data	so	they	can	determine	if
new	packages	have	been	added	or	existing	ones	removed.

Questions	commonly	asked	include:	Why	are	there	individual	protocols	for	some	package	types?	Why
isn't	there	a	single	protocol?	The	main	reason	is	that	the	number	of	functions	required	became
unwieldy.	A	secondary	reason	is	that,	for	some	smaller	implementations,	subsets	of	HII	could	be
implemented.	In	reality	this	has	not	occurred.

12.3.1	HII	Database	Protocol	and	HII	String	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

383DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	keyboard	packages	were	judged	as	being	simple	enough	to	leave	in	the	database	protocol.
Keyboards	are	abstracted	using	a	data	structure	per	key.	Each	data	structure	defines	the	key	code	to
which	the	data	structure	refers,	as	well	as	the	unmodified	Unicode	weight	and	the	weights	when
modified	with	Shift,	Alt,	and	Shift	+	Alt.	Only	the	keys	that	vary	from	the	standard	US	English	layout	need
be	specified.	Certain	keys,	such	as	NumLock,	may	also	be	assigned	special	functions.

12.3.1.2	HII	String	Protocol

The	String	Protocol	consumes	string	packs.	It	also	allows	manipulation	of	strings	already	in	the
database,	even	if	they	were	submitted	via	the	database	protocol.

It	is	quite	common	for	a	driver	to	need	to	manipulate	certain	strings	when	its	data	is	in	the	HII
database.	Consider	the	case	of	a	media	card	with	attached	mass	storage	devices.	When	the	driver	for
the	media	card	is	created,	the	identification	data	of	the	mass	storage	devices	attached	aren't	known.
That	data	is	derived	when	the	card's	driver	is	invoked,	generally	at		Start()	.

If	the	driver	is	to	provide	the	mass	storage	device	types	to	the	setup	browser,	it	is	common	to	allocate
empty	strings	so	the	build	allocates	string	IDs	to	the	strings.	The	driver	can	then	parse	the	string	pack
to	modify	strings	updating	them	with	the	drive	id	data	itself	and	then	submit	the	string	pack.	This	is
complex	and	tedious	because	the	string	packs	are	stored	to	be	space	efficient,	not	to	be	easily
accessible.	The	String	protocol	already	knows	how	to	parse	the	string	pack,	however,	and	does	provide
methods	to	modify	strings	by	ID.	This	makes	the	job	of	updating	strings	for	dynamically	derived	data	an
easy	one.	Simply	submit	the	string	packs	to	the	database,	then	modify	the	few	strings	that	change
dynamically.	Blank	strings	can	be	checked	for	in	IFR	so	empty	channels	don't	have	to	be	displayed.

12.3.1.3	Adding	data	to	the	HII	database	at	boot	time

There	is	more	than	one	way	to	add	information	to	the	database.	A	crude	way	of	adding	information	to
the	HII	database	is	by	using	individual	protocols	to	specify	the	fonts,	strings,	and	forms.	A	better	way	is
to	use	the	HII	Database	Protocol.	This	protocol	provide	services	to	register	the	strings	pack,	fonts	pack,
forms	pack,	and	so	on,	all	at	once.	Because	most	of	the	package	is	static	data,	the	driver	does	not
have	to	do	much	work	later	during	boot.

Note:	If	the	VFR	compiler	is	used	as	part	of	the	build,	the	package	created	may	be	published	with	this
protocol.

Also,	note	that	the	database	is	not	complete	at	build	time.	The	driver	cannot	know	all	the	data	it	needs
about	the	end-user's	specific	system	hardware	or	other	devices	connected	to	the	hardware.	For
example,	the	driver	can't	know	a	specific	platform's	MAC	address	at	build	time,	which	specific	mass
storage	devices	are	attached	via	SCSI,	each	mass	storage	device's	version	information,	and	so	on.	That
type	of	information	is	acquired	during	setup.	During	setup	or	boot,	the	package	for	the	HII	database
must	be	updated.

Although	data	may	be	modified	before	being	submitted	to	the	database,	that	process	is	both	difficult
and	convoluted.	Use	the		SetString()		function	in	the	HII	String	Protocol	instead.

For	configurable	data,	or	for	data	not	available	at	build	time,	use	a	question	mark	in	the	package	for
each	of	the	blank	fields.	During	boot,	the	driver	requests	that	information.	Use	the	set	string
functionality	of	the	HII	String	Protocol	to	specify	the	ID	of	the	new	package	list	and	update	the	database
with	the	new	string	from	the	build	file.

12.3.1	HII	Database	Protocol	and	HII	String	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

384DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Note:	If	driver	A	creates	a	package	list	for	the	database,	and	another	driver	B	creates	another
package	list	for	the	database,	driver	A's	string	#12	is	not	the	same	as	driver	B's	string	#12.

12.3.1.4	Update	the	database	via	the	byte	offset	of	a	configurable	field

To	modify	a	form	after	build-time,	include	a	comment	line	(a	macro	for	the	VFR	compiler)	in	the	form's
source	code.	The	comment	line	does	not	generate	code	in	the	form.	It	simply	indicates	the	byte	offset
of	the	value	which	does	change	the	platformspecific	information.	The	driver	does	not	need	to	know	how
to	parse	the	whole	form	to	find	that	value.	Instead,	a	driver	can	use	the	offset	to	find	out	where	to	edit
the	form.

Take	the	example	of	a	SCSI	driver	with	2	drives	specified	as	the	default.	In	this	example,	the	end-user
platform	actually	has	3	drives.	The	driver	searches	for	the	appropriate	comment	to	find	the	offset	and
the	compiler	tells	the	driver	that	the	description	of	the	logical	unit	is	at	line	437	The	driver	goes	to	that
location,	adds	new	forms	data	for	the	third	drive	and	"slides"	the	rest	of	the	configuration	forms	down.
Essentially,	new	data	is	inserted	into	a	newly	created	hole.	Because	the	Internal	Forms	Language	(IFR)
is	decision-independent,	there	are	no	fixed	addresses	in	the	code	so	data	may	be	moved	from	one
location	to	another	relatively	easily.	The	IFR	also	uses	names	for	references,	not	pointers.	For	example,
if	20	bytes	of	data	need	to	be	added	at	location	437,	the	20	bytes	can	be	copied	into	the	new	form.

Note:	The	driver	can	do	a	get	operation	on	the	whole	form	or	on	just	the	string.	The	driver	can	do	a	get
operation	on	the	string	because	it	uses	the	existing	infrastructure	(the	platform's	browser	and	other
tools),	which	already	know	how	to	parse	the	database	to	find	the	appropriate	data.

12.3.1.5	Using	strings	to	create	forms	as-needed

Use	strings	to	create	forms	as	needed.	For	example,	most	of	the	time,	a	SCSI	has	only	2	drives,	but
could	have	up	to	8	Instead	of	creating	a	static	form	with	8	fields,	and	only	2	filled	at	boot	time,	a	form
with	the	2	required	fields	can	be	created	dynamically.	The	other	6	unused	fields	would	not	be	displayed
until	they	are	actually	needed.

12.3.1.6	Using	strings	to	modify	forms

In	general,	about	80%	of	any	given	form	is	static	and	common	across	the	system's	hardware.	The	other
20%	is	specific	to	that	platform.

When	adding	information	after	build,	it	is	sometimes	easier	to	simply	update	a	form.	Other	times	it's
easier	to	create	a	new	form	and	turn	it	in.	In	general,	a	new	form	should	be	created	if	70-80%	of	the
information	is	new	or	has	changed.

The	VFR	programming	language	explains	how	to	work	with	forms	and	includes	tips	and	suggestions	for
modifying	forms.

12.3.1.7	HII	Database	Protocol	with	Export	Package	List

The	HII	Database	Protocol	provides	a	service	to	export	all	registered	packages	into	an	Export	Package
List.	This	includes	packages	registered	by	all	UEFI	Drivers.	The	Export	Package	List	is	not	typically	used
by	UEFI	Drivers	themselves.	Instead,	its	purpose	is	to	provide	a	single	interface	for	external	entities	to
extract	the	data	needed	to	configure	the	system	remotely.

12.3.1	HII	Database	Protocol	and	HII	String	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

385DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Note:	Programs	that	perform	remote	configuration	do	not	have	access	to	callbacks	so	questions
related	to	callbacks	are	not	visible	remotely.	Requests	to	read	and	write	configuration	data	are	routed
to	HII	Config	Access	Protocol	instances.

12.3.1	HII	Database	Protocol	and	HII	String	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

386DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3.2	HII	Config	Routing	Protocol

The	Configuration	Routing	Protocol	is	not	used	by	UEFI	Drivers.	However,	it	is	important	to	understand
its	role	in	the	configuration	process.	This	protocol	is	used	by	consumers	of	forms	to	determine	the
current	configuration	of	the	tags	(questions)	associated	with	the	forms	and	to	change	the
configuration	of	the	corresponding	data.

The	data	format	for	both	output	from	the	drivers	and	input	into	the	drivers	is	Unicode	strings	of
ampersand	separated	name=value	pairs.	Each	string	is	associated	with	a	particular	form,	and	hence,	a
particular	driver.	Specific	name=value	pairs	at	the	start	of	a	string	of	data	associate	the	data	with	a
particular	instance	of	a	driver.

This	format	can	seem	a	little	cumbersome	at	times	but	does	provide	a	common,	well	defined	mechanism
to	present	the	data.	It	is	useful	particularly	in	cases	where	the	configuration	of	the	system	is	handled
remotely.	It	is	also	useful	in	cases	where	the	same	configuration	data	is	applied	to	multiple	systems,
such	as	when	systems	are	initially	received	by	an	IT	department.

The	data	provided	by	the	driver	includes	the	leading	name=value	pairs.	The	data	provided	by	the
configuration	program	consists	of	a	single	string	that	may	be	consumed	by	multiple	drivers	(hence	the
name	multi-config	string).	The	routing	protocol	uses	the	leading	name=value	pairs	to	break-up	the
multi-config	string	and	to	determine	the	correct	consumer	of	each	of	the	substrings.	Each	driver
receives	only	its	own	configuration	data	via	the	HII	Config	Access	Protocol	described	below.

The	leading	name=value	pairs	(all	in	upper	case	only)	are:

GUID	-	The	GUID	in	the	Setup	Form	associated	with	this	data

NAME	-	The	name	of	the	driver

PATH	-	The	binary	device	path	to	the	driver's	device

A	UEFI	Driver	may	describe	not	only	the	current	configuration	but	also	several	alternate	configurations.
Each	alternate	configuration	is	described	by	an	identifier	and	preceded	by	a	name=value	pair	with	the
name	ALTCFG	and	the	value	indicating	the	alternate	configuration	in	the	Form.	These	are	typically
default	configurations.

A	UEFI	driver	maps	its	configuration	into	an	array	that	is	also	represented	as	a	C	data	structure.	In	this
case,	each	configurable	item	is	represented	by	three	consecutive	name=value	pairs:

OFFSET―The	byte	offset	into	the	structure	of	the	item

WIDTH―The	number	of	bytes	the	item	consumes

VALUE―The	current	(or	new)	configuration	of	the	item

Helper	functions	map	the	string	into	a	memory	array	to	be	stored	by	the	UEFI	Driver.	A	UEFI	Driver	may
receive	a	request	for	only	certain	configuration	values,	in	which	case	only	the	names	(and	not	the	=	or
value)	are	filled	in.	The	driver	must	fill	in	the	values	for	the	requested	names.

If	a	UEFI	Driver	receives	a	configuration	string	containing	incorrect	leading	name=value	pairs,	unknown
names	or	out	of	bound	values,	the	driver	must	reject	the	configuration	request.	In	other	words,	the
driver	always	validates	the	input	string.

There	is	no	requirement	to	include	all	name=value	pairs	in	a	configuration	change	string.	The
configuration	associated	with	all	names	not	mentioned	in	the	string	should	not	change.	The	UEFI	Driver
must	ensure	that	the	results	of	the	reconfiguration	are	valid.

A	UEFI	Driver	must	provide	a	name=value	pair	parser	that	is	tolerant	of	different	formats	of
numbers―0ab,	ab,	and	AB	are	all	the	same	number.	Similarly,	the	parser	must	be	tolerant	of	case
changes	in	names―Fred=5,	fred=5,	and	FRED=5	should	all	be	tolerated.

12.3.2	HII	Config	Routing	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

387DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A	UEFI	Driver	implementation	of	the	HII	Config	Access	Protocol	must	pay	close	attention	to	the	memory
allocation	and	deallocation	requirements	of	the	HII	Config	Access	Protocol.	Sometimes,	the	caller
allocates	the	memory,	other	times,	the	callee	allocates	the	memory.	See	the	EFI	HII	Configuration
Access	Protocol	section	of	the	UEFI	Specification	for	more	details.

12.3.2.1	Remote	configuration

Previously,	even	when	configuration	is	local,	every	PC	BIOS	legacy	option	ROM	had	to	carry	its	own	setup-
this	took	up	a	lot	of	space.	With	HII,	only	the	platform	needs	to	carry	the	browser.	The	driver	carries	only
the	package-the	fonts	and	strings	that	the	browser	doesn't	know	about.	For	drivers	having	a	significant
amount	of	configuration,	using	HII	functionality	can	help	reduce	the	driver's	size	by	as	much	as	20%	or
30%.

For	example,	a	platform	may	require	some	configuration	at	runtime.	Or	a	platform	may	require	remote
configuration	by	an	Information	Technology	(IT)	administrator	at	a	remote	server	that	allows	them	to
configure	some	settings,	and	send	those	settings	back.	In	order	to	do	this,	the	management
application	typically	wants	the	entire	database	of	information.	Such	an	application	sends	that	database
off	to	the	remote	system,	which	does	the	configuration	via	its	own	setup	browser,	then	sends	the	data
back.	The	management	application	provides	configuration	changes	to	the	platform	that	are	routed
back	to	the	UEFI	Driver	managing	the	device	being	configured.	This	means	a	driver	can	support	remote
configuration	without	having	to	implement	all	the	functions	that	the	browser	and	management
application	already	provide.

Note:	Configuration	data,	whether	configuration	is	remote	or	local,	does	not	need	to	use	callbacks.	In
fact,	a	remote	browser	ignores	all	the	pieces	of	a	form	involving	callbacks.	Once	the	configuration	is	on
the	end-user	platform,	callbacks	are	functional	again	because	they	are	on	a	local	machine.

12.3.2	HII	Config	Routing	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

388DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3.3	HII	Config	Access	Protocol

The	HII	Config	Access	Protocol	is	produced	by	the	UEFI	driver.	It	has	three	key	functions	that	are
published	to	the	HII	database.	The	first	two	functions	are	used	by	the	Configuration	Routing	Protocol	to
extract	data	from	drivers	and	to	provide	configuration	back	to	the	drivers.	The	format	of	the
configuration	is	modeled	after	the	CGI:	A	Unicode	string	of	ampersand	separated	name	=	value	pairs
(x=1&y=2&z=3A).	The	names	and	values	are	specified	in	the	forms.	Only	names	are	provided	for	extract
requests.	The	driver	cannot	assume	that	all	names	in	a	form	are	present	in	a	request―the	caller	may
limit	the	entries	to	only	those	it	needs.

Callbacks	are	the	method	by	which	the	browser	and	driver	directly	communicate	with	each	other.	The
forms	describe	when	to	invoke	callbacks	and	they	provide	some	context	for	the	callback.

Use	callbacks	to	update	dynamic	data,	such	as	ambient	temperature,	fan	speed,	etc.	They	should	not
be	used	to	modify	how	items	are	displayed.

The	following	three	key	functions	are	published	to	the	HII	database:

ExtractConfig	function:	This	function	is	called	by	the	HII	engine	at	the	beginning	of	a	particular
form.	This	function	gives	the	driver	a	chance	to	perform	tasks	before	the	form	is	processed	by	the
HII	database	engine.	For	example,	the	function	could	test	the	current	NVRAM	data	structure	to
make	sure	it	is	not	corrupt.	This	function	also	allows	the	browser	to	display	current	configuration
information.

Note:	The	ExtractConfig	function	eliminates	the	need	to	use	the	previous,	tedious	method	of	manually
outputting	to	the	console,	reading	strings	back	from	the	console,	and	manually	interpreting	those
strings.

RouteConfig	function:	This	function	allows	the	browser	to	obtain	and	change	configuration
information	upon	the	exit	of	the	form.	It	performs	the	final	store	and	routes	the	appropriate	data
out	to	whoever	needs	it.	For	example,	this	function	copies	the	current	data	back	to	the	data
structure	in	NVRAM.	This	function	processes	any	changes	that	the	user	enters.

Callback	function:	This	function	is	called	when	a	user	makes	changes.	After	the	changes	are
saved,	the	original	data	structure	is	updated	with	the	new	settings.

Note:	This	is	not	a	callback	in	the	traditional	sense.	This	function	is	used	by	the	browser	to	route	data
back	to	the	appropriate	driver	so	each	driver	can	process	its	own	configuration.

12.3.3.1	Sample	code	for	routing	protocols

The	following	three	examples	show	how	the	ExtractConfig,	RouteConfig,	and	Callback	functions	of	the
Config	Access	Protocol	may	be	used.

Example	139-ExtractConfig()	Function

EFI_STATUS

EFIAPI

ExtractConfig	(

		IN		CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL		*This,

		IN		CONST	EFI_STRING																						Request,

		OUT	EFI_STRING																												*Progress,

12.3.3	HII	Config	Access	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

389DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		OUT	EFI_STRING																												*Results

)

{

		EFI_STATUS																																Status;

		UINTN																																					BufferSize;

		DRIVER_SAMPLE_PRIVATE_DATA																*PrivateData;

		EFI_HII_CONFIG_ROUTING_PROTOCOL											*HiiConfigRouting;

		EFI_STRING																																ConfigRequest;

		EFI_STRING																																ConfigRequestHdr;

		UINTN																																					Size;

		BOOLEAN																																			AllocatedRequest;

		if	(Progress	==	NULL	||	Results	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		//	Initialize	the	local	variables.

		ConfigRequestHdr	=	NULL;

		ConfigRequest	=	NULL;

		Size	=	0;

		*Progress	=	Request;

		AllocatedRequest	=	FALSE;

		PrivateData	=	DRIVER_SAMPLE_PRIVATE_FROM_THIS	(This);

		HiiConfigRouting	=	PrivateData->HiiConfigRouting;

		//	Get	Buffer	Storage	data	from	EFI	variable.

		//	Try	to	get	the	current	setting	from	variable.

		BufferSize	=	sizeof	(DRIVER_SAMPLE_CONFIGURATION);

		Status	=	gRT->GetVariable	(

																		VariableName,

																		&mFormSetGuid,

																		NULL,

																		&BufferSize,

																		&PrivateData->Configuration

);

		if	(EFI_ERROR	(Status))	{

				return	EFI_NOT_FOUND;

		}

		if	(Request	==	NULL)	{

				//	Request	is	set	to	NULL,	construct	full	request	string.

				//

				//	Allocate	and	fill	a	buffer	large	enough	to	hold	the	<ConfigHdr>	template

				//	followed	by	"&OFFSET=0&WIDTH=WWWWWWWWWWWWWWWW"	followed	by	a	Null-terminator

				ConfigRequestHdr	=	HiiConstructConfigHdr	(

																									&mFormSetGuid,

																									VariableName,

																									PrivateData->DriverHandle[0]

);

				Size	=	(StrLen	(ConfigRequestHdr)	+	32	+	1)	*	sizeof	(CHAR16);

				ConfigRequest	=	AllocateZeroPool	(Size);

				ASSERT	(ConfigRequest	!=	NULL);

				AllocatedRequest	=	TRUE;

				UnicodeSPrint	(

						ConfigRequest,

						Size,

						L"%s&OFFSET=0&WIDTH=%016LX",

						ConfigRequestHdr,

						(UINT64)BufferSize

);

				FreePool	(ConfigRequestHdr);

		}	else	{

				//	Check	routing	data	in	<ConfigHdr>.

				//	Note:	if	only	one	Storage	is	used,	then	this	checking	could	be	skipped.

				if	(!HiiIsConfigHdrMatch	(Request,	&mFormSetGuid,	NULL))	{

						return	EFI_NOT_FOUND;

				}

				//	Set	Request	to	the	unified	request	string.

				ConfigRequest	=	Request;

				//	Convert	buffer	data	to	<ConfigResp>	by	helper	function	BlockToConfig()

				Status	=	HiiConfigRouting->BlockToConfig	(

12.3.3	HII	Config	Access	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

390DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																																	HiiConfigRouting,

																																	ConfigRequest,

																																	(UINT8	*)	&PrivateData->Configuration,

																																	BufferSize,

																																	Results,	Progress

);

		}

		//	Free	the	allocated	config	request	string.

		if	(AllocatedRequest)	{

				FreePool	(ConfigRequest);

				//	Set	Progress	string	to	the	original	request	string.

				if	(Request	==	NULL)	{

						*Progress	=	NULL;

				}	else	if	(StrStr	(Request,	L"OFFSET")	==	NULL)	{

						*Progress	=	Request	+	StrLen	(Request);

				}

				return	Status;

		}

		.	.

		return	EFI_SUCESS

}

Example	140-RouteConfig()	Function

EFI_STATUS	

EFIAPI

RouteConfig	(

		IN		CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL		*This,

		IN		CONST	EFI_STRING																						Configuration,

		OUT	EFI_STRING																												*Progress

)

{

		EFI_STATUS																																Status;

		UINTN																																					BufferSize;

		DRIVER_SAMPLE_PRIVATE_DATA																*PrivateData;

		EFI_HII_CONFIG_ROUTING_PROTOCOL											*HiiConfigRouting;

		.	.

		if	(Configuration	==	NULL	||	Progress	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		PrivateData	=	DRIVER_SAMPLE_PRIVATE_FROM_THIS	(This);

		HiiConfigRouting	=	PrivateData->HiiConfigRouting;

		*Progress	=	Configuration;

		//	Check	routing	data	in	<ConfigHdr>.

		//	Note:	if	only	one	Storage	is	used,	then	this	checking	could	be

		//	skipped.	if	(!HiiIsConfigHdrMatch	(Configuration,	&mFormSetGuid,	NULL))	{	return	EFI_NOT_FOUND;

}

//

//	Get	Buffer	Storage	data	from	EFI	variable

//

BufferSize	=	sizeof	(DRIVER_SAMPLE_CONFIGURATION);

Status	=	gRT->GetVariable	(

																VariableName,

																&mFormSetGuid,

																NULL,

																&BufferSize,

																&PrivateData->Configuration

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//	Convert	<ConfigResp>	to	buffer	data	by	helper	function	ConfigToBlock()	BufferSize	=	sizeof	(DRIVER_SAMPLE_CONFIGURATION);

Status	=	HiiConfigRouting->ConfigToBlock	(

12.3.3	HII	Config	Access	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

391DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																													HiiConfigRouting,

																													Configuration,

																													(UINT8	*)	&PrivateData->Configuration,

																													&BufferSize,

																													Progress

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//	Store	Buffer	Storage	back	to	EFI	variable

Status	=	gRT->SetVariable	(

																VariableName,

																&mFormSetGuid,

																EFI_VARIABLE_NON_VOLATILE	|	EFI_VARIABLE_BOOTSERVICE_ACCESS,

																sizeof	(DRIVER_SAMPLE_CONFIGURATION),

																&PrivateData->Configuration

);

return	Status;

}

Example	141-Callback	function

EFI_STATUS

EFIAPI

DriverCallback	(

		IN		CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL		*This,

		IN		EFI_BROWSER_ACTION																				Action,

		IN		EFI_QUESTION_ID																							QuestionId,

		IN		UINT8																																	Type,

		IN		EFI_IFR_TYPE_VALUE																				*Value,

		OUT	EFI_BROWSER_ACTION_REQUEST												*ActionRequest

)

{

		DRIVER_SAMPLE_PRIVATE_DATA																*PrivateData;

		EFI_STATUS																																Status;

		if	((Value	==	NULL)	||	(ActionRequest	==	NULL))	{

				return	EFI_INVALID_PARAMETER;

		}

		Status	=	EFI_SUCCESS;

		PrivateData	=	DRIVER_SAMPLE_PRIVATE_FROM_THIS	(This);

		switch	(QuestionId)	{

		case	0x1234:	//	do	some	code	break;

		default:

				break;

		}

		return	Status;

}

12.3.3	HII	Config	Access	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

392DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.3.4	Rarely	used	HII	protocols

There	are	two	rarely	used	HII	protocols:	HII	Font	Protocol,	and	the	HII	Image	Protocol.	Though	rarely
used,	understanding	them	is	important

12.3.4.1	HII	Font	Protocol

The	HII	Font	Protocol	provides	functionality	equivalent	to	the	String	Protocol	but	manages	fonts	instead.
Fonts	consist	of	glyphs,	bit-mapped	representations	of	characters.	The	characters	are	referred	to	by
their	Unicode	weight,	which	is	to	say	their	corresponding	binary	value.	For	example,	weight	0x0030	is	a
"0"	(zero).	A	font	is	a	series	of	glyphs	bound	together	by	name,	size	and	similar	visual	characteristics.

The	default	font	is	the	system	font,	which	is	8x16	and	16x16	(for	wide	characters).	Latin-1	characters	in
this	standard	font	are	provided	by	the	system	firmware.	If	a	driver	uses	other	characters,	including	e.g.
Chinese,	Korean,	Hindi,	Arabic,	Hebrew,	etc.	A	driver	must	provide	all	of	the	characters	it	uses.	The	build
tools	determine	the	actual	characters	used.	Other	fonts	are	identified	by	GUID.

TIP:	It	is	strongly	recommended	that	the	system	font	be	used	for	reasons	of	size	and	consistency.

Unlike	strings,	fonts	are	not	separated	by	handle.	When	a	driver	provides	fonts	to	the	database,	the
new	glyphs	are	merged	with	existing	glyphs,	provided	that	they	are	the	same	font.	This	means	the
display	of	a	driver's	data	may	use	a	different	driver's	font	characters.

12.3.4.2	HII	Image	Protocol

HII	provides	simple	support	for	images	like	graphical	pictures	and	simplistic	animation.	There	is	no
requirement	for	browsers	to	support	graphics.	The	browser	in	EDK	II	does	not	support	graphics	and
most	setup	browsers	do	not	support	graphics	simply	because	of	size	requirements.	The	exception	is	for
splash	screens	(banners).

12.3.4	Rarely	used	HII	protocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

393DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4	HII	functionality

HII	functionality	offers	several	benefits.	One	of	the	biggest	is	that	HII	functionality	takes	advantage	of
the	platform's	existing	browser	to	standardize	forms	and	change	the	way	data	is	presented	to	the	user.
UEFI	Drivers	no	longer	need	to	include	a	browser	and	this	simplifies	drivers,	helps	reduce	driver	size,
and	helps	standardize	the	interface	for	users.	Also,	because	the	forms	support	language	localization,
the	driver	no	longer	needs	to	manually	manage	language	strings.	Instead,	the	HII	interface	displays
forms	as	appropriate	for	the	languages	specified	by	the	driver	writer.

12.4	HII	functionalityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

394DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4.1	Branding,	and	displaying	a	banner

HII	makes	it	easier	for	vendors	to	brand	their	drivers.	This	includes	displaying	a	unique	splash	screen	or
banner.	This	is	done	through	HII	forms.	However,	the	forms	themselves	are	defined	in	the	VFR	(visual
forms	representation)	programming	language.	(See	the	VFR	Programming	Language	Specification).

12.4.1	Branding,	and	displaying	a	bannerEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

395DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4.2	Specifying	supported	languages

The	HII	String	Protocol	allows	strings	and	tokens	to	be	used	to	specify	the	supported	languages	for	a
driver.	The	strings	themselves	are	defined	in	a	separate	string	file.	That	file	is	then	published	to	the	HII
Database.

The	string	file	must	have	at	least	one	language	definition	and	at	least	one	string.	If	there	is	only	one
language	specified,	that	language	is	the	default.	If	more	than	one	language	is	specified,	then	the	first
language	listed	is	always	the	default	language.

Note:	It	is	possible	that	no	languages	supported	by	the	system	are	supported	by	the	driver.	In	this
case	the	browser	selects	the	default	language	and	proceeds.	It	is	important	to	use	the	secondary
language	feature	in	HII	to	describe	alternate	languages	to	provide	maximum	flexibility	for	a	set	of
strings.

The	following	snippet	from	a	Unicode	string	file	shows	American	English	(en-US)	as	the	default	language
because	it	is	first	in	the	list.	The	string	file	includes	support	for	two	additional	languages,	French-
Canadian	(fr-CA),	and	British	English	(en-UK).

Example	142-Unicode	string	file	with	support	for	multiple	languages

#langdef	en-US	"English"

#langdef	fr-FR	"Francais"

#langdef	en-UK	"British"

#string	STR_INV_FORM_SET_TITLE	#language	en-US	"ABC	Information	Sample"

																			#language	fr-FR	"Mi	motor	Espade	arreglo"

																			#language	en-UK	"ABC	Information	Sample"

Note:	It	costs	the	driver	almost	no	processing	time	to	support	multiple	languages	because	language
selection	is	determined	at	the	system	level.	However,	adding	support	for	multiple	languages	with
additional	strings	and	tokens	can	increase	the	size	of	the	driver	slightly.	Adding	support	for	many
languages	(for	example,	100	or	more)	could	increase	the	size	of	the	driver	more	significantly.

12.4.2	Specifying	supported	languagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

396DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4.3	Specifying	configuration	information

HII	functionality	makes	it	easier	to	publish	configuration	information	to	a	database.	With	HII	functionality,
the	driver	writer	specifies	the	form	layout	for	configuration	information.	The	form	layout	points	to	static
strings,	as	well	as	to	data	that	is	configurable	by	the	user.	The	driver	writer	also	defines	the	data
structure	of	configurable	data	stored	in	NVRAM.

The	strings	are	defined	in	a	Unicode	file	(files	with	a	.uni	extension).	During	the	driver's	init	section,	the
driver	publishes	the	list	of	strings	(such	as	language	strings)	and	forms	to	the	HII	database	with	the	HII
handler.	The	driver	also	publishes	its	configuration	routing	protocols.	The	actual	data	structure	of
strings	and	forms	is	created	as	part	of	the	build	process.

The	build	tools	take	the	.Uni	file	and	the	.Vfr	file	and	produce	a	data	structure.	That	data	structure	is
stored	in	the	HII	database.	Configurable	data	is	stored	in	NVRAM.

When	the	HII	engine	is	invoked,	it	runs	the	forms,	pulls	the	strings	it	needs	from	the	string	database,
and	pulls	the	configurable	settings	it	needs	from	NVRAM.

12.4.3.1	Using	forms

Prior	to	HII,	there	was	no	standardized	way	to	create	forms.	Instead,	forms	were	created	manually,	and
were	manually	output	to	the	console.	HII	provides	a	standard	way	to	create	forms,	making	it	easier	to
display	information.	Because	HII	functionality	is	standardized	via	forms,	the	driver	no	longer	needs	to
manage	the	way	users	enter	data,	or	worry	about	parsing	the	data.	The	HII	engine	parses	the	data	to
make	sure	it	is	appropriate	for	the	defined	field.	See	the	discussion	earlier	in	this	section	entitled
"General	Steps	for	Implementing	HII	Functionality."

To	create	forms,	a	UEFI	Driver	with	HII	functionality	should	use	the	VFR	programming	language	and	IFR
defined	in	the	Human	Interface	Infrastructure	Overview	chapter	of	the	UEFI	Specification.	Refer	to	the
VFR	Programming	Language	for	information	about	creating	forms.	The		MdeModulePkg		also	contains	a
sample	driver	in	the	paths		MdeModulePkg/Universal/DriverSampleDxe		and		MdeModulePkg/Universal/HiiResourcesSampleDxe	
that	show	example	usages	of	VFR	constructs.

12.4.3.2	Storing	configuration	information	in	nonvolatile	storage

A	UEFI	Driver	should	store	its	configurable	information	in	nonvolatile	storage	(NVRAM).	This	configuration
information	should	be	stored	with	the	device	so	the	configuration	information	travels	with	the	device	if	it
is	moved	between	platforms.

The	exact	method	for	retrieving	and	storing	configuration	information	on	a	device	is	device	specific.
Typically,	drivers	use	the	services	of	a	bus	I/O	protocol	to	access	the	resources	of	a	device	to	retrieve
and	store	configuration	information.	For	example,	if	a	PCI	controller	has	a	flash	device	attached	to	it,
the	management	of	that	flash	device	may	be	exposed	through	I/O	or	memory-mapped	I/O	registers
described	in	the	BARs	associated	with	the	PCI	device.	A	PCI	device	driver	can	use	the		Io.Read()	,
	Io.Write()	,		Mem.Read()	,	or		Mem.Write()		services	of	the	PCI	I/O	Protocol	to	access	the	flash	contents	to
retrieve	and	store	configuration	settings.	Devices	that	are	integrated	onto	the	motherboard	or	are	part
of	a	FRU	may	use	the	UEFI	variable	Services	such	as		GetVariable()		and		SetVariable()		to	store	configuration
information.

12.4.3	Specifying	configuration	informationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

397DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4.4	Making	configuration	data	available	to	other	drivers

Configuration	data	is	stored	in	NVRAM.	The	data	structures	that	contain	the	static	and	configurable
data	for	the	driver	are	typically	part	of	the	package	published	to	the	HII	database.	In	order	to	make
configuration	data	available	to	other	drivers,	make	sure	to	do	the	following:

1.	 Extract	the	forms	from	the	form	database.
2.	 Parse	the	forms	for	the	names	of	the	configurable	options.
3.	 Use	the	HII	Config	Access	Protocol	to	extract	the	data	from	all	drivers.

12.4.4.1	Check	validity	of	configuration	options	for	a	specific	device

The	UEFI	Specification	defines	a		CallBack()		service	in	the	HII	Config	Access	Protocol.	This	protocol
interfaces	with	the	VFR	language.	The	callback	protocol	includes	an	action,		QuestionId	,	type,	value,	and
action	request.	When	the	user	changes	a	configuration	setting,	this	causes	a	call	back	to	the	driver.
The	driver	then	needs	to	check	to	see	if	the	value	entered	is	valid.

The	data	structure	for	configuration	options	is	initialized	via	the	driver's	init	entry	point.	The	init	reads
the	configuration	data	out	of	NVRAM	and	makes	sure	the	data	is	valid.	If	any	particular	variable	is
invalid,	the	value	for	that	variable	is	reset	to	its	default.

The	platform	vendor	can	validate	the	configuration	of	all	devices	in	the	system	before	booting.	In
addition,	the	devices	can	be	reset	to	their	default	configurations.	If	the	firmware	detects	a	corrupt
configuration	then	a	default	configuration	may	be	selected	automatically.	The	platform	vendor	may
choose	to	allow	the	user	to	select	a	menu	item	to	force	defaults	on	a	specific	device	or	all	devices	at
once.

12.4.4	Making	configuration	data	available	to	other	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

398DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.4.5	Check	to	see	if	configuration	parameters	are	valid

To	check	configuration	values	and	make	sure	they	are	valid,	use	the	ExtractConfig()	service	of	the	HII
Config	Access	Protocol.	The	HII	setup	browser	uses	this	service	to	check	for	valid	configuration	values
when	the	setup	browser	displays	a	form	that	was	previously	registered	by	the	UEFI	Driver.	If	the
configuration	values	are	not	valid,	then	the	setup	browser	may	provide	an	option	to	reset	the	device	to
its	default	configuration	settings.	The	default	configuration	settings	may	be	retrieved	using	the
ExtractConfig()	service	of	the	HII	Config	Access	Protocol.	This	means	the	UEFI	Driver	that	produces	the
HII	Config	Access	Protocol	must	support	requests	for	the	current	configuration	settings	as	well	as	the
default	configuration	settings.

12.4.5	Check	to	see	if	configuration	parameters	are	validEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

399DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.5	Forms	and	VFR	files

Here	is	a	sample,	simplified	VFR	file.	It	declares	a	form	set	with	one	from	and	uses	a	single	variable
store	to	retrieve	and	save	configuration	settings.	The	form	contains	a	title	and	four	questions:

1.	 Allows	a	user	to	select	one	of	two	pre-defined	values.
2.	 Allows	the	user	to	type	in	a	string	value.
3.	 Allows	the	user	to	type	in	a	numeric	value.
4.	 Allows	the	user	to	select	a	button	to	reset	settings	to	defaults.

Example	143-Sample	VFR	file,	simplified

///**	@file

//

//	Sample	Setup	formset.

//

//	Copyright	(c)	2004	-	2010,	Intel	Corporation.	All	rights	reserved.

//	This	program	and	the	accompanying	materials

//	are	licensed	and	made	available	under	the	terms	and	conditions	of	the	BSD

//	License	which	accompanies	this	distribution.	The	full	text	of	the	license	may	be

//	found	at	http:

//opensource.org/licenses/bsd-license.php

//

//	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

//	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED.

//

//**/

#include	"NVDataStruc.h"

formset

		guid	=	FORMSET_GUID,

		title	=	STRING_TOKEN	(STR_FORM_SET_TITLE),	

		help	=	STRING_TOKEN	(STR_FORM_SET_TITLE_HELP),

		classguid	=	EFI_HII_PLATFORM_SETUP_FORMSET_GUID,

		//

		//	Define	a	Buffer	Storage	(EFI_IFR_VARSTORE)

		//

		varstore	DRIVER_SAMPLE_CONFIGURATION,											//	This	is	the	data	structure	type	

				varid	=	CONFIGURATION_VARSTORE_ID,												//	Optional	VarStore	ID	

				name	=	MyIfrNVData,																											//	Define	referenced	name	in	vfr	

				guid	=	FORMSET_GUID;																										//	GUID	of	this	buffer	storage

		defaultstore	MyStandardDefault,

				prompt	=	STRING_TOKEN	(STR_STANDARD_DEFAULT_PROMPT),

				attribute	=	0x0000;																											//	Default	ID:	0000	standard	default

		defaultstore	MyManufactureDefault,

				prompt	=	STRING_TOKEN	(STR_MANUFACTURE_DEFAULT_PROMPT),

				attribute	=	0x0001;																											//	Default	ID:	0001	manufacture	default

		//

		//	Define	a	Form	(EFI_IFR_FORM)

		//

		form	formid	=	1,	//	Form	ID

				title	=	STRING_TOKEN	(STR_FORM1_TITLE);							//	Form	title	

				subtitle	text	=	STRING_TOKEN(STR_SUBTITLE_TEXT);

				subtitle	text	=	STRING_TOKEN	(STR_SUBTITLE_TEXT2);

				//

				//	Define	oneof	(EFI_IFR_ONE_OF)

				//

				oneof	name	=	MyOneOf,																									//	Define	reference	name	for	Question	

						varid	=	MyIfrNVData.MyBaseAddress,										//	Use	"DataStructure.Member"	to	

						prompt	=	STRING_TOKEN(STR_ONE_OF_PROMPT),	

12.5	Forms	and	VFR	filesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

400DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

						help	=	STRING_TOKEN(STR_ONE_OF_HELP),

						//

						//	Define	an	option	(EFI_IFR_ONE_OF_OPTION)

						//

						option	text	=	STRING_TOKEN	(STR_ONE_OF_TEXT1),	value	=	0x0,	flags	=	0;

						option	text	=	STRING_TOKEN	(STR_ONE_OF_TEXT2),	value	=	0x1,	flags	=	0;	

						//

						//	DEFAULT	indicate	that	this	option	is	to	be	marked	with

						//	EFI_IFR_OPTION_DEFAULT

						//

						option	text	=	STRING_TOKEN	(STR_ONE_OF_TEXT3),	value	=	0x2,	flags	=	DEFAULT;

				endoneof;

				//

				//	Define	a	string	(EFI_IFR_STRING)

				//

				string	varid	=	MyIfrNVData.MyStringData,	

						prompt	=	STRING_TOKEN	(STR_MY_STRING_PROMPT),

						help	=	STRING_TOKEN	(STR_MY_STRING_HELP),	

						flags	=	INTERACTIVE,	

						key	=	0x1236,	

						minsize	=	6,	

						maxsize	=	40,	

				endstring;

				numeric	varid	=	MyIfrNVData.MyHexData,	

						questionid	=	0x1111,

						prompt	=	STRING_TOKEN	(STR_DATA_HEX_PROMPT),	

						help	=	STRING_TOKEN	(STR_NUMERIC_HELP),

						flags	=	DISPLAY_UINT_HEX	|	INTERACTIVE,					//	Display	in	HEX	format	(if	not

																																																		//	specified,	default	is	in	decimal

																																																		//	format)	

						minimum	=	0,	

						maximum	=	250,	

						default	=	175,	

				endnumeric;

				resetbutton

						defaultstore	=	MyStandardDefault,

						prompt	=	STRING_TOKEN	(STR_STANDARD_DEFAULT_PROMPT),	

						help	=	STRING_TOKEN	(STR_STANDARD_DEFAULT_HELP),	

				endresetbutton;

		endform;

endformset;

12.5	Forms	and	VFR	filesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

401DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.6	HII	Implementation	Recommendations

12.6	HII	Implementation	RecommendationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

402DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.6.1	Minimize	callbacks

There	are	circumstances	in	which	a	callback	is	required.	For	example,	callbacks	are	necessary	when
real-time	data	such	as	a	temperature	or	voltage	is	required,	or	when	direct	password	input	is	required
to	unlock	a	security	feature.

However,	the	callback	is	useful	for	an	extremely	limited	number	of	circumstances	and	can	be	used
inappropriately.

Caution:	It	is	very	important	with	UEFI	drivers	that	the	use	of	callbacks	is	minimized.	The	use
ofcallbacks	can	significantly	slow	down	a	browser.	Callbacks	tend	to	be	hard	to	maintain	and	are	also
typically	very	buggy.	They	don't	adapt	well	to	various	video	forms,	which	becomes	an	issue	for
interoperability	between	different	types	of	devices.	Finally,	they	cannot	be	used	remotely,	which	creates
significant	problems	with	remote	management	of	drivers.

There	are	a	number	of	useful	techniques	to	reduce	the	use	of	callbacks.	For	example,	use	the	rich	set
of	comparison	and	calculation	operators	in	VFR	to	validate	input	rather	than	resorting	to	callbacks.
Also,	modify	the	IFR	(the	language	into	which	VFR	compiles)	before	handing	the	IFR	to	HII.	This	allows	the
IFR	to	be	adapted	to	the	state	of	the	system	as	the	driver	finds	it.	For	example,	don't	use	callbacks	to
determine	attacked	devices.	Instead,	determine	the	devices	when	providing	the	HII	and	fill	in	the	data
into	the	VFR.

Note	that	the	HII	engine	can	also	do	some	testing	of	values,	such	as	for	minimum	and	maximum
limits―a	callback	is	not	required	for	these	operations.	Instead,	these	checks	are	incorporated	into	the
VFR	sources,	and	the	HII	engine	checks	perform	the	tests	against	the	minimum	and	maximum	values.
String	compares	may	also	be	performed	without	the	use	of	a	callback.

TIP:	Use	a	callback	only	when	absolutely	required,	and	when	no	other	methods	are	available	to	perform
the	task.	Almost	nothing	should	be	a	callback.

TIP:	Use	callbacks	only	for	dynamically	changing	data.	Do	not	use	callbacks	for	static	data.

TIP:	Do	not	use	callbacks	to	format	tables	or	make	the	interface	look	nice.

TIP:	Do	not	make	assumptions	about	the	way	the	data	returned	from	the	callback	is	displayed.

Basically,	let	the	HII	engine	perform	as	much	of	the	work	as	possible	and	rigorously	minimize	the	use	of
callbacks.

12.6.1.1	Callbacks	create	issues	with	remote	configuration

One	of	the	biggest	issues	with	remote	configuration	is	the	use	of	callbacks	(see	the	previous	discussion
for	more	information).	For	example,	if	configuration	changes	must	be	made	to	thousands	of	systems	at
a	remote	site,	callback	functions	cannot	be	used,	because	the	remote	systems	may	be	powered	down
or	otherwise	unavailable.

12.6.1	Minimize	callbacksEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

403DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

TIP:	Use	a	callback	only	when	absolutely	required.

12.6.1.2	Callbacks	create	issues	with	interoperability

Callbacks	are	also	an	issue	with	regards	to	interoperability	of	remote	devices.	For	example,	a	server
might	have	a	32x4	plasma	display.	A	browser	may	be	implemented	for	VFR	to	support	a	32x4	display,	but
the	callback	functions	typically	do	not	function	well	between	device	types.	If	a	UEFI	Driver	is	intended	to
be	used	in	remote	configuration	scenarios,	then	avoid	the	use	of	callbacks.

12.6.1	Minimize	callbacksEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

404DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.6.2	Don't	reparse	the	package	list

Space	is	very	important	in	the	firmware.	Size	can	be	reduced	by	reparsing	the	forms	and	package	list.
However,	it	is	better	to	let	the	code	that	already	does	that	kind	of	parsing	perform	this	task.	This	code
already	exists	in	the	platform,	so	there	is	no	reason	to	add	it	to	a	driver.	In	fact,	even	the	browser
should	call	a		GetString()		function	instead	of	parsing	the	string	package	itself.

TIP:	Avoid	writing	code	that	parses	the	package	list.

TIP:	When	in	doubt,	submit	the	package	list,	then	the	driver	can	call	the	getstring	function	and	set-
string	function.

12.6.2	Don't	reparse	the	package	listEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

405DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.6.3	Concentrate	on	critical	aspects	of	the	driver

Often	people	focus	on	what	they	can	easily	see	of	a	driver,	which	tends	to	be	the	browser,	not	the
actual	driver.	However,	with	HII	functionality,	a	driver	no	longer	needs	to	include	its	own	browser.
Instead,	the	driver	can	take	advantage	of	the	platform's	browser	and	other	code	already	written	and	a
part	of	the	platform.

TIP:	Concentrate	on	the	important	parts	of	the	driver	(what	it	does),	not	on	the	more	visible,	probably
browser-related,	aspects.	A	UEFI	2.x	conformant	driver	uses	the	platform's	existing	browser	anyway

12.6.3	Concentrate	on	critical	aspects	of	the	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

406DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.6.4	Perform	usability	testing

Many	developers	do	not	perform	usability	testing	on	their	forms.	When	implementing	HII	functionality,
make	sure	to	test	for	ease	of	use,	readability	of	the	fields	and	forms,	and	the	logical	flow	of	concepts
from	forms	to	sub-forms.

12.6.4	Perform	usability	testingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

407DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

12.7	Porting	to	UEFI	HII	functionality

HII	allows	the	platform's	existing	browser	to	be	used	to	display	and	manage	forms	for	user	input.	In
doing	so,	HII	functionality		replaces		or	supplements	older	protocols:

Driver	Configuration	Protocol	and	Driver	Configuration	2	Protocol:.	If	a	UEFI	Driver	is	required	to	only
be	compatible	with	the	UEFI	2.1	Specification	or	higher,	then		replace		the	use	of	these	protocols	with
HII	functionality.

Simple	Text	Input	Protocol,	Simple	Text	Output	Protocol:	UEFI	Drivers,	in	general,	are	not	allowed	to
use	UEFI	console	protocols.	The	one	exception	is	the	Driver	Configuration	Protocol		SetOptions()	
service.	If	a	UEFI	Driver	is	required	to	only	be	compatible	with	UEFI	2.1	Specification	or	higher,	the
Driver	Configuration	Protocols	are	not	required	and	the	Simple	Text	Input	Protocol	and	Simple	Text
Output	Protocol	should	not	be	used.

Convert	strings	used	by	Driver	Configuration	Protocol	SetOptions()	to	a	.uni	file.

Convert	questions	and	other	user	interactions	in	Driver	Configuration	Protocol		SetOptions()		to	a	.vfr
file.	Only	use	HII	callbacks	if	absolutely	required.

Convert	Driver	Configuration	Protocol		ForceDefaults()		functionality	into	.vfr	sources.

Convert	Driver	Configuration	Protocol		OptionsValid()		functionality	into	.vfr	sources.

12.7	Porting	to	UEFI	HII	functionalityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

408DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13	UEFI	Driver	Diagnostics
The	Driver	Diagnostics	Protocols	are	optional	features	that	allow	UEFI	Drivers	following	the	UEFI	Driver
Model	to	provide	diagnostics	for	the	devices	under	UEFI	Driver	management.	Use	of	these	protocols
depends	on	the	UEFI	Driver	Model	concepts	so	Service	Drivers,	Root	Bridge	Drivers,	and	Initializing
Drivers	never	produce	the	Driver	Diagnostics	Protocols.

The	Driver	Binding	Protocol		Start()		function	may	perform	some	quick	checks	of	a	device's	status,	but
checks	taking	extended	time	to	execute	should	be	provided	in	a	Driver	Diagnostic	Protocol
implementation.	Doing	so	improves	the	overall	platform	boot	performance	by	deferring	extensive
diagnostics	to	a	separate	protocol	not	required	to	execute	on	every	boot.

The	Driver	Diagnostics	Protocol	and	the	Driver	Diagnostics	2	Protocol	are	very	similar.	The	only
difference	lies	in	the	type	of	language	code	used	to	specify	the	language	for	diagnostic	result
messages.	The	Driver	Diagnostic	Protocol	uses	ISO	639-2	language	codes	(i.e.		eng	,		fra).	The	Driver
Diagnostics	2	Protocol	uses	RFC	4646	language	codes	(i.e.		en	,		en-US	,		fr).	For	diagnostics	provided	to
platforms	conforming	to	the	EFI	1.10_Specification,	use	the	Driver	Diagnostics	Protocol.	For	diagnostics
provided	to	platforms	conforming	to	the	UEFI	2.0	Specification	or	above,	use	the	Driver	Diagnostics	2
Protocol.	Since	the	only	difference	is	the	language	code	for	the	diagnostic	message	results,	UEFI
Drivers	required	to	provide	diagnostics	typically	produce	both	protocols	so	the	two	implementations	can
share	the	same	diagnostic	algorithms	and	diagnostic	result	messages.

The	Driver	Diagnostics	Protocols	are	installed	onto	handles	in	the	driver	entry	point	of	UEFI	Drivers.
Chapter	7	provides	details	on	the	EDK	II		UefiLib		library	that	provides	helper	functions	to	initialize	UEFI
Drivers	following	the	UEFI	Driver	Model,	including	the	installation	of	the	Driver	Diagnostics	Protocols.

The	Driver	Diagnostic	Protocols	may	be	invoked	from	a	UEFI	Boot	Manager	if	a	platform	provides	those
options	to	a	user.	A	platform	vendor	can	take	advantage	of	Driver	Diagnostic	Protocol	implementations
for	devices	to	improve	overall	system	diagnostics	for	the	user.	These	protocols	may	also	be	invoked
through	a	UEFI	Application	that	performs	diagnostics.

Use	the		drvdiag		command	to	test	the	functionality	of	Driver	Diagnostic	Protocol	implementation	and	to
diagnose	issues	on	platforms	that	either	build	the	UEFI	Shell	in	or	provide	the	ability	to	boot	the	UEFI
Shell	from	a	boot	device.	The		drvdiag		command	provides	the	list	of	devices	that	support	diagnostic
operations	and	the	ability	to	run	diagnostics	on	a	specific	device	and	report	the	results.

If	a	controller	is	managed	by	more	than	one	UEFI	Driver,	there	may	be	multiple	instances	of	the	Driver
Diagnostics	Protocols	that	apply	to	a	single	controller.	The	consumers	of	the	Driver	Diagnostics
Protocols	have	to	decide	how	the	multiple	drivers	supporting	diagnostics	are	presented	to	users	so
they	can	select	the	desired	diagnostic.	For	example,	a	PCI	bus	driver	may	produce	the	Driver
Diagnostics	Protocol	to	verify	the	functionality	of	a	specific	PCI	slot.	The	UEFI	Driver	for	a	SCSI	adapter
inserted	into	that	same	PCI	slot	may	produce	diagnostics	for	the	SCSI	host	controller.	Both	sets	of
diagnostics	may	be	useful	to	a	user	when	testing	the	platform.	The	UEFI	Shell		drvdiag		command	does
support	this	use	case.

Appendix	B	contains	a	table	of	example	drivers	from	the	EDK	II	along	with	the	features	each	implement.
The	EDK	II	provides	example	drivers	with	full	implementations	of	the	Driver	Diagnostics	Protocols.

Note:	The	Driver	Diagnostics	Protocols	are	used	rarely,	and	platform	vendors	may	or	may	not	invoke
the	Driver	Diagnostics	Protocols.

13	UEFI	Driver	DiagnosticsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

409DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13	UEFI	Driver	DiagnosticsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

410DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.1	Driver	Diagnostics	Protocol	Implementations

The	implementation	of	the	Driver	Diagnostics	Protocols	for	a	specific	driver	is	typically	found
in	the	file	DriverDiagnostics.c.	Appendix	A	contains	a	template	for

DriverDiagnostics.c,	a	file	for	a	UEFI	Driver.	This	file	typically	contains	the	following:	-	Add	global	variable
for	the	EFI_DRIVER_DIAGNOSTICS_PROTOCOL	instance	to	DriverDiagnostics.c.	-	Add	global	variable	for	the
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	instance	to	DriverDiagnostics.c.

Add	Static	table	of	diagnostics	result	messages	as	Unicode	strings	to		DriverDiagnostics.c	.
Implementation	of	the		RunDiagnostics()		service
Install	all	the	Driver	Diagnostics	Protocols	in	the	driver	entry	point.
If	the	UEFI	Driver	supports	the	unload	feature,	uninstall	all	the	Driver	Diagnostics	Protocols	in	the
	Unload()		function.

The	Driver	Diagnostics	Protocols	provide	diagnostics	result	messages	in	one	or	more	languages.	At	a
minimum,	the	protocols	should	support	the	English	language.	The	Driver	Diagnostic	Protocol	advertises
the	languages	it	supports	in	a	data	field	called	SupportedLanguages.	This	data	field	is	a	null-terminated
ASCII	string	that	contains	one	or	more	3	character	ISO	639-2	language	codes	with	no	separator
character.	The	Driver	Diagnostic	2	Protocol	also	advertises	the	languages	it	supports	in	a	data	field
called	SupportedLanguages.	This	data	filed	is	a	null-terminated	ASCII	string	that	contains	one	or	more
RFC	4646	language	codes	separated	by	semicolons	(';').

A	consumer	of	the	Driver	Diagnostics	Protocols	may	parse	the	SupportedLanguages	data	field	to
determine	if	the	protocol	supports	a	language	in	which	the	consumer	is	interested.	This	data	field	can
also	be	used	by	the	implementation	of	the	Driver	Diagnostics	Protocols	to	see	if	diagnostics	result
messages	are	available	in	the	requested	language.

Example	144,	below,	shows	the	protocol	interface	structure	for	the	Driver	Diagnostic	Protocol	and	the
following	Example	145	shows	the	protocol	interface	structure	for	the	Driver	Diagnostics	2	Protocol	for
reference.	Both	are	composed	of	one	service	called		RunDiagnostics()		and	a	data	field	called
	SupportedLanguages	.

Example	144-Driver	Diagnostics	Protocol

typedef	struct	_EFI_DRIVER_DIAGNOSTICS_PROTOCOL	EFI_DRIVER_DIAGNOSTICS_PROTOCOL;

///

///	Used	to	perform	diagnostics	on	a	controller	that	an	EFI	Driver	is	managing.

///

struct	_EFI_DRIVER_DIAGNOSTICS_PROTOCOL	{

		EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS	RunDiagnostics;

		///

		///	A	Null-terminated	ASCII	string	that	contains	one	or	more	ISO	639-2

		///	language	codes.	This	is	the	list	of	language	codes	that	this	protocol

		///	supports.

		///

		CHAR8	*SupportedLanguages;

};

Example	145-Driver	Diagnostics	2	Protocol

typedef	struct	_EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL;

///

///	Used	to	perform	diagnostics	on	a	controller	that	an	EFI	Driver	is	managing.

///

struct	_EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	{

		EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS	RunDiagnostics;

13.1	Driver	Diagnostics	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

411DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		///

		///	A	Null-terminated	ASCII	string	that	contains	one	or	more	RFC	4646

		///	language	codes.	This	is	the	list	of	language	codes	that	this	protocol

		///	supports.

		///

		CHAR8	*SupportedLanguages;

};

UEFI	Drivers	declare	global	variables	for	the	Driver	Diagnostics	Protocol	and	Driver	Diagnostics	2
Protocol	instances	produced.	The	SupportedLanguages	fields	are	typically	initialized	by	the	UEFI	Driver
in	the	declaration	for	the	specific	set	of	language	the	UEFI	Driver	supports.	The	example	below	shows
how	the	Driver	Diagnostics	Protocols	are	typically	declared	in	a	driver,	and	in	this	case	declared	to
support	both	English	and	French.

Example	146-Driver	Diagnostics	Protocol	declaration

#include	<Uefi.h>

#include	<Protocol/DriverDiagnostics.h>

#include	<Protocol/DriverDiagnostics2.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS_PROTOCOL	gAbcDriverDiagnostics	=	{

		(EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS)	AbcRunDiagnostics,

		"engfra"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	gAbcDriverDiagnostics2	=	{

		AbcRunDiagnostics,

		"en;fr"

};

The	implementations	of	the	Driver	Diagnostics	Protocol	change	in	complexity	depending	on	the	type	of
UEFI	Driver	Model	driver.	A	device	driver	is	the	simplest	to	implement.	A	bus	driver	or	a	hybrid	driver	may
be	more	complex	because	it	may	provide	diagnostics	for	both	the	bus	controller	and	the	child
controllers.	These	implementations	are	discussed	later	in	this	chapter.

The		EFI_DRIVER_DIAGNOSTICS_PROTOCOL		and		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		are	installed	onto	the	driver's	image
handle.	It	is	possible	for	a	driver	to	produce	more	than	one	instance	of	the	Driver	Diagnostics	Protocols.
All	additional	instances	of	the	Driver	Diagnostics	Protocols	must	be	installed	onto	new	handles.

The	Driver	Diagnostics	Protocols	can	either	be	installed	directly	using	the	UEFI	Boot	Service
	InstallMultipleProtocolInterfaces()	.	However,	the	EDK	II	library		UefiLib		provides	a	number	of	helper	functions
to	install	the	Driver	Diagnostics	Protocols.	The	helper	functions	that	are	covered	in	more	detail	in
Chapter	7	are:

	EfiLibInstallAllDriverProtocols()	

	EfiLibInstallAllDriverProtocols2()	

If	an	error	is	generated	installing	any	of	the	Driver	Diagnostics	Protocol	instances,	then	the	entire	driver
should	fail	and	return	a	error	status	such	as		EFI_ABORTED	.	If	a	UEFI	Driver	implements	the		Unload()		feature,
any	Driver	Diagnostics	Protocol	instances	installed	in	the	driver	entry	point	must	be	uninstalled	in	the
	Unload()		function.

The	implementation	of	the	Driver	Diagnostics	Protocols	for	a	specific	driver	is	typically	found	in	the	file
DriverDiagnostics.c.	This	file	contains	the	instances	of	the	EFI_DRIVER_DIAGNOSTICS_PROTOCOL	and
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	along	with	the	implementation	of	RunDiagnostics().	Appendix	A
contains	a	template	for	a	DriverDiagnostics.c	file	for	a	UEFI	Driver.

13.1	Driver	Diagnostics	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

412DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.1	Driver	Diagnostics	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

413DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.2	RunDiagnostics()	Implementations

The		RunDiagnostics()		service	runs	diagnostics	on	the	controller	a	driver	is	managing	or	a	child	the	driver
has	produced.	This	service	is	not	allowed	to	use	any	of	the	consoleI/O-related	protocols.	Instead,	the
results	of	the	diagnostics	are	returned	to	the	caller	in	a	buffer.	The	caller	may	choose	to	log	the	results
or	display	them.	The	example	below	shows	an	empty	implementation	of	the		RunDiagnostics()		service	for
the	Driver	Diagnostics	2	Protocol.	The	recommended	implementation	style	shown	allows	the	same
	RunDiagnostics()		service	implementation	to	be	shared	between	the	Driver	Diagnostics	Protocol	and	the
Driver	Diagnostics	2	Protocol.

Example	147-RunDiagnostics()	Service

#include	<Uefi.h>

#include	<Protocol/DriverDiagnostics2.h>

EFI_STATUS

EFIAPI

AbcRunDiagnostics	(

		IN		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		*This,

		IN		EFI_HANDLE																								ControllerHandle,

		IN		EFI_HANDLE																								ChildHandle,		OPTIONAL

		IN		EFI_DRIVER_DIAGNOSTIC_TYPE								DiagnosticType,

		IN		CHAR8																													*Language,

		OUT	EFI_GUID																										**ErrorType,

		OUT	UINTN																													*BufferSize,

		OUT	CHAR16																												**Buffer

)

{

}

The	DiagnosticType	parameter	tells	the	driver	the	type	of	diagnostics	to	perform.	Standard	diagnostics
must	be	implemented	and	test	basic	functionality.	They	should	complete	in	less	than	30	seconds.
Extended	diagnostics	are	recommended	and	may	take	more	than	30	seconds	to	execute.
Manufacturing	diagnostics	are	intended	to	be	used	in	manufacturing	and	test	environments.

ErrorType,	BufferSize,	and	Buffer	are	the	return	parameters	that	report	the	results	of	the	diagnostic.
Buffer	begins	with	a		NULL	-terminated	Unicode	string	so	the	caller	of	the		RunDiagnostics()		service	can
display	a	human-readable	diagnostic	result.	ErrorType	is	a	GUID	that	defines	the	format	of	the	data
buffer	following	the		NULL	-terminated	Unicode	string.	BufferSize	is	the	size	of	Buffer	that	includes	the
	NULL	-terminated	Unicode	string	and	the	GUID-specific	data	buffer.	The	implementation	of		RunDiagnostics()	
must	allocate	Buffer	using	the	service		AllocatePool()	,	and	it	is	the	caller's	responsibility	to	free	this	buffer
with		FreePool()	.

The	Driver	Diagnostics	Protocols	are	available	only	for	devices	a	driver	is	currently	managing.	Because
UEFI	supports	connecting	the	minimum	number	of	drivers	and	devices	that	are	required	to	establish
console	and	gain	access	to	the	boot	device,	there	may	be	many	unconnected	devices	that	support
diagnostics.	As	a	result,	when	the	user	wishes	to	enter	a	platform	configuration	mode,	the	UEFI	boot
manager	must	connect	all	drivers	to	all	devices,	so	that	the	user	can	be	shown	all	devices	supporting
diagnostics.

13.2	RunDiagnostics()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

414DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.2.1	Device	Drivers

Device	drivers	that	implement		RunDiagnostics()		must	verify	that	ChildHandle	is		NULL		and	that
ControllerHandle	represents	a	device	that	the	device	driver	is	currently	managing.	In	addition,
RunDiagnostics()	must	verify	that	the	requested	Language	is	in	the	set	of	languages	that	the	UEFI
Driver	supports.	The	following	example	shows	the	steps	required	to	check	these	parameters.	If	these
checks	pass,	the	diagnostic	are	executed	and	results	are	returned.	In	this	specific	example,	the	driver
opens	the	PCI	I/O	Protocol	in	its	Driver	Binding		Start()		function.	This	is	why		gEfiPciIoProtocolGuid		is	used	in
the	call	to	the	EDK	II	Library		UefiLib		function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI	Drivers
that	is	providing	this		RunDiagnostics()		service	is	currently	managing	ControllerHandle.	If	the	private
context	structure	is	required,	typically	the	UEFI	Boot	Service		OpenProtocol()		is	used	to	open	one	of	the
UEFI	Driver	produced	protocols	on	ControllerHandle	and	then	use	a		CR()		based	macro	to	retrieve	a
pointer	to	the	private	context	structure.

Example	148-RunDiagnostics()	for	a	Device	Driver

#include	<Uefi.h>

#include	<Protocol/DriverDiagnostics2.h>

#include	<Protocol/PciIo.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS	

EFIAPI

AbcRunDiagnostics	(

		IN		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		*This,

		IN		EFI_HANDLE																								ControllerHandle,

		IN		EFI_HANDLE																								ChildHandle,							OPTIONAL

		IN		EFI_DRIVER_DIAGNOSTIC_TYPE								DiagnosticType,

		IN		CHAR8																													*Language,

		OUT	EFI_GUID																										**ErrorType,

		OUT	UINTN																													*BufferSize,

		OUT	CHAR16																												**Buffer

)

{

		EFI_STATUS		Status;

		CHAR8							*SupportedLanguages;

		BOOLEAN					Rfc4646Language;

		BOOLEAN					Found;

		UINTN							Index;

		//

		//	ChildHandle	must	be	NULL	for	a	Device	Driver

		//

		if	(ChildHandle	!=	NULL)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Check	input	parameters

		//

		if	(Language	==	NULL	||	ErrorType	==	NULL	||

						BufferSize	==	NULL	||	Buffer	==	NULL)	{

13.2.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

415DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				return	EFI_INVALID_PARAMETER;

		}

		//

		//	Make	sure	Language	is	in	the	set	of	Supported	Languages

		//

		SupportedLanguages	=	This->SupportedLanguages;

		Rfc4646Language	=	(BOOLEAN)(This	==	&gAbcDriverDiagnostics2);

		Found	=	FALSE;

		while	(*SupportedLanguages	!=	0)	{

				if	(Rfc4646Language)	{

						for	(Index	=	0;

											SupportedLanguages[Index]	!=	0	&&	SupportedLanguages[Index]	!=	';

											';

											Index++);

						if	((AsciiStrnCmp	(SupportedLanguages,	Language,	Index)	==	0)	&&

										(Language[Index]	==	0))	{

								Found	=	TRUE;

								break;

						}

						SupportedLanguages	+=	Index;

						for	(;

											*SupportedLanguages	!=	0	&&	*SupportedLanguages	==	';

											';

											SupportedLanguages++);

				}	else	{

						if	(CompareMem	(Language,	SupportedLanguages,	3)	==	0)	{

								Found	=	TRUE;

								break;

						}

						SupportedLanguages	+=	3;

				}

		}

		//

		//	If	Language	is	not	a	member	of	SupportedLanguages,	then	return	EFI_UNSUPPORTED

		//

		if	(!Found)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Perform	Diagnostics	Algorithm	on	ControllerHandle	for	the

		//	type	of	diagnostics	requested	in	DiagnosticsType

		//

		//	Return	results	in	ErrorType,	Buffer,	and	BufferSize

		//

		//	If	Diagnostics	Algorithm	fails,	then	return	EFI_DEVICE_ERROR

		//

		return	EFI_SUCCESS;

}

To	verify	the	operation	of	the	controller,	diagnostic	algorithms	typically	use	the	services	of	the	protocols
the	driver	produces	and	the	services	of	the	protocols	the	driver	consumes.	For	example,	a	PCI	device
driver	that	consumes	the	PCI	I/O	Protocol	and	produces	the	Block	I/O	Protocol	can	use	the	services	of
the	PCI	I/O	Protocol	to	verify	the	operation	of	the	PCI	controller.	Use	the	Block	I/O	Services	to	verify	that
the	entire	driver	is	working	as	expected.

13.2.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

416DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.2.2	Bus	Drivers	and	Hybrid	Drivers

Bus	drivers	and	hybrid	drivers	implementing	the	Driver	Diagnostics	Protocols	must	verify	that
ControllerHandle	and	ChildHandle	represent	a	device	currently	managed	by	the	driver.	In	addition,
	RunDiagnostics()		must	verify	that	the	requested	Language	is	in	the	set	of	languages	supported	by	the
UEFI	Driver.	The	following	example	shows	the	steps	required	to	check	these	parameters	and	also
retrieve	the	private	context	data	structure.	If	the	checks	pass,	the	diagnostics	are	executed	and	results
returned.

In	this	specific	example,	the	driver	opens	the	PCI	I/O	Protocol	in	its	Driver	Binding	Start()	function.	This	is
why		gEfiPciIoProtocolGuid		is	used	in	the	call	to	the	EDK	II	Library		UefiLib		function		EfiTestManagedDevice()	.	It
checks	to	see	if	the	UEFI	Drivers	providing	the		RunDiagnostics()		service	is	currently	managing
ControllerHandle.	If	the	private	context	structure	is	required,	then,	typically,	the	UEFI	Boot	Service

	OpenProtocol()		is	used	to	open	one	of	the	protocols	on	ControllerHandle	that	the	UEFI	Driver	produced
and	then	uses	a		CR()		based	macro	to	retrieve	a	pointer	to	the	private	context	structure.	If	diagnostics
are	being	run	on	ChildHandle,	a	produced	protocol	on	ChildHandle	can	be	opened.

Note:	If	ChildHandle	is	NULL,	a	request	is	made	to	run	diagnostics	on	the	bus	controller.	If	ChildHandle
is	not	NULL,	a	request	is	made	to	run	diagnostics	on	a	child	controller	managed	by	the	UEFI	Driver.

Example	149-RunDiagnostics()	for	a	Bus	Driver	or	Hybrid	Driver

#include	<Uefi.h>

#include	<Protocol/DriverDiagnostics2.h>

#include	<Protocol/PciIo.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

AbcRunDiagnostics	(

		IN		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		*This,

		IN		EFI_HANDLE																								ControllerHandle,

		IN		EFI_HANDLE																								ChildHandle,							OPTIONAL

		IN		EFI_DRIVER_DIAGNOSTIC_TYPE								DiagnosticType,

		IN		CHAR8																													*Language,

		OUT	EFI_GUID																										**ErrorType,

		OUT	UINTN																													*BufferSize,

		OUT	CHAR16																												**Buffer

)

{

		EFI_STATUS		Status;

		CHAR8							*SupportedLanguages;

		BOOLEAN					Rfc4646Language;

		BOOLEAN					Found;

		UINTN							Index;

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

13.2.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

417DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//	If	ChildHandle	is	not	NULL,	then	make	sure	this	driver	produced	ChildHandle

		//

		if	(ChildHandle	!=	NULL)	{

				Status	=	EfiTestChildHandle	(

															ControllerHandle,

															ChildHandle,

															&gEfiPciIoProtocolGuid

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

		}

		//

		//	Check	input	parameters

		//

		if	(Language	==	NULL	||	ErrorType	==	NULL	||

						BufferSize	==	NULL	||	Buffer	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		//

		//	Make	sure	Language	is	in	the	set	of	Supported	Languages

		//

		SupportedLanguages	=	This->SupportedLanguages;

		Rfc4646Language	=	(BOOLEAN)(This	==	&gAbcDriverDiagnostics2);

		Found	=	FALSE;

		while	(*SupportedLanguages	!=	0)	{

				if	(Rfc4646Language)	{

						for	(Index	=	0;

											SupportedLanguages[Index]	!=	0	&&	SupportedLanguages[Index]	!=	';

											';

											Index++);

						if	((AsciiStrnCmp	(SupportedLanguages,	Language,	Index)	==	0)	&&

										(Language[Index]	==	0))	{

								Found	=	TRUE;

								break;

						}

						SupportedLanguages	+=	Index;

						for	(;

											*SupportedLanguages	!=	0	&&	*SupportedLanguages	==	';

											';

											SupportedLanguages++);

				}	else	{

						if	(CompareMem	(Language,	SupportedLanguages,	3)	==	0)	{

								Found	=	TRUE;

								break;

						}

						SupportedLanguages	+=	3;

				}

		}

		//

		//	If	Language	is	not	a	member	of	SupportedLanguages,	then	return	EFI_UNSUPPORTED

		//

		if	(!Found)	{

				return	EFI_UNSUPPORTED;

		}

		if	(ChildHandle	==	NULL)	{

				//

				//	Perform	Diagnostics	Algorithm	on	the	bus	controller	specified

				//	by	ControllerHandle	for	the	type	of	diagnostics	requested	in

				//	DiagnosticsType

				//

				//	Return	results	in	ErrorType,	Buffer,	and	BufferSize

				//

				//	If	Diagnostics	Algorithm	fails,	then	return	EFI_DEVICE_ERROR

				//

		}	else	{

				//

				//	Perform	Diagnostics	Algorithm	on	child	controller	specified

				//	by	ChildHandle	for	the	type	of	diagnostics	requested	in

13.2.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

418DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				//	DiagnosticsType

				//

				//	Return	results	in	ErrorType,	Buffer,	and	BufferSize

				//

				//	If	Diagnostics	Algorithm	fails,	then	return	EFI_DEVICE_ERROR

				//

		}

		return	EFI_SUCCESS;

}

It	is	recommended	that	bus	drivers	and	hybrid	provide	diagnostics	for	both	the	bus	controller	and	the
child	controllers	produced	by	these	driver	types.	Implementing	diagnostics	for	only	the	bus	controller	or
only	the	child	controllers	is	strongly	discouraged.

13.2.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

419DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.2.3	RunDiagnostics()	as	a	UEFI	Application

One	useful	design	aspect	of	the	Driver	Diagnostics	Protocol	is	implementation	of	diagnostics	as	a	UEFI
application	stored	with	a	device	(i.e.	PCI	Option	ROM)	or	in	an	EFI	System	Partition.	To	do	so,	change	the
implementation	of		RunDiagnostics()	so	it	does	not	directly	execute	the	diagnostics.	yet	would	perform	the
same	parameter	checks	as	before	and	still	retrieve	the	private	context	data	structure.	Then,	instead	of
executing	diagnostic	algorithms,	use	the	UEFI	Boot	Service		LoadImage()		and	the	UEFI	Boot	Service
	StartImage()		to	load	and	execute	the	UEFI	application	running	the	diagnostic	algorithms.	The	application
then	returns	the	results	of	the	diagnostics	back	to		RunDiagnostics()		and		RunDiagnostics()	returns	the	final
results	in	the	required	format.

13.2.3	RunDiagnostics()	as	a	UEFI	ApplicationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

420DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

13.3	Testing	Driver	Diagnostics	Protocols

Use	the	UEFI	Shell	command		drvdiag		to	exercise	the	Driver	Diagnostics	Protocols.	Run	this	command
with	no	options	to	show	the	set	of	drivers	the	Driver	Diagnostics	Protocols	support.	The		drvdiag	
command	allows	the	different	types	of	diagnostics	tests	to	run	on	a	controller,	a	specific	child	of	a
controller,	or	all	the	children	of	a	controller.	The	figure	below	shows	a	few	examples	of	using	the	UEFI
Shell	command		drvdiag		on	the	EDK	II	Nt32	platform	to	run	diagnostics	provided	with	the	Block	I/O	driver
for	the	Nt32	platform.

Figure	17-Testing	Driver	Diagnostics	Protocols

Details	on	each	UEFI	Shell	command	used	to	test	UEFI	Drivers	appear	in	Chapter	31.

13.3	Testing	Driver	Diagnostics	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

421DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14	Driver	Health	Protocol
The	Driver	Health	Protocol	is	a	feature	potentially	required	by	UEFI	Drivers	following	the	UEFI	Driver
Model.	If	a	UEFI	Driver	needs	to	report	health	status	to	the	platform,	provide	warning	or	error	messages
to	the	user,	perform	length	repair	operations,	or	request	that	the	user	make	hardware	or	software
configuration	changes,	the	Driver	Health	Protocol	must	be	produced.	This	protocol	is	required	only	for
devices	potentially	in	a	bad	state	and	recoverable	through	either	a	repair	operation	or	configuration
change.	The	Driver	Health	Protocol	should	not	be	implemented	if	a	device	can	never	be	in	a	bad	state
or	a	device	can	be	in	a	bad	state	for	which	no	remediation	is	possible.

The	UEFI	Boot	Manager	uses	the	services	of	the	Driver	Health	Protocol,	if	present,	to	determine	the
health	status	of	a	device	and	display	that	status	information	on	a	UEFI	console.	The	UEFI	Boot	Manager
may	also	choose	to	perform	actions	to	transition	devices	from	a	bad	state	to	a	usable	state.	See	the
EFI	Driver	Health	Protocol	section	of	the	UEFI	Specification	for	more	details	on	how	a	UEFI	Boot	manager
interacts	with	the	Driver	Health	Protocol.

This	chapter	focuses	on	how	to	implement	the	Driver	Health	Protocol	for	a	UEFI	Driver	managing	a
specific	set	of	devices.

14	Driver	Health	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

422DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.1	Driver	Health	Protocol	Implementation

The	implementation	of	the	Driver	Health	Protocol	is	typically	found	in	the	file	DriverHealth.c.	Appendix	A
contains	a	template	for	a	DriverHealth.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	Driver
Health	Protocol	feature	follow:

Add	global	variable	for	the		EFI_DRIVER_HEALTH_PROTOCOL		instance	to		DriverHealth.c	.
Add	private	fields,	as	required,	to	the	design	of	the	private	context	data	structure	that	supports
storing	the	current	health	status	of	a	device	and	managing	repair	operations.
Implement	the		GetHealthStatus()		service	of	the	Driver	Health	Protocol	in		DriverHealth.c	.
Implement	the		Repair()		service	of	the	Driver	Health	Protocol	in		DriverHealth.c	.
Install	the	Driver	Health	Protocol	onto	the	same	handle	as	that	of	the	Driver	Binding	Protocol.
If	the	UEFI	Driver	produces	multiple	Driver	Binding	Protocols,	install	the	Driver	Health	Protocol	on	the
same	handles	as	those	of	the	Driver	Binding	Protocol.
If	the	UEFI	Driver	supports	the	unload	feature,	uninstall	all	the	Driver	Health	Protocol	instances	in
the		Unload()		function.

The	example	below	shows	the	protocol	interface	structure	for	the	Driver	Health	Protocol	for	reference
and	is	composed	of	two	services;		GetHealthStatus()		and		Repair()	.

Example	150-Driver	Health	Protocol

typedef	struct	_EFI_DRIVER_HEALTH_PROTOCOL	EFI_DRIVER_HEALTH_PROTOCOL;

///

///	When	installed,	the	Driver	Health	Protocol	produces	a	collection	of	services

///	that	allow	the	health	status	for	a	controller	to	be	retrieved.	If	a	controller

///	is	not	in	a	usable	state,	status	messages	may	be	reported	to	the	user,	repair

///	operations	can	be	invoked,	and	the	user	may	be	asked	to	make	software	and/or

///	hardware	configuration	changes.

///

struct	_EFI_DRIVER_HEALTH_PROTOCOL	{

		EFI_DRIVER_HEALTH_GET_HEALTH_STATUS	GetHealthStatus;

		EFI_DRIVER_HEALTH_REPAIR	Repair;

};

This	example	declares	a	global	variable	called		gAbcDriverHealth		with	the	services		AbcGetHealthStatus()		and
	AbcRepair()	.	The	UEFI	Boot	Service		InstallMultipleProtocolInterfaces()		is	used	to	install	the	Driver	Health
Protocol	instance		gAbcDriverHealth		onto	the	same	ImageHandle	as	that	of	the	Driver	Binding	Protocol
instance		gAbcDriverBinding	

Example	151-Install	Driver	Health	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DriverHealth.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

14.1	Driver	Health	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

423DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_HEALTH_PROTOCOL	gAbcDriverHealth	=	{

		AbcGetHealthStatus,

		AbcRepair

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																		ImageHandle,

		IN	EFI_SYSTEM_TABLE												*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBinding	(

													ImageHandle,								//	ImageHandle

													SystemTable,								//	SystemTable

													&gAbcDriverBinding,	//	DriverBinding

													ImageHandle									//	DriverBindingHandle

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	Driver	Family	Override	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverHealthProtocolGuid,

																		&gAbcDriverHealth,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

14.1	Driver	Health	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

424DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.2	GetHealthStatus()	Implementations

The		GetHealthStatus()		service	retrieves	the	health	status	for	a	controller	a	driver	is	managing	or	a	child
the	driver	has	produced.	This	service	is	not	allowed	to	use	any	of	the	console	I/O	related	protocols.
Instead,	the	health	status	information	is	returned	to	the	caller.	The	caller	may	choose	to	log	or	display
the	health	status	information.	The	example	below	shows	an	empty	implementation	of	the
	GetHealthStatus()		service	for	the	Driver	Health	Protocol.

Example	152-GetHealthStatus()	Function	of	the	Driver	Health	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverHealth.h>

EFI_STATUS

EFIAPI

AbcGetHealthStatus	(

		IN		EFI_DRIVER_HEALTH_PROTOCOL					*This,

		IN		EFI_HANDLE																					ControllerHandle,		OPTIONAL

		IN		EFI_HANDLE																					ChildHandle,							OPTIONAL

		OUT	EFI_DRIVER_HEALTH_STATUS							*HealthStatus,

		OUT	EFI_DRIVER_HEALTH_HII_MESSAGE		**MessageList,					OPTIONAL

		OUT	EFI_HII_HANDLE																	*FormHiiHandle					OPTIONAL

)

{

}

HealthStatus	is	the	return	parameter	reporting	the	status	for	the	controller	specified	by
ControllerHandle	and	ChildHandle.	Descriptions	of	the	various	health	status	values	returned	in
HealthStatus	follow.

14.2	GetHealthStatus()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

425DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	23-Health	Status	Values

Health	Status	Name Definition

EfiDriverHealthStatu
sHealthy The	controller	is	in	a	healthy	state.

EfiDriverHealthStatu
sRepairRequired

The	controller	requires	a	repair	operation	taking	an	extended	period
of	time	to	perform.	The	UEFI	Boot	Manager	is	required	to	call	the
Repair()	function	when	this	state	is	detected.

EfiDriverHealthStatu
sConfigurationRequired

The	controller	requires	the	user	to	make	software	or	hardware
configuration	changes	in	order	to	put	the	controller	into	a	healthy
state.	The	set	of	software	configuration	changes	are	specified	by
the	FormHiiHandle	parameter.	The	EFI	Boot	Manager	may	call	the
EFI_FORM_BROWSER2_PROTOCOL.SendForm()	function	to	display
configuration	information	and	allow	the	user	to	make	the	required
configuration	changes.	The	HII	form	is	the	first	enabled	form	in	the
form	set	class	EFI_HII_DRIVER_HEALTH_FORMSET_GUID,	which	is
installed	on	the	returned	HII	handle	FormHiiHandle.

EfiDriverHealthStatusFailed
The	controller	is	in	a	failed	state	and	there	are	no	actions	that	can
place	the	controller	into	a	healthy	state.	This	controller,	nor	no	any
boot	devices	behind	it,	cannot	be	used	as	a	boot	device.

EfiDriverHealthStatu
sReconnectRequired

A	hardware	and/or	software	configuration	change	was	performed	by
the	user	and	the	controller	needs	to	be	reconnected	before	the
controller	can	be	placed	in	a	healthy	state.	The	UEFI	Boot	Manager
is	required	to	call	the	UEFI	Boot	Service	DisconnectController(),
followed	by	the	UEFI	Boot	Service	ConnectController(),	to	reconnect
the	controller.

EfiDriverHealthStatu
sRebootRequired

A	hardware	and/or	software	configuration	change	was	performed	by
the	user	and	the	controller	requires	the	entire	platform	to	be
rebooted	before	the	controller	can	be	placed	in	a	healthy	state.	The
UEFI	Boot	Manager	should	complete	the	configuration	and	repair
operations	on	all	the	controllers	that	are	not	in	a	healthy	state
before	rebooting	the	system.

Depending	on	the	specific	health	status	value	returned,	additional	information	may	be	returned	in
MessageList	and	FormHiiHandle	as	described	in	the	table	above.	The	health	status	for	devices	is
typically	stored	in	the	private	context	data	structure.	The	Driver	Binding	Protocol		Start()		function	for	a
UEFI	Driver	is	usually	where	the	health	status	for	a	device	is	initially	detected	and	the	results	of	that
detection	logic	are	stored	in	the	private	context	data	structure.	As	the	UEFI	Boot	Manager	performs
repair	or	configuration	actions,	the	health	status	of	a	controller	changes.	Each	time		GetHealthStatus()		is
called,	the	health	status	of	the	controller	must	be	evaluated.	The	EFI	Driver	Health	Protocol	section	of
the	UEFI	Specification	defines	the	legal	state	transitions	for	health	status	values	as	shown	in	the
following	figure.

14.2	GetHealthStatus()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

426DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	18-Driver	Health	Status	State	Diagram

The	Driver	Health	Protocol	is	only	available	for	devices	a	driver	is	currently	managing.	Because	UEFI
supports	connecting	the	minimum	number	of	drivers	and	devices	required	to	establish	console	and	gain
access	to	the	boot	device,	there	may	be	many	unconnected	devices	that	support	The	Driver	Health
Protocol.	As	a	result,	when	the	user	wishes	to	enter	a	platform	configuration	mode,	the	UEFI	Boot
Manager	must	connect	all	drivers	to	all	devices	so	the	UEFI	Boot	Manager	can	evaluate	the	health
status	of	all	the	devices	in	the	platform	supporting	the	Driver	Health	Protocol.

14.2	GetHealthStatus()	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

427DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.2.1	Device	Drivers

Device	drivers	that	implement		GetHealthStatus()		must	verify	that	ChildHandle	is		NULL		and	that
ControllerHandle	represents	a	device	currently	under	the	device	driver's	management.	The	Driver	Health
Protocol	also	supports	returning	the	combined	health	status	for	all	controllers	under	a	UEFI	Driver's	is
management.	This	request	is	made	by	passing	in	a	ControllerHandle	value	of		NULL	.

The	following	example	shows	the	steps	required	to	check	these	parameters.	If	these	checks	pass,	the
health	status	is	returned.	In	this	specific	example,	the	driver	opens	the	PCI	I/O	Protocol	in	its	Driver
Binding		Start()		function.	This	is	why		gEfiPciIoProtocolGuid		is	used	in	the	call	to	the	EDK	II	Library		UefiLib	
function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI	Drivers	providing	this		GetHealthStatus()		service
is	currently	managing	ControllerHandle.	If	the	private	context	structure	is	required,	typically	the	UEFI
Boot	Service		OpenProtocol()		is	used	to	open	one	of	the	UEFI	Driver	produced	protocols	on
ControllerHandle	and	then	uses	a		CR()		based	macro	to	retrieve	a	pointer	to	the	private	context
structure.

Example	153-GetHealthStatus()	for	a	Device	Driver

#include	<Uefi.h>

#include	<Protocol/DriverHealth.h>

#include	<Protocol/PciIo.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

AbcGetHealthStatus	(

		IN		EFI_DRIVER_HEALTH_PROTOCOL					*This,

		IN		EFI_HANDLE																					ControllerHandle,		OPTIONAL

		IN		EFI_HANDLE																					ChildHandle,							OPTIONAL

		OUT	EFI_DRIVER_HEALTH_STATUS							*HealthStatus,

		OUT	EFI_DRIVER_HEALTH_HII_MESSAGE		**MessageList,					OPTIONAL

		OUT	EFI_HII_HANDLE																	*FormHiiHandle					OPTIONAL

)

{

		EFI_STATUS		Status;

		//

		//	Check	input	parameters

		//

		if	(HealthStatus	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		if	(ControllerHandle	==	NULL)	{

				//

				//	If	all	controllers	managed	by	this	UEFI	Driver	are	healthly,

				//	then	assign	HealthStatus	to	EfiDriverHealthStatusHealthy.

				//	Otherwise,	assign	HealthStatus	to	EfiDriverHealthStatusFailed.

				//

				return	EFI_SUCCESS;

		}

		//

		//	ChildHandle	must	be	NULL	for	a	Device	Driver

		//

		if	(ChildHandle	!=	NULL)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

14.2.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

428DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Retrieve	health	status	for	ControllerHandle

		//

		return	EFI_SUCCESS;

}

14.2.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

429DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.2.2	Bus	Drivers	and	Hybrid	Drivers

Bus	drivers	and	hybrid	drivers	implementing	the	Driver	Health	Protocol	must	verify	that	ControllerHandle
and	ChildHandle	represent	a	device	that	is	currently	under	the	driver's	management.	The	Driver	Health
Protocol	also	supports	returning	the	combined	health	status	for	all	controllers	a	UEFI	Driver	manages.
This	request	is	made	by	passing	in	a	ControllerHandle	value	of		NULL	.

The	example	below	shows	the	steps	required	to	check	these	parameters	and	also	retrieve	the	private
context	data	structure.	If	these	checks	pass,	the	health	status	is	returned.	In	this	specific	example,	the
driver	opens	the	PCI	I/O	Protocol	in	its	Driver	Binding	Start()	function.	This	is	why		gEfiPciIoProtocolGuid		is
used	in	the	call	to	the	EDK	II	Library		UefiLib		function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI
Drivers	providing	this		GetHealthStatus()		service	is	currently	managing	ControllerHandle.	If	the	private
context	structure	is	required,	the	UEFI	Boot	Service		OpenProtocol()		is	typically	used	to	open	one	of	the
UEFI	Driver	produced	protocols	on	ControllerHandle	and	then	uses	a		CR()		based	macro	to	retrieve	a
pointer	to	the	private	context	structure.	If	diagnostics	are	being	run	on	ChildHandle,	a	produced
protocol	on	ChildHandle	can	be	opened.

Note:	If	ChildHandle	is	NULL,	a	request	is	being	made	to	run	diagnostics	on	the	bus	controller.	If
ChildHandle	is	not	NULL,then	a	request	is	being	made	to	run	diagnostics	on	a	UEFI	Driver	managed
child	controller.

Example	154-GetHealthStatus()	for	a	Bus	Driver	or	Hybrid	Driver

#include	<Uefi.h>

#include	<Protocol/DriverHealth.h>

#include	<Protocol/PciIo.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

AbcGetHealthStatus	(

		IN		EFI_DRIVER_HEALTH_PROTOCOL					*This,

		IN		EFI_HANDLE																					ControllerHandle,		OPTIONAL

		IN		EFI_HANDLE																					ChildHandle,							OPTIONAL

		OUT	EFI_DRIVER_HEALTH_STATUS							*HealthStatus,

		OUT	EFI_DRIVER_HEALTH_HII_MESSAGE		**MessageList,					OPTIONAL

		OUT	EFI_HII_HANDLE																	*FormHiiHandle					OPTIONAL

)

{

		EFI_STATUS		Status;

		//

		//	Check	input	parameters

		//

		if	(HealthStatus	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		if	(ControllerHandle	==	NULL)	{

				//

				//	If	all	controllers	managed	by	this	UEFI	Driver	are	healthly,

				//	then	assign	HealthStatus	to	EfiDriverHealthStatusHealthy.

				//	Otherwise,	assign	HealthStatus	to	EfiDriverHealthStatusFailed.

				//

				return	EFI_SUCCESS;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

14.2.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

430DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	If	ChildHandle	is	not	NULL,	then	make	sure	this	driver	produced	ChildHandle

		//

		if	(ChildHandle	!=	NULL)	{

				Status	=	EfiTestChildHandle	(

															ControllerHandle,

															ChildHandle,

															&gEfiPciIoProtocolGuid

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

		}

		if	(ChildHandle	==	NULL)	{

				//

				//	Retrieve	health	status	for	ControllerHandle

				//

		}	else	{

				//

				//	Retrieve	health	status	for	ChildHandle

				//

		}

		return	EFI_SUCCESS;

}

Bus	drivers	and	hybrid	drivers	are		recommended		to	provide	health	status	for	both	the	bus	controller	and
the	child	controllers	these	types	of	drivers	produce.	Implementing	diagnostics	for	only	the	bus	controller
or	only	the	child	controllers	is	strongly	discouraged.

14.2.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

431DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.3	Repair()	Implementation

The		Repair()		service	attempts	repair	operations	on	a	driver-managed	controller	or	a	child	the	driver	has
produced.	This	service	is	not	allowed	to	use	any	of	the	console-I/Orelated	protocols.	Instead,	the	status
of	the	repair	operation	is	returned	to	the	caller.	The		Repair()		service	supports	an	optional	parameter
called	ProgressNotification	that	may	be		NULL	.	The	caller	may	pass	in	a	notification	function	to		Repair()	
so	the	caller	can	inform	the	user	of	the	progress	during	extended	repair	operations.	If	a	repair
operation	takes	a	short	period	of	time	to	execute,	ProgressNotification	may	be	ignored.	If	the	repair
operation	takes	an	extended	period	of	time	to	execute,	the	UEFI	Driver	should	periodically	call	the
function	specified	by	ProgressNotification	with	Value	and	Limit	parameters	expressing	the	amount	of
repair	work	currently	completed.	The	caller	may	choose	to	log	or	display	the	progress	of	the	repair
operation	as	well	as	the	final	results	of	the	repair	operation.

14.3	Repair()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

432DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.3.1	Device	Drivers

Device	drivers	implementing		Repair()		must	verify	that	ChildHandle	is		NULL		and	that	ControllerHandle
represents	a	device	the	device	driver	is	currently	managing.	The	following	example	shows	the	steps
required	to	check	these	parameters.

If	these	checks	pass,	the	health	status	is	returned.	In	this	specific	example,	the	driver	opens	the	PCI	I/O
Protocol	in	its	Driver	Binding		Start()		function.	This	is	why		gEfiPciIoProtocolGuid		is	used	in	the	call	to	the
EDK	II	Library		UefiLib		function		EfiTestManagedDevice()		that	checks	to	see	if	the	UEFI	Drivers	providing	the
	GetHealthStatus()		service	is	currently	managing	ControllerHandle.	If	the	private	context	structure	is
required,	typically,	the	UEFI	Boot	Service		OpenProtocol()	opens	one	of	the	UEFI	Driver	produced	protocols
on	ControllerHandle	and	then	uses	a		CR()		based	macro	to	retrieve	a	pointer	to	the	private	context
structure.	This	example	also	calls	ProgressNotification	from	10%	to	100%	at	10%	increments.

Example	155-Repair()	Function	for	a	Device	Driver

#include	<Uefi.h>

#include	<Protocol/DriverHealth.h>

EFI_STATUS	EFIAPI

AbcRepair	(

		IN	EFI_DRIVER_HEALTH_PROTOCOL																*This,

		IN	EFI_HANDLE																																ControllerHandle,

		IN	EFI_HANDLE																																ChildHandle,											OPTIONAL

		IN	EFI_DRIVER_HEALTH_REPAIR_PROGRESS_NOTIFY		ProgressNotification			OPTIONAL

)

{

		EFI_STATUS		Status;

		UINTN							Index;

		//

		//	ChildHandle	must	be	NULL	for	a	Device	Driver

		//

		if	(ChildHandle	!=	NULL)	{

				return	EFI_UNSUPPORTED;

		}

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Repair	ControllerHandle

		//

		for	(Index	=	0;

							Index	<	10;	Index++)	{

				//

				//	Perform	10%	of	the	work	required	to	repair	ControllerHandle

				//

				if	(ProgressNotification	!=	NULL)	{

						ProgressNotification	(Index,	10);

				}

		}

		return	EFI_SUCCESS;

}

14.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

433DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.3.1	Device	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

434DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

14.3.2	Bus	Drivers	and	Hybrid	Drivers

Bus	drivers	and	hybrid	drivers	that	implement	the	Driver	Health	Protocol	must	verify	that
ControllerHandle	and	ChildHandle	represent	a	device	that	the	driver	is	currently	managing.	The	example
below	shows	the	steps	required	to	check	these	parameters	and	also	retrieve	the	private	context	data
structure.	If	these	checks	pass,	the	health	status	is	returned.	In	this	specific	example,	the	driver	opens
the	PCI	I/O	Protocol	in	its	Driver	Binding		Start()		function.

This	is	why		gEfiPciIoProtocolGuid		is	used	in	the	call	to	the	EDK	II	Library		UefiLib		function		EfiTestManagedDevice()	
that	checks	to	see	if	the	UEFI	Drivers	providing	this		Repair()		service	are	currently	managing
ControllerHandle.	If	the	private	context	structure	is	required,	typically	the	UEFI	Boot	Service		OpenProtocol()	
is	used	to	open	one	of	the	UEFI	Driver	produced	protocols	on	ControllerHandle	and	then	uses	a		CR()	
based	macro	to	retrieve	a	pointer	to	the	private	context	structure.

If	diagnostics	are	being	run	on	ChildHandle,	a	produced	protocol	on	ChildHandle	can	be	opened.	This
example	also	calls	ProgressNotification	from	10%	to	100%	at	10%	increments	for	the	bus	controller	and
from	1%	to	100%,	at	1%	increments,	for	the	child	controller.

Note:	If	ChildHandle	is	NULL,	a	request	is	made	to	run	diagnostics	on	the	bus	controller.	If	ChildHandle
is	not	NULL,	a	request	is	made	to	run	diagnostics	on	a	UEFI	Driver	managed	child	controller.

Example	156-Repair()	for	a	Bus	Driver	or	Hybrid	Driver

#include	<Uefi.h>

#include	<Protocol/DriverHealth.h>

#include	<Protocol/PciIo.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS	EFIAPI

AbcRepair	(

		IN	EFI_DRIVER_HEALTH_PROTOCOL																*This,

		IN	EFI_HANDLE																																ControllerHandle,

		IN	EFI_HANDLE																																ChildHandle,											OPTIONAL

		IN	EFI_DRIVER_HEALTH_REPAIR_PROGRESS_NOTIFY		ProgressNotification			OPTIONAL

)

{

		EFI_STATUS		Status;

		UINTN							Index;

		//

		//	Make	sure	this	driver	is	currently	managing	ControllerHandle

		//

		Status	=	EfiTestManagedDevice	(

													ControllerHandle,

													gAbcDriverBinding.DriverBindingHandle,

													&gEfiPciIoProtocolGuid

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	If	ChildHandle	is	not	NULL,	then	make	sure	this	driver	produced	ChildHandle

		//

		if	(ChildHandle	!=	NULL)	{

				Status	=	EfiTestChildHandle	(

															ControllerHandle,

															ChildHandle,

															&gEfiPciIoProtocolGuid

);

14.3.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

435DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

		}

		if	(ChildHandle	==	NULL)	{

				//

				//	Repair	ControllerHandle

				//

				for	(Index	=	0;

									Index	<	10;	Index++)	{

						//

						//	Perform	10%	of	the	work	required	to	repair	ControllerHandle

						//

						if	(ProgressNotification	!=	NULL)	{

								ProgressNotification	(Index,	10);

						}

				}

		}	else	{

				//

				//	Repair	ChildHandle

				//

				for	(Index	=	0;

									Index	<	100;	Index++)	{

						//

						//	Perform	1%	of	the	work	required	to	repair	ChildHandle

						//

						if	(ProgressNotification	!=	NULL)	{

								ProgressNotification	(Index,	100);

						}

				}

		}

		return	EFI_SUCCESS;

}

14.3.2	Bus	Drivers	and	Hybrid	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

436DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

15	Driver	Family	Override	Protocol
The	Driver	Family	Override	Protocol	is	an	optional	feature	for	UEFI	Drivers	following	the	UEFI	Driver	Model.
The	Driver	Family	Override	Protocol	provides	a	method	for	a	UEFI	Driver	to	opt-in	to	a	higher	priority	rule
for	connecting	drivers	to	controllers	in	the	EFI	Boot	Service		ConnectController()	.	This	rule	is	higher	priority
than	the	Bus	Specific	Driver	Override	Protocol	rule	and	lower	priority	than	the	Platform	Driver	Override
Rule.

The	Driver	Family	Override	Protocol	is	typically	produced	by	UEFI	Drivers	associated	with	a	family	of
similar	controllers	when	multiple	versions	of	a	UEFI	Driver	for	a	family	of	similar	controllers	are	present	in
a	platform	at	the	same	time	and	where	the	UEFI	Driver	writer	requires	that	the	UEFI	Driver	considered
the	highest	version	manage	all	controllers	in	that	same	family.

PCI	Use	Case:	If	a	platform	has	3	PCI	SCSI	adapters	from	the	same	manufacturer,	and	the
manufacturer	requires	the	PCI	SCSI	adapter	that	has	the	highest	version	UEFI	Driver	to	manage	all	3	PCI
SCSI	adapters,	then	the	Driver	Family	Override	Protocol	is	required	and	it	provides	the	version	value
used	to	make	the	selection.	If	the	Driver	Family	Override	Protocol	is	not	produced,	then	the	Bus	Specific
Driver	Override	Protocol	for	PCI	selects	the	UEFI	Driver	from	the	PCI	Option	ROM	to	the	adapter	to
manage	each	adapter.

15	Driver	Family	Override	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

437DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

15.1	Driver	Family	Override	Protocol	Implementation

The	implementation	of	the	Driver	Family	Override	Protocol	is	typically	found	in	the	file
DriverFamilyOverride.c.	Appendix	A	contains	a	template	for	a	DriverFamilyOverride.c	file	for	a	UEFI	Driver.
The	list	of	tasks	to	implement	the	Driver	Family	Override	Protocol	feature	follow:

Add	global	variable	for	the		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		instance	to		DriverFamilyOverride.c	.
Implement	the		GetVersion()		service	of	the	Driver	Family	Override	Protocol	in		DriverFamilyOverride.c	.
Install	the	Driver	Family	Override	Protocol	onto	the	same	handle	that	the	Driver	Binding	Protocol	is
installed.
If	the	UEFI	Driver	produces	multiple	Driver	Binding	Protocols,	install	the	Driver	Family	Override
Protocol	on	the	same	handles	as	that	of	the	Driver	Binding	Protocol.
If	the	UEFI	Driver	supports	the	unload	feature,	uninstall	all	the	Driver	Family	Override	Protocol
instances	in	the		Unload()		function.

The	Driver	Family	Override	Protocol	contains	one	service	called		GetVersion()		that	returns	version	value
used	by	the	UEFI	Boot	Service		ConnectController()		to	determine	the	order	of	Driver	Binding	Protocol	used
to	start	a	specific	controller.	If	the	Driver	Family	Override	Protocol	is	present,	it	is	higher	priority	than	the
Bus	Specific	Driver	Override	Protocol,	but	lower	than	the	Platform	Driver	Override	Protocol.	See	the
Chapter	3	and	the	Protocol	Handler	Services	section	of	the	UEFI	Specification	for	details	on	how	the
UEFI	Boot	Service		ConnectController()		selects	the	best	UEFI	Driver	to	manage	a	specific	controller.

For	reference,	the	example	below	shows	the	protocol	interface	structure	for	the	Driver	Family	Override
Protocol.	It	is	composed	of	a	single	service	called		GetVersion()	.

Example	157-Driver	Family	Override	Protocol

typedef	struct	_EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL

		EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL;

///

///	When	installed,	the	Driver	Family	Override	Protocol	produces	a	GUID	that

///	represents	a	family	of	drivers.	Drivers	with	the	same	GUID	are	members	of

///	the	same	family.	When	drivers	are	connected	to	controllers,	drivers	with	a

///	higher	revision	value	in	the	same	driver	family	are	connected	with	a	higher

///	priority	than	drivers	with	a	lower	revision	value	in	the	same	driver	family.

///	The	EFI	Boot	Service	ConnectController()	uses	five	rules	to	build	a	prioritized

///	list	of	drivers	when	a	request	is	made	to	connect	a	driver	to	a	controller.

///	The	Driver	Family	Protocol	rule	is	between	the	Platform	Specific	Driver

///	Override	Protocol	and	above	the	Bus	Specific	Driver	Override	Protocol.

///

struct	_EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL	{

		EFI_DRIVER_FAMILY_OVERRIDE_GET_VERSION	GetVersion;

};

The	following	example	declares	a	global	variable	called		gAbcDriverFamilyOverride		with	the	single	service
called		AbcGetVersion()	.	The	UEFI	Boot	Service		InstallMultipleProtocolInterfaces()		is	used	to	install	the	Driver
Family	Override	Protocol	instance		gAbcDriverFamilyOverride		onto	the	same	ImageHandle	as	which	the	Driver
Binding	Protocol	instance		gAbcDriverBinding		is	installed.

Example	158-Install	Driver	Family	Override	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/DriverFamilyOverride.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

15.1	Driver	Family	Override	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

438DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#define	ABC_VERSION	0x10

EFI_DRIVER_BINDING_PROTOCOL	gAbcDriverBinding	=	{

		AbcSupported,

		AbcStart,

		AbcStop,

		ABC_VERSION,

		NULL,

		NULL

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL	gAbcDriverFamilyOverride	=	{

		AbcGetVersion

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																		ImageHandle,

		IN	EFI_SYSTEM_TABLE												*SystemTable

)

{

		EFI_STATUS	Status;

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBinding	(

													ImageHandle,								//	ImageHandle

													SystemTable,								//	SystemTable

													&gAbcDriverBinding,	//	DriverBinding

													ImageHandle									//	DriverBindingHandle

);

		ASSERT_EFI_ERROR	(Status);

		//

		//	Install	Driver	Family	Override	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverFamilyOverrideProtocolGuid,

																		&gAbcDriverFamilyOverride,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

15.1	Driver	Family	Override	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

439DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

15.2	GetVersion()	Implementation

The	example	below	shows	an	example	implementation	of	the		GetVersion()		function	of	the	Driver	Family
Override	Protocol.	This	function	returns	a		UNIT32		value	and,	in	this	case,	returns	a	value	from	a	define
statement	in	the	UEFI	Driver.	The	manufacturer	of	a	family	of	controllers	is	free	to	select	any	version
value	assignment	as	long	as	UEFI	Drivers	that	are	required	to	be	used	over	previously	released	UEFI
Drivers	have	higher	values.

Example	159-GetVersion()	Function	of	the	Driver	Family	Override	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverFamilyOverride.h>

#define	ABC_DRIVER_FAMILY_OVERRIDE_VERSION	0x00050063

UINT32

EFIAPI

AbcGetVersion	(

		IN	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		*This

)

{

		return	ABC_DRIVER_FAMILY_OVERRIDE_VERSION;

}

15.2	GetVersion()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

440DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

16	Driver	Supported	EFI	Version	Protocol
The	Driver	Supported	EFI	Version	Protocol	allows	a	UEFI	Driver	to	specify	the	version	of	the	UEFI
Specification	it	follows.	The	version	information	follows	the	same	format	as	the	Revision	field	in	the
	EFI_TABLE_HEADER		of	the	EFI	System	Table.	This	feature	is	required	for	UEFI	Drivers	on	PCI	and	other	plug	in
cards,	but	is	only	recommended	for	all	UEFI	Drivers.

16	Driver	Supported	EFI	Version	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

441DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

16.1	Driver	Supported	EFI	Version	Protocol	Implementation

The	implementation	of	the	Driver	Supported	EFI	Version	Protocol	is	typically	found	in	the		<<DriverName>>	.c
file	for	a	UEFI	Driver	and	is	installed	onto	the	ImageHandle	in	the	driver	entry	point	using	the	UEFI	Boot
Service	InstallMultipleProtocolInterfaces().	Appendix	A	contains	a	template	for	the		<<DriverName>>	.c	file
that	includes	the	declaration	of	a	global	variable	for	the	Driver	Supported	EFI	Version	Protocol	instance.
The	list	of	tasks	required	to	implement	the	Driver	Support	EFI	Version	Protocol	feature	are	as	follows:

Add	global	variable	for	the		EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL		instance	to		<<DriverName>>.c	
Set	the	FirmwareVersion	field	of	the	Driver	Supported	EFI	Version	Protocol	instance	in	the	driver
entry	point	if	the	value	required	is	different	than	the	value	assigned	in	the	global	variable
declaration.
Install	the	Driver	Supported	EFI	Version	Protocol	instance	onto	the	ImageHandle	of	the	UEFI	Driver	in
the	driver	entry	point.
If	the	UEFI	Driver	supports	the	unload	feature,	uninstall	the	Driver	Supported	EFI	Version	Protocol
instance	in	the	Unload()	function.

The	following	example	shows	the	protocol	interface	structure	for	the	Driver	Supported	EFI	Version
Protocol	for	reference.	It	is	composed	of	the	two	data	fields	called	Length	and	FirmwareVersion.

Example	160-Driver	Support	EFI	Version	Protocol

///

///	The	EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL	provides	a

///	mechanism	for	an	EFI	driver	to	publish	the	version	of	the	EFI

///	specification	it	conforms	to.	This	protocol	must	be	placed	on

///	the	driver's	image	handle	when	the	driver's	entry	point	is

///	called.

///

typedef	struct	_EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL	{

		///

		///	The	size,	in	bytes,	of	the	entire	structure.	Future	versions	of	this

		///	specification	may	grow	the	size	of	the	structure.

		///

		UINT32	Length;	

		///

		///	The	version	of	the	EFI	specification	that	this	driver	conforms	to.

		///

		UINT32	FirmwareVersion;

}	EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL;

This	example	declares	a	global	variable	called		gEbcDriverSupportedEfiVersion		whose	FirmwareVersion	field	is
assigned	to		EFI_2_31_SYSTEM_TABLE_REVISION	,	the	value	associated	with	the	UEFI	2.3.1	Specification.

Example	161-Driver	Supported	EFI	Version	Protocol	Feature

#include	<Uefi.h>

#include	<Protocol/DriverSupportedEfiVersion.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/DebugLib.h>

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL	gAbcDriverSupportedEfiVersion	=	{

		sizeof	(EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL),		//	Length

		EFI_2_31_SYSTEM_TABLE_REVISION																							//	FirmwareVersion

};

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE																																								ImageHandle,

16.1	Driver	Supported	EFI	Version	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

442DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	EFI_SYSTEM_TABLE																																		*SystemTable

)

{

		EFI_STATUS		Status;

		//

		//	Install	Driver	Supported	EFI	Version	Protocol	onto	ImageHandle

		//

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		&ImageHandle,

																		&gEfiDriverSupportedEfiVersionProtocolGuid,

																		&	gAbcDriverSupportedEfiVersion,

																		NULL

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

The	EFI	System	Table	chapter	of	the	UEFI	Specification	defines	revision	values	for	the	EFI	Specifications
and	UEFI	Specifications.	The	table	below	provides	a	summary	of	the	define	name	available	to	UEFI
Drivers.

Table	24-UEFI	Specific	Revision	Values

Specification Define	Name Value

UEFI	Specification	Version	2.3.1 	EFI_2_31_SYSTEM_TABLE_REVISION	 ((2	<<	16)	|	(31))

UEFI	Specification	Version	2.3 	EFI_2_30_SYSTEM_TABLE_REVISION	 ((2	<<	16)	|	(30))

UEFI	Specification	Version	2.2 	EFI_2_20_SYSTEM_TABLE_REVISION	 ((2	<<	16)	|	(20))

UEFI	Specification	Version	2.1 	EFI_2_10_SYSTEM_TABLE_REVISION	 ((2	<<	16)	|	(10))

UEFI	Specification	Version	2.0 	EFI_2_00_SYSTEM_TABLE_REVISION	 ((2	<<	16)	|	(00))

EFI	Specification	Version	1.1 	EFI_1_10_SYSTEM_TABLE_REVISION	 ((1	<<	16)	|	(10))

EFI	Specification	Version	1.02 	EFI_1_02_SYSTEM_TABLE_REVISION	 ((1	<<	16)	|	(02))

UEFI	Drivers	producing	the	Driver	Supported	EFI	Version	Protocol	typically	use	the	style	shown	in	the
example	above.	However,	more	complex	UEFI	Drivers	compatible	with	several	versions	of	the	EFI
Specification	and	UEFI	Specification	must	detect	the	UEFI	capabilities	of	the	platform	firmware	and
adjust	the	behavior	of	the	UEFI	Driver	to	match	those	UEFI	capabilities.	In	this	more	complex	case,	the
UEFI	Driver	updates	the	FirmwareVersion	field	to	declare	the	specific	version	of	the	UEFI	Specification
the	UEFI	Driver	follows.

16.1	Driver	Supported	EFI	Version	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

443DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17	Bus-Specific	Driver	Override	Protocol
Some	bus	drivers	are	required	to	produce	the	Bus	Specific	Driver	Override	Protocol.	The	driver	model	for
a	specific	bus	type	must	declare	if	this	protocol	is	required	or	not.	In	general,	this	protocol	applies	only
to	bus	types	that	provide	containers	for	UEFI	Drivers	on	their	child	devices.

At	this	time,	the	only	bus	type	that	is	required	to	produce	this	protocol	is	PCI,	and	the	container	for
drivers	is	the	PCI	option	ROM.	The	PCI	bus	driver	is	required	to	produce	the	Bus	Specific	Driver	Override
Protocol	for	PCI	devices	that	have	an	attached	PCI	option	ROM	if	the	PCI	option	ROM	contains	one	or
more	loadable	UEFI	drivers.	If	a	PCI	option	ROM	is	not	present,	or	the	PCI	option	ROM	does	not	contain
any	loadable	UEFI	drivers,	a	Bus	Specific	Driver	Override	Protocol	is	not	produced	for	that	PCI	device.

17	Bus-Specific	Driver	Override	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

444DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.1	Bus	Specific	Driver	Override	Protocol	Implementation

The	implementation	of	the	Bus	Specific	Driver	Override	Protocol	for	a	specific	bus	driver	is	typically	found
in	the	file	BusSpecificDriverOverride.c.	Appendix	A	contains	a	template	for	a	BusSpecificDriverOverride.c
file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	Bus	Specific	Driver	Override	Protocol	feature	are
as	follows:

Add	the		EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		instance	to	the	design	of	the	private	context	data
structure.
Add	private	fields	to	the	design	of	the	private	context	data	structure	that	support	managing	the	set
of	driver	image	handles	returned	by		GetDriver()	.
Update	private	content	data	structure	initialization	to	initialize	the	Bus	Specific	Driver	Override
Protocol	instance	and	the	private	fields	used	to	manage	the	set	of	driver	image	handles	returned	by
	GetDriver()	.
Implement	the		GetDriver()		service	to	return	set-of-driver	image	handles	from	the	private	context	data
structure.
Implement	private	worker	functions	to	add/remove	driver	image	handles	from	set-of-driver	image
handles	maintained	in	the	private	context	data	structure.
Install	the	Bus	Specific	Driver	Override	Protocol	onto	the	child	handle	the	bus	driver	produces	in	the
Driver	Binding		Start()		function.
Uninstall	the	Bus	Specific	Driver	Override	Protocol	from	the	child	handle	the	bus	driver	produces	in
the	Driver	Binding		Stop()		function.

The	Bus	Specific	Driver	Override	Protocol	contains	one	service	called		GetDriver()		that	returns	an	ordered
list	of	driver	image	handles	for	the	UEFI	drivers	that	were	loaded	from	a	container	of	UEFI	driver(s).
There	are	many	ways	to	implement	storage	for	the	ordered	list	of	driver	image	handled	including	an
array	and	linked	lists.

	PCI	Use	Case	:	The	order	in	which	the	image	handles	are	returned	by	the	PCI	Bus	Driver	matches	the	order
in	which	the	UEFI	drivers	were	found	in	the	PCI	option	ROM,	from	the	lowest	address	to	the	highest
address.	The	PCI	bus	driver	is	responsible	for	enumerating	the	PCI	devices	on	a	PCI	bus.	When	a	PCI
device	is	discovered,	the	PCI	device	is	also	checked	to	see	if	it	has	an	attached	PCI	option	ROM.	The	PCI
option	ROM	contents	must	follow	the	PCI	Specification	for	storing	one	or	more	images.	The	PCI	bus
driver	walks	the	list	of	images	in	a	PCI	option	ROM	looking	for	UEFI	drivers.	If	a	UEFI	driver	is	found,	it	is
optionally	decompressed	using	the	Decompress	Protocol	and	then	loaded	The	driver	entry	point	is
called	using	the	UEFI	boot	services		LoadImage()		and		StartImage()	.	If		LoadImage()		does	not	return	an	error,
the	UEFI	driver	must	be	added	to	the	end	of	the	list	of	drivers	the	Bus	Specific	Driver	Override	Protocol
for	that	PCI	device	returns	after	the		GetDriver()		service	is	called.

The	example	below	shows	the	protocol	interface	structure	for	the	Bus	Specific	Driver	Override	Protocol
for	reference	and	is	composed	of	a	single	service	called		GetDriver()	.

Example	162-Bus	Specific	Driver	Override	Protocol

typedef	struct	_EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

		EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL;

///

///	This	protocol	matches	one	or	more	drivers	to	a	controller.	This	protocol

///	is	produced	by	a	bus	driver,	and	it	is	installed	on	the	child	handles	of

///	buses	that	require	a	bus	specific	algorithm	for	matching	drivers	to

///	controllers.

///

struct	_EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL	{

		EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER	GetDriver;

};

17.1	Bus	Specific	Driver	Override	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

445DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.1	Bus	Specific	Driver	Override	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

446DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.2	Private	Context	Data	Structure

The	following	example	shows	a	fragment	of	a	private	context	data	structure	used	to	manage	the	child-
device-related	information	in	a	bus	driver	producing	the	Bus	Specific	Driver	Override	Protocol.	The
BusSpecificDriverOverride	field	is	the	protocol	instance	for	the	Bus	Specific	Driver	Override	Protocol.	The
NumberOfHandles	field	is	the	number	of	image	handles	that	the		GetDriver()		function	of	the	Bus	Specific
Driver	Override	Protocol	returns	for	a	single	child	device.	The	HandleBufferSize	field	is	the	number	of
handles	allocated	for	the	array	HandleBuffer,	and	the	HandleBuffer	field	is	the	array	of	driver	image
handles	returned	by	the		GetDriver()		function	of	the	Bus	Specific	Driver	Override	Protocol.	The		CR()	
macro	provides	a	method	to	retrieve	a	pointer	to	an		ABC_PRIVATE_DATA		instance	from	a	Bus	Specific	Driver
Override	Protocol	This	pointer.	This	macro	is	used	by	the		GetDriver()		function	to	retrieve	the	private
context	structure.

Example	163-Private	Context	Data	Structure	with	a	Bus	Specific	Driver	Override	Protocol

#define	ABC_PRIVATE_DATA_SIGNATURE	SIGNATURE_32('A','B','C','	')

typedef	struct	{

		UINTN	Signature;

		EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL	BusSpecificDriverOverride;

		UINTN	NumberOfHandles;

		UINTN	HandleBufferSize;

		EFI_HANDLE	*HandleBuffer;

}	ABC_PRIVATE_DATA;

#define	ABC_PRIVATE_DATA_FROM_BUS_SPECIFIC_DRIVER_OVERRIDE_THIS(a)	\

		CR(a,	ABC_PRIVATE_DATA,	BusSpecificDriverOverride,	ABC_PRIVATE_DATA_SIGNATURE)

This	example	shows	how	the	private	context	data	structure	must	be	initialized	by	the	bus	driver	when	a
child	controller	is	discovered.	This	initialization	is	required	for	the	examples	of	the		AbcGetDriver()		and
	AbcAddDriver()		functions	shown	below	to	work	correctly.

Example	164-Private	Context	Data	Structure	Initialization

Private->Signature	=	ABC_PRIVATE_DATA_SIGNATURE;

Private->BusSpecificDriverOverride.GetDriver	=	AbcGetDriver;

Private->NumberOfHandles	=	0;

Private->HandleBufferSize	=	0;

Private->HandleBuffer	=	NULL;

17.2	Private	Context	Data	StructureEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

447DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.3	Bus	Specific	Driver	Override	Protocol	Installation

The	example	below	shows	a	fragment	from	the	Driver	Binding	Protocol		Start()		that	installs	the	Bus
Specific	Driver	Override	Protocol	instance	onto	a	child	handle	produced	by	the	bus	driver.

Example	165-Install	Bus	Specific	Driver	Override	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/BusSpecificDriverOverride.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	EFIAPI

AbcStart	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS								Status;

		ABC_PRIVATE_DATA		*Private;

		EFI_HANDLE								ChildHandle;

		.	.

		Status	=	gBS->InstallMultipleProtocolInterfaces	(

																		ChildHandle,

																		&gEfiBusSpecificDriverOverrideProtocolGuid,

																		&Private->BusSpecificDriverOverride,

																		NULL

);

		.	.

}

The	following	example	shows	a	fragment	from	the	Driver	Binding	Protocol		Stop()		function	that	uninstalls
the	Bus	Specific	Driver	Override	Protocol	instance	from	a	child	handle	produced	by	the	bus	driver.

Example	166-Uninstall	Bus	Specific	Driver	Override	Protocol

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/BusSpecificDriverOverride.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	

EFIAPI

AbcStop	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINTN																								NumberOfChildren,

		IN	EFI_HANDLE																			*ChildHandleBuffer

)

{

		EFI_STATUS								Status;

		ABC_PRIVATE_DATA		*Private;

		EFI_HANDLE								ChildHandle;

		.	.

		Status	=	gBS->UninstallMultipleProtocolInterfaces	(

																		ChildHandle,

																		&gEfiBusSpecificDriverOverrideProtocolGuid,

																		&Private->BusSpecificDriverOverride,

																		NULL

);

17.3	Bus	Specific	Driver	Override	Protocol	InstallationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

448DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		.	.

}

17.3	Bus	Specific	Driver	Override	Protocol	InstallationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

449DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.4	GetDriver()	Implementation

The	example	below	shows	an	example	implementation	of	the		GetDriver()		function	of	the	Bus	Specific
Driver	Override	Protocol.	The	first	step	is	to	retrieve	the	private	context	structure	from	the	This	pointer
using	the		CR()		macro	defined	in	Section	17.3	above.	If	no	image	handles	are	registered,		EFI_NOT_FOUND	.	is
returned.	If	DriverImageHandle	is	a	pointer	to		NULL	,	the	first	image	handle	from	HandleBuffer	is
returned.	If	DriverImageHandle	is	not	a	pointer	to		NULL	,	a	search	is	made	through	HandleBuffer	to	find	a
matching	handle.	If	a	matching	handle	is	not	found,		EFI_INVALID_PARAMETER		is	returned.	If	a	matching	handle
is	found,	the	next	handle	in	the	array	is	returned.	If	the	matching	handle	is	the	last	handle	in	the	array,
	EFI_NOT_FOUND		is	returned.

Example	167-GetDriver()	Function	of	a	Bus	Specific	Driver	Override	Protocol

#include	<Uefi.h>

#include	<Protocol/BusSpecificDriverOverride.h>

EFI_STATUS

EFIAPI

AbcGetDriver	(

		IN					EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		*This,

		IN	OUT	EFI_HANDLE																																	*DriverImageHandle

)

{

		UINTN																																													Index;

		ABC_PRIVATE_DATA																																		*Private;

		Private	=	ABC_PRIVATE_DATA_FROM_BUS_SPECIFIC_DRIVER_OVERRIDE_THIS	(This);

		if	(Private->NumberOfHandles	==	0)	{

				return	EFI_NOT_FOUND;

		}

		if	(DriverImageHandle	==	NULL)	{

				return	EFI_INVALID_PARAMETER;

		}

		if	(*DriverImageHandle	==	NULL)	{

				*DriverImageHandle	=	Private->HandleBuffer[0];

				return	EFI_SUCCESS;

		}

		for	(Index	=	0;

							Index	<	Private->NumberOfHandles;

							Index++)	{

				if	(*DriverImageHandle	==	Private->HandleBuffer[Index])	{

						Index++;

						if	(Index	<	Private->NumberOfHandles)	{

								*DriverImageHandle	=	Private->HandleBuffer[Index];

								return	EFI_SUCCESS;

						}	else	{

								return	EFI_NOT_FOUND;

						}

				}

		}

		return	EFI_INVALID_PARAMETER;

}

17.4	GetDriver()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

450DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

17.5	Adding	Driver	Image	Handles

The	example	below	shows	an	internal	worker	function	that	adds	a	driver	image	handle	to	the	ordered
list	of	driver	image	handles	in	the	private	context	data	structure.	This	function	is	used	by	the	bus	driver
to	register	image	handles	associated	with	UEFI	Drivers	discovered	on	child	devices	(i.e.	when	the	PCI
bus	driver	discovered	UEFI	Drivers	stored	in	PCI	option	ROMs).	As	each	UEFI	driver	is	loaded,	this	internal
worker	function	is	called	to	add	the	image	handle	of	the	UEFI	driver	to	the	Bus	Specific	Driver	Override
Protocol.	The	order	that	the	image	handles	are	registered	with		AbcAddDriver()		is	the	order	in	which	they
are	returned	from		GetDriver()	.

If	there	is	not	enough	room	in	the	image	handle	array,	an	array	with	10	additional	handles	is	allocated.
The	contents	of	the	old	array	are	transferred	to	the	new	array	and	the	old	array	is	freed.	The	EDK	II
library		MemoryAllocationLib		provides	the		ReallocatePool()		function,	simplifying	the	implementations	of	UEFI
Drivers	required	to	manage	dynamic	memory.	Lacking	enough	memory	to	allocate	the	new	array,	the
	EFI_OUT_OF_RESOURCES		is	returned.	Once	there	is	enough	room	to	store	the	new	image	handle,	the	image
handle	is	added	to	the	end	of	the	array	and		EFI_SUCCESS		is	returned.

Example	168-Adding	Driver	Image	Handles

#include	<Uefi.h>

#include	<Librray/MemoryAllocationLib.h>

EFI_STATUS	EFIAPI

AbcAddDriver	(

		IN	ABC_PRIVATE_DATA		*Private,

		IN	EFI_HANDLE								DriverImageHandle

)

{

		EFI_HANDLE											*NewBuffer;

		if	(Private->NumberOfHandles	>=	Private->HandleBufferSize)	{

				NewBuffer	=	ReallocatePool	(

																		Private->HandleBufferSize	*	sizeof	(EFI_HANDLE),

																		(Private->HandleBufferSize	+	10)	*	sizeof	(EFI_HANDLE),

																		Private->HandleBuffer

);

				if	(NewBuffer	==	NULL)	{

						return	EFI_OUT_OF_RESOURCES;

				}

				Private->HandleBufferSize	+=	10;

				Private->HandleBuffer	=	NewBuffer;

		}

		Private->HandleBuffer[Private->NumberOfHandles]	=	DriverImageHandle;

		Private->NumberOfHandles++;

		return	EFI_SUCCESS;

}

17.5	Adding	Driver	Image	HandlesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

451DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18	PCI	Driver	Design	Guidelines
There	are	several	categories	of	PCI	drivers	that	cooperate	to	provide	support	for	PCI	controllers	in	a
platform.	Table	25-	lists	these	PCI	drivers.

Table	25-Classes	of	PCI	drivers

Class
of

driver
Description

PCI	root
bridge
driver

Produces	one	or	more	instances	of	the	PCI	Root	Bridge	I/O	Protocol.

PCI	bus
driver

Consumes	the	PCI	Root	Bridge	I/O	Protocol,	produces	a	child	handle	for	each	PCI
controller,	and	installs	the	Device	Path	Protocol	and	the	PCI	I/O	Protocol	onto	each
child	handle.

PCI
driver

Consumes	the	PCI	I/O	Protocol	and	produces	an	I/O	abstraction	providing	services	for
the	console	and	boot	devices	required	to	boot	an	EFI-conformant	operating	system.

This	chapter	concentrates	on	the	design	and	implementation	of	PCI	drivers.	PCI	drivers	must	follow	all	of
the	general	design	guidelines	described	in	Chapter	4.	This	chapter	covers	guidelines	that	apply
specifically	to	the	management	of	PCI	controllers.

The	following	figure	shows	an	example	PCI	driver	stack	and	the	protocols	the	PCIrelated	drivers
consume	and	produce.	In	this	example,	the	platform	hardware	produces	a	single	PCI	root	bridge.	The
PCI	Root	Bridge	I/O	Protocol	driver	accesses	the	hardware	resources	to	produce	a	single	handle	with	the
	EFI_DEVICE_PATH_PROTOCOL		and	the		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	.

The	PCI	bus	driver	consumes	the	services	of	the		PCI_ROOT_BRIDGE_IO_PROTOCOL		and	uses	those	services	to
enumerate	the	PCI	controllers	present	in	the	system.	In	this	example,	the	PCI	bus	driver	detected	a	disk
controller,	a	graphics	controller,	and	a	USB	host	controller.	As	a	result,	the	PCI	bus	driver	produces
three	child	handles	with	the		EFI_DEVICE_PATH_PROTOCOL		and	the		EFI_PCI_IO_PROTOCOL	.

The	driver	for	the	PCI	disk	controller	consumes	the	services	of	the		EFI_PCI_IO_PROTOCOL		and	produces
two	child	handles	with	the		EFI_DEVICE_PATH_PROTOCOL		and	the		EFI_BLOCK_IO_PROTOCOL	.
The	PCI	driver	for	the	graphics	controller	consumes	the	services	of	the		EFI_PCI_IO_PROTOCOL		and
produces	a	child	handle	with	the		EFI_GRAPHICS_OUTPUT_PROTOCOL	.
The	PCI	driver	for	the	USB	host	controller	consumes	the	services	of	the		EFI_PCI_IO_PROTOCOL		to	produce
the		EFI_USB_HOST_CONTROLLER_PROTOCOL	.	Although	not	shown	in	Figure	19,	the		EFI_USB_HOST_CONTROLLER_PROTOCOL	
would	then	be	consumed	by	the	USB	bus	driver	to	produce	child	handles	for	each	USB	device.	USB
drivers	would	then	manage	those	child	handles.

Chapter	19	contains	the	guidelines	for	designing	USB	drivers.

18	PCI	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

452DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	19-PCI	driver	stack

18	PCI	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

453DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.1	PCI	Root	Bridge	I/O	Protocol	Drivers

UEFI	firmware	for	a	platform	typically	implements	a	Root	Bridge	Driver	that	produces	the	PCI	Root	Bridge
I/O	Protocol.	This	code	is	chipset	specific	and	directly	accesses	the	chipset	resources	producing	the
services	of	the	PCI	Root	Bridge	I/O	Protocol.	A	sample	driver	for	systems	with	a	PC-AT-compatible	chipset
is	included	in	EDK	II.	The	source	code	for	this	driver	is	found	in	the	EDK	II	package	called		PcAtChipsetPkg		in
the	directory		PcAtChipsetPkg/PciHostBridgeDxe	.

18.1	PCI	Root	Bridge	I/O	Protocol	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

454DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.2	PCI	Bus	Drivers

EDK	II	contains	a	generic	PCI	bus	driver.	It	uses	the	services	of	the		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		to
enumerate	PCI	devices	and	produce	a	child	handle	with	an		EFI_DEVICE_PATH_PROTOCOL		and	an
	EFI_PCI_IO_PROTOCOL	.	The	source	code	to	this	driver	is	in	the	EDK	II	package	called		MdeModulePkg		in	the
directory		MdeModulePkg/Bus/Pci/PciBusDxe	.

This	bus	type	can	support	producing	one	child	handle	at	a	time	by	parsing	the	RemainingDevicePath	in
its		Supported()		and		Start()		services.	However,	producing	one	child	handle	at	a	time	for	a	PCI	bus
generally	does	not	make	sense.	This	is	because	the	PCI	bus	driver	needs	to	enumerate	and	assign
resources	to	all	of	the	PCI	devices	before	even	a	single	child	handle	can	be	produced.

It	does	not	take	much	extra	time	to	produce	the	child	handles	for	all	the	enumerated	PCI	devices.
Because	of	this,	it	is	recommended	that	the	PCI	bus	driver	produce	all	of	the	PCI	devices	on	the	first	call
to		Start()	.

If	a	UEFI	based	system	firmware	is	ported	to	a	new	platform,	most	of	the	PCI-related	changes	occur	in
the	implementation	of	the	Root	Bridge	Driver	producing	the		EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL		instances.

TIP:	PCI	Bus	Driver	customizations	are	strongly	discouraged	because	the	PCI	Bus	Driver	is	designed
to	be	conformant	with	the	PCI	Specification.	Instead,	focus	platform	specific	customizations	on	the	Root
Bridge	Driver	that	produced	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL	and	its	PCI	Device	Drivers.

18.2	PCI	Bus	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

455DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.2.1	Hot-plug	PCI	buses

The	PCI	bus	driver	in	the	EDK	II	does	not	support	hot-plug	events	in	the	pre-boot	environment.	The	PCI
bus	driver	functions	correctly	with	hot-plug-capable	hardware,	but	the	hot-add,	hot-remove,	and	hot-
replace	events	are	only	supported	while	an	OS	that	supports	hot-plug	events	is	executing.	The	PCI	bus
driver	requires	updates	to	support	hot-plug	events	in	the	pre-boot	environment.

18.2.1	Hot-plug	PCI	busesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

456DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.3	PCI	drivers

PCI	drivers	use	the	services	of	the		EFI_PCI_IO_PROTOCOL		to	produce	one	or	more	protocols	providing	I/O
abstractions	for	a	PCI	controller.	PCI	drivers	follow	the	UEFI	driver	model,	so	they	may	be	any	of	the
following:

Device	drivers

Bus	drivers

Hybrid	drivers

PCI	drivers	for	graphics	controllers	are	typically	device	drivers	that	consume	the		EFI_PCI_IO_PROTOCOL		and
produce	the		EFI_GRAPHICS_OUTPUT_PROTOCOL	.	The	PCI	drivers	for	USB	host	controllers	are	typically	device	drivers
that	consume	the		EFI_PCI_IO_PROTOCOL		and	produce	the		EFI_USB_HOST_CONTROLLER_PROTOCOL	.

The	PCI	drivers	for	disk	controllers	are	typically	bus	drivers	or	hybrid	drivers	that	consume	the
	EFI_PCI_IO_PROTOCOL		and		EFI_DEVICE_PATH_PROTOCOL		and	produce	child	handles	with	the		EFI_DEVICE_PATH_PROTOCOL		and
	EFI_BLOCK_IO_PROTOCOL	.

PCI	drivers	for	disk	controllers	using	the	SCSI	command	set	typically	produce	the
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL		for	each	SCSI	channel	the	disk	controller	produces.

Chapter	20	covers	details	on	SCSI	drivers.

18.3	PCI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

457DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.3.1	Supported()

A	PCI	driver	must	implement	the		EFI_DRIVER_BINDING_PROTOCOL		containing	the		Supported()	,		Start()	,	and		Stop()	
services.	The		Supported()		service	evaluates	the	ControllerHandle	passed	in	to	see	if	the	ControllerHandle
represents	a	PCI	device	the	PCI	driver	can	manage.

The	most	common	method	of	implementing	the	test	is	for	the	PCI	driver	to	retrieve	the	PCI	configuration
header	from	the	PCI	controller	and	evaluate	the	device	ID,	vendor	ID,	and,	possibly,	the	class	code	fields
of	the	PCI	configuration	header.	If	these	fields	match	the	values	the	PCI	driver	knows	how	to	manage,
	Supported()		returns

	EFI_SUCCESS	.	Otherwise,	the		Supported()		service	returns		EFI_UNSUPPORTED	.	The	PCI	driver	must	be	careful	not
to	disturb	the	state	of	the	PCI	controller	because	a	different	PCI	driver	may	be	managing	the	PCI
controller.

Caution:	Do	not	allow	functions	to	"touch"	or	change	the	state	of	any	hardware	device	in	the
	Supported()		function	of	the	Driver	Binding	Protocol.	Doing	so	can	significantly	degrade	the	driver's
performance	and/or	cause	the	device,	the	driver,	and/or	other	drivers	to	lose	sync	and	behave	badly
and	unpredictably.

TIP:	When	modifying	PCI	device	registers,	be	careful	with	the	bits	in	the	PCI	device	configuration	space.
Perform	a	read,	then	modify	the	desired	bits,	then	do	a	write.	Do	not	perform	only	a	write	operation	to
the	bits,	since	that	can	reset	other	bits	in	the	register.

The	following	example	shows	an	example	of	the	Driver	Binding	Protocol		Supported()		service	for	the	ABC
PCI	driver	managing	a	PCI	controller	with	a	vendor	ID	of	0x8086	and	a	device	ID	of	0xFFFE.

First,	it	attempts	to	open	the	PCI	I/O	Protocol		EFI_OPEN_PROTOCOL_BY_DRIVER		with		OpenProtocol()	.	If	the	PCI	I/O
Protocol	cannot	be	opened,	the	PCI	driver	does	not	support	the	controller	specified	by
ControllerHandle.	If	the	PCI	I/O	Protocol	is	opened,	the	services	of	the	PCI	I/O	Protocol	are	used	to	read
the	vendor	ID	and	device	ID	from	the	PCI	configuration	header.	Always	closed	the	PCI	I/O	Protocol	with
	CloseProtocol().			EFI_SUCCESS		is	returned	if	the	vendor	ID	and	device	ID	match.

Example	169-Supported()	Reading	partial	PCI	Configuration	Header

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>	#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

#include	<Library/UefiBootServicesTableLib.h>

#define	ABC_VENDOR_ID	0x8086

#define	ABC_DEVICE_ID	0xFFFE

EFI_STATUS

EFIAPI

AbcSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL															*This,

		IN	EFI_HANDLE																																ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL																		*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS																																			Status;

		EFI_PCI_IO_PROTOCOL																										*PciIo;

		UINT16																																							VendorId;

		UINT16																																							DeviceId;

18.3.1	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

458DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//

		//	Open	the	PCI	I/O	Protocol	on	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiPciIoProtocolGuid,

																		(VOID	**)&PciIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Read	16-bit	Vendor	ID	from	the	PCI	configuration	header	at	offset	0x00

		//

		Status	=	PciIo->Pci.Read	(

																								PciIo,																	//	This

																								EfiPciIoWidthUint16,			//	Width

																								PCI_VENDOR_ID_OFFSET,		//	Offset	

																								sizeof	(VendorId),					//	Count	

																								&VendorId														//	Buffer

);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

		//	Read	16-bit	Device	ID	from	the	PCI	configuration	header	at	offset	0x02

		//

		Status	=	PciIo->Pci.Read	(

																								PciIo,																	//	This

																								EfiPciIoWidthUint16,			//	Width

																								PCI_DEVICE_ID_OFFSET,		//	Offset	

																								sizeof	(DeviceId),					//	Count		

																								&DeviceId														//	Buffer

);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

		//	Evaluate	Vendor	ID	and	Device	ID

		//

		Status	=	EFI_SUCCESS;

		if	(VendorId	!=	ABC_VENDOR_ID	||	DeviceId	!=	ABC_DEVICE_ID)	{

				Status	=	EFI_UNSUPPORTED;

		}

Done:

		//

		//	Close	the	PCI	I/O	Protocol

		//

		gBS->CloseProtocol	(

									ControllerHandle,

									&gEfiPciIoProtocolGuid,

									This->DriverBindingHandle,

									ControllerHandle

);

		return	Status;

}

The	previous	example	performs	two	16-bit	reads	from	the	PCI	configuration	header.

The	code	would	be	smaller	if	the	entire	PCI	configuration	header	were	read	at	once.	However,	this	would
increase	the	execution	time	because	the		Supported()		service	reads	the	entire	PCI	configuration	header
for	every	ControllerHandle	passed	in.

18.3.1	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

459DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The		Supported()		service	is	intended	to	be	a	small,	quick	check.	If	a	more	extensive	evaluation	of	the	PCI
configuration	header	is	required,	it	may	make	sense	to	read	the	entire	PCI	configuration	header	at
once.	The	example	below	shows	the	same	example	as	above,	but	differs	in	that	it	reads	the	entire	PCI
configuration	header	in	a	single	call	to	the	PCI	I/O	Protocol	reading,	32-bits	at	a	time.

Example	170-Supported()	Reading	entire	PCI	Configuration	Header

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>	#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

#include	<Library/UefiBootServicesTableLib.h>

#define	ABC_VENDOR_ID	0x8086

#define	ABC_DEVICE_ID	0xFFFE

EFI_STATUS

EFIAPI

AbcSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL																		*This,

		IN	EFI_HANDLE																																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL																					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS																																						Status;

		EFI_PCI_IO_PROTOCOL																													*PciIo;

		PCI_TYPE00																																						Pci;

		//

		//	Open	the	PCI	I/O	Protocol	on	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiPciIoProtocolGuid,

																		(VOID	**)&PciIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Read	the	entire	PCI	configuration	header	using	32-bit	reads

		//

		Status	=	PciIo->Pci.Read	(

																								PciIo,																				//	This

																								EfiPciIoWidthUint32,						//	Width

																								0,																								//	Offset	sizeof	

																								(Pci)	/	sizeof	(UINT32),		//	Count	

																								&Pci																						//	Buffer

);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

		//	Evaluate	Vendor	ID	and	Device	ID

		//

		Status	=	EFI_SUCCESS;

		if	(Pci.Hdr.VendorId	!=	ABC_VENDOR_ID	||	Pci.Hdr.DeviceId	!=	ABC_DEVICE_ID)	{

				Status	=	EFI_UNSUPPORTED;

		}

Done:

		//

		//	Close	the	PCI	I/O	Protocol

		//

		gBS->CloseProtocol	(

									ControllerHandle,

18.3.1	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

460DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

									&gEfiPciIoProtocolGuid,

									This->DriverBindingHandle,

									ControllerHandle

);

		return	Status;

}

18.3.1	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

461DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.3.2	Start()	and	Stop()

The		Start()		service	of	the	Driver	Binding	Protocol	for	a	PCI	driver	also	opens	the	PCI	I/O	Protocol	with	an
attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER	.	If	the	PCI	driver	is	a	bus	or	hybrid	driver,	the	Device	Path	Protocol
opens	using	the	attribute		EFI_OPEN_PROTOCOL_BY_DRIVER	.	A	device	driver	is	not	required	to	open	the	Device
Path	Protocol.	In	addition,	all	PCI	drivers	are	required	to	call	the		Attributes()		service	of	the	PCI	I/O
Protocol	to	enable	the	I/O,	memory,	and	bus	master	bits	in	the	Command	register	of	the	PCI
configuration	header.	By	default,	the	PCI	bus	driver	is	not	required	to	enable	the	Command	register	of
the	PCI	controllers.	Instead,	it	is	the	responsibility	of	the		Start()		service	to	enable	these	bits	and	that	of
the		Stop()		service	to	restore	these	bits.	In	order	for	the		Stop()		service	to	restore	the	attributes,	a	PCI
Driver	typically	stores	the	original	attributes	in	a		UINT64		field	of	the	private	context	data	structure.

There	is	one	additional	attribute	that	must	be	specified	in	this	call	to	the		Attributes()		service.	If	the	PCI
controller	is	a	bus	master	and	capable	of	generating	64-bit	DMA	addresses,	the
	EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE		attribute	must	also	be	enabled.	Unfortunately,	there	is	no	standard
method	for	detecting	if	a	PCI	controller	supports	32-bit	or	64-bit	DMA	addresses.	As	a	result,	it	is	the	PCI
driver's	responsibility	to	inform	the	PCI	bus	driver	that	the	PCI	controller	is	capable	of	producing	64-bit
DMA	addresses.

The	PCI	bus	driver	assumes	that	all	PCI	controllers	are	only	capable	of	generating	32-bit	DMA	addresses
unless	the	PCI	driver	enables	the	dual	address	cycle	attribute.

The	PCI	bus	driver	uses	this	information	along	with	the	services	of	the	PCI	Root	Bridge	I/O	Protocol	to
perform	PCI	DMA	transactions.	If	a	PCI	bus	master	that	is	capable	of	32-bit	DMA	addresses	is	present	in
a	platform	supporting	more	than	4	GB	of	system	memory,	the	DMA	transactions	may	have	to	be	double
buffered.	Double	buffering	can	reduce	the	performance	of	a	driver.	It	is	also	possible	for	some	platforms
to	only	support	system	memory	above	4	GB.	For	these	reasons,	a	PCI	driver	must	always	accurately
describe	the	DMA	capabilities	of	the	PCI	controller	from	the		Start()		service	of	the	Driver	Binding
Protocol.

The	example	below	shows	the	code	fragment	from	the		Start()	services	of	a	PCI	driver	for	a	PCI	controller
supporting	64-bit	DMA	transactions.	The	example	opens	the	PCI	I/O	Protocol	attribute	of
	EFI_OPEN_PROTOCOL_BY_DRIVER	.	It	then	retrieves	the	current	set	of	PCI	I/O	Protocol	attributes	and	saves	them	in
the	private	context	data	structure	field	called		ABC_PRIVATE_DATA	.	It	then	determines	what	attribute	the	PCI
I/O	Protocol	supports	and	enables	the	I/O	decode,	MMIO	decode,	and	Bus	Master,	and	Dual	Address
Cycle	capabilities.	If	a	PCI	Controller	does	not	support	DAC,	the	only	change	is	the	removal	of
	EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE		from	the	last	call	to	the		Attributes()		service	of	the	PCI	I/O	Protocol.

Example	171-Start()	for	a	64-bit	DMA-capable	PCI	controller

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiBootServicesTableLib.h>

typedef	struct	{

		UINTN	Signature;

		//

		//	.	.

		//

		UINT64	OriginalPciAttributes;

}	ABC_PRIVATE_DATA;

EFI_STATUS	Status;

EFI_DRIVER_BINDING_PROTOCOL	*This;

EFI_HANDLE	ControllerHandle;

ABC_PRIVATE_DATA	*Private;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT64	PciSupports;

18.3.2	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

462DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Open	the	PCI	I/O	Protocol

//

Status	=	gBS->OpenProtocol	(

																ControllerHandle,

																&gEfiPciIoProtocolGuid,

																(VOID	**)&PciIo,

																This->DriverBindingHandle,

																ControllerHandle,

																EFI_OPEN_PROTOCOL_BY_DRIVER

);

if	(EFI_ERROR	(Status))	{

		goto	Done;

}

//

//	Retrieve	original	PCI	attributes	and	save	them	in	the	private	context	data

//	structure.

//

Status	=	PciIo->Attributes	(

																		PciIo,

																		EfiPciIoAttributeOperationGet,

																		0,

																		&Private->OriginalPciAttributes

);

if	(EFI_ERROR	(Status))	{

		goto	Done;

}

//

//	Retrieve	attributes	that	the	PCI	Controller	supports

//

Status	=	PciIo->Attributes	(

																		PciIo,

																		EfiPciIoAttributeOperationSupported,

																		0,

																		&PciSupports

);

if	(EFI_ERROR	(Status))	{

		goto	Done;

}

//

//	Enable	Command	register	and	Dual	Address	Cycle

//

Status	=	PciIo->Attributes	(

																		PciIo,

																		EfiPciIoAttributeOperationEnable,

																		(PciSupports	&	EFI_PCI_DEVICE_ENABLE)	|

																		EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE,

																		NULL

);

if	(EFI_ERROR	(Status))	{

		goto	Done;

}

This	example	shows	the	code	fragment	from	the		Stop()	services	of	a	PCI	driver.	This	example	restores
the	PCI	I/O	Protocol	attributes	from	a	field	of	the	private	context	data	structure	called		ABC_PRIVATE_DATA	.

Example	172-Restore	PCI	Attributes	in	Stop()

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

ABC_PRIVATE_DATA	*Private;

//

//	Restore	original	PCI	attributes

18.3.2	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

463DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

PciIo->Attributes	(

									PciIo,

									EfiPciIoAttributeOperationSet,

									Private->OriginalPciAttributes,

									NULL

);

//

//	Close	the	PCI	I/O	Protocol

//

gBS->CloseProtocol	(

							ControllerHandle,

							&gEfiPciIoProtocolGuid,

							This->DriverBindingHandle,

							ControllerHandle

);

The	following	table	lists	the		#define		statements	compatible	with	the		Attributes()		service.	A	PCI	driver
must	use	the		Attributes()		service	to	enable	the	decodes	on	the	PCI	controller,	accurately	describe	the
PCI	controller	DMA	capabilities,	and	request	that	specific	I/O	cycles	are	forwarded	to	the	device.	The	call
to		Attributes()		fails	if	the	request	cannot	be	satisfied.	If	this	failure	occurs,	the		Start()		function	must
return	an	error.

Once	again,	any	attributes	enabled	in	the		Start()		service	must	be	restored	in	the		Stop()		service.

Table	26-PCI	Attributes

Attribute Description

	EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x0000-0x00FF
(10-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_ISA_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x100-0x3FF	(10-
bit	decode).

	EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x3C6,	0x3C8,	and
0x3C9	(10-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY	
Used	to	request	the	forwarding	of	MMIO	cycles	0xA0000-
0xBFFFF	(24-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_VGA_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x3B0-0x3BB	and
0x3C0-	0x3DF	(10-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x1F0-0x1F7,
0x3F6,	0x3F7	(10-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO	
Used	to	request	the	forwarding	of	I/O	cycles	0x170-0x177,
0x376,	0x377	(10-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_IO	 Enable	the	I/O	decode	bit	in	the	Command	register.

	EFI_PCI_IO_ATTRIBUTE_MEMORY	 Enable	the	Memory	decode	bit	in	the	Command	register.

	EFI_PCI_IO_ATTRIBUTE_BUS_MASTER	 Enable	the	Bus	Master	bit	in	the	Command	register.

	EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE	 Clear	for	PCI	controllers	that	cannot	generate	a	DAC.

	EFI_PCI_IO_ATTRIBUTE_ISA_IO_16	
Used	to	request	the	forwarding	of	I/O	cycles	0x100-0x3FF	(16-
bit	decode).

	EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16	
Used	to	request	the	forwarding	of	I/O	cycles	0x3C6,	0x3C8,	and
0x3C9	(16-bit	decode).

	EFI_PCI_IO_ATTRIBUTE_VGA_IO_16	
Used	to	request	the	forwarding	of	I/O	cycles	0x3B0-0x3BB	and
0x3C0-	0x3DF	(16-bit	decode).

18.3.2	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

464DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	table	below,	lists		#define		statements	not	part	of	the	UEFI	Specification,	but	which	are	included	in
EDK	II	to	simplify	PCI	driver	implementations.	These	attributes	cover	the	typical	classes	of	hardware
capabilities	and	provide	a	names	for	common	combinations	of	attributes	described	in	the	PCI	Bus
Support	chapter	of	the	UEFI	Specification.

TIP:	For	code	readability,	the	Enable	attributes	included	in	EDK	II	should	be	used.

Table	27-EDK	II	attributes	#defines

Attribute Description

	EFI_PCI_DEVICE_ENABLE	
Equivalent	to	a	logical	OR	combination	of		EFI_PCI_IO_ATTRIBUTE_IO	,
'EFI_PCI_IO_ATTRIBUTE_MEMORY	,	and	EFI_PCI_IO_ATTRIBUTE_BUS_MASTER`.

	EFI_VGA_DEVICE_ENABLE	
Equivalent	to	a	logical	OR	combination	of		EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO	,
	EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY	,		EFI_PCI_IO_ATTRIBUTE_VGA_IO	,	and		EFI_PCI_IO_ATTRIBUTE_IO	.

This	table	lists	the		#define		statements	that	to	use	with	the		GetBarAttributes()		and		SetBarAttributes()	
services	to	adjust	the	attributes	of	a	memory-mapped	I/O	region	described	by	a	Base	Address	Register
(BAR)	of	a	PCI	controller.	The	support	of	these	attributes	is	optional,	but	in	general,	a	PCI	driver	uses
these	attributes	to	provide	hints	that	may	be	used	to	improve	the	performance	of	a	PCI	driver.	Improved
performance	is	especially	important	for	PCI	drivers	managing	graphics	controllers.	Do	note	that	any	BAR
attributes	set	in	the		Start()		service	must	be	restored	in	the		Stop()		service.

Table	28-PCI	BAR	attributes

Attribute Description

	EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE	

Setting	this	bit	enables	platform	support	for	memory	range
access	in	a	write-combining	mode.	It	improves	write
performance	to	a	memory	buffer	on	a	PCI	controller.	By
default,	PCI	memory	ranges	are	not	accessed	in	a	write
combining	mode.

	EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED	

Setting	this	bit	enables	platform	support	for	changing	the
attributes	of	a	PCI	memory	range	so	that	it	is	accessed	in	a
cached	mode.	By	default,	PCI	memory	ranges	are	not
cached.

	EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE	

Setting	this	bit	enables	platform	support	for	disabling	a	PCI
memory	range	so	that	it	can	no	longer	be	accessed.	By
default,	all	PCI	memory	ranges	are	enabled.

Sometimes	there	may	be	different	logic	paths	in	a	UEFI	Driver	between	a	PCI	add-in	card	and	a	PCI
controller	integrated	into	a	platform.	The	PCI	I/O	Protocol	provides	attributes	that	help	a	UEFI	Driver
determine	if	a	specific	PCI	Controller	and	its	associated	PCI	Option	ROM	image	are	from	a	PCI	add-in	card
in	a	PCI	slot	or	if	they	are	integrated	into	a	platform.	The	attributes	shown	in	the	following	table	list	the
	#define		statements	for	these	attributes.	These	attributes	are	read-only	and	the	values	are	established
by	the	PCI	Bus	Driver	when	a	PCI	Controller	is	discovered	and	the	PCI	I/O	Protocol	is	produced.	A	PCI
driver	may	retrieve	the	attributes	of	a	PCI	controller	with	the		Attributes()		service	of	the	PCI	I/O	Protocol,
but	a	PCI	Driver	is	not	allowed	to	modify	these	attributes.

Table	29-PCI	Embedded	Device	Attributes

Attribute Description

	EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE	

If	this	bit	is	set,	the	PCI	controller	is	an	embedded	device;
typically	a	component	on	the	system	board.	If	this	bit	is	clear,	the
PCI	controller	is	part	of	an	adapter	populating	one	of	the
systems	PCI	slots.

18.3.2	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

465DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM	

If	this	bit	is	set,	the	PCI	option	ROM	described	by	the	RomImage
and	RomSize	fields	is	not	from	ROM	BAR	of	the	PCI	controller.	If
this	bit	is	clear,	the	RomImage	and	RomSize	fields	were	initialized
based	on	the	PCI	option	ROM	found	through	the	ROM	BAR	of	the
PCI	controller.

18.3.2	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

466DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.3.3	PCI	Cards	with	Multiple	PCI	Controllers

Some	PCI	devices	have	a	series	of	identical	devices	on	a	single	device,	normally	behind	a	PCI	bridge.
These	devices	may	require	additional	work	if	they	need	to	be	controlled	by	a	single	instance	of	the	UEFI
driver.	Take	the	following	figure	as	a	sample	device.

Figure	20-A	multi-controller	PCI	device

It	may	be	required	that	the	driver	in	the	Option	ROM	control	all	3	controllers	on	the	PCI	device.	To	do
this,	use	the	following	actions:

In	the		Supported()		function,	make	sure	that	the	UEFI	Driver	supports	the	controller	that	is	passed	into
the		Support()		function.	The	first	controller	passed	in	could	be	any	of	the	controllers	on	a	PCI	Card.
In	the		Supported()		function,	make	sure	the	function	does	not	touch	or	change	the	HW	state.	This	is
very	important.	If	the	PCI	I/O	instance	is	already	opened	(if	some	other	application	or	driver	is
already	managing	the	controller),	return	an	error.	See	Chapter	9	of	this	guide	and	the	EFI	Driver
Binding	Protocol	section	of	the	UEFI	Specification	for	details	on	the	error	return	codes	from	the
Driver	Binding	Protocol		Supported()		function.
In	the		Start()		function	for	the	first	controller	on	the	PCI	Card,	open	the	PCI	I/O	protocol	instances	on
the	other	handles	on	the	same	PCI	Card	using	the		EFI_OPEN_PROTOCOL_BY_DRIVER		attribute.	This	informs	all
other	UEFI	Drivers	in	the	platform	that	all	the	controllers	on	the	PCI	Card	are	already	being
managed.	To	scan	for	other	PCI	controllers	on	the	same	PCI	Card,	use	the	UEFI	Boot	Service
LocateHandleBuffer()	to	find	all	handles	in	the	Handle	Database	supporting	the	PCI	I/O	Protocol.	Use
the	PCI	I/O	Protocol	function	GetLocation()to	evaluate	whether	or	not	the	PCI	controller	is	on	the
same	PCI	bus	number.	Take	care	to	not	modify	the	HW	state	of	any	PCI	I/O	Protocol	instance	during
this	evaluation.
In	the		Stop()		function,	undo	everything	that	was	done	in		Start()	.	Use	a	private	context	data
structure	to	keep	track	of	the	information	required	to	complete	a		Stop()		operation	in	these	more
complex	use	cases.

18.3.3	PCI	Cards	with	Multiple	PCI	ControllersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

467DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.4	Accessing	PCI	resources

PCI	drivers	should	only	access	the	I/O	and	memory-mapped	I/O	resources	on	the	PCI	controllers	they
manage.	They	should	never	attempt	to	access	the	I/O	or	memorymapped	I/O	resource	of	a	PCI	controller
that	they	are	not	managing.	They	should	also	never	touch	the	I/O	or	memory-mapped	I/O	resources	of
the	chipset	or	the	motherboard.

The	PCI	I/O	Protocol	provides	services	that	allow	a	PCI	driver	to	easily	access	the	resources	of	the	PCI
controllers	it	is	currently	managing.	These	services	hide	platformspecific	implementation	details	and
prevent	a	PCI	driver	from	inadvertently	accessing	resources	of	the	motherboard	or	other	PCI	controllers.
The	PCI	I/O	Protocol	has	also	been	designed	to	simplify	the	implementation	of	PCI	drivers.	For	example,	a
PCI	driver	should	never	read	the	BARs	in	the	PCI	configuration	header.	Instead,	the	PCI	driver	passes	in
a	BarIndex	and	Offset	into	the	PCI	I/O	Protocol	services.	The	PCI	bus	driver	is	responsible	for	managing
the	PCI	controller's	BARs.

The	services	of	the	PCI	I/O	Protocol	allowing	a	PCI	driver	to	access	the	resources	of	a	PCI	controller
include	the	following:

	PciIo->PollMem()	

	PciIo->PollIo()	

	PciIo->Mem.Read()	

	PciIo->Mem.Write()	

	PciIo->Io.Read()	

	PciIo->Io.Write()	

	PciIo->Pci.Read()	

	PciIo->Pci.Write()	

	PciIo->CopyMem()	

Another	important	resource	provided	through	the	PCI	I/O	Protocol	is	the	contents	of	the	PCI	option	ROM.
The	RomSize	and	RomImage	fields	of	the	PCI	I/O	Protocol	provide	access	to	a	copy	of	the	PCI	option	ROM
contents.	These	fields	may	be	useful	if	the	PCI	driver	requires	additional	information	from	the	contents
of	the	PCI	option	ROM.

Note:	It	is	important	that	the	PCI	option	ROM	contents	not	be	modified	through	the	RomImage	field.
Modifications	to	this	buffer	only	modify	the	copy	of	the	PCI	option	ROM	contents	in	system	memory.	The
PCI	I/O	Protocol	does	not	provide	services	to	modify	the	content	of	the	actual	PCI	option	ROM.

18.4	Accessing	PCI	resourcesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

468DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.4.1	Memory-mapped	I/O	ordering	issues

PCI	transactions	follow	the	ordering	rules	defined	in	the	PCI	Specification.	The	ordering	rules	vary	for	I/O,
memory-mapped	I/O,	and	PCI	configuration	cycles.

The	PCI	I/O	Protocol		Mem.Read()		service	generates	PCI	memory	read	cycles	guaranteed	to	complete
before	control	is	returned	to	the	PCI	driver.	However,	the	PCI	I/O	Protocol		Mem.Write()		service	does	not
guarantee	that	PCI	memory	cycles	produced	by	this	service	are	completed	before	control	is	returned	to
the	PCI	driver.	This	distinction	means	that	memory	write	transactions	may	be	sitting	in	write	buffers
when	this	service	returns.	If	the	PCI	driver	requires	a		Mem.Write()		transaction	to	complete,	then	the
	Mem.Write()		transaction	must	be	followed	by	a		Mem.Read()		transaction	to	the	same	PCI	controller.	Some
chipsets	and	PCI-to-PCI	bridges	are	more	sensitive	to	this	issue	than	others.

The	following	example	shows	a		Mem.Write()		call	to	a	memory-mapped	I/O	register	at	offset	0x20	into	BAR
#1	of	a	PCI	controller.	This	write	transaction	is	followed	by	a		Mem.Read()		call	from	the	same	memory-
mapped	I/O	register.	This	combination	guarantees	that	the	write	transaction	is	completed	by	the	time
the		Mem.Read()		call	returns.

In	general,	this	mechanism	is	not	required	because	a	PCI	driver	typically	reads	a	status	register	and	this
read	transaction	forces	all	posted	write	transactions	to	complete	on	the	PCI	controller.	The	only	time	to
use	this	mechanism	is	when	a	PCI	driver	performs	a	write	transaction	not	immediately	followed	by	a	read
transaction	and	the	PCI	driver	needs	to	guarantee	that	the	write	transaction	is	completed	immediately.

Example	173-Completing	a	memory	write	transaction

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT32	DmaStartAddress;

//

//	Write	the	value	in	DmaStartAddress	to	offset	0x20	of	BAR	#1

//

Status	=	PciIo->Mem.Write	(

																						PciIo,																//	This

																						EfiPciIoWidthUint32,		//	Width

																						1,																				//	BarIndex

																						0x20,																	//	Offset

																						1,																				//	Count

																						&DmaStartAddress						//	Buffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Read	offset	0x20	of	BAR	#1	This	guarantees	that	the	previous	write

//	transaction	is	posted	to	the	PCI	controller.

//

Status	=	PciIo->Mem.Read	(

																						PciIo,	//	This

																						EfiPciIoWidthUint32,		//	Width

																						1,																				//	BarIndex

																						0x20,																	//	Offset

																						1,																				//	Count

																						&DmaStartAddress						//	Buffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

18.4.1	Memory-mapped	I/O	ordering	issuesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

469DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.4.1	Memory-mapped	I/O	ordering	issuesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

470DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.4.2	Hardfail/Softfail

PCI	drivers	must	make	sure	they	do	not	access	resources	not	allocated	to	any	PCI	controllers.	Doing	so
may	produce	unpredictable	results	including	platform	hang	conditions.

For	example,	if	a	VGA	device	is	in	monochrome	mode,	accessing	the	VGA	device's	color	registers	may
cause	unpredictable	results.	The	best	rule	of	thumb	here	is	to	access	only	I/O	or	memory-mapped	I/O
resources	to	which	the	PCI	driver	knows,	for	sure,	that	the	PCI	controller	does	respond.	In	general,	this
is	not	a	concern	because	the	PCI	I/O	Protocol	services	do	not	allow	the	PCI	driver	to	access	resources
outside	the	resource	ranges	described	in	the	BARs	of	the	PCI	controllers.	However,	two	mechanisms
allow	a	PCI	driver	to	bypass	these	safeguards.

The	first	is	to	use	the		EFI_PCI_IO_PASS_THROUGH_BAR		with	the	PCI	I/O	Protocol	services	providing	access	to
I/O	and	memory-mapped	I/O	regions.

The	second	is	for	a	PCI	driver	to	retrieve	and	use	the	services	of	a	PCI	Root	Bridge	I/O	Protocol.

A	PCI	driver	uses	the		EFI_PCI_IO_PASS_THROUGH_BAR		to	access	ISA	resources	on	a	PCI	controller.	For	a	PCI	driver
to	use	this	mechanism	safely,	the	PCI	driver	must	know	that	the	desired	PCI	controller	does	respond	to
the	I/O	or	memory-mapped	I/O	requests	in	the	ISA	ranges.	The	PCI	driver	can	typically	know	if	it	responds
by	examining	the	class	code,	vendor	ID,	and	device	ID	fields	of	the	PCI	controller	in	the	PCI	configuration
header.	The	PCI	driver	must	examine	the	PCI	configuration	header	before	any	I/O	or	memory-mapped	I/O
operations	are	generated.	The	PCI	configuration	header	is	typically	examined	in	the		Supported()		service,
so	it	is	safe	to	access	the	ISA	resources	in	the		Start()		service	and	in	the	services	of	the	I/O	abstraction
that	the	PCI	driver	is	producing.	The	following	is	an	example	using	the		EFI_PCI_IO_PASS_THROUGH_BAR	.

Example	174-Accessing	ISA	resources	on	a	PCI	controller

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	Data;

UINT16	Word;

//

//	Write	0xAA	to	a	Post	Card	at	ISA	address	0x80

//

Data	=	0xAA;

Status	=	PciIo->Io.Write	(

																					PciIo,																								//	This

																					EfiPciIoWidthUint8,											//	Width

																					EFI_PCI_IO_PASS_THROUGH_BAR,		//	BarIndex

																					0x80,																									//	Offset

																					1,																												//	Count

																					&Data																									//	Buffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Read	the	first	word	from	the	VGA	frame	buffer

//

Status	=	PciIo->Mem.Read	(

																						PciIo,																							//	This

																						EfiPciIoWidthUint16,									//	Width

																						EFI_PCI_IO_PASS_THROUGH_BAR,	//	BarIndex

																						0xA0000,	//	Offset

																						1,	//	Count

																						&Word	//	Buffer

);

if	(EFI_ERROR	(Status))	{

18.4.2	Hardfail/SoftfailEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

471DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		return	Status;

}

A	PCI	driver	must	also	take	care	when	using	the	services	of	the	PCI	Root	Bridge	I/O	Protocol.	It	can
retrieve	the	parent	PCI	Root	Bridge	I/O	Protocol	and	use	those	services	to	touch	any	resource	on	the	PCI
bus.

Caution:	This	touching	of	resources	on	the	PCI	bus	can	be	very	dangerous	because	the	PCI	driver	may
not	know	if	a	different	PCI	driver	owns	a	resource	or	not.	The	use	of	this	mechanism	is	strongly
discouraged	and	is	best	left	to	OEM	drivers	having	intimate	knowledge	of	the	platform	and	chipset.

Chapter	5	discusses	the	use	of	the		LocateDevicePath()		service	and	the	example	associated	with	this
service	shows	how	the	parent	PCI	Root	Bridge	I/O	Protocol	can	be	retrieved.

Instead	of	using	the	parent	PCI	Root	Bridge	I/O	Protocol,	PCI	drivers	needing	access	to	the	resources	of
other	PCI	controllers	in	the	platform	should	search	the	Handle	Database	for	controller	handles
supporting	the	PCI	I/O	Protocol.	To	prevent	resource	conflicts,	open	PCI	I/O	Protocols	from	other	PCI
controllers	with		EFI_OPEN_PROTOCOL_BY_DRIVER	.

The	following	example	shows	how	a	PCI	driver	can	easily	retrieve	the	list	of	PCI	controller	handles	in	the
Handle	Database	and	use	the	services	of	the	PCI	I/O	Protocol	on	each	of	those	handles	to	find	peer	PCI
controllers.

For	example,	a	PCI	adapter	containing	multiple	PCI	controllers	behind	a	PCI-to-PCI	bridge	may	use	a
single	driver	to	manage	all	of	the	controllers	on	the	adapter.	When	the	PCI	driver	is	connected	to	the
first	PCI	controller	on	the	adapter,	the	PCI	driver	connects	to	all	the	other	PCI	controllers	having	the
same	bus	number	as	the	first.	This	example	takes	advantage	of	the		GetLocation()		service	of	the	PCI	I/O
Protocol	to	find	matching	bus	numbers.

Example	175-Locate	PCI	handles	with	matching	bus	number

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/MemoryAllocationLib.h>

EFI_STATUS											Status;

EFI_PCI_IO_PROTOCOL		*PciIo;

UINTN																HandleCount;

EFI_HANDLE											*HandleBuffer;

UINTN																Index;

UINTN																MyBus;

UINTN																Seg;

UINTN																Bus;

UINTN																Device;

UINTN																Function;

//

//	Retrieve	the	location	of	the	PCI	controller	and	store	the	bus

//	number	in	MyBus.

//

Status	=	PciIo->GetLocation	(PciIo,	&Seg,	&MyBus,	&Device,	&Function);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Retrieve	the	list	of	handles	that	support	the	PCI	I/O	protocol

//	from	the	handle	database.	The	number	of	handles	that	support

//	the	PCI	I/O	Protocol	is	returned	in	HandleCount,	and	the	array

//	of	handle	values	is	returned	in	HandleBuffer.

18.4.2	Hardfail/SoftfailEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

472DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

Status	=	gBS->LocateHandleBuffer	(

																ByProtocol,

																&gEfiPciIoProtocolGuid,

																NULL,

																&HandleCount,

																&HandleBuffer

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Loop	through	all	the	handles	the	support	the	PCI	I/O	Protocol,

//	and	retrieve	the	instance	of	the	PCI	I/O	Protocol.	Use	the

//	EFI_OPEN_PROTOCOL_BY_DRIVER	open	mode,	so	only	PCI	I/O	Protocols

//	that	are	not	currently	being	managed	are	considered.

//

for	(Index	=	0;	Index	<	HandleCount;	Index++)	{

		Status	=	gBS->OpenProtocol	(

																		HandleBuffer[Index],

																		&gEfiPciIoProtocolGuid,

																		(VOID	**)&PciIo,

																		gImageHandle,

																		NULL,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				continue;

		}

		//

		//	Retrieve	the	location	of	the	PCI	controller	and	store	the

		//	bus	number	in	Bus.

		//

		Status	=	PciIo->GetLocation	(PciIo,	&Seg,	&Bus,	&Device,	&Function);

		if	(EFI_ERROR	(Status)	&&	Bus	!=	MyBus)	{

				//

				//	Either	the	handle	was	already	opened	by	another	driver	or	the

				//	bus	numbers	did	not	match,	so	close	the	PCI	I/O	Protocol	and

				//	move	on	to	the	next	PCI	handle.

				//

				gBS->CloseProtocol	(

											HandleBuffer[Index],

											&gEfiPciIoProtocolGuid,

											gImageHandle,

											NULL

);

				continue;

		}

		//

		//	Store	HandleBuffer[Index]	so	the	driver	knows	it	is	managing	the	PCI

		//	controller	represented	by	HandleBuffer[Index].	This	would	typically	be

		//	stored	in	the	private	context	data	structure

		//

}

//

//	Free	the	array	of	handles	that	was	allocated	by	gBS->LocateHandleBuffer()

//

FreePool	(HandleBuffer);

18.4.2	Hardfail/SoftfailEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

473DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.4.3	When	a	PCI	device	does	not	receive	resources

Some	PCI	controllers	may	require	more	resources	than	the	PCI	bus	can	offer.	In	such	cases,	the	PCI
controller	must	not	be	visible	to	PCI	drivers	because	resources	were	not	allocated	to	the	PCI	controller.
The	PCI	bus	driver	does	not	create	a	child	handle	for	a	PCI	controller	that	does	not	have	any	allocated
resources,	and	as	a	result,	a	PCI	driver	is	never	be	passed	a	ControllerHandle	for	a	PCI	controller	not
having	allocated	resources.

The	platform	vendor	controls	the	policy	decisions	that	are	made	when	this	type	of	resource-constrained
condition	is	encountered.	The	PCI	driver	writer	never	has	to	handle	this	case.

18.4.3	When	a	PCI	device	does	not	receive	resourcesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

474DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5	PCI	DMA

There	are	three	types	of	DMA	transactions	that	can	be	implemented	using	the	services	of	the	PCI	I/O
Protocol:

Bus	master	read	transactions

Bus	master	write	transactions

Common	buffer	transactions

The	PCI	I/O	Protocol	services	used	to	manage	PCI	DMA	transactions	include:

	PciIo->AllocateBuffer()	

	PciIo->FreeBuffer()	

	PciIo->Map()	

	PciIo->Unmap()		-		PciIo->Flush()	

18.5	PCI	DMAEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

475DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.1	Map()	Service	Cautions

A	common	mistake	in	writing	PCI	drivers	is	omission	of	the	use	of	the		Map()		service.	On	platforms	with
coherent	PCI	busses	having	a	1:1	mapping	between	CPU	addresses	and	PCI	DMA	addresses,	such	as
PCI	implementations	on	many	IA32,	X64,	and	IPF	systems,	the	omission	of		Map()		may	not	produce	any
functional	issues.	However,	if	those	same	UEFI	Driver	sources	are	used	on	a	platform	is	that	not
coherent,	nor	guarantees	a	1:1	mapping	between	CPU	addresses	and	PCI	DMA	addresses,	the	UEFI
Driver	may	not	function	correctly,	with	the	likely	result	being	data	corruption.	For	this	reason,		Map()	
must	always	be	used	when	setting	up	a	PCI	DMA	transfer.

TIP:	Although	omission	of	the		Map()		service	may	work	on	some	platforms,	use	of		Map()		for	DMA
transaction	is	required	and	maximizes	UEFI	Driver	compatibility.

The		Map()		service	converts	a	system	memory	address	to	an	address	useful	to	a	PCI	device	performing
bus	master	DMA	transactions.	The	device	address	returned	is	not	related	to	the	original	system	memory
address.	Some	chipsets	maintain	a	one-to-one	mapping	between	system	memory	addresses	and	device
addresses	on	the	PCI	bus.	For	this	special	case,	the	system	memory	address	and	device	address	are
the	same.	However,	a	PCI	driver	cannot	tell	if	it	is	executing	on	a	platform	with	this	one-to-one	mapping.
As	a	result,	a	PCI	driver	must	make	as	few	assumptions	about	the	system	architecture	as	possible.
Avoiding	assumptions	means	that	a	PCI	driver	must	never	use	the	device	address	that	is	returned	from
	Map()		to	access	the	contents	of	the	DMA	buffer.	Instead,	this	value	should	only	be	used	to	program	the
base	address	of	the	DMA	transaction	into	the	PCI	controller.	This	programming	is	typically	accomplished
with	one	or	more	I/O	or	memory-mapped	I/O	write	transactions	to	the	PCI	controller	the	PCI	driver	is
managing.

The	example	below	shows	the	function	prototype	for	the		Map()		service	of	the	PCI	I/O	Protocol.	A	PCI
driver	can	use	HostAddress	to	access	the	contents	of	the	DMA	buffer,	but	must	never	use	the	returned
parameter	DeviceAddress	to	access	the	contents	of	the	DMA	buffer.

Example	176-Map()	Function

/**

		Provides	the	PCI	controller-specific	addresses	needed	to	access	system	memory.

		@param		This																				A	pointer	to	the	EFI_PCI_IO_PROTOCOL	instance.

		@param		Operation															Indicates	if	the	bus	master	is	going	to	read	or	write	to	system	memory.

		@param		HostAddress													The	system	memory	address	to	map	to	the	PCI	controller.

		@param		NumberOfBytes											On	input	the	number	of	bytes	to	map.	On	output	the	number	of	bytes	that

																																		were	mapped.	@param	DeviceAddress	The	resulting	map	address	for	the	bus

																																		master	PCI	controller	to	use	to	access	the	hosts	HostAddress.	

		@param	Mapping																		A	resulting	value	to	pass	to	Unmap().

		@retval		EFI_SUCCESS												The	range	was	mapped	for	the	returned	NumberOfBytes.

		@retval		EFI_UNSUPPORTED								The	HostAddress	cannot	be	mapped	as	a	common	buffer.

		@retval		EFI_INVALID_PARAMETER		One	or	more	parameters	are	invalid.

		@retval		EFI_OUT_OF_RESOURCES			The	request	could	not	be	completed	due	to	a	lack	of	resources.

		@retval		EFI_DEVICE_ERROR							The	system	hardware	could	not	map	the	requested	address.

**/

typedef

EFI_STATUS

(EFIAPI	*	EFI_PCI_IO_PROTOCOL_MAP)(

		IN	EFI_PCI_IO_PROTOCOL														*This,

		IN	EFI_PCI_IO_PROTOCOL_OPERATION				Operation,

		IN	VOID																													*HostAddress,

		IN	OUT	UINTN																								*NumberOfBytes,

		OUT	EFI_PHYSICAL_ADDRESS												*DeviceAddress,

		OUT	VOID																												**Mapping

18.5.1	Map()	Service	CautionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

476DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

);

18.5.1	Map()	Service	CautionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

477DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.2	Weakly	ordered	memory	transactions

Some	processors,	such	as	those	in	IPF	platforms,	have	weakly	ordered	memory	models.	With	weak
ordering,	system	memory	transactions	may	complete	in	a	different	order	than	the	source	code	would
seem	to	indicate.	A	PCI	driver	should	be	implemented	so	that	the	source	code	is	compatible	with	as
many	processors	and	platforms	as	possible.	As	a	result,	the	guidelines	on	the	use	of	the	EDK	II	library
	BaseLib		function		MemoryFence()	(see	the	next	discussion)	should	be	followed	even	if	the	driver	is	not	initially
implemented	for	an	IPF	platform.	The	techniques	shown	here	do	not	have	any	impact	on	the	executable
size	of	a	driver	for	strongly	ordered	processors	such	as	IA32,	X64,	and	EBC.

18.5.2	Weakly	ordered	memory	transactionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

478DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.3	Bus	Master	Read	and	Write	Operations

When	a	DMA	transaction	starts	or	stops,	the	ownership	of	the	DMA	buffer	transitions	from	the
processor	to	the	DMA	bus	master	and	back	to	the	processor.	The	PCI	I/O	Protocol	provides	the		Map()	
and		Unmap()		services	used	to	set	up	and	complete	a	DMA	transaction.

The	implementation	of	the	PCI	Root	Bridge	I/O	Protocol	uses	the	EDK	II	library		BaseLib		function
	MemoryFence()		to	guarantee	all	system	memory	transactions	from	the	processor	are	completed	before	the
DMA	transaction	is	started.	This	prevents	a	DMA	bus	master	reading	from	a	location	in	the	DMA	buffer
before	a	write	transaction	is	flushed	from	the	processor.	Because	this	functionality	is	built	into	the	PCI
Root	Bridge	I/O	Protocol	itself,	the	PCI	driver	writer	need	not	worry	about	bus	master	read/	write
operations.

A	PCI	driver	is	responsible	for	flushing	all	posted	write	data	from	a	PCI	controller	when	a	bus	master
write	operation	is	completed.	First,	the	PCI	driver	should	read	from	a	register	on	the	PCI	controller	to
guarantee	that	all	posted	write	operations	are	flushed	from	the	PCI	controller	and	through	any	PCI-to-
PCI	bridges	between	the	PCI	controller	and	the	PCI	root	bridge.

Because	PCI	drivers	are	polled,	they	typically	read	from	a	status	register	on	the	PCI	controller	to
determine	when	the	bus	master	write	transaction	is	completed.	This	read	operation	is	usually	sufficient
to	flush	the	posted	write	buffers.	The	PCI	driver	must	also	call	the		PciIo->Flush()		service	at	the	end	of	a
bus	master	write	operation.	This	service	flushes	all	the	posted	write	buffers	in	the	system	chipset	and
guarantees	their	commitment	to	system	memory.	The	combination	of	the	read	operation	and	the
	PciIo>Flush()		call	guarantee	that	the	bus	master's	view	of	system	memory	and	the	processor's	view	of
system	memory	are	consistent.

An	example	of	how	a	bus	master	write	transaction	should	be	completed	to	guarantee	the	bus	master's
view	of	system	memory	is	consistent	with	that	of	the	processor	follows.

Example	177-Completing	a	bus	master	write	operation

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT64	Result64

//

//	Call	PollMem()	to	poll	for	Bit	#0	in	MMIO	register	0x24	of	Bar	#1	to	be	set.

//	This	example	shows	polling	a	status	register	to	wait	for	a	bus	master	write

//	transaction	to	complete.

//

Status	=	PciIo->PollMem	(

																		PciIo,																									//	This

																		EfiPciIoWidthUint32,											//	Width

																		1,																													//	BarIndex

																		0x24,																										//	Offset	

																		BIT0,																										//	Mask

																		BIT0,																										//	Value

																		EFI_TIMER_PERIOD_SECONDS	(1),		//	Timeout

																		&Result64																						//	Result

);

if	(EFI_ERROR	(Status))	{

		return	Status;

}

//

//	Call	Flush()	to	flush	all	write	transactions	to	system	memory

//

Status	=	PciIo->Flush	(PciIo);

if	(EFI_ERROR	(Status))	{

18.5.3	Bus	Master	Read	and	Write	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

479DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		return	Status;

}

18.5.3	Bus	Master	Read	and	Write	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

480DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.4	Bus	Master	Common	Buffer	Operations

Bus	master	common	buffer	operations	are	more	complex	to	manage	than	bus	master	read	and	write
operations.	because	both	the	bus	master	and	the	processor	may	simultaneously	access	a	single	region
of	system	memory.	The	memory	ordering	of	PCI	transactions	generated	by	the	PCI	bus	master	is	defined
in	the	PCI	Specification.	However,	different	processors	may	use	different	memory	ordering	models.	As	a
result,	common	buffer	operations	should	only	be	used	when	they	are	absolutely	required.

If	the	common	buffer	memory	region	can	be	accessed	in	a	single	atomic	processor	transaction,	no
hazards	are	present.	If	the	processor	has	deep	write	buffers,	a	write	transaction	may	be	delayed.	The
EDK	II	library		BaseLib		provides	the		MemoryFence()	function	to	force	completion	of	all	processor	transactions.
If	a	memory	region	to	which	the	processor	needs	to	read	or	write	requires	multiple	atomic	processor
transactions,	hazards	may	exist	if	the	operations	are	reordered.	If	the	order	in	which	the	processor
transactions	occur	is	important,	insert	the		MemoryFence()	between	the	processor	transactions.	Use
sparingly,	though.	Inserting	too	many		MemoryFence()		calls	may	degrade	system	performance.	For	strongly
ordered	processors,	the		MemoryFence()		function	is	a	no-op.

A	good	example	of		MemoryFence()	use	is	that	of	a	mailbox	data	structure	used	to	communicate	between
the	processor	and	a	bus	master.	The	mailbox	typically	contains	a	valid	bit	that	must	be	set	by	the
processor	after	the	processor	has	filled	the	contents	of	the	mailbox.	The	bus	master	scans	the	mailbox
to	see	if	the	valid	bit	is	set.	When	the	bus	master	sees	the	valid	bit	is	set,	it	reads	the	rest	of	the
mailbox	contents	and	uses	them	to	perform	an	I/O	operation.	If	the	processor	is	weakly	ordered,	there
is	a	chance	that	the	valid	bit	is	set	before	the	processor	has	written	all	of	the	other	fields	in	the	data
structure.	To	resolve	this	issue,	a		MemoryFence()		call	is	inserted	just	before	and	just	after	the	valid	bit	is
set.

Another	mechanism	used	to	resolve	these	memory-ordering	issues	is	that	of	the		volatile		keyword	in	C
sources.	If	the	data	structure	used	as	a	mailbox	is	declared	in	C	as		volatile	,	the	C	compiler	guarantees
that	all	transactions	to	the		volatile		data	structure	are	strongly	ordered.	It	is	recommended	that	the
	MemoryFence()		call	be	used	instead	of		volatile		data	structures.

18.5.5	GB	Memory	Boundary

32-bit	platforms	may	support	more	than	4	GB	of	system	memory,	but	UEFI	drivers	for	32-bit	platforms
may	only	access	memory	below	4	GB.	The	4	GB	memory	boundary	becomes	more	complex	on	64-bit
platforms.	Also,	some	64-bit	platforms	may	not	map	any	system	memory	in	the	memory	region	below	4
GB.	For	more	information	about	the	4	GB	memory	boundary	on	various	architectures,	see	Section	4.2	of
this	guide.

A	UEFI	driver	should	not	allocate	buffers	from,	or	below,	specific	addresses.	These	types	of	allocations
may	fail	on	different	system	architectures.	Likewise,	the	buffers	used	for	DMA	should	not	be	allocated
from,	or	below,	a	specific	address.	Also,	UEFI	drivers	should	always	use	the	services	of	the	PCI	I/O
Protocol	to	set	up	and	complete	DMA	transactions.

Caution:	It	is	not	legal	to	program	a	system	memory	address	into	a	DMA	bus	master.	Such
programming	may	function	correctly	on	platforms	having	a	one-to-one	mapping	between	system	memory
addresses	and	PCI	DMA	addresses,	but	it	will	not	work	on	platforms	that	remap	DMA	transactions,	nor
on	platforms	using	a	virtual	addressing	mode	for	system	memory	addresses	not	one-to-one	mapped	to
the	PCI	DMA	addresses.

18.5.4	Bus	Master	Common	Buffer	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

481DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	following	sections	contain	code	examples	for	the	different	types	of	PCI	DMA	transactions	supported
by	the	UEFI	Specification.	It	shows	how	to	best	use	the	PCI	I/O	Protocol	services	to	maximize	the	platform
compatibility	of	UEFI	drivers.

EDK	II	contains	an	implementation	of	the	PCI	Root	Bridge	I/O	Protocol	for	a	PC-ATcompatible	chipset,	and
assumes	a	one-to-one	mapping	between	system	memory	and	PCI	DMA	addresses.	It	also	assumes	that
DMA	operations	are	not	supported	above	4	GB.	The	implementation	of	the		Map()		and		Unmap()		services	in
the	PCI	Root	Bridge	I/O	Protocol	handle	DMA	requests	above	4	GB	by	allocating	a	buffer	below	4	GB	and
copying	the	data	to	that	buffer	below	4	GB.

Note:	It	is	important	to	realize	that	these	functions	are	implemented	differently	for	platforms	not
assuming	a	one-to-one	mapping	between	system	memory	addresses	and	PCI	DMA	addresses	or	if	the
platform	can	only	perform	DMA	in	specific	ranges	of	system	memory.

18.5.4	Bus	Master	Common	Buffer	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

482DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.6	DMA	Bus	Master	Read	Operation

The	general	algorithm	for	performing	a	bus	master	read	operation	is	as	follows:

The	processor	initializes	the	contents	of	the	DMA	using	HostAddress.

Call		Map()		with	an	Operation	of		EfiPciOperationBusMasterRead	.

Program	the	DMA	bus	master	with	the	DeviceAddress	returned	by		Map()	.

Program	the	DMA	bus	master	with	the	NumberOfBytes	returned	by		Map()	.

Start	the	DMA	bus	master.

Wait	for	DMA	bus	master	to	complete	the	bus	master	read	operation.

Call		Unmap()	.

The	following	example	shows	a	function	for	performing	a	bus	master	read	operation	on	a	PCI	controller.
The	PCI	controller	is	accessed	through	the	parameter	PciIo.	The	system	memory	buffer	read	by	the	bus
master	is	specified	by	HostAddress	and	Length.	This	function	performs	one	or	more	bus	master	read
operations	until	either	Length	bytes	have	been	read	by	the	bus	master	or	an	error	is	detected.	The	PCI
controller	in	this	example	has	three	MMIO	registers	in	BAR	#1	The	MMIO	register	at	offset	0x10	is	a
status	register	the	function	uses	to	check	if	the	DMA	operation	is	complete	or	not.	The	function	writes
the	start	of	the	DMA	transaction	to	the	MMIO	register	at	offset	0x20	and	the	length	of	the	DMA
transaction	to	the	MMIO	register	at	offset	0x24	The	write	operation	to	offset	0x24	also	starts	the	DMA
read	operation.	The	services	of	the	PCI	I/O	Protocol	used	in	this	example	include		Map()	,		Unmap()	,
	Mem.Write()	,	and		PollMem()	.	The	example	below	is	for	a	32-bit	PCI	bus	master.

A	64-bit	PCI	bus	master	instance	uses	two	32-bit	MMIO	registers	to	specify	the	start	address	and	two
32-bit	MMIO	registers	to	specify	the	length.	If	the	PCI	bus	master	supports	64-bit	DMA	addressing,	the
	EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE		attribute	must	be	set	in	the	Driver	Binding	Protocol		Start()		service	of	the
PCI	driver.

Example	178-Bus	master	read	operation

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

DoBusMasterRead	(

		IN	EFI_PCI_IO_PROTOCOL		*PciIo,

		IN	UINT8																*HostAddress,

		IN	UINTN																*Length

)

{

		EFI_STATUS														Status;

		UINTN																			NumberOfBytes;

		EFI_PHYSICAL_ADDRESS				DeviceAddress;

		VOID																				*Mapping;

		UINT32																		DmaStartAddress;

		UINT64																		ControllerStatus;

		//

		//	Loop	until	the	entire	buffer	specified	by	HostAddress	and

		//	Length	has	been	read	from	the	PCI	DMA	bus	master

		//	do	{

				//

				//	Call	Map()	to	retrieve	the	DeviceAddress	to	use	for	the	bus

				//	master	read	operation.	The	Map()	function	may	not	support

				//	performing	a	DMA	operation	for	the	entire	length,	so	it	may

				//	be	broken	up	into	smaller	DMA	operations.

18.5.6	DMA	Bus	Master	Read	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

483DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				//

				NumberOfBytes	=	*Length;

				Status	=	PciIo->Map	(

																				PciIo,	//	This

																				EfiPciIoOperationBusMasterRead,	//	Operation

																				(VOID	*)HostAddress,												//	HostAddress

																				&NumberOfBytes,																	//	NumberOfBytes

																				&DeviceAddress,																	//	DeviceAddress

																				&Mapping																								//	Mapping

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Write	the	DMA	start	address	to	MMIO	Register	0x20	of	Bar	#1

				//

				DmaStartAddress	=	(UINT32)DeviceAddress;

				Status	=	PciIo->Mem.Write	(

																								PciIo,																						//	This

																								EfiPciIoWidthUint32,								//	Width

																								1,																										//	BarIndex

																								0x20,																							//	Offset

																								1,																										//	Count

																								&DmaStartAddress												//	Buffer

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Write	the	length	of	the	DMA	to	MMIO	Register	0x24	of	Bar	#1

				//	This	write	operation	also	starts	the	DMA	transaction

				//

				Status	=	PciIo->Mem.Write	(

																								PciIo,	//	This

																								EfiPciIoWidthUint32,								//	Width

																								1,																										//	BarIndex

																								0x24,																							//	Offset

																								1,																										//	Count

																								&NumberOfBytes														//	Buffer

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Call	PollMem()	to	poll	for	Bit	#0	in	MMIO	register	0x10	of

				//	Bar	#1

				//

				Status	=	PciIo->PollMem	(

																				PciIo,																										//	This

																				EfiPciIoWidthUint32,												//	Width

																				1,																														//	BarIndex

																				0x10,																											//	Offset

																				BIT0,																											//	Mask

																				BIT0,																											//	Value

																				EFI_TIMER_PERIOD_SECONDS	(1),			//	Timeout

																				&ControllerStatus	//	Result

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Call	Unmap()	to	complete	the	bus	master	read	operation

				//

				Status	=	PciIo->Unmap	(PciIo,	Mapping);

				if	(EFI_ERROR	(Status))	{

				return	Status;

				}

18.5.6	DMA	Bus	Master	Read	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

484DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				//

				//	Update	the	HostAddress	and	Length	remaining	based	upon	the

				//	number	of	bytes	transferred

				//

				HostAddress	+=	NumberOfBytes;

				*Length	-=	NumberOfBytes;

		}	while	(*Length	!=	0);

		return	Status;

}

18.5.6	DMA	Bus	Master	Read	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

485DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.7	DMA	Bus	Master	Write	Operation

The	general	algorithm	for	performing	a	bus	master	write	operation	follows:

Call		Map()		with	an	Operation	of		EfiPciOperationBusMasterWrite	.

Program	the	DMA	bus	master	with	the	DeviceAddress	returned	by		Map()	.	-	Program	the	DMA	bus
master	with	the	NumberOfBytes	returned	by		Map()	.

Start	the	DMA	bus	master.

Wait	for	the	DMA	bus	master	to	complete	the	bus	master	write	operation.

Read	any	register	on	the	PCI	controller	to	flush	all	PCI	write	buffers	(see	the	PCI	Specification,
Section	3.2.5.2).	In	many	cases,	this	read	is	being	done	for	other	purposes.	If	not,	add	an	extra
read.

Call		Flush()	.	-	Call		Unmap()	.

The	processor	may	read	the	contents	of	the	DMA	buffer	using	HostAddress.

The	following	example	shows	a	function	to	perform	a	bus	master	write	operation	on	a	PCI	controller.	The
PCI	controller	is	accessed	through	the	parameter	PciIo.	The	system	memory	buffer	written	by	the	bus
master	is	specified	by	HostAddress	and	Length.	This	function	performs	one	or	more	bus	master	write
operations	until	either	Length	bytes	have	been	written	by	the	bus	master	or	an	error	is	detected.

The	PCI	controller	in	this	example	has	three	MMIO	registers	in	BAR	#1	The	MMIO	register	at	offset	0x10	is
a	status	register	the	function	uses	to	check	whether	the	DMA	operation	is	complete	or	not.	The
function	writes	the	start	of	the	DMA	transaction	to	the	MMIO	register	at	offset	0x20	and	the	length	of
the	DMA	transaction	to	the	MMIO	register	at	offset	0x24	The	write	operation	to	offset	0x24	also	starts
the	DMA	write	operation.	The	services	of	the	PCI	I/O	Protocol	used	in	this	example	include		Map()	,		Unmap()	,
	Mem.Write()	,		PollMem()	,	and		Flush()	.

A	32-bit	PCI	bus	master	is	used	for	this	example.	A	64-bit	PCI	bus	master	would	involve	two	32-bit	MMIO
registers	to	specify	the	start	address	and	two	32-bit	MMIO	registers	to	specify	the	length.	If	the	PCI	bus
master	supports	64-bit	DMA	addressing,	the		EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE		attribute	must	be	set	in	the
Driver	Binding	Protocol		Start()		service	of	the	PCI	driver.

Example	179-Bus	master	write	operation

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

DoBusMasterWrite	(

		IN	EFI_PCI_IO_PROTOCOL		*PciIo,

		IN	UINT8																*HostAddress,

		IN	UINTN																*Length

)

{

		EFI_STATUS														Status;

		UINTN																			NumberOfBytes;

		EFI_PHYSICAL_ADDRESS				DeviceAddress;

		VOID																				*Mapping;

		UINT32																		DmaStartAddress;

		UINT64																		ControllerStatus;

		//

		//	Loop	until	the	entire	buffer	specified	by	HostAddress	and

		//	Length	has	been	written	by	the	PCI	DMA	bus	master

		//	do	{

				//

18.5.7	DMA	Bus	Master	Write	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

486DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				//	Call	Map()	to	retrieve	the	DeviceAddress	to	use	for	the	bus

				//	master	write	operation.	The	Map()	function	may	not	support

				//	performing	a	DMA	operation	for	the	entire	length,	so	it	may

				//	be	broken	up	into	smaller	DMA	operations.

				//

				NumberOfBytes	=	*Length;

				Status	=	PciIo->Map	(

																				PciIo,																												//	This

																				EfiPciIoOperationBusMasterWrite,		//	Operation

																				(VOID	*)HostAddress,														//	HostAddress

																				&NumberOfBytes,																			//	NumberOfBytes

																				&DeviceAddress,																			//	DeviceAddress

																				&Mapping																										//	Mapping

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Write	the	DMA	start	address	to	MMIO	Register	0x20	of	Bar	#1

				//

				DmaStartAddress	=	(UINT32)DeviceAddress;

				Status	=	PciIo->Mem.Write	(

																								PciIo,																								//	This

																								EfiPciIoWidthUint32,										//	Width

																								1,																												//	BarIndex

																								0x20,																									//	Offset

																								1,																												//	Count

																								&DmaStartAddress														//	Buffer

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Write	the	length	of	the	DMA	to	MMIO	Register	0x24	of	Bar	#1

				//	This	write	operation	also	starts	the	DMA	transaction

				//

				Status	=	PciIo->Mem.Write	(

																								PciIo,																								//	This

																								EfiPciIoWidthUint32,										//	Width

																								1,																												//	BarIndex

																								0x24,																									//	Offset

																								1,																												//	Count

																								&NumberOfBytes																//	Buffer

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Call	PollMem()	to	poll	for	Bit	#0	in	MMIO	register	0x10	of	Bar	#1

				//	The	MMIO	read	operations	performed	by	PollMem()	also	flush	all	posted

				//	writes	from	the	PCI	bus	master	and	through	PCI-to-PCI	bridges.

				//

				Status	=	PciIo->PollMem	(

																				PciIo,																												//	This

																				EfiPciIoWidthUint32,														//	Width

																				1,																																//	BarIndex

																				0x10,																													//	Offset

																				BIT0,																													//	Mask

																				BIT0,																													//	Value

																				EFI_TIMER_PERIOD_SECONDS	(1),					//	Timeout

																				&ControllerStatus																	//	Result

);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Call	Flush()	to	flush	all	write	transactions	to	system	memory

				//

18.5.7	DMA	Bus	Master	Write	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

487DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

				Status	=	PciIo->Flush	(PciIo);

				if	(EFI_ERROR	(Status))	{

						return	Status;

				}

				//

				//	Call	Unmap()	to	complete	the	bus	master	write	operation

				//

				Status	=	PciIo->Unmap	(PciIo,	Mapping);

				if	(EFI_ERROR	(Status))	{

				return	Status;

				}

				//

				//	Update	the	HostAddress	and	Length	remaining	based	upon	the

				//	number	of	bytes	transferred

				//

				HostAddress	+=	NumberOfBytes;

				*Length	-=	NumberOfBytes;

		}	while	(*Length	!=	0);

		return	Status;

}

18.5.7	DMA	Bus	Master	Write	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

488DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.5.8	DMA	Bus	Master	Common	Buffer	Operation

A	PCI	driver	uses	common	buffers	when	a	memory	region	requires	simultaneous	access	by	both	the
processor	and	a	PCI	bus	master.	A	common	buffer	is	typically	allocated	in	the		Start()		service	and	freed
in	the		Stop()		service.	This	mechanism	is	very	different	from	the	bus	master	read	and	bus	master	write
operations	where	the	PCI	driver	transfers	the	ownership	of	a	memory	region	from	the	processor	to	the
bus	master	and	back	to	the	processor.

The	general	algorithm	for	allocating	a	common	buffer	in	the		Start()		follows:

Call		AllocateBuffer()		to	allocate	a	common	buffer.

Call		Map()		with	an	Operation	of		EfiPciOperationBusMasterCommonBuffer	.

Program	the	DMA	bus	master	with	the	DeviceAddress	returned	by		Map()	.

The	common	buffer	can	now	be	accessed	equally	by	the	processor	(using	HostAddress)	and	the
DMA	bus	master	(using	DeviceAddress)	.

The	general	algorithm	for	freeing	a	common	buffer	in	the		Stop()		service	is	as	follows:

Call		Unmap()	.	-	Call		FreeBuffer()	.

The	example	below	shows	an	example	function	the		Start()		service	calls	to	set	up	a	common	buffer
operation	for	a	specific	PCI	controller.	The	function	accesses	the	PCI	controller	through	the	PciIo
parameter.	The	function	allocates	a	common	buffer	of	Length	bytes	and	returns	the	address	of	the
common	buffer	in	HostAddress.

A	mapping	is	created	for	the	common	buffer	and	returned	in	the	parameter	Mapping.	The	MMIO	register
at	offset	0x18	of	BAR	#1	is	the	start	address	of	the	common	buffer	from	the	PCI	controller's	perspective.
The	services	of	the	PCI	I/O	Protocol	used	in	this	example	include		AllocateBuffer()	,		Map()	,	and		Mem.Write()	.
This	example	is	for	a	32-bit	PCI	bus	master.	A	64-bit	PCI	bus	master	requires	two	32-bit	MMIO	registers	to
specify	the	start	address,	and	the		EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE		attribute	must	be	set	in	the	Driver
Binding	Protocol		Start()		service	of	the	PCI	driver.

Example	180-Allocate	bus	master	common	buffer

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS

EFIAPI

SetupCommonBuffer	(

		IN		EFI_PCI_IO_PROTOCOL		*PciIo,

		IN		UINT8																**HostAddress,

		IN		UINTN																Length,

		OUT	VOID																	**Mapping

)

{

		EFI_STATUS															Status;

		UINTN																				NumberOfBytes;

		EFI_PHYSICAL_ADDRESS					DeviceAddress;

		UINT32																			DmaStartAddress;

		//

		//	Allocate	a	common	buffer	from	anywhere	in	system	memory	of

		//	type	EfiBootServicesData.

		//

		Status	=	PciIo->AllocateBuffer	(

																				PciIo,																																		//	This

																				AllocateAnyPages,																							//	Type

																				EfiBootServicesData,																				//	MemoryType	EFI_SIZE_TO_PAGES	

																				(Length),																															//	Pages

																				(VOID	**)HostAddress,																			//	HostAddress

18.5.8	DMA	Bus	Master	Common	Buffer	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

489DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																				0																																							//	Attributes

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Call	Map()	to	retrieve	the	DeviceAddress	to	use	for	the	bus

		//	master	common	buffer	operation.	If	the	Map()	function	cannot

		//	support	a	DMA	operation	for	the	entire	length,	then	return	an

		//	error.

		//

		NumberOfBytes	=	Length;

		Status	=	PciIo->Map	(

																				PciIo,																																		//	This

																				EfiPciIoOperationBusMasterCommonBuffer,	//	Operation

																				(VOID	*)*HostAddress,																			//	HostAddress

																				&NumberOfBytes,																									//	NumberOfBytes

																				&DeviceAddress,																									//	DeviceAddress

																				Mapping																																	//	Mapping

);

		if	(!EFI_ERROR	(Status)	&&	NumberOfBytes	!=	Length)	{

				PciIo->Unmap	(PciIo,	*Mapping);

				Status	=	EFI_OUT_OF_RESOURCES;

		}

		if	(EFI_ERROR	(Status))	{

				PciIo->FreeBuffer	(

													PciIo,

													EFI_SIZE_TO_PAGES	(Length),

													(VOID	*)*HostAddress

);

				return	Status;

		}

		//

		//	Write	the	DMA	start	address	to	MMIO	Register	offset	0x18	of	Bar	#1

		//

		DmaStartAddress	=	(UINT32)DeviceAddress;

		Status	=	PciIo->Mem.Write	(

																								PciIo,																													//	This

																								EfiPciIoWidthUint32,															//	Width

																								1,																																	//	BarIndex

																								0x18,																														//	Offset

																								1,																																	//	Count

																								&DmaStartAddress																			//	Buffer

);

		if	(EFI_ERROR	(Status))	{

				PciIo->Unmap	(PciIo,	*Mapping);

				PciIo->FreeBuffer	(

													PciIo,

													EFI_SIZE_TO_PAGES	(Length),

													(VOID	*)*HostAddress

);

		}

		return	Status;

}

This	example	shows	a	function	the		Stop()		service	calls	to	free	a	common	buffer	for	a	PCI	controller.	The
function	accesses	the	PCI	controller	through	the	services	of	the	PciIo	parameter	and	uses	them	to	free
the	common	buffer	specified	by	HostAddress	and	Length.	This	function	undoes	the	mapping	and	frees
the	common	buffer.	The	services	of	the	PCI	I/O	Protocol	used	in	this	example	include		Unmap()		and
	FreeBuffer()	.

Example	181-Free	bus	master	common	buffer

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

18.5.8	DMA	Bus	Master	Common	Buffer	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

490DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

TearDownCommonBuffer	(

		IN	EFI_PCI_IO_PROTOCOL		*PciIo,

		IN	UINT8																*HostAddress,

		IN	UINTN																Length,

		IN	VOID																	*Mapping

)

{

		EFI_STATUS		Status;

		Status	=	PciIo->Unmap	(PciIo,	Mapping);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		Status	=	PciIo->FreeBuffer	(

																				PciIo,

																				EFI_SIZE_TO_PAGES	(Length),

																				(VOID	*)HostAddress

);

		return	Status;

}

18.5.8	DMA	Bus	Master	Common	Buffer	OperationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

491DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6	PCI	Optimization	Techniques

Several	techniques	can	be	used	to	reduce	size	and	optimize	the	performance	of	a	UEFI	Driver	requiring
access	to	PCI	related	resources.	The	following	sections	show	examples	of	these	techniques	applicable
to	the	services	provided	by	the	PCI	I/O	Protocol.

18.6	PCI	Optimization	TechniquesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

492DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.1	PCI	I/O	fill	operations

The	following	examples	show	ways	to	fill	video	frame	buffer	with	zeros	on	a	PCI	video	controller.	The
frame	buffer	is	1	MB	of	memory-mapped	I/O	accessed	through	BAR	#0	of	the	PCI	video	controller.	The
following	four	examples	of	performing	this	operation	are	shown	from	slowest	to	fastest:

The	following	two	methods	can	significantly	increase	performance	of	a	UEFI	driver	by	taking	advantage
of	the	fill	operations	to	eliminate	loops	and	writing	to	a	PCI	controller	at	the	largest	possible	size.

Example	182-PCI	I/O	8-bit	fill	with	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	Color8;

UINTN	Index;

//

//	This	is	the	slowest	method.	It	performs	SIZE_1MB	calls	through	PCI	I/O	and

//	writes	to	the	frame	buffer	8	bits	at	a	time.

//

Color8	=	0;

for	(Index	=	0;	Index	<	SIZE_1MB;	Index++)	{

		Status	=	PciIo->Mem.Write	(

																								PciIo,																							//	This

																								EfiPciIoWidthUint8,										//	Width

																								0,																											//	BarIndex

																								Index,																							//	Offset

																								1,																											//	Count

																								&Color8																						//	Buffer

);

}

Example	183-PCI	I/O	32-bit	fill	with	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT32	Color32;

UINTN	Index;

//

//	This	is	the	slowest	method.	It	performs	SIZE_1MB	calls	through	PCI	I/O	and

//	writes	to	the	frame	buffer	8	bits	at	a	time.

//

Color32	=	0;

for	(Index	=	0;	Index	<	SIZE_1MB;	Index	+=	4)	{

		Status	=	PciIo->Mem.Write	(

																								PciIo,																							//	This

																								EfiPciIoWidthUint32,									//	Width

																								0,																											//	BarIndex

																								Index,																							//	Offset

																								1,																											//	Count

																								&Color32																					//	Buffer

);

}

Example	184-PCI	I/O	8-bit	fill	without	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

18.6.1	PCI	I/O	fill	operationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

493DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	Color8;

//

//	This	is	much	better.	It	performs	1	call	to	PCI	I/O,	but	it	is	writing	the

//	frame	buffer	8	bits	at	a	time.

//

Color8	=	0;

Status	=	PciIo->Mem.Write	(

																						PciIo,																								//	This

																						EfiPciIoWidthFillUint8,							//	Width

																						0,																												//	BarIndex

																						0,																												//	Offset

																						SIZE_1MB,																					//	Count

																						&Color8																							//	Buffer

);

Example	185-PCI	I/O	32-bit	fill	without	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT32	Color32;

//

//	This	is	the	best	method.	It	performs	1	call	to	PCI	I/O,	and	it	is	writing

//	the	frame	buffer	32	bits	at	a	time.

//

Color32	=	0;

Status	=	PciIo->Mem.Write	(

																						PciIo,																								//	This

																						EfiPciIoWidthFillUint32,						//	Width

																						0,																												//	BarIndex

																						0,																												//	Offset

																						SIZE_1MB	/	sizeof	(UINT32),			//	Count

																						&Color32																						//	Buffer

);

18.6.1	PCI	I/O	fill	operationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

494DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.2	PCI	I/O	FIFO	operations

The	examples	below	show	an	example	of	writing	a	sector	to	an	IDE	controller.	The	IDE	controller	uses	a
single	16-bit	I/O	port	as	a	FIFO	for	reading	and	writing	sector	data.	The	first	example	calls	the	PCI	I/O
Protocol	256	times	to	write	the	sector.	The	second	example	calls	the	PCI	I/O	Protocol	once	to	perform
the	same	operation,	providing	better	performance	if	compiled	with	an	EBC	compiler.	This	example
applies	equally	to	FIFO	read	operations.

Example	186-PCI	I/O	FIFO	using	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINTN	Index;

UINT16	Buffer[256];

//

//	This	is	the	slowest	method.	It	performs	256	PCI	I/O	calls	to	write	256

//	16-bit	values	to	the	IDE	controller.

//

for	(Index	=	0;	Index	<	256;	Index++)	{

		Status	=	PciIo->Io.Write	(

																					PciIo,	//	This

																					EfiPciIoWidthUint16,										//	Width

																					EFI_PCI_IO_PASS_THROUGH_BAR,		//	BarIndex

																					0x1F0,																								//	Offset

																					1,																												//	Count

																					&Buffer[Index]																//	Buffer

);

}

Example	187-PCI	I/O	FIFO	without	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT16	Buffer[256];

//

//	This	is	the	fastest	method.	It	uses	a	loop	to	write	256	16-bit	values	to

//	the	IDE	controller.

//

Status	=	PciIo->Io.Write	(

																					PciIo,																								//	This

																					EfiPciIoWidthFifoUint16,						//	Width

																					EFI_PCI_IO_PASS_THROUGH_BAR,		//	BarIndex

																					0x1F0,																								//	Offset

																					256,																										//	Count

																					Buffer																								//	Buffer

);

18.6.2	PCI	I/O	FIFO	operationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

495DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.3	PCI	I/O	CopyMem()	Operations

The	following	examples	show	how	scrolling	a	frame	buffer	by	different	methods	can	provide	performance
improvements.	In	the	first,	the	scroll	operation	is	performed	using	a	loop	to	move	one	scan	line	at	a
time.	The	PCI	I/O	Protocol		CopyMem()		service	is	similar	to	the	UEFI	Boot	Service		CopyMem()	,	except	the	PCI	I/O
Protocol	operates	on	PCI	MMIO	ranges	described	by	PCI	MMIO	BARs.

In	general,	the	PCI	I/O	Protocol	should	be	used,	whenever	possible,	to	eliminate	loops	in	the	UEFI	Driver.
This	example	assumes	a	1	MB	frame	buffer	MMIO,	accessed	through	BAR	#0	of	the	PCI	graphics
controller,	with	a	screen	800	pixels	wide,	and	32	bits	per	pixel.

In	the	second	example,	the	scroll	operation	is	performed	using	a	single	PCI	I/O	Protocol	call	to		CopyMem()	
to	produce	the	exact	same	result.	The	second	example	executes	significantly	faster	if	the	UEFI	Driver	is
compiled	with	an	EBC	compiler	because	the	loop	has	been	removed	from	the	UEFI	Driver.

Example	188-Scroll	frame	buffer	using	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINTN	ScanLineWidth;

UINTN	Index;

UINT32	Value;

//

//	This	is	the	slowest	method	that	moves	one	pxiel	at	a	time

//	through	the	PCI	I/O	protocol.

//

ScanLineWidth	=	800	*	sizeof	(UINT32);

for	(Index	=	ScanLineWidth;	Index	<	SIZE_1MB;	Index	+=	4)	{

		Status	=	PciIo->Mem.Read	(

																								PciIo,																																			//	This

																								EfiPciIoWidthUint32,																					//	Width

																								0,																																							//	BarIndex

																								Index,																																			//	Offset

																								1,																																							//	Count

																								&Value																																			//	Buffer

);

		Status	=	PciIo->Mem.Write	(

																								PciIo,																																			//	This

																								EfiPciIoWidthUint32,																					//	Width

																								0,																																							//	Bar	Index

																								Index	-	ScanLineWidth,																			//	Offset

																								1,																																							//	Count

																								&Value																																			//	Buffer

);

}

Example	189-Scroll	frame	buffer	without	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINTN	ScanLineWidth;

//

//	This	is	the	faster	method	that	makes	a	single	call	to	CopyMem().

//

ScanLineWidth	=	800	*	sizeof	(UINT32);

Status	=	PciIo->CopyMem	(

																		PciIo,																																								//	This

18.6.3	PCI	I/O	CopyMem()	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

496DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																		EfiPciIoWidthUint32,																										//	Width

																		0,																																												//	DestBarIndex

																		0,																																												//	DestOffset

																		0,																																												//	SrcBarIndex

																		ScanLineWidth,																																//	SrcOffset

																		(SIZE_1MB	/	sizeof	(UINT32))	-	ScanLineWidth		//	Count

);

18.6.3	PCI	I/O	CopyMem()	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

497DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.4	PCI	Configuration	Header	Operations

The	following	three	examples	demonstrate	different	methods	to	read	a	PCI	configuration	header	from	a
PCI	controller,	ordered	lowest	to	highest	in	performance.	The	first	example	uses	a	loop	to	read	the
header	8	bits	at	a	time;	the	second	uses	a	single	call	to	read	the	entire	header	8	bits	at	a	time	and	the
third	uses	a	single	call	to	read	the	header	32	bits	at	a	time.

Example	190-Read	PCI	configuration	using	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

PCI_TYPE00	Pci;

UINT32	Index;

//

//	Loop	reading	the	64-byte	PCI	configuration	header	8	bits	at	a	time

//

for	(Index	=	0;	Index	<	sizeof	(Pci);	Index++)	{

		Status	=	PciIo->Pci.Read	(

																								PciIo,																												//	This

																								EfiPciIoWidthUint8,															//	Width

																								Index,																												//	Offset

																								1,																																//	Count

																								(UINT8	*)(&Pci)	+	Index											//	Buffer

);

}

Example	191-Read	PCI	configuration	32	bits	at	a	time

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

PCI_TYPE00	Pci;

//

//	This	is	a	faster	method	that	removes	the	loop	and	reads	8	bits	at	a	time.

//

Status	=	PciIo->Pci.Read	(

																						PciIo,																														//	This

																						EfiPciIoWidthUint8,																	//	Width

																						0,																																		//	Offset	

																						sizeof	(Pci),																							//	Count	

																						&Pci																																//	Buffer

);

Example	192-Read	PCI	configuration	32	bits	at	a	time

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

PCI_TYPE00	Pci;

//

//	This	is	the	fastest	method	that	makes	a	single	call	to	PCI	I/O	and	reads	the

//	PCI	configuration	header	32	bits	at	a	time.

18.6.4	PCI	Configuration	Header	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

498DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

Status	=	PciIo->Pci.Read	(

																						PciIo,																														//	This

																						EfiPciIoWidthUint32,																//	Width

																						0,																																		//	Offset	

																						sizeof	(Pci)	/	sizeof	(UINT32),					//	Count	

																						&Pci																																//	Buffer

);

18.6.4	PCI	Configuration	Header	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

499DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.5	PCI	I/O	MMIO	Buffer	Operations

The	following	examples	demonstrate	how	writing	to	a	PCI	memory-mapped	I/O	buffer	can	dramatically
affect	the	performance	of	a	UEFI	Driver.	In	the	first	example,	a	loop	is	used	with	8-bit	operations.	In	the
second,	the	same	operation	is	done	with	a	single	call.	This	example	is	based	on	writing	to	a	1MB	frame
buffer	by	a	UEFI	Driver	for	a	graphics	controller.

Note:	The	examples	shown	here	apply	equally	well	to	reading	a	bitmap	from	the	frame	buffer	of	a	PCI
video	controller	using	the		PciIo->Mem.Read()		function.

Example	193-Write	1MB	Frame	Buffer	using	a	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	gBitMap[SIZE_1MB];

UINTN	Index;

//

//	Loop	writing	a	1	MB	bitmap	to	the	frame	buffer	8	bits	at	a	time.

//

for	(Index	=	0;	Index	<	sizeof	(gBitMap);	Index++)	{

		Status	=	PciIo->Mem.Write	(

																								PciIo,	//	This

																								EfiPciIoWidthUint8,	//	Width

																								0,	//	BarIndex

																								Index,	//	Offset

																								1,	//	Count

																								&gBitMap[Index]	//	Buffer

);

}

Example	194-Write	1MB	Frame	Buffer	with	no	loop

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT8	gBitMap[SIZE_1MB];

//

//	Faster	method	that	removes	the	loop	and	writes	32	bits	at	a	time.

//

Status	=	PciIo->Mem.Write	(

																						PciIo,	//	This

																						EfiPciIoWidthUint32,	//	Width

																						0,	//	BarIndex

																						0,

																						//	Offset	sizeof	(gBitMap)	/	sizeof	(UINT32),

																						//	Count	gBitMap

																						//	Buffer

);

18.6.5	PCI	I/O	MMIO	Buffer	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

500DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.6	PCI	I/O	Polling	Operations

These	same	types	of	optimization	can	be	applied	to	polling	as	well.	In	the	following	examples,	two
different	polling	methods	are	shown:

A	loop	with	10	μs	stalls	to	wait	up	to	1	minute

A	single	call	to	PCI	I/O	protocol	to	perform	the	entire	operation

These	types	of	polling	operations	are	usually	performed	when	a	driver	is	waiting	for	the	hardware	to
complete	an	operation	with	the	completion	status	indicated	by	a	bit	changing	state	in	an	I/O	port	or	a
memory-mapped	I/O	port.	The	examples	below	poll	offset	0x20	in	BAR	#1	for	bit	0	to	change	from	0	to	1.

The		PollIo()		and		PollMem()		functions	in	the	PCI	I/O	Protocol	are	very	flexible	and	can	simplify	the
operation	of	polling	for	bits	to	change	state	in	status	registers.

Example	195-Using	Mem.Read()	and	Stall()	to	poll	for	1	second

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINTN	TimeOut;

UINT8	Result8;

//

//	Loop	for	up	to	1	second	waiting	for	Bit	#0	in

//	register	0x20	of	BAR	#1	to	be	set.

//

for	(TimeOut	=	0;	TimeOut	<	1000000;	TimeOut	+=	10)	{

		Status	=	PciIo->Mem.Read	(

																								PciIo,	//	This

																								EfiPciIoWidthUint8,	//	Width

																								1,	//	BarIndex

																								0x20,	//	Offset

																								1,	//	Count

																								&Result8	//	Value

);

		if	((Result8	&	BIT0)	==	BIT0)	{

				return	EFI_SUCCESS;

		}

		gBS->Stall	(10);

}

return	EFI_TIMEOUT;

Example	196-Using	PollIo()	to	poll	for	1	second

#include	<Uefi.h>

#include	<Protocol/PciIo.h>

#include	<Library/UefiLib.h>

EFI_STATUS	Status;

EFI_PCI_IO_PROTOCOL	*PciIo;

UINT64	Result64;

//

//	Call	PollIo()	to	poll	for	Bit	#0	in	register	0x20	of	Bar	#1	to	be	set.

//

Status	=	PciIo->PollIo	(

																		PciIo,	//	This

																		EfiPciIoWidthUint8,	//	Width

																		1,	//	BarIndex

																		0x20,	//	Offset

																		BIT0,	//	Mask

																		BIT0,	//	Value

																		EFI_TIMER_PERIOD_SECONDS	(1),	//	Timeout

																		&Result64	//	Result

);

18.6.6	PCI	I/O	Polling	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

501DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.6.6	PCI	I/O	Polling	OperationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

502DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.7	PCI	Option	ROM	Images

The	EDK	II	provides	tools	to	aide	in	the	development	of	UEFI	drivers	for	PCI	adapters.	Once	UEFI	Driver(s)
for	a	PCI	adapter	are	built,	they	need	to	be	packaged	into	PCI	option	ROM	compatible	image	format.
UEFI	drivers	stored	in	PCI	option	ROMs	are	automatically	loaded	and	executed	by	the	PCI	bus	driver
during	PCI	enumeration.

The	EDK	II	tools	provide	two	methods	to	generate	a	PCI	Option	ROM	image.	These	are	the		EfiRom		utility
and	the	EDK	II	INF/FDF	file	syntax.

Using	the		build		command,	each	allows	a	UEFI	Driver	developer	to	describe	how	UEFI	Drivers	should	be
packaged	into	a	PCI	Option	ROM	image	as	part	of	the	standard	EDK	II	build	process.

Use	either	PCI	Option	ROM	image	with	a	PROM	programmer	or	a	flash	update	utility	to	reprogram	the	PCI
option	ROM	container	on	a	PCI	adapter.

18.7	PCI	Option	ROM	ImagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

503DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.7.1	EfiRom	Utility

The		EfiRom		utility	is	included	with	the	standard	set	of	tools	from	the	EDK	II	project.	A	pre-built	binary	of
	EfiRom		is	in	the		BaseTools/Bin/Win32		directory	in	the	EDK	II		WORKSPACE	.	This	directory,	with	pre-built	binaries,	is
automatically	added	to	the	path	after	setting	up	the	EDK	II	environment,	so		EfiRom		is	always	available.

The	sources	to		EfiRom		are	in	the		BaseTools/Source/C/EfiRom		directory	so	the	utility	can	be	built	for	any
operating	system	supporting	the	EDK	II.

Use	the		EfiRom		utility	to	build	PCI	Option	ROM	Images	containing	UEFI	Drivers,	PC	BIOS	legacy	option	ROM
images,	or	both,	in	a	format	conforming	to	the	PCI	2.3	Specification	and	PCI	3.0	Specification.	The
	EfiRom		utility	also	allows	UEFI	Drivers	to	be	compressed	using	the	UEFI	compression	algorithm	defined	in
the	Compression	Algorithm	Specification	section	of	the	UEFI	Specification.

The		EfiRom		utility	performs	some	rudimentary	checks	on	the	UEFI	Drivers	to	verify	they	are	valid	PE/COFF
images	as	defined	by	the	Microsoft	Portable	Executable	and	Common	Object	File	Format	Specification.	If
any	of	these	checks	fail,	the	utility	aborts	without	creating	the	output	ROM	image	file.	For	example,	the
following	checks	are	performed	on	UEFI	Drivers:

Verification	that	the	DOS	stub	magic	value	is		0x5A4D	
Verification	that	the	PE	signature	is	"	PE\0\0	"
The		EfiRom		utility	also	performs	rudimentary	checking	of	PC	BIOS	legacy	option	ROM	images.	If	any	of
these	checks	fail,	the	utility	aborts	without	creating	the	output	ROM	image	file.	The	following	checks
are	performed	on	PC	BIOS	legacy	option	ROMs:
Verification	that	the	signature	of	the	option	ROM	header	is	0xAA55
Verification	that	the	offset	to	the	PCI	data	structure	is	within	the	range	of	the	file	size.
Verification	that	the	signature	of	the	PCI	data	structure	is	"PCIR".

The	following	example	shows	the	help	information	from	the		EfiRom		utility	that	is	displayed	when	the	utility
is	run	with	no	input	parameters,	the		-h		option	or	the		-help		option.

Example	197-EfiRom	Utility	Help

	Usage:	EfiRom	-f	VendorId	-i	DeviceId	[options]	[file	name<s>]

	Copyright	(c)	2007	-	2011,	Intel	Corporation.	All	rights	reserved.

	Options:

	-o	FileName,	--output	FileName

	File	will	be	created	to	store	the	output	content.

	-e	EfiFileName

	EFI	PE32	image	files.

	-ec	EfiFileName

	EFI	PE32	image	files	and	will	be	compressed.

	-b	BinFileName

	Legacy	binary	files.

	-l	ClassCode

	Hex	ClassCode	in	the	PCI	data	structure	header.	-r	Rev	Hex	Revision	in	the	PCI	data	structure	header.

	-n	Not	to	automatically	set	the	LAST	bit	in	the	last	file.

	-f	VendorId

	Hex	PCI	Vendor	ID	for	the	device	OpROM,	must	be	specified

	-i	DeviceId

	Hex	PCI	Device	ID	for	the	device	OpROM,	must	be	specified	-p,	--pci23

	Default	layout	meets	PCI	3.0	specifications	specifying	this	flag	will	for	a	PCI	2.3	layout.

	-d,	--dump

	Dump	the	headers	of	an	existing	option	ROM	image.

	-v,	--verbose

	Turn	on	verbose	output	with	informational	messages.	--version	Show	program's	version	number	and	exit.

	-h,	--help

	Show	this	help	message	and	exit.

	-q,	--quiet

	Disable	all	messages	except	FATAL	ERRORS.

	--debug	[#,0-9]

	Enable	debug	messages	at	level	#.

18.7.1	EfiRom	UtilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

504DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Examples	of	generating	an	Option	ROM	image	using	various	options	provided	by	the		EfiRom		utility	follow:

	Generate	a	PCI	Option	ROM	image	with	a	single	UEFI	binary	files.		The	output	filename	is	not	specified	in	command
line,	so	the	output	filename	is		File2.rom	.	The	output	filename	is	the	same	as	the	first	input	filename	with
the	extension		.rom	.	When	UEFI	binary	files	are	specified,	the	VendorId	flag		-f		and	DeviceId	flag		-i	
must	be	specified.

EfiRom	-f	0xABCD	-i	0x1234	-e	File2.efi

This	example	shows	the	output	of	the		EfiRom		utility	then	the		-d		option	is	used	to	display	the	headers
from	the	PCI	Option	ROM	image	generated	in	the	previous	example.

Example	198-EfiRom	Utility	Dump	Feature

Image	1	--	Offset	0x0

ROM	header	contents

Signature	0xAA55

PCIR	offset	0x001C	Signature	PCIR

Vendor	ID	0xABCD

Device	ID	0x1234

Length	0x001C

Revision	0x0003	DeviceListOffset	0x00

Class	Code	0x000000	Image	size	0x1800

Code	revision:	0x0000

MaxRuntimeImageLength	0x00

ConfigUtilityCodeHeaderOffset	0x00

DMTFCLPEntryPointOffset	0x00

Indicator	0x80	(last	image)

Code	type	0x03	(EFI	image)

EFI	ROM	header	contents

EFI	Signature	0x0EF1

Compression	Type	0x0000	(not	compressed)

Machine	type	0x014C	(IA32)

Subsystem	0x000B	(EFI	boot	service	driver)

EFI	image	offset	0x0038	(@0x38)

Generate	a	PCI	Option	ROM	image	with	two	UEFI	binary	files	and	one	PC	BIOS	legacy	option
ROM	binary	file.

The	output	filename	is	not	specified	in	command	line	so	the	output	filename	is		File1.rom	.	The	output
filename	is	the	same	as	the	first	input	filename	with	the	extension		.rom	.	When	UEFI	binary	files	are
specified,	the	VendorId	flag		-f		and	DeviceId	flag		-i		must	be	specified.

EfiRom	-f	0xABCD	-i	0x1234	-e	File1.efi	File2.efi	-b	Legacy.bin

	Generate	a	PCI	Option	ROM	image	with	two	UEFI	binary	files	and	one	PC	BIOS	legacy	option	ROM	binary	file	with	the	output	filename

specified	on	the	command	line	as			File.rom	

When	UEFI	binary	files	are	specified,	the	VendorId	flag		-f		and	DeviceId	flag		-i		must	be	specified.

EfiRom	-o	File.rom	-f	0xABCD	-i	0x1234	-e	File1.efi	File2.efi	-b	Legacy.bin

Generate	a	PCI	Option	ROM	image	with	two	UEFI	binary	files	and	one	PC	BIOS	legacy	option
ROM	binary	file.

The	output	filename	is	specified	in	command	line	as		Compressed.rom	.	UEFI	binary	files	are	compressed
using	the	UEFI	Compression	algorithm.	When	UEFI	binary	files	are	specified,	the	VendorId	flag		-f		and
DeviceId	flag		-i		must	be	specified.

EfiRom	-o	Compressed.rom	-f	0xABCD	-i	0x1234	-ec	File1.efi	File2.efi	-b	Legacy.bin

18.7.1	EfiRom	UtilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

505DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.7.1	EfiRom	UtilityEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

506DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.7.2	Using	INF	File	to	Generate	PCI	Option	ROM	Image

Use	the	INF	file	to	specify	the	information	required	to	package	a	UEFI	Driver	into	a	PCI	Option	ROM	image
without	having	to	manually	run	the		EfiRom		utility.	Chapter	7	covers	Driver	Entry	Points	and	includes	a
number	of	example	INF	files.	The	following	example	shows	an	expanded	version	of	the		AbcDriverMinimum	
from	Chapter	7	and	also	shows	how	the	PCI	Option	ROM	related	information	can	be	specified.	The	only
changes	are	the	addition	of	the	PCI	statements	in	the	[Defines]	section.	These	PCI	statements	allow	the
Vendor	ID,	Device	ID,	Class	Code,	and	Revision	values	to	be	specified	and	they	are	used	to	fill	in	the	PCI
Option	ROM	headers.	The		PCI_COMPRESS		statement	specifies	whether	the	UEFI	Driver	should	be
compressed	using	the	UEFI	compression	algorithm	or	not.	If	a	statement	is	not	present,	the	value	is
assumed	to	be	0	If	the	PCI	statements	are	present,	and	if	the	UEFI	Driver	is	successfully	built,	the	PCI
Option	ROM	image	is	then	automatically	generated.	The	one	limitation	of	this	method	is	that	the	PCI
Option	ROMs	are	allowed	to	contain	only	a	single	UEFI	Driver.

Example	199-UEFI	Driver	INF	File	for	PCI	Option	ROM

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	AbcDriverPciOptionRom

		FILE_GUID						=	DA87D340-15C0-4824-9BF3-D52286674BEF

		MODULE_TYPE				=	CAE55A8A-4307-4ae1-824E-326EE24928D7

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	AbcDriverEntryPoint

		PCI_VENDOR_ID		=	0xABCD

		PCI_DEVICE_ID		=	0x1234

		PCI_CLASS_CODE	=	0x56789A

		PCI_REVISION			=	0x0003

		PCI_COMPRESS			=	TRUE

[Sources]

		Abc.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiDriverEntryPoint

18.7.2	Using	INF	File	to	Generate	PCI	Option	ROM	ImageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

507DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

18.7.3	Using	FDF	File	to	Generate	PCI	Option	ROM	Image

When	managing	large	numbers	of	UEFI	Drivers	and	PCI	Option	ROMs,	greater	flexibility	than	the		EfiRom	
utility	or	the	INF	methods	allow	may	be	required.	The	EDK	II	build	system	supports	an	FDF	file	format	that
provides	methods	to	package	UEFI	Drivers	into	FLASH	devices.	The	FDF	file	format	also	supports	the
description	of	PCI	Option	ROMs.	The	EDK	II	build	system	requires	a	DSC	file	to	build	UEFI	Drivers.	The	DSC
file	format	is	covered	in	more	detail	in	Chapter	30.	A	DSC	file	can	optionally	specify	an	associated	FDF
file	in	the		[Defines]		section	of	the	DSC	file	with	a		FLASH_DEFINITION		statement.	The	example	below	shows
the		[Defines]		section	of	a	DSC	file	specifying	the	FDF	file		AbcDriver.fdf	.	The	FDF	file	is	typically	in	the	same
directory	as	the	DSC	file.

Example	200-Specify	name	of	FDF	file	from	a	DSC	file

[Defines]

		PLATFORM_NAME											=	AbcDriver

		PLATFORM_GUID											=	14893C02-5693-47ab-AEF5-61DFA089508A

		PLATFORM_VERSION								=	0.10

		DSC_SPECIFICATION							=	0x00010005

		OUTPUT_DIRECTORY								=	Build/AbcDriver

		SUPPORTED_ARCHITECTURES	=	IA32|IPF|X64|EBC|ARM

		BUILD_TARGETS											=	DEBUG|RELEASE

		SKUID_IDENTIFIER								=	DEFAULT

		FLASH_DEFINITION								=	AbcDriver/AbcDriver.fdf

The	FDF	file	may	describe	one	or	more	PCI	Option	ROM	images	These	PCI	Unlike	the	INF	method,	Option
ROM	images	are	not	limited	to	a	single	UEFI	Driver.	The	following	example	shows	an	FDF	file	that
produces	three	PCI	Option	ROM	images	called		AbcDriverAll.rom	,		AbcDriverIA32.rom	,	and		AbcDriverX64.rom	.	The
first	PCI	Option	ROM	image	contains	a	UEFI	Driver	image	compiled	for	IA32	and	a	UEFI	Driver	image
compiled	for	X64	The	syntax	for	specifying	the	PCI	related	definitions	is	the	same	as	the	INF	example	in
the	previous	section.	The	second	PCI	Option	ROM	image	contains	only	one	UEFI	Driver	compiled	for	IA32
The	third	image	contains	one	UEFI	Driver	compiled	for	X64	The	UEFI	Drivers	are	compressed	in	all	three
of	these	option	ROM	images.

Example	201-Using	an	FDF	file	to	Generate	PCI	Option	ROM	images

[Rule.Common.UEFI_DRIVER]

		FILE

		DRIVER	=	$(NAMED_GUID)	{

		PE32	PE32	|.efi

		}

[OptionRom.AbcDriverAll]

		INF

		USE												=	IA32	AbcDriver/Abc.inf	{

		PCI_VENDOR_ID		=	0xABCD

		PCI_DEVICE_ID		=	0x1234

		PCI_CLASS_CODE	=	0x56789A

		PCI_REVISION			=	0x0003

		PCI_COMPRESS			=	TRUE

		}

		INF

		USE												=	X64	AbcDriver/Abc.inf	{

		PCI_VENDOR_ID		=	0xABCD

		PCI_DEVICE_ID		=	0x1234

		PCI_CLASS_CODE	=	0x56789A

		PCI_REVISION			=	0x0003

		PCI_COMPRESS			=	TRUE

		}

[OptionRom.AbcDriverIAa32]

		INF

		USE												=	IA32	AbcDriver/Abc.inf	{

18.7.3	Using	FDF	File	to	Generate	PCI	Option	ROM	ImageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

508DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		PCI_VENDOR_ID		=	0xABCD

		PCI_DEVICE_ID		=	0x1234

		PCI_CLASS_CODE	=	0x56789A

		PCI_REVISION			=	0x0003

		PCI_COMPRESS			=	TRUE

		}

[OptionRom.AbcDriverX64]

		INF

		USE												=	X64	AbcDriver/Abc.inf	{

		PCI_VENDOR_ID		=	0xABCD

		PCI_DEVICE_ID		=	0x1234

		PCI_CLASS_CODE	=	0x56789A

		PCI_REVISION			=	0x0003

		PCI_COMPRESS			=	TRUE

		}

18.7.3	Using	FDF	File	to	Generate	PCI	Option	ROM	ImageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

509DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19	USB	Driver	Design	Guidelines
There	are	several	categories	of	USB	drivers	that	cooperate	to	provide	the	USB	driver	stack	in	a
platform.	The	table	below	lists	these	USB	drivers.

19	USB	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

510DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	30-Classes	of	USB	drivers

Class	of
driver Description

USB	host
controller
driver

Consumes	PCI	I/O	Protocol	on	the	USB	host	controller	handle	and	produces	the	USB2
Host	Controller	Protocol.

USB	bus
driver

Consumes	the	USB2	Host	Controller	Protocol	and	produces	a	child	handle	for	each
USB	controller	on	the	USB	bus.	Installs	the	Device	Path	Protocol	and	USB	I/O	Protocol
onto	each	child	handle.

USB
device
driver

Consumes	the	USB	I/O	Protocol	and	produces	an	I/O	abstraction	that	provides
services	for	the	console	devices	and	boot	devices	required	to	boot	an	EFI-conformant
operating	system.

This	chapter	shows	how	to	write	host	controller	drivers	and	USB	device	drivers.	USB	drivers	must	follow
all	of	the	general	design	guidelines	described	in	Chapter	4	of	this	guide.	In	addition,	any	USB	host
controllers	that	are	PCI	controllers	must	also	follow	the	PCI-specific	design	guidelines	(see	Chapter	18).

Note:	USB	device	drivers	do	not	typically	include	HII	functionality	because	they	do	not	have	configurable
information.	For	example,	USB	device	drivers	are	typically	for	hot-plug	devices.

The	figure	below	shows	an	example	of	a	USB	driver	stack	and	the	protocols	the	USB	drivers	consume
and	produce.	Because	the	USB	hub	is	a	special	kind	of	device	that	simply	acts	as	a	signal	repeater,	it	is
not	included	in	Figure	21.

19	USB	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

511DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Figure	21-USB	driver	stack

In	this	example,	the	platform	hardware	provides	a	single	USB	host	controller	on	the	PCI	bus.	The	PCI	bus
driver	produces	a	handle	with		EFI_DEVICE_PATH_PROTOCOL		and		EFI_PCI_IO_PROTOCOL		installed	for	this	USB	host
controller.	The	USB	host	controller	driver	then	consumes		EFI_PCI_IO_PROTOCOL		on	that	USB	host	controller
device	handle	and	installs	the		EFI_USB2_HC_PROTOCOL		onto	the	same	handle.

The	USB	bus	driver	consumes	the	services	of		EFI_USB2_HC_PROTOCOL	.	It	uses	these	services	to	enumerate
the	USB	bus.	In	this	example,	the	USB	bus	driver	detects	a	USB	keyboard,	a	USB	mouse,	and	a	USB
mass	storage	device.	As	a	result,	the	USB	bus	driver	creates	three	child	handles	and	installs	the
	EFI_DEVICE_PATH_PROTOCOL		and		EFI_USB_IO_PROTOCOL		onto	each	of	those	handles.

The	USB	mouse	driver	consumes	the		EFI_USB_IO_PROTOCOL		and	produces	the		EFI_SIMPLE_POINTER_PROTOCOL	.	The
USB	keyboard	driver	consumes	the		EFI_USB_IO_PROTOCOL		to	produce	the		EFI_SIMPLE_TEXT_INPUT_PROTOCOL	.	The	USB
mass	storage	driver	consumes	the		EFI_USB_IO_PROTOCOL		to	produce	the		EFI_USB_IO_PROTOCOL	.

The	protocol	interfaces	for	the	USB2	Host	Controller	Protocol	and	the	USB	I/O	Protocol	are	shown	below
in	the	following	two	examples.

Example	202-USB	2	Host	Controller	Protocol

typedef	struct	_EFI_USB2_HC_PROTOCOL	EFI_USB2_HC_PROTOCOL;

///

///	The	EFI_USB2_HC_PROTOCOL	provides	USB	host	controller	management,	basic

///	data	transactions	over	a	USB	bus,	and	USB	root	hub	access.	A	device	driver

///	that	wishes	to	manage	a	USB	bus	in	a	system	retrieves	the	EFI_USB2_HC_PROTOCOL

///	instance	that	is	associated	with	the	USB	bus	to	be	managed.	A	device	handle

///	for	a	USB	host	controller	minimally	contains	an	EFI_DEVICE_PATH_PROTOCOL

///	instance,	and	an	EFI_USB2_HC_PROTOCOL	instance.

///

struct	_EFI_USB2_HC_PROTOCOL	{

19	USB	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

512DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		EFI_USB2_HC_PROTOCOL_GET_CAPABILITY													GetCapability;

		EFI_USB2_HC_PROTOCOL_RESET																						Reset;

		EFI_USB2_HC_PROTOCOL_GET_STATE																		GetState;

		EFI_USB2_HC_PROTOCOL_SET_STATE																		SetState;

		EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER											ControlTransfer;

		EFI_USB2_HC_PROTOCOL_BULK_TRANSFER														BulkTransfer;

		EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER			AsyncInterruptTransfer;

		EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER				SyncInterruptTransfer;

		EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER							IsochronousTransfer;

		EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER	AsyncIsochronousTransfer;

		EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS				GetRootHubPortStatus;

		EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE			SetRootHubPortFeature;

		EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE	ClearRootHubPortFeature;

		///

		///	The	major	revision	number	of	the	USB	host	controller.	The	revision

		///	information	indicates	the	release	of	the	Universal	Serial	Bus	Specification

		///	with	which	the	host	controller	is	compliant.

		///

		UINT16																																										MajorRevision;

		///

		///	The	minor	revision	number	of	the	USB	host	controller.	The	revision

		///	information	indicates	the	release	of	the	Universal	Serial	Bus	Specification

		///	with	which	the	host	controller	is	compliant.

		///

		UINT16																																										MinorRevision;

};

Example	203-USB	I/O	Protocol

typedef	struct	_EFI_USB_IO_PROTOCOL	EFI_USB_IO_PROTOCOL;

///

///	The	EFI_USB_IO_PROTOCOL	provides	four	basic	transfers	types	described

///	in	the	USB	1.1	Specification.	These	include	control	transfer,	interrupt

///	transfer,	bulk	transfer	and	isochronous	transfer.	The	EFI_USB_IO_PROTOCOL

///	also	provides	some	basic	USB	device/controller	management	and	configuration

///	interfaces.	A	USB	device	driver	uses	the	services	of	this	protocol	to	manage

///	USB	devices.

///

struct	_EFI_USB_IO_PROTOCOL	{

		//

		//	IO	transfer

		//

		EFI_USB_IO_CONTROL_TRANSFER														UsbControlTransfer;

		EFI_USB_IO_BULK_TRANSFER																	UsbBulkTransfer;

		EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER						UsbAsyncInterruptTransfer;

		EFI_USB_IO_SYNC_INTERRUPT_TRANSFER							UsbSyncInterruptTransfer;

		EFI_USB_IO_ISOCHRONOUS_TRANSFER										UsbIsochronousTransfer;

		EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER				UsbAsyncIsochronousTransfer;

		//

		//	Common	device	request

		//

		EFI_USB_IO_GET_DEVICE_DESCRIPTOR									UsbGetDeviceDescriptor;

		EFI_USB_IO_GET_CONFIG_DESCRIPTOR									UsbGetConfigDescriptor;

		EFI_USB_IO_GET_INTERFACE_DESCRIPTOR						UsbGetInterfaceDescriptor;

		EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR							UsbGetEndpointDescriptor;

		EFI_USB_IO_GET_STRING_DESCRIPTOR									UsbGetStringDescriptor;

		EFI_USB_IO_GET_SUPPORTED_LANGUAGE								UsbGetSupportedLanguages;

		//

		//	Reset	controller's	parent	port

		//

		EFI_USB_IO_PORT_RESET	UsbPortReset;

};

19	USB	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

513DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19	USB	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

514DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.1	USB	Host	Controller	Driver

The	USB	host	controller	driver	depends	on	which	USB	host	controller	specification	the	host	controller	is
based.	Currently,	the	major	types	of	USB	host	controllers	are	the	following:

Open	Host	Controller	Interface	(OHCI)	(USB	1.0	and	USB	1.1)
Universal	Host	Controller	Interface	(UHCI)	(USB	1.0	and	USB	1.1)
Enhanced	Host	Controller	Interface	(EHCI)	(USB	2.0)
Extended	Host	Controller	Interface	(XHCI)	(USB	3.0)

The	USB	host	controller	driver	is	a	device	driver	and	follows	the	UEFI	driver	model.	It	typically	consumes
the	services	of		EFI_PCI_IO_PROTOCOL		and	produces		EFI_USB2_HC_PROTOCOL	.	The	following	section	provides
guidelines	for	implementing	the		EFI_DRIVER_BINDING_PROTOCOL		services	and		EFI_USB2_HC_PROTOCOL		services	for	the
USB	host	controller	driver.	The	EDK	II	provides	UEFI	Drivers	that	implement	the		EFI_USB_HC2_PROTOCOL		for
UHCI,	ECHI,	and	XHCI	in	the	MdeModulePkg	in	the	following	paths:

UHCI	-		MdeModulePkg/Bus/Pci/UhciDxe	
EHCI	-		MdeModulePkg/Bus/Pci/EhciDxe	
XHCI	-		MdeModulePkg/Bus/Pci/XhciDxe	

19.1	USB	Host	Controller	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

515DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.1.1	Driver	Binding	Protocol	Supported()

The	USB	host	controller	driver	must	implement	the		EFI_DRIVER_BINDING_PROTOCOL		containing	the		Supported()	,
	Start()	,	and		Stop()		services.	The	Driver	Binding	Protocol	is	installed	into	the	Handle	Database	in	the
drive	entry	point.

The		Supported()		service	evaluates	the	ControllerHandle	that	is	passed	in	to	check	if	the	ControllerHandle
represents	a	USB	host	controller	that	the	USB	host	controller	driver	knows	how	to	manage.	The	typical
method	of	implementing	this	evaluation	is	for	the	USB	host	controller	driver	to	retrieve	the	PCI
configuration	header	from	this	controller	and	check	the	Class	Code	field	and	possibly	other	fields	such
as	the	Device	ID	and	Vendor	ID.	If	all	these	fields	match	the	values	that	the	USB	host	controller	driver
knows	how	to	manage,	the		Supported()		service	returns		EFI_SUCCESS	.	Otherwise,	the		Supported()		service
returns		EFI_UNSUPPORTED	.

The	following	example	shows	an	example	of	the		Supported()		service	for	the	USB	host	controller	driver
managing	a	PCI	controller	with	Class	code	0x30c.

First,	it	attempts	to	open	the	PCI	I/O	Protocol		EFI_OPEN_PROTOCOL_BY_DRIVER	.	If	the	PCI	I/O	Protocol	cannot	be
opened,	then	the	USB	host	controller	driver	does	not	support	the	controller	specified	by
ControllerHandle.	If	the	PCI	I/O	Protocol	is	opened,	the	services	of	the	PCI	I/O	Protocol	are	used	to	read
the	Class	Code	from	the	PCI	configuration	header.	The	PCI	I/O	Protocol	is	always	closed	with
	CloseProtocol()	,	and		EFI_SUCCESS		is	returned	if	the	Class	Code	fields	match.

Example	204-Supported()	service	for	USB	host	controller	driver

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>	#include	<Protocol/PciIo.h>

#include	<IndustryStandard/Pci.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS

EFIAPI

AbcSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS											Status;

		EFI_PCI_IO_PROTOCOL		*PciIo;

		UINT8	PciClass[3];

		//

		//	Open	the	PCI	I/O	Protocol	on	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiPciIoProtocolGuid,

																		(VOID	**)&PciIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Read	the	3	bytes	of	class	code	information	from	the	PCI	configuration	header

		//	at	offset	0x09

		//

		Status	=	PciIo->Pci.Read	(

																								PciIo,	//	This

																								EfiPciIoWidthUint8,	//	Width

19.1.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

516DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

																								PCI_CLASSCODE_OFFSET,

																								//	Offset	sizeof	(PciClass),

																								//	Count	&PciClass

																								//	Buffer

);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

		//	Test	whether	the	class	code	is	for	a	USB	UHCI	controller

		//

		if	((PciClass[2]	!=	PCI_CLASS_SERIAL)	||	(PciClass[1]	!=	PCI_CLASS_SERIAL_USB)	||

						(PciClass[0]	!=	PCI_IF_UHCI))	{

				Status	=	EFI_UNSUPPORTED;

		}

Done:

		//

		//	Close	the	PCI	I/O	Protocol

		//

		gBS->CloseProtocol	(

									ControllerHandle,

									&gEfiPciIoProtocolGuid,

									This->DriverBindingHandle,

									ControllerHandle

);

		return	Status;

}

19.1.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

517DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.1.2	Driver	Binding	Protocol	Start()

The		Start()		service	of	the	Driver	Binding	Protocol	for	the	USB	host	controller	driver	also	opens	the	PCI
I/O	Protocol	with	an	attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER	.	This	is	followed	by	an	initialization	of	the	USB
host	controller	hardware	and	an	installation	of	a		EFI_USB2_HC_PROTOCOL		instance	into	the	Handle	Database.

19.1.2.1	Support	for	legacy	devices

Some	USB	host	controllers	provide	legacy	support	to	be	compatible	with	legacy	devices.	Under	this
mode,	the	USB	input	device,	including	mouse	and	keyboard,	act	as	if	they	are	behind	an	8042	keyboard
controller.	A	UEFI	implementation	uses	the	native	USB	support	rather	than	the	legacy	support.

As	a	result,	the	USB	legacy	support	must	be	disabled	in	the		Start()		service	of	the	USB	host	controller
driver,	before	enabling	the	USB	host	controller.	This	step	is	required	because	the	legacy	support
conflicts	with	the	native	USB	support	provided	in	UEFI	USB	driver	stack.	The	example	below	shows	how
to	turn	off	USB	legacy	support	for	a	UHCI	1.1	Host	Controllers.

Example	205-Disable	USB	Legacy	Support

///

///	USB	legacy	Support

///

#define	USB_EMULATION	0xc0

EFI_STATUS

EFIAPI

TurnOffUSBLegacySupport	(

		IN	EFI_PCI_IO_PROTOCOL																					*PciIo

)

{

		EFI_STATUS																																	Status;

		UINT16																																					Command;

		//

		//	Disable	USB	Legacy	Support	by	writing	0x0000	to	the	USB_EMULATION

		//	register	in	the	PCI	Configuration	of	the	PCI	Controller

		//

		Command	=	0;

		Status	=	PciIo->Pci.Write	(

																								PciIo,															//	This

																								EfiPciIoWidthUint16,	//	Width

																								USB_EMULATION,							//	Offset

																								1,																			//	Count

																								&Command													//	Buffer

);

		return	Status;

}

19.1.2	Driver	Binding	Protocol	Start()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

518DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.1.3	Driver	Binding	Protocol	Stop()

The		Stop()		service	must	perform	the	reverse	of	the	steps	the		Start()		service	performs.	The	USB	host
controller	driver	is	required	to	make	sure	that	there	are	no	memory	leaks	or	handle	leaks,	as	well	as
making	sure	that	hardware	is	stopped	accordingly,	including	restoration	of	the	PCI	I/O	Protocol
attributes	as	described	in	Chapter	18.

19.1.3	Driver	Binding	Protocol	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

519DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.1.4	USB	2	Host	Controller	Protocol	Data	Transfer	Services

The	USB2	Host	Controller	Protocol	provides	an	I/O	abstraction	for	a	USB	host	controller.	A	USB	host
controller	is	a	hardware	component	that	interfaces	to	a	Universal	Serial	Bus	(USB).	It	moves	data
between	system	memory	and	devices	on	the	Universal	Serial	Bus	by	processing	data	structures	and
generating	transactions	on	the	Universal	Serial	Bus.

This	protocol	is	used	by	a	USB	bus	driver	to	perform	all	data	transactions	over	the	Universal	Serial	Bus.
It	also	provides	services	to	manage	the	USB	root	hub	integrated	into	the	USB	host	controller.

Appendix	A	provides	a	template	for	the	implementation	of	the	USB	Host	Controller	Protocol.	The	services
of	the	USB	2	Host	Controller	Protocol	can	be	categorized	into	the	following	categories:

Host	controller	general	information
GetCapability()
Root	hub-related	services:
GetRootHubPortStatus()
SetRootHubPortFeature()
ClearRootHubPortFeature()
Host	controller	state-related	services:
GetState()
SetState()
Reset()
USB	transfer-related	services:
ControlTransfer()
BulkTransfer()
AsyncInterruptTransfer()
SyncInterruptTransfer()
IsochronousTransfer()
AsyncIsochronousTransfer()

For	root	hub-related	services	and	host	controller	state-related	services,	implementation	mainly	involves
read/write	operations	to	specific	USB	host	controller	registers.	The	USB	host	controller	data	sheet
provides	information	on	these	register	usages,	so	this	topic	is	not	covered	in	detail	here.

This	section	concentrates	on	the	USB	transfer-related	services.	Those	transfers	are	categorized	as
either	asynchronous	or	synchronous.

With	asynchronous	transfers,	the	transfer	does	not	complete	with	the	service's	return.	With
synchronous	transfers,	the	requested	transfer	has	completed	when	the	service	returns.	The	following
sections	discuss	these	two	types	of	transfers	in	more	detail.

19.1.4.1	Synchronous	transfer

The	USB	Host	Controller	Protocol	provides	the	following	four	synchronous	transfer	services:

	ControlTransfer()	

	BulkTransfer()	

	SyncInterruptTransfer()	

	IsochronousTransfer()	

Control	and	bulk	transfers	are	completed	in	an	acceptable	period	of	time	and	thus	are	natural
synchronous	transfers	in	the	view	of	an	UEFI	system.

Interrupt	transfers	and	isochronous	transfers	can	be	either	asynchronous	or	synchronous	transfers,
depending	on	the	usage	model.

19.1.4	USB	2	Host	Controller	Protocol	Data	Transfer	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

520DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

It	is	convenient	for	the	USB	drivers	to	use	synchronous	transfer	services	because	there	is	no	worry
about	when	the	data	is	ready.	The	transfer	result	is	available	as	soon	as	the	function	returns.

The	following	is	an	example	of	how	to	use		BulkTransfer()		to	implement	a	synchronous	transfer	service.
Generally	speaking,	implementing	a	bulk	transfer	service	can	be	divided	into	the	following	steps:

	Preparation:		For	example,	USBSTS	is	a	status	register	in	the	USB	host	controller.	The	status	register
needs	to	be	cleared	before	starting	the	control	transfer.
	Setting	up	the	DMA	direction:		By	judging	the	end	point	address,	the	USB	driver	decides	the	transfer
direction	and	sets	up	the	PCI	bus	master	read	operation	or	write	operation.	For	example,	if	the
transfer	direction	is		EfiUsbDataIn	,	the	USB	host	controller	reads	from	the	DMA	buffer.	A	bus	master
write	operation	is	required.
	Building	the	transfer	context:		The	USB	Specification	defines	several	structures	for	a	transfer.	For
example,	Queue	Head	(QH)	and	Transfer	Descriptor	(TD)	are	special	structures	used	to	support	the
requirements	of	control,	bulk,	and	interrupt	transfers.

In	this	step,	these	QH	and	TD	structures	are	created	and	linked	to	the	Frame	List.	One	possible
implementation	can	be	creation	of	one	QH	and	a	list	of	TDs	to	form	a	transfer	list.	The	QH	points	to	the
first	TD	and	occupies	one	entry	in	the	Frame	List.

	Executing	the	TD	and	getting	the	result:		The	USB	host	controller	automatically	executes	the	TD	when	the
timer	expires.	The	UHCI	driver	waits	until	all	of	the	TDs	associated	with	the	transfer	are	all
completed.	After	that,	the	result	of	the	TD	execution	is	determined.
	Cleaning	up:		Delete	the	bulk	transfer	QH	and	TD	structures	from	the	Frame	List,	free	related
structures,	and	unmap	the	PCI	DMA	operation.

19.1.4.2	Asynchronous	transfer

The	USB	Host	Controller	Protocol	provides	the	following	two	asynchronous	transfer	services:

	AsyncInterruptTransfer()	

	AsyncIsochronousTransfer()	

To	support	asynchronous	transfers,	the	USB	host	controller	driver	registers	a	periodic	timer	event.
Meanwhile,	it	maintains	a	queue	for	all	asynchronous	transfers.	When	the	timer	event	is	signaled,	the
timer	event	callback	function	evaluates	this	queue	and	checks	to	see	if	asynchronous	transfers	are	now
complete.

Generally	speaking,	the	main	work	of	the	timer	event	callback	function	is	to	go	through	the
asynchronous	transfers	queue.	For	each	asynchronous	transfer,	it	checks	whether	an	asynchronous
transfer	is	completed	or	not	and	performs	the	following:

	If	not	completed:		The	USB	host	controller	driver	takes	no	action	and	leaves	the	transfer	on	the
queue.
	If	completed:		The	USB	host	controller	driver	copies	the	data	that	it	received	to	a	predefined	data
buffer	and	removes	the	related	QH	and	TD	structures.	It	also	invokes	a	preregistered	transfer
callback	function.	Based	on	that	transfer's	complete	status,	the	USB	host	controller	driver	takes
different	additional	actions	such	as:

If	completed	without	error,	update	the	transfer	data	status	accordingly,	e.g.,	data	toggle	bit.
If	completed	with	error,	it	is	suggested	that	the	USB	host	controller	do	nothing	and	leave	the
error	recovery	work	to	the	related	USB	device	driver.

19.1.4.3	Internal	Memory	Management

To	implement	USB	transfers,	the	USB	host	controller	driver	manages	many	small	memory	fragments	as
transfer	data	(i.e.	QH	and	TD).	If	the	USB	host	controller	driver	uses	the	system	memory	management
services	to	allocate	these	memory	fragments	each	time,	then	the	overhead	can	be	large.	As	a	result,	it

19.1.4	USB	2	Host	Controller	Protocol	Data	Transfer	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

521DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

is	recommended	that	the	USB	host	controller	driver	manage	these	kinds	of	internal	memory	usage
itself.	One	possible	implementation,	as	in	EDK	II,	is	that	the	host	controller	driver	can	allocate	a	large
buffer	of	memory	in	the	Driver	Binding	Protocol		Start()		service	using	UEFI	memory	services.	The	USB
host	controller	driver	provides	a	small	memory	management	algorithm	to	manage	this	memory	to	satisfy
internal	memory	allocations.	By	using	this	simple	memory	management	mechanism,	it	avoids	the
frequent	system	memory	management	calls.

19.1.4.4	DMA

Most	USB	host	controllers	use	DMA	for	their	data	transfer	between	host	and	devices.	Because	the
processor	and	USB	host	controller	both	access	that	transfer	data	simultaneously,	the	USB	host
controller	driver	must	use	a	common	buffer	for	all	the	memory	that	the	host	controller	uses	for	data
transfer.	This	requirement	means	that	the	processor	and	the	host	controller	have	an	identical	view	of
memory.	See	Chapter	18	for	usage	guidelines	for	managing	PCI	DMA	for	common	buffers.

19.1.4	USB	2	Host	Controller	Protocol	Data	Transfer	ServicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

522DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.2	USB	Bus	Driver

EDK	II	contains	a	generic	USB	bus	driver.	This	driver	uses	the	services	of		EFI_USB2_HC_PROTOCOL		to	enumerate
USB	devices	and	produce	child	handles	with		EFI_DEVICE_PATH_PROTOCOL		and		EFI_USB_IO_PROTOCOL	.	The
implementation	of	the	USB	Bus	Driver	is	found	in	the		MdeModulePkg		in	the	directory
	MdeModulePkg/Bus/Usb/UsbBusDxe	

A	USB	hub,	including	the	USB	root	hub	and	common	hub,	is	a	type	of	USB	device.	The	USB	bus	driver	is
responsible	for	the	management	of	all	USB	hub	devices.	No	USB	device	drivers	are	required	for	USB	hub
devices.

If	UEFI-based	system	firmware	is	ported	to	a	new	platform,	most	of	the	USB-related	changes	occur	in	the
implementation	of	the	USB	host	controller	driver.	If	new	types	of	USB	devices	are	introduced	that
provide	console	or	UEFI	boot	capabilities,	the	implementation	of	new	USB	Device	Drivers	is	also
required.

The	USB	bus	driver	is	designed	to	be	a	generic,	platform-agnostic	driver.	As	a	result,	customizing	the
USB	bus	driver	is		strongly	discouraged	.	The	detailed	design	and	implementation	of	the	USB	bus	driver	is	not
covered	in	this	guide.

19.2	USB	Bus	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

523DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3	USB	Device	Driver

USB	device	drivers	use	services	provided	by		EFI_USB_IO_PROTOCOL		to	produce	one	or	more	protocols	that
provide	I/O	abstractions	of	a	USB	device.	USB	device	drivers	must	follow	the	UEFI	Driver	Model.	As
mentioned	above,	the	USB	device	drivers	do	not	manage	hub	devices	because	those	hub	devices	are
managed	by	the	USB	bus	driver.	The	EDK	II	provides	a	number	of	USB	Device	Drivers	in	the		MdeModulePkg	
for	devices	that	are	typically	used	to	provide	UEFI	consoles	and	UEFI	boot	devices.	The	EDK	II		MdePkg		also
provides	a	library	called		UefiUsbLib		that	provides	functions	to	simplify	the	implementations	of	USB	device
drivers	using	the	USB	I/O	Protocol.	Some	of	the	USB	Device	Driver	implementations	provided	in	the	EDK	II
are	as	follows:

USB	Keyboard:		MdeModulePkg/Bus/Usb/UsbKbDxe	
USB	Mouse:		MdeModulePkg/Bus/Usb/UsbMouseDxe	
USB	Mouse:		MdeModulePkg/Bus/Usb/UsbMouseAbsolutePointerDxe	
USB	Mass	Storage:		MdeModulePkg/Bus/Usb/UsbMassStorageDxe	

19.3	USB	Device	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

524DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3.1	Driver	Binding	Protocol	Supported()

USB	device	drivers	must	implement	the		EFI_DRIVER_BINDING_PROTOCOL		that	contains	the		Supported()	,		Start()	,
and		Stop()		services.	The		Supported()		service	checks	the	passed-in	controller	handle	to	determine
whether	this	handle	represents	a	USB	device	that	the	driver	knows	how	to	manage.

The	following	is	the	most	common	method	for	doing	the	check:

Check	if	this	handle	has		EFI_USB_IO_PROTOCOL		installed.	If	not,	this	handle	is	not	a	USB	device	on	the
current	USB	bus.
Get	the	USB	interface	descriptor	back	from	the	USB	device.	Check	whether	the	values	of	this
device's	InterfaceClass,	InterfaceSubClass,	and	InterfaceProtocol	are	identical	to	the	corresponding
values	this	driver	can	manage.

If	the	handle	passes	the	above	two	checks,	the	USB	device	driver	can	manage	the	device	that	the
controller	handle	represents	and	the		Supported()		service	returns		EFI_SUCCESS	.	Otherwise,	the		Supported()	
service	returns		EFI_UNSUPPORTED	.	In	addition,	this	checking	process	must	not	disturb	the	current	state	of
the	USB	device	because	the	USB	device	may	be	managed	by	another	USB	device	driver.

The	example	below	shows	an	implementation	of	the	Driver	Binding	Protocol		Supported()		service	for	a	USB
keyboard	driver.	It	opens	the	USB	I/O	Protocol	with	an	attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER	.	It	then	uses
the		UsbGetInterfaceDescriptor()		service	of	the	USB	I/O	Protocol	and	evaluates	the	class,	subclass,	and
protocol	fields	of	the	interface	descriptor	to	see	if	the	description	is	for	a	USB	keyboard.

Example	206-Supported()	for	a	USB	device	driver

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/UsbIo.h>

#include	<Library/UefiBootServicesTableLib.h>

#define	CLASS_HID	3

#define	SUBCLASS_BOOT	1

#define	PROTOCOL_KEYBOARD	1

EFI_STATUS

EFIAPI

AbcSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS																						Status;

		EFI_USB_IO_PROTOCOL													*UsbIo;

		EFI_USB_INTERFACE_DESCRIPTOR				InterfaceDescriptor;

		//

		//	Open	the	USB	I/O	Protocol	on	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiUsbIoProtocolGuid,

																		(VOID	**)&UsbIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Get	the	USB	Interface	Descriptor

		//

19.3.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

525DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		Status	=	UsbIo->UsbGetInterfaceDescriptor	(

																		UsbIo,

																		&InterfaceDescriptor

);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

		//	Check	to	see	if	the	interface	descriptor	is	supported	by	this	driver

		//

		if	(InterfaceDescriptor.InterfaceClass	!=	CLASS_HID	||	InterfaceDescriptor.InterfaceSubClass	!=	SUBCLASS_BOOT	||

						InterfaceDescriptor.InterfaceProtocol	!=	PROTOCOL_KEYBOARD)	{

				Status	=	EFI_UNSUPPORTED;

		}

Done:

		//

		//	Close	the	PCI	I/O	Protocol

		//

		gBS->CloseProtocol	(

									ControllerHandle,

									&gEfiUsbIoProtocolGuid,

									This->DriverBindingHandle,

									ControllerHandle

);

		return	Status;

}

Because	the		Supported()		service	is	invoked	many	times,	the	USB	bus	driver	in	EDK	II	makes	certain
optimizations.	The	USB	bus	driver	caches	the	interface	descriptors,	eliminating	the	need	to	read	them
from	the	USB	device	every	time	a	USB	device	driver's		Supported()		service	is	invoked.

19.3.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

526DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3.2	Driver	Binding	Protocol	Start()	and	Stop()

The		Start()		service	of	the	Driver	Binding	Protocol	for	a	USB	device	driver	opens	the	USB	I/O	Protocol	with
an	attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER.		The	service	then	installs	the	I/O	abstraction	protocol	for	the	USB
device	or	host	controller	onto	the	handle	on	which	the		EFI_USB_IO_PROTOCOL		is	installed.

19.3.2.1	Example	using	a	USB	mass	storage	device

This	discussion	provides	detailed	guidance	on	how	to	implement	a	USB	device	driver.	It	uses	a	USB	mass
storage	device	as	an	example.	For	example,	suppose	this	mass	storage	device	has	the	following	four
endpoints:

One	control	endpoint
One	interrupt	endpoint
Two	bulk	endpoints

For	the	interrupt	endpoint,	it	is	synchronous.	For	the	bulk	endpoints,	one	is	an	input	endpoint	and	the
other	is	an	output	endpoint.	The	following	discussions	cover	how	to	implement	the		Start()		and		Stop()	
driver	binding	protocol	services	and	UEFI	Block	I/O	protocol.

This	example	shows	a	portion	of	the	private	context	data	structure	for	a	USB	mass	storage	device
driver.	See	Chapter	8	of	this	guide	for	more	information	about	design	guidelines	for	private	context	data
structures.

Example	207-USB	mass	storage	driver	private	context	data	structure

#include	<Uefi.h>

#include	<Protocol/UsbIo.h>

#include	<Protocol/BlockIo.h>

typedef	struct	{

		UINT64	Signature;

		EFI_BLOCK_IO_PROTOCOL											BlockIO;

		EFI_USB_IO_PROTOCOL													*UsbIo;

		EFI_USB_INTERFACE_DESCRIPTOR				InterfaceDescriptor;

		EFI_USB_ENDPOINT_DESCRIPTOR					BulkInEndpointDescriptor;

		EFI_USB_ENDPOINT_DESCRIPTOR					BulkOutEndpointDescriptor;

		EFI_USB_ENDPOINT_DESCRIPTOR					InterruptEndpointDescriptor;

}	USB_MASS_STORAGE_DEVICE;

19.3.2.2	Example	implementing	Driver	Binding	Start()

The	following	steps	are	performed	in	the	Driver	Binding	Protocol		Start()		service.

1.	 Open	the	USB	I/O	Protocol	on	ControllerHandle		EFI_OPEN_PROTOCOL_BY_DRIVER	.
2.	 Get	the	interface	descriptor	using	the	#####	EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()
service.

3.	 	Prepare	the	private	data	structure.		This	private	data	structure	is	in	type		USB_MASS_STORAGE_DEVICE		and	has
fields	for	the	interface	descriptor,	endpoint	descriptor,	and	others.	This	step	allocates	memory	for
the	private	data	structure	and	does	the	required	initializations-for	example,	setting	up	the
Signature,	UsbIo,	and	InterfaceDescriptor	fields.

4.	 	Parse	the	interface	descriptor.		In	this	step,	the	USB	device	driver	parses	the	InterfaceDescriptor	that
was	obtained	in	step	2,	and	verifies	that	all	bulk	and	interrupt	endpoints	exit.	The	NumEndpoints
field	in	InterfaceDescriptor	indicates	how	many	endpoints	are	in	this	USB	interface.	Next,	the
endpoint	descriptors	are	retrieved	one	by	one	by	using	the		UsbGetEndpointDescriptor()		service.	Then,	the

19.3.2	Driver	Binding	Protocol	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

527DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Attributes	and	EndpointAddress	fields	in	EndpointDescriptor	are	evaluated	to	determine	the	type	of
endpoint.

5.	 Install	the	Block	I/O	protocol.

19.3.2.3	Example	implementing	Driver	Binding	Stop()

The	Driver	Binding	Protocol		Stop()		service	performs	the	reverse	steps	of	the		Start()		service.	Continuing
with	the	previous	example,	the		Stop()		service	uninstalls	the	Block	I/O	Protocol	and	closes	the	USB	I/O
Protocol.	It	also	frees	various	allocated	resources	such	as	the	private	data	structure.

19.3.2	Driver	Binding	Protocol	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

528DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3.3	I/O	Protocol	Implementations

The	following	examples	reference	a	private	context	data	structure	called	USB_MOUSE_DEV.	The	example
below	shows	the	portion	of	this	data	structure	required	for	the	other	examples.

Example	208-USB	Mouse	Private	Context	Data	Structure

#include	<Uefi.h>

#include	<Protocol/UsbIo.h>

#include	<Protocol/SimplePointer.h>

#define	USB_MOUSE_DEV_PRIVATE_DATA_SIGNATURE	SIGNATURE_32('U','s','b','M')

typedef	struct	{

		UINTN																								Signature;

		EFI_USB_IO_PROTOCOL										*UsbIo;

		EFI_SIMPLE_POINTER_PROTOCOL		SimplePointer;

		EFI_SIMPLE_POINTER_STATE					State;

		EFI_USB_ENDPOINT_DESCRIPTOR		IntEndpointDescriptor;

		BOOLEAN																						StateChanged;

}	USB_MOUSE_DEV;

#define	USB_MOUSE_DEV_FROM_MOUSE_PROTOCOL(a)	\

		CR(a,	USB_MOUSE_DEV,	SimplePointer,	USB_MOUSE_DEV_PRIVATE_DATA_SIGNATURE)

This	example	uses	the	USB	mouse	driver	to	shows	how	the	USB	device	driver	can	setup	asynchronous
interrupt	transfers	from	the	Driver	Binding	Protocol		Start()		service.

Example	209-Setup	asynchronous	interrupt	transfer	for	USB	mouse	driver

#include	<Uefi.h>

#include	<Protocol/UsbIo.h>

Status	=	UsbIo->UsbAsyncInterruptTransfer	(

																		UsbIo,

																		EndpointAddr,

																		TRUE,

																		PollingInterval,

																		PacketSize,

																		OnMouseInterruptComplete,

																		UsbMouseDevice

);

The	next	example	shows	the	corresponding	asynchronous	interrupt	transfer	callback	function	called
	OnMouseInterruptComplete()	.	In	this	function,	if	the	passing	Result	parameter	indicates	an	error,	it	clears	the
endpoint	error	status,	unregisters	the	previous	asynchronous	interrupt	transfer,	and	initiates	another
asynchronous	interrupt	transfer.	If	there	is	no	error,	it	set	the	mouse	state	change	indicator	to		TRUE	
and	put	the	data	that	is	read	into	the	appropriate	data	structure.

Example	210-Completing	an	asynchronous	interrupt	transfer

#include	<Uefi.h>

#include	<Protocol/UsbIo.h>

#include	<Library/UefiUsbLib.h>

EFI_STATUS

EFIAPI

OnMouseInterruptComplete	(

		IN	VOID														*Data,

		IN	UINTN													DataLength,

		IN	VOID														*Context,

		IN	UINT32												Result

)

19.3.3	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

529DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

{

		USB_MOUSE_DEV								*UsbMouseDev;

		EFI_USB_IO_PROTOCOL		*UsbIo;

		UINT8																EndpointAddr;

		UINT32															UsbResult;

		UsbMouseDev	=	(USB_MOUSE_DEV	*)Context;

		UsbIo	=	UsbMouseDev->UsbIo;

		if	(Result	!=	EFI_USB_NOERROR)	{

				if	((Result	&	EFI_USB_ERR_STALL)	==	EFI_USB_ERR_STALL)	{

						EndpointAddr	=	UsbMouseDev->IntEndpointDescriptor.EndpointAddress;

						UsbClearEndpointHalt	(

								UsbIo,

								EndpointAddr,

								&UsbResult

);

				}

				//

				//	Unregister	previous	asynchronous	interrupt	transfer

				//

				UsbIo->UsbAsyncInterruptTransfer	(

													UsbIo,

													UsbMouseDev->IntEndpointDescriptor.EndpointAddress,

													FALSE,

													0,

													0,

													NULL,	NULL

);

				//

				//	Initiate	a	new	asynchronous	interrupt	transfer

				//

				UsbIo->UsbAsyncInterruptTransfer	(

													UsbIo,

													UsbMouseDev->IntEndpointDescriptor.EndpointAddress,

													TRUE,

													UsbMouseDev->IntEndpointDescriptor.Interval,

													UsbMouseDev->IntEndpointDescriptor.MaxPacketSize,

													OnMouseInterruptComplete,

													UsbMouseDev

);

				return	EFI_DEVICE_ERROR;

		}

		UsbMouseDev->StateChanged	=	TRUE;

		//

		//	Parse	HID	data	package

		//	and	extract	mouse	movements	and	coordinates	to	UsbMouseDev

		//

		//	.	.

		//

		return	EFI_SUCCESS;

}

This	example	shows	the		GetMouseState()		service	of	the	Simple	Pointer	Protocol	that	the	USB	mouse	driver
produces.		GetMouseState()	does	not	initiate	any	asynchronous	interrupt	transfer	requests.	It	simply	checks
the	mouse	state	change	indicator.	If	there	is	mouse	input,	it	copies	the	mouse	input	to	the	passing
MouseState	data	structure.

Example	211-Retrieving	pointer	movement

#include	<Uefi.h>

#include	<Protocol/UsbIo.h>

#include	<Protocol/SimplePointer.h>

#include	<Library/BaseMemoryLib.h>

19.3.3	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

530DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

GetMouseState	(

		IN		EFI_SIMPLE_POINTER_PROTOCOL		*This,

		OUT	EFI_SIMPLE_POINTER_STATE					*MouseState

)

{

		USB_MOUSE_DEV		*MouseDev;

		MouseDev	=	USB_MOUSE_DEV_FROM_MOUSE_PROTOCOL	(This);

		if	(MouseDev->StateChanged	==	FALSE)	{

				return	EFI_NOT_READY;

		}

		CopyMem	(MouseState,	&MouseDev->State,	sizeof	(EFI_SIMPLE_POINTER_STATE));

		//

		//	Clear	previous	move	state

		//

		//	.	.

		//

		return	EFI_SUCCESS;

}

19.3.3	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

531DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.3.4	State	machine	consideration

To	implement	USB	device	support,	the	USB	device	drivers	must	maintain	a	state	machine	for	their	own
transaction	process.	For	example,	the	USB	mass	storage	driver	must	maintain	a	tri-state	machine,
which	contains	Command->[Data]->Status	states.

It	should	work	well	because	it	looks	like	a	handshake	process	that	is	designed	to	be	error	free.
Maintaining	this	state	machine	should	provide	robust	error	handling.

However,	imagine	the	following	situation:

A	command	is	sent	to	the	device	that	the	host	needs	some	data	from	the	device.
The	device's	response	is	too	slow	and	it	keeps	NAK	in	its	data	endpoint.
The	host	sees	the	NAK	so	many	times	that	it	thinks	there	is	no	data	available	from	the	device.	It
timeouts	this	data-phase	operation.
The	state	machine	is	then	in	the	status	phase.	It	asks	for	the	status	data	from	the	device.
The	device	then	sends	the	real	data-phase	data	to	the	host.
The	host	cannot	understand	the	data	from	the	device	as	status	data,	so	it	resets	the	device	and
retries	the	operation.
The	necessary	components	of	a	dead	loop	then	exist.	The	final	result	is	a	system	likely	to	hang,	an
unusable	device,	or	both.

How	can	this	situation	be	avoided?	If	the	device	keeps	NAK,	then	sooner	or	later	the	data	becomes
available	and	no	assumption	can	be	made	about	the	data's	availability.	There	are	some	cases	in	which
the	device's	response	is	so	slow	that	the	timeout	is	not	enough	for	it	to	get	data	ready.	As	a	result,
retrying	the	transaction	in	the	data	phase	may	be	necessary.

TIP:	Make	sure	USB	device	drivers	maintain	a	state	machine	for	their	own	transaction	process.	The
driver	might	need	to	retry	transactions	in	the	data	phase	in	order	to	avoid	dead	loops	and	other	errors.

19.3.4	State	machine	considerationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

532DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.4	Debug	Techniques

Several	techniques	can	be	used	to	debug	the	USB	driver	stack.	The	following	discussions	describe
these	techniques.

19.4	Debug	TechniquesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

533DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.4.1	Debug	Message	Output

One	typical	debug	technique	is	to	output	debug	messages.	The	EDK	II	library		DebugLib		provides	the
	DEBUG()		and		ASSERT()		macros	to	output	debug	messages	(see	Chapter	31	of	this	guide	for	details	on	the
usage	of	the		DEBUG()		and		ASSERT()		macros).	Messages	may	be	sent	at	the	entry	point	and	exit	point	of
functions.	When	this	is	done,	a	log	of	the	call	stack	is	produced	that	may	help	locate	the	source	of	the
error.	It	is	not	suggested	to	print	the	debug	message	in	a	frequently	called	function,	such	as	a	timer
handler	because	this	can	starve	execution	cycles	at	lower	TPLs	and	can	significant	change	the	behavior
of	the	drivers	under	debug.

19.4.1	Debug	Message	OutputEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

534DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.4.2	USB	Bus	Analyzer

There	are	still	some	conditions	that	the		DEBUG()		and		ASSERT()		macros	are	not	sufficient	for	a	developer
to	find	the	problem.	One	way	to	gain	more	debug	information	is	to	use	a	USB	bus	analyzer.	Because	a
bus	analyzer	is	inserted	between	the	host	and	the	device,	the	bus	analyzer	can	monitor	all	the	traffic	on
a	single	USB	cable.	Having	access	to	the	USB	bus	traffic	information	can	make	it	easier	to	root	cause
some	difficult	bugs-for	example,	when	a	host	controller	loses	packets	on	some	occasions.	Also,	for	the
state	machine	chaos	problem	that	was	introduced	in	Section	19.3.4,	a	bus	analyzer	can	display	the
packet	sequences	and	the	unfinished	state	machine.	This	can	help	quickly	solve	that	type	of	problem.

19.4.2	USB	Bus	AnalyzerEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

535DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

19.4.3	USBCheck/USBCV	Tool

Another	useful	tool	for	debugging	is	the	USBCheck/USBCV	tool	from
http://www.usb.org/developers/tools/.	This	tool	is	very	helpful	in	determining	if	a	device	complies	with	a
specific	driver.	Consider,	for	example,	a	case	where	a	developer	has	written	a	USB	imaging	device	driver
for	a	generic	imaging	device	such	as	a	digital	camera.	If	an	enduser	claims	that	this	driver	does	not
work	for	his	or	her	specific	brand	of	digital	camera,	and	the	developer	does	not	have	such	a	camera	on
hand,	the	developer	can	ask	the	user	to	use	the	USBCheck/USBCV	tool	set	and	find	out	the	device's
InterfaceClass,	InterfaceSubClass,	and	InterfaceProtocol.	The	developer	can	then	use	this	information
to	evaluate	whether	the	camera	should	be	supported	by	the	driver.

19.4.3	USBCheck/USBCV	ToolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

536DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.usb.org/developers/tools/

19.5	Nonconforming	USB	Devices

There	are	debates	on	how	best	to	handle	devices	that	do	not	conform	to	the	USB	Specification.	It	is
recommended	that	the	driver	stack	comply	with	the	USB	Specification	and	reject	any	nonconforming
devices.	A	nonconforming	device	that	is	not	linked	into	the	USB	software	stack	should	not	interact
further	with	the	system.

However,	even	if	the	device	is	nonconforming	and	the	USB	driver	stack	should	reject	it,	developers	need
to	make	sure	that	the	nonconforming	device	does	not	cause	system	failures.	The	developer	must	not
make	any	assumptions	about	the	device's	behavior,	especially	since,	once	a	system	is	known	not	to
conform,	its	behavior	cannot	be	trusted.	It	can	respond	to	addressing	that	was	not	meant	for	that
device;	it	can	corrupt	data	going	into	it	and	coming	back	from	it;	and	it	cannot	be	trusted	to	perform	its
intended	function(s).	It	is	essential	for	the	end-user's	experience	that	the	nonconforming	device	does
not	negatively	affect	the	system.

A	driver	can	only	reliably	reject	nonconforming	devices	that	it	already	knows	about.	For	USB	devices,	the
identity	of	devices	may	be	determined	by	use	of	the	data	in	the	USB	device	description	packets.

USB	devices	have	several	sets	of	known	issues	that	may	be	detected	and	hidden	from	the	user.	For
example,	some	keyboards	auto-repeat	when	keys	are	pressed	for	an	extended	period	of	time.	In	this
case	the	consuming	driver	should	simply	ignore	packets	which	repeatedly	provide	identical	information.
Media	devices	also	have	several	issues.	USB	requires	implementation	of	the	SCSI	or	ATAPI	specifications,
which,	for	many	e.g.	thumb	drives,	is	beyond	their	capacity.	As	such,	relying	only	on	basic	commands
can	greatly	increase	the	probability	of	functionality.

19.5	Nonconforming	USB	DevicesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

537DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20	SCSI	Driver	Design	Guidelines
There	are	several	categories	of	SCSI	drivers	that	cooperate	to	provide	the	SCSI	driver	stack	in	a
platform.	Table	31	lists	these	SCSI	drivers.

Table	31-Classes	of	SCSI	drivers

Class	of
driver Description

SCSI	host
controller
driver

Consumes	PCI	I/O	Protocol	on	the	SCSI	host	controller	handle	and	produces	the	Ext
SCSI	Pass	Thru	Protocol.	If	a	driver	is	required	to	be	compatible	with	the	EFI	1.10
Specification,	then	the	SCSI	Pass	Thru	Protocol	must	be	produced.

SCSI	bus
driver

Consumes	the	Ext	SCSI	Pass	Thru	Protocol	and	produces	a	child	handle	for	SCSI
targets	on	the	SCSI	bus.	Installs	the	Device	Path	Protocol	and	SCSI	I/O	Protocol	onto
each	child	handle.

SCSI
device
driver

Consumes	the	SCSI	I/O	Protocol	and	produces	an	I/O	abstraction	that	provides
services	for	the	console	devices	and	boot	devices	that	are	required	to	boot	an	EFI-
conformant	operating	system.

This	chapter	shows	how	to	write	UEFI	Drivers	for	SCSI	host	controllers	and	UEFI	Drivers	for	SCSI	devices.
SCSI	drivers	must	follow	all	of	the	general	design	guidelines	described	in	Chapter	4	of	this	guide.	In
addition,	any	SCSI	host	controllers	that	are	PCI	controllers	must	also	follow	the	PCI-specific	design
guidelines	described	in	Chapter	18.	This	chapter	covers	the	guidelines	that	apply	specifically	to	the
management	of	SCSI	host	controllers,	SCSI	channels,	and	SCSI	devices.	SCSI	drivers,	especially	those	for
RAID	controllers,	may	include	HII	functionality	for	SCSI	subsystem	configuration	settings.	HII	functionality
is	described	in	Chapter	12	of	this	guide.

The	EFI	1.10	Specification	defines	the	SCSI	Pass	Thru	Protocol.	UEFI	Drivers	for	SCSI	host	controllers	that
are	required	to	work	properly	on	platforms	that	conform	to	the	EFI	1.10	Specification	are	required	to
produce	the	SCSI	Pass	Thru	Protocol	and	also	produce	the	Block	I/O	protocol	for	physical	and	logical
drives	that	the	SCSI	host	controller	manages.	This	implies	that	a	UEFI	Driver	for	the	SCSI	host	controller
in	an	EFI	1.10	platform	is	required	to	perform	all	the	functions	of	the	SCSI	driver	stack	described	in	the
table	above.	The	UEFI	2.0	Specification	and	above	require	the	platform	firmware	to	provide	the	SCSI	bus
driver	and	SCSI	device	driver	for	mass	storage	devices,	so	the	implementation	of	a	UEFI	Driver	for	a	SCSI
host	controller	is	simpler	if	the	UEFI	Driver	is	only	required	to	function	properly	on	platforms	that
conform	to	the	UEFI	2.0	Specification	and	above.

20	SCSI	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

538DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1	SCSI	Host	Controller	Driver

A	SCSI	host	controller	driver	manages	a	SCSI	host	controller	that	contains	one	or	more	SCSI	channels.	It
creates	handles	for	each	SCSI	channel	and	installs	the	Extended	SCSI	Pass	Thru	Protocol	and	Device
Path	Protocol	to	each	of	the	handle	that	the	driver	creates.	See	the	SCSI	Driver	Models	and	Bus	Support
chapter	of	the	UEFI	Specification	for	details	about		EFI_EXT_SCSI_PASS_THRU_PROTOCOL	.

A	SCSI	host	controller	driver	follows	the	UEFI	driver	model.	Depending	on	the	adapter	that	it	manages,	a
SCSI	host	controller	driver	can	be	categorized	as	either	a	device	driver	or	a	hybrid	driver.	It	creates	child
handles	for	each	SCSI	channel	(if	there	is	more	than	1)	and	it	may	also	install	protocols	on	its	own
handle.	Typically,	SCSI	host	controller	drivers	are	chip-specific	because	of	the	requirement	to	initialize
and	manage	the	currently	bound	SCSI	host	controller.

Because	there	may	be	multiple	SCSI	host	adapters	in	a	platform	that	may	be	managed	by	a	single	SCSI
host	controller	driver,	it	is	recommended	that	the	SCSI	host	controller	driver	be	designed	to	be	re-
entrant	and	allocate	a	different	private	context	data	structure	for	each	SCSI	host	controller.

20.1	SCSI	Host	Controller	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

539DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.1	Single-Channel	SCSI	Adapters

If	the	SCSI	adapter	supports	one	channel,	then	the	SCSI	host	controller	driver	performs	the	following:

Install	Extended	SCSI	Pass	Thru	Protocol	onto	the	controller	handle	for	the	SCSI	host	controller.
Set	the	logical	attribute	for	the	SCSI	channel	in	the	mode	structure.
Set	the	physical	attribute	for	the	SCSI	channel	in	the	mode	structure.

The	following	figure	shows	an	example	implementation	on	a	single-channel	SCSI	adapter.	The	green
layer	represents	the	SCSI	host	controller	driver.

Figure	22-Sample	SCSI	driver	stack	on	single-channel	adapter

Because	there	is	only	one	SCSI	channel,	the	SCSI	driver	can	simply	implement	one	instance	of	the
Extended	SCSI	Pass	Thru	Protocol.	The	platform	firmware	provides	the	SCSI	Bus	Driver	and	SCSI	Disk
Driver	that	complete	the	driver	stack	by	performing	the	following	actions:

Scan	for	SCSI	targets	on	the	SCSI	channel	and	create	child	handles.
Install	Device	Path	Protocol	to	each	child	handle.
Install	SCSI	I/O	Protocol	to	each	child	handle.
Install	I/O	abstraction	such	as	the	Block	I/O	Protocol	to	each	child	handle.

20.1.1	Single-Channel	SCSI	AdaptersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

540DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.2	Multi-Channel	SCSI	Adapters

A	SCSI	host	controller	driver	is	more	complex	if	the	SCSI	adapter	provides	multiple	SCSI	channels.	The
following	figure	shows	a	possible	SCSI	driver	implementation	on	a	two-channel	SCSI	adapter.

Figure	23-Sample	SCSI	driver	implementation	on	a	multichannel	adapter

In	this	case,	the	SCSI	adapter	produces	two	physical	SCSI	channels	by	performing	the	following:

Create	a	child	handle	for	each	physical	SCSI	channel.
Install	Device	Path	Protocol	to	each	child	handle.
Install	Extended	SCSI	Pass	Thru	Protocol	onto	each	child	handle
Set	the	logical	attribute	for	the	SCSI	channel	in	the	mode	structure	on	each	child	handle.
Set	the	physical	attribute	for	the	SCSI	channel	in	the	mode	structure	on	each	child	handle.

The	platform	firmware	provides	the	SCSI	Bus	Driver	and	SCSI	Disk	Driver	that	complete	the	two	driver
stacks	on	each	of	the	Extended	SCSI	Pass	Thru	Protocols	shown	above	by	performing	the	following
actions:

Scan	for	SCSI	targets	on	each	SCSI	channel	and	create	child	handles.
Install	Device	Path	Protocol	to	each	child	handle.
Install	SCSI	I/O	Protocol	to	each	child	handle.
Install	I/O	abstraction	such	as	the	Block	I/O	Protocol	to	each	child	handle.

20.1.2	Multi-Channel	SCSI	AdaptersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

541DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.3	SCSI	Adapters	with	RAID

A	SCSI	host	controller	driver	may	also	support	SCSI	adapters	with	RAID	capability.	The	following	figure
shows	an	example	implementation	with	two	physical	SCSI	channels	and	one	logical	channel.	The	two
physical	channels	are	implemented	on	the	SCSI	adapter.	The	RAID	component	then	configures	these
two	channels	to	produce	a	logical	SCSI	channel.	The	two	physical	channels	each	have	Extended	SCSI
Pass	Thru	installed,	but	these	are	not	be	used	except	for	diagnostic	use.	For	the	logical	channel,	the
SCSI	host	controller	driver	produces	another	Extended	SCSI	Pass	Thru	Protocol	(with	physical	bit	turned
off)	instance	based	on	the	RAID	configuration.	Requests	sent	to	the	Extended	SCSI	Pass	Thru	protocol
for	the	logical	channel	are	processed	by	the	SCSI	host	controller	drivers	and	converted	into	requests	on
the	physical	SCSI	channels.	The	platform	firmware	must	only	enumerate	and	boot	from	SCSI	targets
present	on	the	logical	SCSI	channel.

Figure	24-Sample	SCSI	driver	implementation	on	multichannel	RAID	adapter

The	SCSI	adapter	hardware	may	not	be	able	to	expose	the	physical	SCSI	channel(s)	to	upper-level
software	when	implementing	RAID.	If	the	physical	SCSI	channel	cannot	be	exposed	to	upper	software,
then	the	SCSI	host	controller	driver	is	only	required	to	produce	a	single	logical	channel	for	the	RAID.

Although	the	basic	theory	is	the	same	as	the	one	on	a	physical	channel,	it	is	different	from	a
manufacturing	and	diagnostic	perspective.	If	the	physical	SCSI	channels	are	exposed,	any	SCSI
command,	including	diagnostic	ones,	can	be	sent	to	an	individual	channel,	which	is	very	helpful	on
manufacturing	lines.	Furthermore,	the	diagnostic	command	can	be	sent	simultaneously	to	all	physical
channels	using	the	non-blocking	mode	that	is	supported	by	Extended	SCSI	Pass	Thru	Protocol.	The
diagnostic	process	may	considerably	benefit	from	the	performance	gain.	In	summary,	it	is	suggested	to
expose	physical	SCSI	channel	whenever	possible.

20.1.3	SCSI	Adapters	with	RAIDEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

542DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Of	course,	there	are	many	possible	designs	for	implementing	SCSI	RAID	functionality.	The	point	is	that	an
SCSI	host	controller	driver	may	be	designed	and	implemented	for	a	wide	variety	of	SCSI	adapters	types,
and	those	SCSI	host	controller	drivers	can	produce	the	Extended	SCSI	Pass	Thru	Protocol	for	SCSI
channels	that	contain	SCSI	targets	that	may	be	used	as	UEFI	boot	devices.

20.1.3	SCSI	Adapters	with	RAIDEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

543DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.4	Implementing	driver	binding	protocol

A	SCSI	host	controller	driver	follows	the	UEFI	driver	model,	so	the	image	entry	point	of	a	SCSI	host
controller	driver	installs	the	Driver	Binding	Protocol	instance	on	the	image	handle.	All	three	of	the
services	in	the	Driver	Binding	Protocol-	Supported()	,		Start()	,	and		Stop()	-must	be	implemented	by	a	SCSI
host	controller	driver.

20.1.4.1	Supported()

The		Supported()		function	tests	to	see	if	a	given	controller	handle	is	SCSI	adapter	the	driver	knows	how	to
manage.	In	this	function,	a	SCSI	host	controller	driver	checks	to	see	if	the		EFI_DEVICE_PATH_PROTOCOL		and
	EFI_PCI_IO_PROTOCOL		are	present	to	ensure	the	handle	that	is	passed	in	represents	a	PCI	device.	In
addition,	a	SCSI	host	controller	driver	checks	the	ClassCode,	VendorId,	and	DeviceId	from	the	device's
PCI	configuration	header	to	see	if	it	is	a	conformant	SCSI	adapter	that	can	be	managed	by	the	SCSI	host
controller	driver.

20.1.4.2	Start()

The		Start()		function	tells	the	SCSI	host	controller	driver	to	start	managing	the	SCSI	host	controller.	In
this	function,	a	single	channel	SCSI	host	controller	driver	uses	chipspecific	knowledge	to	perform	the
following	tasks:

Initialize	the	SCSI	host	controller.
Enable	the	PCI	device.
Allocate	resources.
Construct	data	structures	for	the	driver	to	use.
Install	the	Extended	SCSI	Pass	Thru	Protocol	instance	on	the	same	handle	that	has	the	PCI	I/O
Protocol.

If	the	SCSI	adapter	is	a	multi-channel	adapter,	then	the	driver	should	also	do	the	following:

Enumerate	the	SCSI	channels	that	are	supported	by	the	SCSI	host	controller.
Create	child	handles	for	each	physical	SCSI	channel.
Append	the	device	path	for	each	channel	handle.
Install	the	Device	Path	Protocol	and	Extended	SCSI	Pass	Thru	Protocol	on	every	newly	created
channel	handle.

20.1.4.3	Stop()

The		Stop()		function	performs	the	opposite	operations	as		Start()	.	Generally	speaking,	a	SCSI	driver	is
required	to	do	the	following:

Disable	the	SCSI	adapter.
Release	all	resources	that	were	allocated	for	this	driver.
Close	the	protocol	instances	that	were	opened	in	the		Start()	function.
Uninstall	the	protocol	interfaces	that	were	attached	on	the	host	controller	handle.

In	general,	if	it	is	possible	to	design	a	SCSI	host	controller	driver	to	create	one	child	at	a	time,	it	should
do	so	to	support	the	rapid	boot	capability	in	the	UEFI	driver	model.

Each	of	the	channel	child	handles	created	in		Start()		must	contain	a	Device	Path	Protocol	instance	and
a	Extended	SCSI	Pass	Thru	abstraction	layer.

20.1.4	Implementing	driver	binding	protocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

544DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.4	Implementing	driver	binding	protocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

545DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.5	Implementing	Extended	SCSI	Pass	Thru	Protocol

	EFI_EXT_SCSI_PASS_THRU_PROTOCOL		allows	information	about	a	SCSI	channel	to	be	collected	and	allows	SCSI
Request	Packets	to	be	sent	to	any	SCSI	devices	on	a	SCSI	channel,	even	if	those	devices	are	not	boot
devices.	This	protocol	is	attached	to	the	device	handle	of	each	SCSI	channel	in	a	system	that	the
protocol	supports	and	can	be	used	for	diagnostics.	It	may	also	be	used	to	build	a	block	I/O	driver	for
SCSI	hard	drives	and	SCSI	CD-ROM	or	DVD	drives	to	allow	those	devices	to	become	boot	devices.

The	Extended	SCSI	Pass	Thru	Protocol	is	usually	implemented	in	the	file		ExtScsiPassThru.c	.	Appendix	A
contains	a	template	for	the	Extended	SCSI	Pass	Thru	Protocol.

Example	212-Extended	SCSI	Pass	Thru	Protocol

typedef	struct	_EFI_EXT_SCSI_PASS_THRU_PROTOCOL	EFI_EXT_SCSI_PASS_THRU_PROTOCOL;

///

///	The	EFI_EXT_SCSI_PASS_THRU_PROTOCOL	provides	information	about	a	SCSI	channel

///	and	the	ability	to	send	SCI	Request	Packets	to	any	SCSI	device	attached	to

///	that	SCSI	channel.	The	information	includes	the	Target	ID	of	the	host

///	controller	on	the	SCSI	channel	and	the	attributes	of	the	SCSI	channel.

///

struct	_EFI_EXT_SCSI_PASS_THRU_PROTOCOL	{

		///

		///	A	pointer	to	the	EFI_EXT_SCSI_PASS_THRU_MODE	data	for	this	SCSI	channel.

		///

		EFI_EXT_SCSI_PASS_THRU_MODE																	*Mode;

		EFI_EXT_SCSI_PASS_THRU_PASSTHRU													PassThru;

		EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN		GetNextTargetLun;

		EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH				BuildDevicePath;

		EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN							GetTargetLun;

		EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL								ResetChannel;

		EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN					ResetTargetLun;

		EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET						GetNextTarget;

};

For	a	detailed	description	of		EFI_EXT_SCSI_PASS_THRU_PROTOCOL	,	see	the	section	in	the	UEFI	Specification	on
SCSI	Driver	Models	and	Bus	Support.

Before	implementing	Extended	SCSI	Pass	Thru	Protocol,	the	SCSI	host	controller	driver	configures	the
SCSI	host	controller	to	a	defined	state.	In	practice,	the	SCSI	adapter	maps	a	set	of	SCSI	host	controller
registers	in	I/O	or	memory-mapped	I/O	space.	Although	the	detailed	layout	or	functions	of	these
registers	vary	from	one	SCSI	hardware	to	another,	the	SCSI	host	controller	driver	uses	specific
knowledge	to	set	up	the	proper	SCSI	working	mode	(SCSI-I,	SCSI-II,	Ultra	SCSI,	and	so	on)	and	configure
the	timing	registers	for	the	current	mode.	Other	considerations	include	parity	options,	DMA	engine	and
interrupt	initialization,	among	others.

All	the	hardware-related	settings	must	be	completed	before	any	Extended	SCSI	Pass

Thru	Protocol	functions	are	called.	The	initialization	is	usually	performed	in	the	Driver	Binding	Protocol's
	Start()		function	of	the	SCSI	host	controller	driver	prior	to	installing	the	Extended	SCSI	Pass	Thru
Protocol	instance	into	the	Handle	Database.

	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.	Mode	is	a	structure	that	describes	the	intrinsic	attributes	of	Extended	SCSI
Pass	Thru	Protocol	instance.	Note	that	a	non-RAID	SCSI	channel	sets	both	the	physical	and	logical
attributes.	A	physical	channel	on	the	RAID	adapter	only	sets	the	physical	attribute,	and	the	logical
channel	on	the	RAID	adapter	only	sets	the	logical	attribute.	If	the	channel	supports	non-blocking	I/O,
the	nonblocking	attribute	is	also	set.	The	example	below	shows	how	to	set	those	attributes	on	a	non-
RAID	SCSI	adapter	that	supports	non-blocking	I/O.

Example	213-SCSI	Pass	Thru	Mode	Structure	for	S ingle	Channel	Adapter

20.1.5	Implementing	Extended	SCSI	Pass	Thru	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

546DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//

//	Target	Channel	Id

//

ExtScsiPassThruMode.AdapterId	=	4;

//

//	The	channel	does	support	nonblocking	I/O

//

ExtScsiPassThruMode.Attributes	=	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL	|

																																	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL		|

																																	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

//

//	Do	not	have	any	alignment	requirement

//

ExtScsiPassThruMode.IoAlign	=	0;

Example	214	shows	how	to	set	the	SCSI	Mode	structure	on	a	multi-channel	non-RAID	adapter.	The
example	fits	for	either	channel	in	Figure	23-Sample	SCSI	driver	implementation	on	a	multichannel
adapter.

Example	214-SCSI	Pass	Thru	Mode	Structure	for	Multi-Channel	Adapter

//

//	Target	Channel	Id

//

ExtScsiPassThruMode.AdapterId	=	2;

//

//	The	channel	does	not	support	nonblocking	I/O

//

ExtScsiPassThruMode.Attributes	=	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL	|

																																	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL;

//

//	Data	must	be	alligned	on	a	4-byte	boundary

//

ExtScsiPassThruMode.IoAlign	=	2;

The	next	example	shows	how	to	set	the	corresponding	Mode	structures	for	both	the	physical	and	logical
channel	to	be	filled	as	shown	below.

Example	215-SCSI	Pass	Thru	Mode	Structures	for	RAID	SCSI	adapter

//

//	Physical	Channel

//

ExtScsiPassThruMode.AdapterId		=	0;

ExtScsiPassThruMode.Attributes	=	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL	|

																																	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

ExtScsiPassThruMode.IoAlign				=	0;

//

//	Logical	Channel

//

ExtScsiPassThruMode.AdapterId		=	2;

ExtScsiPassThruMode.Attributes	=	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL	|

																																	EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

ExtScsiPassThruMode.IoAlign				=	0;

The		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()		and		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()		functions
provide	the	ability	to	enumerate	the	SCSI	targets	attached	to	a	SCSI	channel.	The	SCSI	host	controller
driver	may	implement	it	by	internally	maintaining	active	device	flags.	The	SCSI	host	controller	driver	may
use	this	flag	and	channel-specific	knowledge	to	determine	what	device	is	next,	as	well	as	what	device	is
first.

20.1.5	Implementing	Extended	SCSI	Pass	Thru	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

547DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()		function	facilitates	the	construction	of	a	SCSI	device	path.
The	Extended	SCSI	Pass	Thru	Protocol	may	be	used	to	abstract	access	to	many	different	types	of
device,	and	as	a	result	the	specific	device	path	used	to	describe	a	SCSI	target	may	vary.	The	detailed
SCSI	target	category	can	be	identified	only	by	the	Extended	SCSI	Pass	Thru	implementation,	which	is	why
this	function	is	part	of	the	Extended	SCSI	Pass	Thru	Protocol.

The		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()		function	is	the	most	important	function	when	implementing
Extended	SCSI	Pass	Thru	Protocol	and	it	performs	the	following:

Initialize	the	internal	register	for	command/data	transfer.
Put	valid	SCSI	packets	into	hardware-specific	memory	or	register	locations.
Start	the	transfer.
Optionally	wait	for	completion	of	the	execution.

The	better	error	handling	mechanism	in	this	function	helps	to	develop	a	more	robust	driver.	Although
most	SCSI	adapters	support	both	blocking	and	non-blocking	data	transfers,	some	may	only	support
blocking	transfers.	In	this	case,	the	SCSI	driver	may	implement	the	blocking	SCSI	I/O	that	is	required	by
the	UEFI	Specification	using	the	polling	mechanism.	Polling	can	be	based	on	a	timer	interrupt	or	simply
by	polling	the	internal	register.	Do	not	return	until	all	I/O	requests	are	completed	or	else	an	unhandled
error	is	encountered.

20.1.5	Implementing	Extended	SCSI	Pass	Thru	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

548DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.6	SCSI	command	set	device	considerations

Extended	SCSI	Pass	Thru	Protocol	defines	a	method	to	directly	access	SCSI	devices.	This	protocol
provides	interfaces	that	allow	a	generic	driver	to	produce	the	Block	I/O	Protocol	for	SCSI	mass	storage
devices	and	allows	a	UEFI	utility	to	issue	commands	to	any	SCSI	device.	The	main	reason	to	provide	such
an	access	is	to	enable	S.M.A.R.T.	functionality	during	POST	(i.e.,	issuing	Mode	Sense,	Mode	Select,	and
Log	Sense	to	SCSI	devices).	This	enabling	is	accomplished	using	the	generic	interfaces	that	are	defined
in	Extended	SCSI	Pass	Thru	Protocol.	The	implementation	of	this	protocol	also	enables	additional
functionality	in	the	future	without	modifying	the	SCSI	drivers	that	are	built	on	top	of	the	SCSI	host
controller	driver.	Furthermore,	Extended	SCSI	Pass	Thru	Protocol	is	not	limited	to	SCSI	adapters.	It	is
applicable	to	all	channel	technologies	that	use	SCSI	commands	such	as	ATAPI,	iSCSI,	and	Fibre	Channel.
This	section	shows	some	examples	that	demonstrate	how	to	implement	Extended	SCSI	Pass	Thru
Protocol	on	SCSI	command	set-compatible	technology.

20.1.6.1	ATAPI

This	section	provides	guidance	on	how	to	implement	the	Extended	SCSI	Pass	Thru	Protocol	for	ATAPI
devices.

Decoding	the	Target	and	Lun	pair	uses	the	intrinsic	property	of	the	technology	or	device.	For	ATAPI,	only
four	devices	are	supported,	so	the	Target	and	Lun	pair	can	be	decoded	by	determining	the	IDE	channel
(primary/secondary)	and	IDE	device	(master/slave).

If	the	corresponding	technology	or	device	supports	the	channel	reset	operation,	use	it	to	implement
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()	;	if	not,	it	may	be	implemented	by	resetting	all	attached	devices
on	the	channel	and	re-enumerating	them.

In	the		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()		function,	all	target	devices	should	be	built	on	a	node
based	on	the	channel	knowledge.	The	example	below	shows	how	to	build	a	device	path	node	for	an
ATAPI	device.

Example	216-Building	Device	Path	for	ATAPI	Device

#include	<Uefi.h>

#include	<Protocol/ScsiPassThruExt.h>	

#include	<Protocol/DevicePath.h>

#include	<Library/DevicePathLib.h>

EFI_STATUS

EFIAPI

AbcBuildDevicePath	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL		*This,

		IN					UINT8																												*Target,

		IN					UINT64																											Lun,

		IN	OUT	EFI_DEVICE_PATH_PROTOCOL									**DevicePath

)

{

		ATAPI_DEVICE_PATH		*Node;

		Node	=	(ATAPI_DEVICE_PATH	*)CreateDeviceNode	(

																																MESSAGING_DEVICE_PATH,

																																MSG_ATAPI_DP,

																																sizeof	(ATAPI_DEVICE_PATH)

);

		if	(Node	==	NULL)	{

				return	EFI_OUT_OF_RESOURCES;

		}

		Node->PrimarySecondary	=	(UINT8)(*Target	>>	1);

		Node->SlaveMaster	=	(UINT8)(*Target	&	0x01);

		Node->Lun	=	(UINT16)Lun;

20.1.6	SCSI	command	set	device	considerationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

549DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		*DevicePath	=	(EFI_DEVICE_PATH_PROTOCOL	*)Node;

		return	EFI_SUCCESS;

}

For	the	most	important	function,		EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()	,	it	should	be	implemented	by
technology-dependent	means.	In	this	example,	ATAPI	supports	a	SCSI	command	using	the	IDE	"Packet"
command.	Because	the	IDE	command	is	delivered	through	a	group	of	I/O	registers,	the	main	body	of	the
implementation	is	filling	the	SCSI	command	structure	to	these	I/O	registers	and	then	waiting	for	the
command	completion.	A	complete	code	example	for	the	blocking	I/O		EFI_EXT_SCSI_PASS_THRU_PROTOCOL		services
can	be	found	in	the	EDK	II		MdeModulePkg		in	the	directory		MdeModulePkg\Bus\Ata\AtaAtapiPassThru	.

For	the	non-blocking	I/O		EFI_EXT_SCSI_PASS_THRU_PROTOCOL		function,	the	SCSI	driver	submits	the	SCSI	command
and	returns.	It	may	choose	to	poll	an	internal	timer	event	to	check	whether	the	submitted	command
completes	its	execution.	If	so,	it	should	signal	the	client	event.	The	UEFI	firmware	then	schedules	the
notification	function	of	the	client	event	to	be	called.

The	following	example	shows	a	sample	non-blocking	Extended	SCSI	Pass	Thru	Protocol	implementation.

Example	217-Non-Blocking	Extended	SCSI	Pass-Thru	Protocol	Implementation

#include	<Uefi.h>

#include	<Protocol/ScsiPassThruExt.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/UefiLib.h>

#define	ATAPI_SCSI_PASS_THRU_DEV_SIGNATURE	SIGNATURE_32('A','t','a','S')

typedef	struct	{

		UINTN	Signature;

		EFI_HANDLE	Handle;

		EFI_EXT_SCSI_PASS_THRU_PROTOCOL	ScsiPassThru;

		EFI_EXT_SCSI_PASS_THRU_MODE	ScsiPassThruMode;

		EFI_EVENT	ClientEvent;

}	ATAPI_SCSI_PASS_THRU_DEV;

#define	ATAPI_SCSI_PASS_THRU_DEV_FROM_THIS(a)	\

		CR(a,	ATAPI_SCSI_PASS_THRU_DEV,	ScsiPassThru,	ATAPI_SCSI_PASS_THRU_DEV_SIGNATURE)

VOID

EFIAPI

AbcScsiPassThruPollEventNotify	(

		IN	EFI_EVENT		Event,

		IN	VOID							*Context

)

{

		ATAPI_SCSI_PASS_THRU_DEV		*AtapiScsiPrivate;

		BOOLEAN																			CommandCompleted;

		ASSERT	(Context);

		AtapiScsiPrivate	=	(ATAPI_SCSI_PASS_THRU_DEV	*)Context;

		CommandCompleted	=	FALSE;

		//

		//	Use	specific	knowledge	to	identify	whether	command	execution

		//	completes	or	not.	If	so,	set	CommandCompleted	as	TRUE.

		//

		//

	if	(CommandCompleted)	{

				//

				//	Get	client	event	handle	from	private	context	data	structure.

				//	Signal	it.

				//

				gBS->SignalEvent	(AtapiScsiPrivate->ClientEvent);

		}

}

20.1.6	SCSI	command	set	device	considerationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

550DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

AbcScsiPassThru	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL													*This,

		IN					UINT8																																							*Target,

		IN					UINT64																																						Lun,

		IN	OUT	EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET		*Packet,

		IN					EFI_EVENT																																			Event					OPTIONAL

)

{

		ATAPI_SCSI_PASS_THRU_DEV		*AtapiScsiPrivate;

		EFI_EVENT																	InternalEvent;

		EFI_STATUS																Status;

		AtapiScsiPrivate	=	ATAPI_SCSI_PASS_THRU_DEV_FROM_THIS	(This);

		//

		//	Do	parameter	checking	required	by	UEFI	Specification

		//

		//..................................

		//

		//	Create	internal	timer	event	in	order	to	poll	the	completion.

		//	The	event	can	also	be	created	outside	of	this	function	to

		//	avoid	frequent	event	construction/destruction.

		//

		Status	=	gBS->CreateEvent	(

																		EVT_TIMER	|	EVT_NOTIFY_SIGNAL,

																		TPL_CALLBACK,

																		AbcScsiPassThruPollEventNotify,

																		AtapiScsiPrivate,

																		&InternalEvent

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Signal	the	polling	event	every	200	ms.	Select	the	interval

		//	according	to	the	specific	requirement	and	technology.

		//

		Status	=	gBS->SetTimer	(

																		InternalEvent,

																		TimerPeriodic,

																		EFI_TIMER_PERIOD_MILLISECONDS	(200)

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Submit	SCSI	I/O	command	through	IDE	I/O	registers	and	return

		//

		//	.	.

		//

		return	Status;

}

20.1.6	SCSI	command	set	device	considerationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

551DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.7	Discover	a	SCSI	channel

It	is	recommended	that	the	SCSI	host	controller	driver	construct	a	private	context	structure	for	each
enumerated	SCSI	channel.	See	Chapter	8	in	this	guide	for	the	advantage	of	using	such	a	private
context	structure.

Specifically,	the	SCSI	host	controller	driver	should	store	all	required	information	for	the	child	SCSI
channel	in	this	data	structure,	this	should	including	the	signature,	child	handle	value	(optional	for
single	channel	controller),	channel	number,	and	any	produced	protocols.	This	private	context	structure
can	be	accessed	via	the	Record	macro		CR()	,	which	is	described	in	Chapter	8	of	this	document.

The	method	for	determining	the	number	of	channels	on	a	given	controller	is	chip	specific	and	varies	by
manufacturer.	It	is	also	the	SCSI	driver's	responsibility	to	do	the	following:

Build	the	appropriate	device	path	for	the	enumerated	SCSI	channel.
Install	Extended	SCSI	Pass	Thru	Protocol	and	Device	Path	Protocol	on	the	appropriate	handle	(child
handle	is	optional	for	single	channel).

20.1.7	Discover	a	SCSI	channelEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

552DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.1.8	SCSI	Device	Path

The	SCSI	host	controller	driver	described	in	this	document	support	a	SCSI	channel	that	is	generated	or
emulated	by	multiple	architectures,	such	as	SCSI-I,	SCSI-II,	SCSI-III,	ATAPI,	Fibre	Channel,	iSCSI,	and	other
future	channel	types.	This	section	describes	four	example	device	paths,	including	SCSI,	ATAPI,	and	Fibre
Channel	device	paths.

20.1.8.1	SCSI	Device	Path	Example

The	table	below	shows	an	example	device	path	for	a	SCSI	host	controller	that	supports	a	single	SCSI
channel	and	is	located	at	PCI	device	number	0x07	and	PCI	function	0x00	The	PCI	SCSI	host	controller	is
directly	attached	to	a	PCI	root	bridge.

This	sample	device	path	consists	of	an	ACPI	device	path	node,	a	PCI	device	path	node,	and	a	device
path	end	structure.	The	_HID	and	_UID	must	match	the	ACPI	table	description	of	the	PCI	root	bridge.	The
following	is	the	shorthand	notation	for	this	device	path:	ACPI(PNP0A03,0)/PCI(7|0).

20.1.8	SCSI	Device	PathEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

553DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	32-SCSI	device	path	examples

Byte
offset

Byte
length Data Description

0x00 0x01 0x02 Generic	Device	Path	Header	-	Type	ACPI	Device	Path

0x01 0x01 0x01 Sub	type	-	ACPI	Device	Path

0x02 0x02 0x0C Length	-	0x0C	bytes

0x04 0x04 0x41D0, _HID	PNP0A03	-	0x41D0	represents	a	compressed	string	'PNP'
and	is	in	the	low-order	bytes.

0x0A03

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic	Device	Path	Header	-	Type	Hardware	Device	Path

0x0D 0x01 0x01 Sub	type	-	PCI

0x0E 0x02 0x06 Length	-	0x06	bytes

0x10 0x01 0x07 PCI	Function

0x11 0x01 0x00 PCI	Device

0x12 0x01 0xFF Generic	Device	Path	Header	-	Type	End	of	Hardware	Device
Path

0x13 0x01 0xFF Sub	type	-	End	of	Entire	Device	Path

0x14 0x02 0x04 Length	-	0x04	bytes

20.1.8.2	Multiple	SCSI	channels	on	a	multifunction	PCI	controller

A	SCSI	host	controller	with	multiple	SCSI	channels	on	a	multi-function	PCI	controller	only	changes	the	PCI
portion	of	the	device	path	for	each	SCII	channel.	In	this	example,	SCSI	channel	0	is	accessed	through
PCI	function	#0,	and	SCSI	channel	1	is	accessed	through	PCI	function	#1	The	following	are	the	device
paths	for	these	SCSI	channels:

	ACPI(PNP0A03,1)/PCI(7|0)		-	Access	to	channel	0
	ACPI(PNP0A03,1)/PCI(7|1)		Access	to	channel	1

20.1.8.3	Multiple	SCSI	channels	on	a	single	function	PCI	controller

If	there	is	a	SCSI	PCI	controller	with	multiple	SCSI	channels	connected	to	a	single-function	PCI	device,	the
device	paths	must	differentiate	the	SCSI	channels.	In	this	example,	SCSI	channel	0	is	accessed	through
Controller	#0	below	PCI	function	#0,	and	SCSI	channel	1	is	accessed	through	Controller	#1	below	PCI
function	#1.	The	following	are	the	device	paths	for	these	SCSI	channels:

	ACPI(PNP0A03,1)/PCI(7|0)/Controller(0)		-	Access	to	channel	0
	ACPI(PNP0A03,1)/PCI(7|0)/Controller(1)		-	Access	to	channel	1

20.1.9	Using	Extended	SCSI	Pass	Thru	Protocol

If	a	SCSI	driver	supports	both	blocking	and	non-blocking	I/O	modes,	any	client	of	the	SCSI	driver	can	use
them	to	perform	SCSI	I/O.

The	following	example	demonstrates	how	to	use	Extended	SCSI	Pass	Thru	Protocol	to	perform	blocking
and	non-blocking	I/O.

20.1.8	SCSI	Device	PathEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

554DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	218-Blocking	and	non-blocking	modes

#include	<Uefi.h>

#include	<Protocol/ScsiPassThruExt.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS

EFIAPI

ScsiPassThruTests	(

			EFI_EXT_SCSI_PASS_THRU_PROTOCOL		*ScsiPassThru,

			UINT8																												*Target,

			UINT64																											Lun

)

{

		EFI_STATUS																																		Status;

		EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET		Packet;

		EFI_EVENT	

		Event;

		//

		//	Fill	in	Packet	for	the	requested	test	operation

		//

		//

		//	Blocking	I/O

		//

		Status	=	ScsiPassThru->PassThru	(

																											ScsiPassThru,

																											Target,

																											Lun,

																											&Packet,

																											NULL

);

		//

		//	Non	Blocking	I/O

		//

		Status	=	gBS->CreateEvent	(

																		EVT_NOTIFY_SIGNAL,

																		TPL_CALLBACK,

																		NULL,

																		NULL,

																		&Event

);

		Status	=	ScsiPassThru->PassThru	(

																											ScsiPassThru,

																											Target,

																											Lun,

																											&Packet,

																											&Event

);

		do	{

				Status	=	gBS->CheckEvent	(Event);

		}	while	(EFI_ERROR	(Status));

		return	Status;

}

20.1.8	SCSI	Device	PathEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

555DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.2	SCSI	Bus	Driver

EDK	II	contains	a	generic	SCSI	bus	driver.	This	driver	uses	the	services	of		EFI_EXT_SCSI_PASS_THRU_PROTOCOL		to
enumerate	SCSI	devices	and	produce	child	handles	with		EFI_DEVICE_PATH_PROTOCOL		and		EFI_SCSI_IO_PROTOCOL	.
The	implementation	of	the	SCSI	Bus	Driver	is	found	in	the		MdeModulePkg		in	the	directory
	MdeModulePkg/Bus/Scsi/ScsiBusDxe	.

If	UEFI-based	system	firmware	is	ported	to	a	new	platform,	most	of	the	SCSI-related	changes	occur	in
the	implementation	of	the	SCSI	host	controller	driver.	If	new	types	of	SCSI	devices	are	introduced	that
are	required	to	provide	a	console	or	provide	a	UEFI	boot	capability,	then	the	implementation	of	new	SCSI
Device	Drivers	are	also	required.	The	SCSI	bus	driver	is	designed	to	be	a	generic,	platform-agnostic
driver.	As	a	result,	customizing	the	SCSI	bus	driver	is		strongly	discouraged	.	The	detailed	design	and
implementation	of	the	SCSI	bus	driver	is	not	covered	in	this	guide.

20.2	SCSI	Bus	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

556DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.3	SCSI	Device	Driver

SCSI	device	drivers	use	services	provided	by		EFI_SCSI_IO_PROTOCOL		to	produce	one	or	more	protocols	that
provide	I/O	abstractions	of	a	SCSI	device.	SCSI	device	drivers	must	follow	the	UEFI	Driver	Model.	The	EDK
II	provides	a	SCSI	Device	Driver	for	blockoriented	SCSI	devices	such	as	hard	drives,	CD-ROM,	and	DVD-
ROM.	The	implementation	of	the	SCSI	Disk	Driver	is	found	in	the		MdeModulePkg		in	the	directory
	MdeModulePkg/Bus/Scsi/ScsiDiskDxe	.

20.3	SCSI	Device	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

557DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.3.1	Driver	Binding	Protocol	Supported()

SCSI	device	drivers	and	must	implement	the		EFI_DRIVER_BINDING_PROTOCOL		that	contains	the		Supported()	,
	Start()	,	and		Stop()		services.	The		Supported()		service	checks	the	controller	handle	that	has	been	passed
in	to	see	whether	this	handle	represents	a	SCSI	device	that	this	driver	knows	how	to	manage.

The	following	is	the	most	common	method	for	doing	the	check:

Check	if	this	handle	has		EFI_SCSI_IO_PROTOCOL		installed.	If	not,	this	handle	is	not	a	SCSI	device	on	the
current	SCSI	channel.
Retrieve	the	8-bit	SCSI	device	type	to	see	if	the	type	is	one	that	this	driver	can	manage.

If	the	above	two	checks	are	passed,	it	means	that	the	SCSI	device	driver	can	manage	the	device	that
the	controller	handle	represents.	The		Supported()		service	returns		EFI_SUCCESS	.	Otherwise,	the		Supported()	
service	returns		EFI_UNSUPPORTED	.	In	addition,	this	check	process	must	not	disturb	the	current	state	of	the
SCSI	device,	because	a	another	SCSI	device	driver	may	be	managing	this	SCSI	device.

The	following	example	shows	an	implementation	of	the	Driver	Binding	Protocol		Supported()		service	for	a
SCSI	mass	storage	device.	It	opens	the	SCSI	I/O	Protocol	with	an	attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER	.	It
then	used	the		GetDeviceType()		service	of	the	SCSI	I/O	Protocol	and	evaluates	the	type	information	to	see	if
it	is	a	hard	drive	or	a	CD-ROM.

Example	219-Supported()	for	a	SCSI	device	driver

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>	#include	<Protocol/ScsiIo.h>

#include	<IndustryStandard/Scsi.h>

#include	<Library/UefiBootServicesTableLib.h>

EFI_STATUS

EFIAPI

AbcSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		EFI_STATUS												Status;

		EFI_SCSI_IO_PROTOCOL		*ScsiIo;

		UINT8																	DeviceType;

		//

		//	Open	the	SCSI	I/O	Protocol	on	ControllerHandle

		//

		Status	=	gBS->OpenProtocol	(

																		ControllerHandle,

																		&gEfiScsiIoProtocolGuid,

																		(VOID	**)&ScsiIo,

																		This->DriverBindingHandle,

																		ControllerHandle,

																		EFI_OPEN_PROTOCOL_BY_DRIVER

);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

		//

		//	Get	the	SCSI	Device	Type

		//

		Status	=	ScsiIo->GetDeviceType	(ScsiIo,	&DeviceType);

		if	(EFI_ERROR	(Status))	{

				goto	Done;

		}

		//

20.3.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

558DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		//	Check	to	see	if	the	interface	descriptor	is	supported	by	this	driver

		//

		if	((DeviceType	!=	EFI_SCSI_TYPE_DISK)	&&	(DeviceType	!=	EFI_SCSI_TYPE_CDROM))	{

				Status	=	EFI_UNSUPPORTED;

		}

Done:

		//

		//	Close	the	SCSI	I/O	Protocol

		//

		gBS->CloseProtocol	(

									ControllerHandle,

									&gEfiScsiIoProtocolGuid,

									This->DriverBindingHandle,

									ControllerHandle

);

		return	Status;

}

20.3.1	Driver	Binding	Protocol	Supported()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

559DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.3.2	Driver	Binding	Protocol	Start()	and	Stop()

The		Start()		service	of	the	Driver	Binding	Protocol	for	a	SCSI	device	driver	or	host	controller	driver	opens
the	SCSI	I/O	Protocol	with	an	attribute	of		EFI_OPEN_PROTOCOL_BY_DRIVER.		The	service	then	installs	the	I/O
abstraction	protocol	for	the	SCSI	device	onto	the	handle	on	which	the		EFI_SCSI_IO_PROTOCOL		is	installed.

20.3.2	Driver	Binding	Protocol	Start()	and	Stop()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

560DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

20.3.3	I/O	Protocol	Implementations

Once	a	SCSI	device	driver	has	been	started,	it	must	process	I/O	requests	for	the	I/O	abstraction	that
was	installed	in	Driver	Binding		Start()	.	In	the	case	of	the	SCSI	Disk	Driver,	these	I/O	abstractions	are	the
Block	I/O	Protocol,	the	Block	I/O	2	Protocol,	and	optionally	the	Storage	Security	Command	Protocol.	The
Block	I/O	Protocols	use	the	SCSI	I/O	Protocol	to	build	SCSI	command	to	perform	operations	to	detect
drive	capabilities,	read	sectors,	and	write	sectors.	The	EDK	II		MdePkg		also	provide	the	library	called
	UefiScsiLib		that	provides	functions	to	simplify	the	use	of	the	SCSI	I/O	Protocol.

20.3.3	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

561DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21	ATA	Driver	Design	Guidelines
There	are	several	categories	of	ATA	drivers	that	cooperate	to	provide	the	ATA	driver	stack	in	a	platform.
The	following	table	lists	these	ATA	drivers.

Table	33-Classes	of	ATA	drivers

Class	of
driver Description

ATA	host
controller
driver

Consumes	PCI	I/O	Protocol	on	the	ATA	host	controller	handle	and	produces	the	ATA
Pass	Thru	Protocol	used	to	access	hard	drives	and	the	Ext	SCSI	Pass	Thru	Protocol
used	to	access	CD-ROM/DVD-ROM	drives.

ATA	bus
driver

Consumes	the	ATA	Pass	Thru	Protocol	and	creates	child	handles	for	ATA	targets	with
the	Device	Path	Protocol,	Block	I/O	Protocol,	Block	I/O	2	Protocol,	and	optionally	the
Storage	Security	Command	Protocol.

This	chapter	shows	how	to	write	UEFI	Drivers	for	ATA	host	controllers.	ATA	drivers	must	follow	all	of	the
general	design	guidelines	described	in	Chapter	4	of	this	guide.	In	addition,	any	ATA	host	controllers	that
are	PCI	controllers	must	also	follow	the	PCIspecific	design	guidelines	described	in	Chapter	18.	This
section	covers	the	guidelines	that	apply	specifically	to	the	management	of	ATA	host	controllers.	ATA
drivers,	especially	those	for	RAID	controllers,	may	include	HII	functionality	for	ATA	subsystem
configuration	settings.	HII	functionality	is	described	in	Chapter	12	of	this	guide.

21	ATA	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

562DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.1	ATA	Host	Controller	Driver

An	ATA	host	controller	driver	manages	a	ATA	host	controller	and	installs	ATA	Pass	Thru	Protocol	and	the
Extended	SCSI	Pass	Thru	Protocol.	See	the	ATA	Pass	Thru	Protocol	section	of	the	UEFI	Specification	for
details	about		EFI_ATA_PASS_THRU_PROTOCOL		and		EFI_EXT_SCSI_PASS_THRU_PROTOCOL	.	Guidelines	for	the	Extended	SCSI
Pass	Thru	Protocol	are	covered	in	Chapter	20.	The	rest	of	this	section	focuses	on	the	ATA	Pass	Thru
Protocol.

An	ATA	host	controller	driver	is	a	device	driver	that	follows	the	UEFI	driver	model.	Typically,	ATA	host
controller	drivers	are	chip-specific	because	of	the	requirement	to	initialize	and	manage	the	currently
bound	ATA	host	controller.	Because	there	may	be	multiple	ATA	host	adapters	in	a	platform	that	may	be
managed	by	a	single	ATA	host	controller	driver,	it	is	recommended	that	the	ATA	host	controller	driver	be
designed	to	be	re-entrant	and	allocate	a	different	private	context	data	structure	for	each	ATA	host
controller.

An	ATA	host	controller	driver	performs	the	following:

Install	the	ATA	Pass	Thru	Protocol	onto	the	controller	handle	for	the	ATA	host	controller.
Install	Extended	SCSI	Pass	Thru	Protocol	onto	the	controller	handle	for	the	SCSI	host	controller.

The	platform	firmware	typically	provides	the	ATA	Bus	Driver	that	completes	the	ATA	driver	stack	by
performing	the	following	actions:

Use	the	services	of	the	ATA	Pass	Thru	Protocol	to	scan	for	ATA	targets	connected	to	the	ATA	host
controller	and	create	child	handles.
Install	Device	Path	Protocol	to	each	child	handle.
Install	Block	I/O	Protocol	on	each	child	handle.
Install	Block	I/O	2	Protocol	on	each	child	handle.
If	the	hard	drive	supports	the	SPC-4	or	ATA8-ACS	command	set,	then	install	the	Storage	Security
Command	Protocol	the	child	handle.

21.1	ATA	Host	Controller	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

563DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.1.1	Implementing	Driver	Binding	Protocol

An	ATA	host	controller	driver	follows	the	UEFI	driver	model,	so	the	image	entry	point	of	a	ATA	host
controller	driver	installs	the	Driver	Binding	Protocol	instance	on	the	image	handle.	All	three	of	the
services	in	the	Driver	Binding	Protocol-	Supported()	,		Start()	,	and		Stop()	-must	be	implemented	by	a	ATA
host	controller	driver.

21.1.1.1	Supported()

The		Supported()		function	tests	to	see	if	a	given	controller	handle	is	an	ATA	controller	the	driver	knows
how	to	manage.	In	this	function,	an	ATA	host	controller	driver	checks	to	see	if	the		EFI_DEVICE_PATH_PROTOCOL	
and		EFI_PCI_IO_PROTOCOL		are	present	to	ensure	the	handle	that	is	passed	in	represents	a	PCI	device.	In
addition,	an	ATA	host	controller	driver	checks	the	ClassCode,	VendorId,	and	DeviceId	from	the	device's
PCI	configuration	header	to	see	if	it	is	a	conformant	ATA	controller	that	can	be	managed	by	the	ATA	host
controller	driver.

21.1.1.2	Start()

The		Start()		function	tells	the	ATA	host	controller	driver	to	start	managing	the	ATA	host	controller.	In	this
function,	an	ATA	host	controller	driver	uses	chip-specific	knowledge	to	perform	the	following	tasks:

Initialize	the	ATA	host	controller.
Enable	the	PCI	device.
Allocate	resources.
Construct	data	structures	for	the	driver	to	use.
Install	the	ATA	Pass	Thru	Protocol	instance	on	the	same	handle	that	has	the	PCI	I/O	Protocol.
Install	the	Extended	SCSI	Pass	Thru	Protocol	instance	on	the	same	handle	that	has	the	PCI	I/O
Protocol.

If	the	ATA	host	controller	provides	RAID	capabilities,	then	the	ATA	host	controller	driver	can	either
choose	to	only	expose	access	to	the	logical	drives	following	the	algorithm	above,	or	the	ATA	host
controller	driver	can	produce	two	instances	of	the	ATA	Pass	Thru	Protocol.	One	for	accessing	the
physical	drives,	and	another	for	accessing	the	logical	drives.	In	this	case,	a	child	handle	is	created	for
each	ATA	Pass	Thru	Protocol	instance.

21.1.1.3	Stop()

The		Stop()		function	performs	the	opposite	operations	as		Start()	.	Generally	speaking,	an	ATA	host
controller	driver	is	required	to	do	the	following:

Disable	the	ATA	controller.
Release	all	resources	that	were	allocated	for	this	driver.
Close	the	protocol	instances	that	were	opened	in	the		Start()	function.
Uninstall	the	protocol	interfaces	that	were	attached	on	the	host	controller	handle.

21.1.1	Implementing	Driver	Binding	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

564DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.1.2	Implementing	ATA	Pass	Thru	Protocol

EFI_ATA_PASS_THRU_PROTOCOL	allows	information	about	a	ATA	target	to	be	collected	and	allows	ATA
Request	Packets	to	be	sent	to	any	ATA	devices	connected	to	the	ATA	host	controller,	even	if	those
devices	are	not	boot	devices.	This	protocol	is	attached	to	the	device	handle	of	the	ATA	host	controller	in
a	system	that	the	protocol	supports	and	can	be	used	for	diagnostics.	It	may	also	be	used	to	build	a
block	I/O	driver	for	ATA	hard	drives	allowing	those	devices	to	be	used	as	boot	devices.	The	ATA	Pass	Thru
Protocol	is	usually	implemented	in	the	file	AtaPassThru.c.	Appendix	A	contains	a	template	for	the	ATA
Pass	Thru	Protocol.

Example	220-ATA	Pass	Thru	Protocol

typedef	struct	_EFI_ATA_PASS_THRU_PROTOCOL	EFI_ATA_PASS_THRU_PROTOCOL;

struct	_EFI_ATA_PASS_THRU_PROTOCOL	{

		EFI_ATA_PASS_THRU_MODE															*Mode;

		EFI_ATA_PASS_THRU_PASSTHRU											PassThru;

		EFI_ATA_PASS_THRU_GET_NEXT_PORT						GetNextPort;

		EFI_ATA_PASS_THRU_GET_NEXT_DEVICE				GetNextDevice;

		EFI_ATA_PASS_THRU_BUILD_DEVICE_PATH		BuildDevicePath;

		EFI_ATA_PASS_THRU_GET_DEVICE									GetDevice;

		EFI_ATA_PASS_THRU_RESET_PORT									ResetPort;

		EFI_ATA_PASS_THRU_RESET_DEVICE							ResetDevice;

};

For	a	detailed	description	of		EFI_ATA_PASS_THRU_PROTOCOL	,	see	the	ATA	Pass	Thru	Protocol	section	of	the	UEFI
Specification.

Before	implementing	ATA	Pass	Thru	Protocol,	the	ATA	host	controller	driver	configures	the	ATA	host
controller	to	a	defined	state.	In	practice,	the	ATA	host	controller	maps	a	set	of	ATA	host	controller
registers	in	I/O	or	memory-mapped	I/O	space.	Although	the	detailed	layout	or	functions	of	these
registers	vary	from	one	ATA	host	controller	to	another,	the	ATA	host	controller	driver	uses	specific
knowledge	to	set	up	the	proper	ATA	mode	and	configure	the	timing	registers	for	the	current	mode.
Other	considerations	include	DMA	engine	and	interrupt	initialization,	among	others.

All	the	hardware-related	settings	must	be	completed	before	any	ATA	Pass	Thru	Protocol	functions	are
called.	The	initialization	is	usually	performed	in	the	Driver	Binding	Protocol's		Start()		function	of	the	ATA
host	controller	driver	prior	to	installing	the	ATA	Pass	Thru	Protocol	instance	into	the	Handle	Database.

	EFI_ATA_PASS_THRU_PROTOCOL.	Mode	is	a	structure	that	describes	the	intrinsic	attributes	of	the	ATA	Pass	Thru
Protocol	instance.	Note	that	a	non-RAID	ATA	host	controllers	set	both	the	physical	and	logical
attributes.	A	physical	channel	on	the	RAID	sets	only	the	physical	attribute,	and	the	logical	channel	on
the	RAID	adapter	sets	only	the	logical	attribute.	If	the	channel	supports	non-blocking	I/O,	the	non-
blocking	attribute	is	also	set.	The	example	below	shows	how	to	set	those	attributes	on	a	non-RAID	ATA
host	controller	that	supports	non-blocking	I/O.

Example	221-ATA	Pass	Thru	Mode	Structure

//

//	The	channel	does	support	nonblocking	I/O

//

AtaPassThruMode.Attributes	=	EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL	|

																													EFI_ATA_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL	|

																													EFI_ATA_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

//

//	Do	not	have	any	alignment	requirement

//

AtaPassThruMode.IoAlign	=	0;

21.1.2	Implementing	ATA	Pass	Thru	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

565DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	example	below	shows	how	to	set	the	ATA	Mode	structures	for	an	ATA	host	controller	that	provides
RAID	capabilities	and	produced	an	ATA	Pass	Thru	Protocol	instance	for	accessing	the	physical	drives	and
another	ATA	Pass	Thru	Protocol	instance	for	accessing	the	logical	drives.

Example	222-SCSI	Pass	Thru	Mode	Structures	for	RAID	SCSI	adapter

//

//	Physical	Channel

//

AtaPassThruMode.Attributes	=	EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL	|

																													EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

AtaPassThruMode.IoAlign	=	0;

//

//	Logical	Channel

//

AtaPassThruMode.Attributes	=	EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL	|

																													EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO;

AtaPassThruMode.IoAlign	=	0;

The		EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()		and		EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()		functions	provide	the
ability	to	enumerate	all	the	ATA	devices.		EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()		function	facilitates	the
construction	of	an	ATA	device	path.

The		EFI_ATA_PASS_THRU_PROTOCOL.PassThru()		function	is	the	most	important	function	when	implementing	ATA	Pass
Thru	Protocol	and	it	performs	the	following:

Initialize	the	internal	register	for	command/data	transfer.
Put	valid	ATA	commands	into	hardware-specific	memory	or	register	locations.
Start	the	transfer.
Optionally	wait	for	completion	of	the	execution.

The	better	error	handling	mechanism	in	this	function	helps	to	develop	a	more	robust	driver.	Although
most	ATA	host	controllers	support	both	blocking	and	non-blocking	data	transfers,	some	may	only
support	blocking	transfers.

21.1.2	Implementing	ATA	Pass	Thru	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

566DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.1.3	ATA	Command	Set	Considerations

ATA	Pass	Thru	Protocol	defines	a	method	to	directly	access	ATA	devices.	This	protocol	provides
interfaces	that	allow	a	generic	driver	to	produce	the	Block	I/O	Protocol	for	ATA	devices	and	allows	a	UEFI
utility	to	issue	commands	to	any	ATA	device.	The	main	reason	to	provide	such	an	access	is	to	enable
S.M.A.R.T.	functionality	during	POST.	This	enabling	is	accomplished	using	the	generic	interfaces	that	are
defined	in	ATA	Pass	Thru	Protocol.	The	implementation	of	this	protocol	also	enables	additional
functionality	in	the	future	without	modifying	the	ATA	Bus	Driver	that	is	built	on	top	of	the	ATA	host
controller	driver.

21.1.3	ATA	Command	Set	ConsiderationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

567DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.1.4	ATA	Device	Paths

The	table	below	shows	an	example	device	path	for	a	ATA	host	controller	that	supports	a	single	SCSI
channel	and	is	located	at	PCI	device	number	0x07	and	PCI	function	0x00	The	PCI	SCSI	host	controller	is
directly	attached	to	a	PCI	root	bridge.

This	sample	device	path	consists	of	an	ACPI	device	path	node,	a	PCI	device	path	node,	and	a	device
path	end	structure.	The	_HID	and	_UID	must	match	the	ACPI	table	description	of	the	PCI	root	bridge.	The
following	is	the	shorthand	notation	for	this	device	path:		ACPI(PNP0A03,0)/PCI(7|0)	.

Table	34-SATA	device	path	examples

Byte
Offset

Byte
Length Data Description

0x00 0x01 0x02 Generic	Device	Path	Header	-	Type	ACPI	Device	Path

0x01 0x01 0x01 Sub	type	-	ACPI	Device	Path

0x02 0x02 0x0C Length	-	0x0C	bytes

0x04 0x04 0x41D0,
0x0A03

_HID	PNP0A03	-	0x41D0	represents	a	compressed	string	'PNP'
and	is	in	the	low-order	bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic	Device	Path	Header	-	Type	Hardware	Device	Path

0x0D 0x01 0x01 Sub	type	-	PCI

0x0E 0x02 0x06 Length	-	0x06	bytes

0x10 0x01 0x07 PCI	Function

0x11 0x01 0x00 PCI	Device

0x12 0x01 0xFF Generic	Device	Path	Header	-	Type	End	of	Hardware	Device
Path

0x13 0x01 0xFF Sub	type	-	End	of	Entire	Device	Path

0x14 0x02 0x04 Length	-	0x04	bytes

21.1.4	ATA	Device	PathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

568DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

21.2	ATA	Bus	Driver

EDK	II	contains	a	generic	ATA	bus	driver.	This	driver	uses	the	services	of		EFI_ATA_PASS_THRU_PROTOCOL		to
enumerate	ATA	devices	and	produce	child	handles	with		EFI_DEVICE_PATH_PROTOCOL	,		EFI_BLOCK_IO_PROTOCOL	,
	EFI_BLOCK_IO2_PROTOCOL	,	and	optionally	the		EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	.	The	implementation	of	the	ATA
Bus	Driver	is	found	in	the		MdeModulePkg		in	the	directory		MdeModulePkg/Bus/Ata/AtaBusDxe	

If	UEFI-based	system	firmware	is	ported	to	a	new	platform,	most	of	the	ATA-related	changes	occur	in	the
implementation	of	the	ATA	host	controller	driver.	The	ATA	bus	driver	is	designed	to	be	a	generic,
platform-agnostic	driver.	As	a	result,	customizing	the	ATA	bus	driver	is		strongly	discouraged	.	The	detailed
design	and	implementation	of	the	ATA	bus	driver	is	not	covered	in	this	guide.

21.2	ATA	Bus	DriverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

569DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22	Text	Console	Driver	Design	Guidelines
This	chapter	covers	the	general	guidelines	for	implementing	UEFI	Drivers	for	devices	that	provide
console	services.	This	include	devices	that	allow	the	user	to	input	information	though	key	press	actions
such	as	a	keyboard	or	keypad,	devices	that	provide	text	based	output,	and	byte-stream	devices	like	a
UART	that	can	be	connected	to	a	remote	terminal	to	provide	console	services.

If	a	device	is	intended	to	be	used	as	a	console	input	device	and	that	device	must	be	available	for	use
as	a	console	input	device	while	UEFI	firmware	is	active,	then	a	UEFI	Driver	must	be	implemented	that
produces	both	the	Simple	Text	Input	Protocol	and	the	Simple	Text	Input	Ex	Protocol.	The	Simple	Text	In
Protocols	are	produced	for	any	device	that	can	behave	like	a	basic	keyboard.	This	could	be	an	actual
keyboard	such	as	USB	or	PS/2,	a	serial	terminal,	a	remote	network	terminal	such	as	Telnet,	or	a	custom
device	that	provide	the	ability	for	a	user	to	perform	actions	that	can	be	translated	into	UEFI	compatible
keystroke	information.

If	a	device	is	intended	to	be	used	as	a	console	output	device	while	UEFI	firmware	is	active,	and	that
device	is	able	to	display	text	strings,	then	a	UEFI	Driver	must	be	implemented	that	produces	the	Simple
Text	Output	Protocol.	The	device	must	support	an	80	column	by	25	row	character	mode,	and	may
optionally	support	additional	modes.	The	device	must	either	directly	support	or	be	able	to	emulate	the
following	operations:

Clear	the	display
Scroll	the	display	up
Move	cursor
Turn	cursor	on	and	off
Support	16	foreground	colors
Support	8	background	colors

If	a	device	is	graphics	controller	that	is	able	to	emulate	a	text	console	using	bitmap	fonts,	then	see
Chapter	23	on	the	Graphics	Output	Protocol.	The	EDK	II	provides	a	platform	agnostic	driver	in	the
	MdeModulePkg		in	the	directory		MdeModulePkg/Universal/Console/GraphicsConsoleDxe		that	uses	the	services	of	a
Graphics	Output	Protocol	and	bitmap	fonts	to	produce	the	Simple	Text	Output	Protocol.

If	a	device	supports	character	based	communication	where	data	can	be	both	transmitted	and	received
character	at	a	time,	and	the	goal	is	to	use	that	device	for	console	services	by	connecting	the	device	to
terminal	or	terminal	emulator,	then	a	UEFI	Driver	must	be	implemented	that	produces	the	Serial	I/O
Protocol.	This	may	include	devices	such	as	a	UART	style	serial	port	or	any	other	character	based	I/O
device	on	a	motherboard,	an	add-in	card,	or	USB.

The	EDK	II	provides	a	terminal	driver	that	supports	the	PC-ANSI,	VT-100,	VT-100+,	and	VT-UTF8	terminal
types.	This	terminal	driver	is	in	the		MdeModulePkg		in	the	directory		MdeModulePkg/Universal/Console/TerminalDxe	.	This
driver	consumes	the	Serial	I/O	Protocol	and	produces	all	the	Simple	Input	Protocol,	the	Simple	Input	Ex
Protocol,	and	the	Simple	Text	Output	Protocol.

22	Text	Console	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

570DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type
Optional	UEFI	Driver	features
Supported	CPU	architectures
Consumed	protocols	that	are	used	to	produce	one	or	more	of	the	console	related	protocols

UEFI	drivers	that	produce	console	services	typically	follow	the	UEFI	Driver	Model	because	the	devices	are
typically	on	industry	standard	busses	such	as	PCI	or	USB.	However,	it	is	possible	to	implement	UEFI
drivers	for	console	devices	that	are	not	on	industry	standard	busses.	In	these	cases	a	Root	Bridge
Driver	implementation	may	be	more	appropriate	than	a	UEFI	Driver	Model	implementation.

22.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

571DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2	Simple	Text	Input	Protocol	Implementation

The	implementation	of	the	Simple	Text	Input	Protocols	is	typically	found	in	the	file		SimpleTextInput.c	.
Appendix	A	contains	a	template	for	a		SimpleTextInput.c		file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement
the	Simple	Text	Input	Protocols	is	as	follows:

Add	global	variable	for	the		EFI_SIMPLE_TEXT_INPUT_PROTOCOL		instance	to		SimpleTextInput.c	.	-	Add	global
variable	for	the		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL		instance	to		SimpleTextInput.c	.
Implement	the		Reset()		and		ReadKeyStroke()	services	in		SimpleTextInput.c		that	is	shared	between	the
Simple	Text	Input	Protocol	and	the	Simple	Text	Input	Ex	Protocol.
Implement	the		SetState()	,		RegisterKeyNotify()	and		UnregisterKeyNotify()		services	in		SimpleTextInput.c		for	the
Simple	Text	Input	Ex	Protocol.
Implement	notification	function	for	the	WaitForKey	and	WaitForKeyEx	events	in		SimpleTextInput.c		that	is
shared	between	the	Simple	Text	Input	Protocol	and	the	Simple	Text	Input	Ex	Protocol.
Create	WaitForKey	and	WaitForKeyEx	events	before	the	Simple	Input	Protocols	are	installed	into	the
Handle	Database.
If	a	device	does	not	buffer	keystrokes,	or	the	buffer	is	very	small,	a	timer	event	may	be	required	to
periodically	read	contents	from	a	keyboard	buffer.

Example	223,	following,	shows	the	protocol	interface	structure	for	the	Simple	Text	Input	Protocol	and
Example	224,	below	that,	shows	the	protocol	interface	structure	for	the	Simple	Text	Input	Ex	Protocol	for
reference.	These	two	protocols	are	composed	of	services	and	each	has	an		EFI_EVENT		that	may	be	used
by	the	UEFI	Boot	Manager	or	UEFI	Applications	to	determine	if	a	keystroke	has	been	pressed.	The	UEFI
Boot	Services		WaitForEvent()		and		CheckEvent()		can	be	used	to	perform	these	checks	on	the	events
specified	by	WaitForKey	and	WaitForKeyEx.

Example	223-Simple	Text	Input	Protocol

typedef	struct	_EFI_SIMPLE_TEXT_INPUT_PROTOCOL	EFI_SIMPLE_TEXT_INPUT_PROTOCOL;

///

///	The	EFI_SIMPLE_TEXT_INPUT_PROTOCOL	is	used	on	the	ConsoleIn	device.

///	It	is	the	minimum	required	protocol	for	ConsoleIn.

///

struct	_EFI_SIMPLE_TEXT_INPUT_PROTOCOL	{

		EFI_INPUT_RESET	Reset;

		EFI_INPUT_READ_KEY	ReadKeyStroke;

		///

		///	Event	to	use	with	WaitForEvent()	to	wait	for	a	key	to	be	available

		///

		EFI_EVENT	WaitForKey;

};

Example	224-Simple	Text	Input	Ex	Protocol

typedef	struct	_EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL;

///

///	The	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	is	used	on	the	ConsoleIn

///	device.	It	is	an	extension	to	the	Simple	Text	Input	protocol

///	which	allows	a	variety	of	extended	shift	state	information	to	be

///	returned.

///

struct	_EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	{

		EFI_INPUT_RESET_EX	Reset;

		EFI_INPUT_READ_KEY_EX	ReadKeyStrokeEx;

		///

		///	Event	to	use	with	WaitForEvent()	to	wait	for	a	key	to	be	available.

		///

22.2	Simple	Text	Input	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

572DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		EFI_EVENT	WaitForKeyEx;

		EFI_SET_STATE	SetState;

		EFI_REGISTER_KEYSTROKE_NOTIFY	RegisterKeyNotify;

		EFI_UNREGISTER_KEYSTROKE_NOTIFY	UnregisterKeyNotify;

};

22.2	Simple	Text	Input	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

573DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.1	Reset()	Implementation

The	reset	function	is	for	resetting	the	input	device	hardware.	This	only	takes	a	single	parameter	which
is	whether	to	do	an	extended	or	a	basic	functionality	test	following	the	reset	operation.	This	functions
implementation	is	dependent	on	the	underlying	hardware	specifications.	However,	it	is	recommended
that	the	basic	functionality	test	perform	as	quickly	as	an	operation	as	possible	to	support	fast	boot
times.

22.2.1	Reset()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

574DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.2	ReadKeyStroke()	and	ReadKeyStrokeEx()	Implementation

The		ReadKeyStroke()		and		ReadKeyStrokeEx()		functions	are	non-blocking	operations	that	returns	immediately
with	their	Key	and	KeyData	parameters	containing	the	key	code	for	the	next	key	in	the	queue	or	it
returns	that	there	was	no	key	code	ready.	These	functions	never	wait	for	a	key	to	be	pressed.
	ReadKeyStroke()		may	be	implemented	to	layer	on	top	of		ReadKeyStrokeEx()		to	share	as	much	logic	as
possible.

If	a	key	is	read,	the	device	specific	keystroke	information,	such	as	scan	codes	must	be	converted	into
	EFI_INPUT_KEY		and		EFI_KEY_DATA		structure	contents.	The	Console	Support	chapter	of	the	UEFI	Specification
provides	the	details	on	how	different	keys,	toggle	keys,	and	shift	states	are	to	be	translated	into	these
structures.

22.2.2	ReadKeyStroke()	and	ReadKeyStrokeEx()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

575DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.3	WaitForKey	and	WaitForKeyEx	Notification	Implementation

When	the	WaitForKey	and	WaitForKeyEx	events	are	created,	they	must	be	associated	with	an	event
notification	function.	This	event	notification	function	checks	to	see	if	one	or	more	keystrokes	are
currently	available	from	the	console	input	device.	If	one	or	more	keystrokes	are	currently	available	from
the	console	input	device,	then	the	WaitForKey	and	WaitForKeyEx	events	must	be	placed	into	the	signaled
state	by	calling	the	UEFI	Boot	Service		SignalEvent()	.

22.2.3	WaitForKey	and	WaitForKeyEx	Notification	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

576DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.4	SetState()	Implementation

The		SetState()		function	sets	the	state	on	the	input	device	such	as	Caps	Lock,	Num	Lock,	and	Scroll	Lock.
Updating	the	state	on	the	device	being	managed	may	perform	actions	such	as	changing	the	state	of	a
user	visible	indicator,	and	also	changes	the	keystroke	information	returned	by		ReadKeyStroke()		and
	ReadKeyStrokeEx()		for	keys	that	are	affected	by	state	changes.

22.2.4	SetState()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

577DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.5	RegisterKeyNotify()	Implementation

This	function	registers	a	notification	function	that	is	called	when	a	specified	keystroke	is	pressed	by	the
user.	This	function	must	create	a	unique	handle	value	that	is	returned,	so	a	previous	key	registration
can	be	unregistered	using		UnregisterKeyNotify()	.	The	UEFI	Driver	is	responsible	for	generating	unique
handle	values	so	no	two	active	registrations	ever	use	the	same	handle	value.

22.2.5	RegisterKeyNotify()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

578DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.2.6	UnregisterKeyNotify()	Implementation

This	function	unregisters	a	keystroke	notification	that	was	registered	through		RegisterKeyNotify()	.

22.2.6	UnregisterKeyNotify()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

579DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3	Simple	Text	Output	Protocol	Implementation

The	implementation	of	the	Simple	Text	Output	Protocol	is	typically	found	in	the	file	`SimpleTextOutput.c'.
Appendix	A	contains	a	template	for	a	SimpleTextOutput.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to
implement	the	Simple	Text	Output	Protocol	is	as	follows:

Add	global	variable	for	the		EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL		instance	to		SimpleTextOutput.c	.
Add	global	variable	for	the		EFI_SIMPLE_TEXT_OUTPUT_MODE		structure	to		SimpleTextOutput.c	.
Implement	the	Simple	Text	Output	Protocol	services	in		SimpleTextInput.c	.

The	example	below	shows	the	protocol	interface	structure	for	the	Simple	Text	Output	Protocol	for
reference.	This	protocol	is	composed	of	nine	services	and	a	pointer	to	a	Mode	structure.

Example	225-Simple	Text	Output	Protocol

typedef	struct	_EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL;

///

///	The	SIMPLE_TEXT_OUTPUT	protocol	is	used	to	control	text-based	output	devices.

///	It	is	the	minimum	required	protocol	for	any	handle	supplied	as	the	ConsoleOut

///	or	StandardError	device.	In	addition,	the	minimum	supported	text	mode	of	such

///	devices	is	at	least	80	x	25	characters.

///

struct	_EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	{

		EFI_TEXT_RESET	Reset;

		EFI_TEXT_STRING	OutputString;

		EFI_TEXT_TEST_STRING	TestString;

		EFI_TEXT_QUERY_MODE	QueryMode;

		EFI_TEXT_SET_MODE	SetMode;

		EFI_TEXT_SET_ATTRIBUTE	SetAttribute;

		EFI_TEXT_CLEAR_SCREEN	ClearScreen;

		EFI_TEXT_SET_CURSOR_POSITION	SetCursorPosition;

		EFI_TEXT_ENABLE_CURSOR	EnableCursor;

		///

		///	Pointer	to	SIMPLE_TEXT_OUTPUT_MODE	data.

		///

		EFI_SIMPLE_TEXT_OUTPUT_MODE	*Mode;

};

22.3	Simple	Text	Output	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

580DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.1	Reset()	Implementation

The	reset	here	can	be	as	simple	as	resetting	the	mode	and	clearing	the	screen,	as	demonstrated	by
the	following	example.	(The	example	is	from	the	terminal	driver	located	at
	\Sample\Universal\Console\Terminal\Dxe\		in	EDK	II.)

Example	226-Light	reset	of	terminal	driver

Status	=	This->SetAttribute	(

																	This,

																	EFI_TEXT_ATTR	(This->Mode->Attribute	&	0x0F,	EFI_BACKGROUND_BLACK)

);

Status	=	This->SetMode	(This,	0);

A	reset	can	also	easily	perform	more	actions,	as	shown	in	the	following	example.	When	the
ExtendedVerification	parameter	is		TRUE		this	same	driver	also	resets	the	serial	protocol	that	it	is	running
on	top	of.

Example	227-Full	reset	of	terminal	driver

if	(ExtendedVerification)	{

		Status	=	SerialIo->Reset	(SerialIo);

		if	(EFI_ERROR	(Status))	{

				return	Status;

		}

}

22.3.1	Reset()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

581DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.2	OutputString()	Implementation

	OutputString()		is	the	function	used	to	output	Unicode	strings	to	the	console.	It	is	responsible	for	verifying
the	printability	of	the	string	passed,	fixing	it	if	required,	and	displaying	it	on	the	console.	The	steps	to
follow	are:

1.	 Verify	that	the	current	mode	is	good.
2.	 Check	each	character	to	see	if	it	is	printable	as	text	or	graphics.	Characters	that	are	not	printable
as	text	or	graphics	are	skipped.

3.	 Print	all	printable	characters.
4.	 Update	position	of	the	cursor	in	the	*Mode.
5.	 Return		EFI_SUCCESS		or		EFI_WARN_UNKNOWN_GLYPH		if	some	had	to	be	fixed	before	printing.

22.3.2	OutputString()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

582DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.3	TestString()	Implementation

The		TestString()		function	verifies	that	all	the	characters	in	the	string	can	be	printed.	That	is	why	they	do
not	need	to	be	fixed	if	they	were	passed	into	the		OutputString()		function.	Using	the	same	internal
function	to	do	the	verification	for	the	two	functions	is	a	good	way	to	make	sure	that	these	functions	are
consistent.

22.3.3	TestString()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

583DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.4	QueryMode()	Implementation

The		QueryMode()		function	returns	information	supported	modes.	The	UEFI	Driver	is	required	to	return	the
number	of	Rows	and	number	of	Columns	for	each	supported	ModeNumber.	ModeNumber	must	be	less
than		Mode->MaxMode	.

Note:	All	devices	that	support	the	Simple	Text	Output	Protocol	must	minimally	support	an	80	x	25
character	mode.	Additional	modes	are	optional.	This	means	a	basic	Simple	Text	Output	Protocol
implementation	supports	a	single	ModeNumber	of	0	with	a	geometry	of	80	Columns	and	25	Rows,	and
reports	a	Mode->MaxMode	value	of	1.

The		QueryMode()		function	is	typically	used	one	of	two	ways:

1.	Query	for	the	geometry	of	the	current	mode.	The	following	line	populates	the	Columns	and	Rows
variables	with	the	geometry	of	the	currently	active	console	output.

Example	228-Query	current	S imple	Text	Output	Mode

#include	<Uefi.h>

#include	<Protocol/SimpleTextOut.h>

EFI_STATUS	Status;

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	*SimpleTextOutput;

UINTN	Columns;

UINTN	Rows;

Status	=	SimpleTextOutput->QueryMode	(

																													SimpleTextOutput,

																													SimpleTextOutput->Mode->Mode,

																													&Columns,

																													&Rows

);

2.	Loop	through	all	valid	geometries	that	a	given	console	can	support.	The	following	line	populates
(repeatedly)	the	Column	and	Row	variables	with	the	geometry	of	the	each	supported	output	mode.

Example	229-Query	all	S imple	Text	Output	Modes

#include	<Uefi.h>

#include	<Protocol/SimpleTextOut.h>

EFI_STATUS	Status;

UINTN	Index;

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	*SimpleTextOutput;

UINTN	Columns;

UINTN	Rows;

for	(Index	=	0	;	Index	<	SimpleTextOutput->Mode->MaxMode	;	Index++)	{

		Status	=	SimpleTextOutput->QueryMode	(

																															SimpleTextOutput,

																															Index,

																															&Columns,

																															&Rows

);

}

22.3.4	QueryMode()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

584DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.4	QueryMode()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

585DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.5	SetMode()	Implementation

The		SetMode()		function	is	used	to	select	which	of	the	supported	output	modes	the	upper	layer	wishes	to
use.	The	choice	should	be	verified	to	be	a	supportable	mode	and	then	the	selected	mode	should	be
made	the	currently	active	output	mode.	After	this	done	(and	success	is	guaranteed)	update	the		Mode-
>Mode		variable	with	the	new	currently	active	mode.

Note:	All	devices	that	support	the	Simple	Text	Output	Protocol	must	minimally	support	an	80	x	25
character	mode.	Additional	modes	are	optional.

22.3.5	SetMode()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

586DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.6	SetAttribute()	Implementation

Setting	the	attributes	is	how	the	upper	layers	define	how	the	screen	printing	should	occur.	This	affects
the	background	and	foreground	colors	that	are	used	when	either		OutputString()		or		ClearScreen()		is	called.
This	function	by	itself	does	not	change	anything	already	printed	to	the	console.

22.3.6	SetAttribute()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

587DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.7	ClearScreen()	Implementation

	ClearScreen()		makes	the	entire	console	have	no	text	on	it	and	makes	it	all	the	currently	selected
background	color.	The	cursor	is	also	set	to	the	(0,	0)	position	(upper	left	square).

22.3.7	ClearScreen()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

588DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.8	SetCursorPosition()	Implementation

	SetCursorPosition()		selects	a	new	location	for	the	cursor	within	the	currently	selected	console's	valid
geometry.	The	new	position's	row	must	be	less	than	the	Row	returned	to		QueryMode()		and	likewise	the
new	position's	column	must	be	less	than	the	Column	returned	to		QueryMode()	.	The	following	figure	shows
a	representation	of	the	screen	coordinates.

Figure	25-Console	Geometry

22.3.8	SetCursorPosition()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

589DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.3.9	EnableCursor()	Implementation

The		EnableCursor()		function	tells	the	driver	whether	or	not	to	show	the	cursor	on	the	console.	This	has	no
impact	on	the	position	or	functionality	of	the	cursor,	but	only	its	visible	state.

22.3.9	EnableCursor()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

590DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.4	Serial	I/O	Protocol	Implementations

The	implementation	of	the	Serial	I/O	Protocol	is	typically	found	in	the	file	SerialIo.c.	Appendix	A	contains
a	template	for	a	SerialIo.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	Serial	I/O	Protocol	is	as
follows:

Add	global	variable	for	the		EFI_SERIAL_IO_PROTOCOL		instance	to		SerialIo.c	.
Add	global	variable	for	the		EFI_SERIAL_IO_MODE		structure	to		SerialIo.c	.
Implement	the	Serial	I/O	Protocol	services	in		SerialIo.c	.
Create	a	child	handle	with	the	Serial	I/O	Protocol	and	a	Device	Path	Protocol.

The	Device	Path	Protocol	chapter	of	the	UEFI	Specification	defines	a	UART	Device	Path	Node	that	must
be	used	in	the	Device	Path	Protocol	for	any	device	that	supports	the	Serial	I/O	Protocol.

This	example	shows	the	protocol	interface	structure	for	the	Serial	I/O	Protocol	for	reference.	This
protocol	is	composed	of	six	services,	a	Revision	value,	and	pointer	to	a	Mode	structure.

Example	230-Simple	Text	Output	Protocol

typedef	struct	_EFI_SERIAL_IO_PROTOCOL	EFI_SERIAL_IO_PROTOCOL;

///

///	The	Serial	I/O	protocol	is	used	to	communicate	with	UART-style	serial	devices.

///	These	can	be	standard	UART	serial	ports	in	PC-AT	systems,	serial	ports	attached

///	to	a	USB	interface,	or	potentially	any	character-based	I/O	device.

///

struct	_EFI_SERIAL_IO_PROTOCOL	{

		///

		///	The	revision	to	which	the	EFI_SERIAL_IO_PROTOCOL	adheres.	All	future

		///	revisions	must	be	backwards	compatible.	If	a	future	version	is	not	backwards

		///	compatible,	it	is	not	the	same	GUID.

		///

		UINT32	Revision;

		EFI_SERIAL_RESET													Reset;

		EFI_SERIAL_SET_ATTRIBUTES				SetAttributes;

		EFI_SERIAL_SET_CONTROL_BITS		SetControl;

		EFI_SERIAL_GET_CONTROL_BITS		GetControl;

		EFI_SERIAL_WRITE													Write;

		EFI_SERIAL_READ														Read;

		///

		///	Pointer	to	SERIAL_IO_MODE	data.

		///

		EFI_SERIAL_IO_MODE											*Mode;

};

Note:	Mode	must	be	updated	each	time	that	`SetControl()'	or	'SetAttributes()'	is	called.	This	allows	the
consumers	of	the	Serial	I/O	Protocol	to	retrieve	the	current	state	of	the	Serial	I/O	device.

22.4	Serial	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

591DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.4.1	Reset()	Implementation

When	this	function	is	called	the	UEFI	Driver	must	reset	the	hardware.	There	is	no	basic	or	extended
functionality	required	for	this	reset	function	unlike	the	other	reset	functions	in	the	console	protocols.

22.4.1	Reset()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

592DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.4.2	SetAttributes()	Implementation

The		SetAttributes()		function	is	used	by	the	caller	to	change	the	serial	connection's	attributes	for
BaudRate,	ReceiveFifoDepth,	Timeout,	Parity,	DataBits,	and	StopBits.	The	caller	passes	in	0	for	any	of
these	values	that	should	be	set	to	the	default	value.	Parity	and	StopBits	are	enumerated	values	with
their	default	value	set	in	the	0th.	If	any	of	the	parameters	is	an	invalid	value	then	the	function	returns
	EFI_INVALID_PARAMETER	;	the	only	other	valid	fail	return	value	is		EFI_DEVICE_ERROR		if	the	serial	device	is	physically
not	functioning	correctly.

The	Mode	pointer	must	be	updated	in	this	function	when	success	has	been	determined,	but	not
modified	if	there	is	an	error.

If	any	attribute	is	modified	that	changes	any	field	of	the	UART	Device	Path	Node	for	this	device,	then	the
Device	Path	Protocol	must	be	reinstalled	with	the	UEFI	Boot	Service		ReinstallProtocolInterface()	.

22.4.2	SetAttributes()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

593DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.4.3	SetControl()	and	GetControl()	Implementation

	GetControl()		and		SetControl()		are	used	to	view	and	modify	respectively	the	control	bits	on	the	serial
device.	All	of	the	values	listed	in	the	following	table	can	be	read	back	with		GetControl()	,	but	some	cannot
be	modified	with		SetControl()	.	If	a	non-modifiable	bit	is	attempted	to	be	set	with		SetControl()		then
	EFI_UNSUPPORTED		must	be	returned.

The		Mode		pointer	should	be	updated	in	this	function	when	success	has	been	determined,	but	not
modified	if	there	is	an	error.

Table	35-Serial	I/O	protocol	control	bits

Control	Bit	#define Modifiable	with	SetControl()

	EFI_SERIAL_CLEAR_TO_SEND	 NO

	EFI_SERIAL_DATA_SET_READY	 NO

	EFI_SERIAL_RING_INDICATE	 NO

	EFI_SERIAL_CARRIER_DETECT	 NO

	EFI_SERIAL_REQUEST_TO_SEND	 YES

	EFI_SERIAL_DATA_TERMINAL_READY	 YES

	EFI_SERIAL_INPUT_BUFFER_EMPTY	 NO

	EFI_SERIAL_OUTPUT_BUFFER_EMPTY	 NO

	EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE	 YES

	EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE	 YES

	EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE	 YES

22.4.3	SetControl()	and	GetControl()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

594DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

22.4.4	Write()	and	Read()	Implementation

The		Write()		and		Read()		functions	are	used	to	write	bytes	out	to	the	serial	device	or	read	in	from	the
serial	device.	The	only	two	parameters	that	are	passed	are	the	number	of	bytes	and	then	either	the
buffer	to	write	out	or	a	buffer	to	read	the	bytes	into.	The	amount	of	time	that	this	can	take	is
determined	by	the	timeout	value	in	the	Mode	structure	(as	set	by		SetAttributes()).

Some	serial	devices	support	FIFOs.	At	the	time	the	Write()	service	is	called,	the	FIFO	could	be	full	which
means	the	entire	FIFO	may	need	to	flush	before	any	new	characters	can	be	added	to	the	FIFO.	In	this
case,	the	time	that	a	UEFI	Driver	may	be	required	to	wait	may	be	longer	that	the	time	specified	by	the
TimeOut	value	in	the	Mode	structure.	The	caller	is	not	aware	of	the	FIFO	depth,	so	it	is	not	correct	to
return	an		EFI_TIMEOUT		error	if	the	timeout	is	due	to	a	full	FIFO.	Instead,	the	UEFI	Driver	should	detect	the
FIFO	depth	if	possible	and	wait	to	that	number	of	character	times.

22.4.4	Write()	and	Read()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

595DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23	Graphics	Driver	Design	Guidelines
This	chapter	covers	the	general	guidelines	for	implementing	UEFI	Drivers	for	graphics	controllers.	Most
graphics	controllers	are	PCI	controllers,	and	this	implies	that	UEFI	Drivers	for	graphics	controllers	are
typically	PCI	drivers.	PCI	drivers	must	follow	all	of	the	PCI	design	guidelines	described	in	Chapter	18,	as
well	as	the	general	guidelines	described	in	Chapter	4	of	this	guide.	Also	see	the	Rules	for	PCI/AGP
Devices	section	of	the	UEFI	Specification.

If	a	device	is	intended	to	be	used	as	a	graphics	console	output	device	while	UEFI	firmware	is	active,
then	a	UEFI	Driver	must	be	implemented	that	produces	the	Graphics	Output	Protocol.	The	graphics
controller	must	either	directly	support	or	be	able	to	emulate	the	following	operations:

Block	transfer	to	fill	a	region	of	the	frame	buffer
Block	transfer	from	system	memory	to	region	of	frame	buffer
Block	transfer	from	region	of	frame	buffer	to	system	memory
Block	transfer	between	two	regions	of	the	frame	buffer
Query	attached	display	devices	for	EDID	information
Set	the	supported	graphics	modes	that	is	intersection	of	modes	that	the	graphics	controller
supports	and	the	display	device	supports

The	EDK	II	provides	a	platform	agnostic	driver	in	the		MdeModulePkg		in	the	directory
	MdeModulePkg/Universal/Console/GraphicsConsoleDxe		that	uses	the	services	of	a	Graphics	Output	Protocol	and
bitmap	fonts	to	produce	the	Simple	Text	Output	Protocol.	This	means	if	a	Graphics	Output	Protocol	is
produced	by	a	UEFI	Driver,	then	the	frame	buffer	managed	by	that	UEFI	Driver	can	be	used	as	a	text
console	device	without	having	to	implement	the	Simple	Text	Output	Protocol	in	the	UEFI	Driver	for	the
graphics	controller.

23	Graphics	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

596DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type

Optional	UEFI	Driver	features

Supported	CPU	architectures

Consumed	protocols	that	are	used	to	produce	the	graphics	controller	related	protocols.

If	the	UEFI	Driver	is	required	to	be	compiled	for	EBC,	then	see	Chapter	18	for	PCI	optimizations	and
Chapter	29	for	EBC	considerations.	UEFI	Drivers	for	graphics	controllers	are	typically	more	sensitive	to
the	EBC	virtual	machine	interpreter	overheads,	so	it	is	critical	that	the	performance	guidelines	are
followed	for	a	UEFI	Driver	for	a	graphics	controller	that	is	compiled	for	EBC	to	have	good	performance.

UEFI	Drivers	for	graphics	controllers	typically	follow	the	UEFI	driver	model.	Some	graphics	controllers
have	a	single	output	controller,	and	other	may	have	multiple	output	controllers.	In	both	cases,	a	child
handle	must	be	created	for	each	output	controller,	which	means	UEFI	Drivers	for	graphics	controllers
are	always	either	Bus	Drivers	or	Hybrid	Drivers.	They	are	never	Device	Drivers.	UEFI	Drivers	for	graphics
controllers	are	chip-specific	because	of	the	requirement	to	initialize	and	manage	the	graphics	device.

UEFI	drivers	that	manage	graphics	controllers	typically	follow	the	UEFI	Driver	Model	because	the	devices
are	typically	on	industry	standard	busses	such	as	PCI.	However,	it	is	possible	to	implement	UEFI	drivers
for	graphics	controllers	that	are	not	on	industry	standard	busses.	In	these	cases,	a	Root	Bridge	Driver
implementation	that	produces	a	handle	for	each	output	controller	in	the	driver	entry	point	may	be	more
appropriate	than	a	UEFI	Driver	Model	implementation.

23.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

597DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.2	Graphics	Output	Protocol	Implementation

The	implementation	of	the	Graphics	Output	Protocol	is	typically	found	in	the	file	GraphicsOutput.c.
Appendix	A	contains	a	template	for	a	GraphicsOutput.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to
implement	the	Graphics	Output	Protocol	is	as	follows:	-	Add	global	variable	for	the
EFI_GRAPHICS_OUTPUT_PROTOCOL	instance	to	GraphicsOutput.c.	-	Add	global	variable	for	the
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE	structure	to	GraphicsOutput.c.

Implement	the		QueryMode()	,		SetMode()	,	and		Blt()		services	in		GraphicsOutput.c	.

Create	a	child	handle	for	each	output	display	controller	and	install	the	Graphics	Output	Protocol	and
a	Device	Path	Protocol	as	described	in	the	Rules	for	PCI/AGP	Devices	section	of	the	UEFI
Specification.

If	a	graphics	controller	has	the	ability	to	read	EDID	information	from	display	devices	attached	to	an
output	controller,	then	install	the	EDID	Discovered	Protocol	with	the	EDID	data	on	the	child	handle
associated	with	the	output	controller.

Install	the	EDID	Active	Protocol	with	the	EDID	data	on	the	child	handle	associated	with	the	output
controller.	The	EDID	data	comes	from	either	the	EDID	Override	Protocol	provided	by	the	platform	or
the	EDID	Discovered	Protocol.

This	example	shows	the	protocol	interface	structure	for	the	Graphics	Output	Protocol	for	reference.

Example	231-Graphics	Output	Protocol

typedef	struct	_EFI_GRAPHICS_OUTPUT_PROTOCOL	EFI_GRAPHICS_OUTPUT_PROTOCOL;

///

///	Provides	a	basic	abstraction	to	set	video	modes	and	copy	pixels	to	and	from

///	the	graphics	controller's	frame	buffer.	The	linear	address	of	the	hardware

///	frame	buffer	is	also	exposed	so	software	can	write	directly	to	the	video	hardware.

///

struct	_EFI_GRAPHICS_OUTPUT_PROTOCOL	{

		EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE	QueryMode;

		EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE	SetMode;

		EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT	Blt;

		///

		///	Pointer	to	EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE	data.

		///

		EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE	*Mode;

};

extern	EFI_GUID	gEfiGraphicsOutputProtocolGuid;

23.2	Graphics	Output	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

598DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.2.1	Single	output	graphics	adapters

Graphics	controllers	that	are	connected	to	a	single	output	device	are	the	simplest	type	of	UEFI	graphics
driver.	They	produce	a	single	child	handle	and	attach	both	Device	Path	and	Graphics	Output	protocols
onto	that	handle.	They	need	a	single	data	structure	to	manage	the	device.	An	example	of	a	single
output	graphics	driver	stack	is	shown	below.

Figure	26-Example	single-output	graphics	driver	Implementation

23.2.1	Single	output	graphics	adaptersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

599DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.2.2	Multiple	output	graphics	adapters

Multiple	output	graphics	drivers	(dual	or	more)	are	not	significantly	more	complicated	than	a	single
channel	adapter	in	UEFI.	An	important	consideration	is	that	many	graphics	adapters	may	run	in	a	single
output	mode	in	the	pre-boot	environment;	they	may	then	switch	to	multi-output	mode	when	the	higher
performance	OS	driver	loads	for	the	device.	An	example	of	a	dual	output	graphics	adapter	follows.

Figure	27-Example	dual-output	graphics	driver	implementation

23.2.2	Multiple	output	graphics	adaptersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

600DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.2.3	Driver	Binding	Protocol	Implementation

Like	all	drivers	that	follow	the	UEFI	driver	model,	the	image	entry	point	of	a	graphics	driver	installs	the
Driver	Binding	Protocol	instance	on	the	image	handle.	The	driver	must	implement	all	three	of	the
services	in	the	Driver	Binding	Protocol-	Supported()	,		Start()	,	and		Stop()	.

The		Supported()		function	tests	to	see	whether	the	given	handle	is	a	manageable	adapter.	The	driver
should	check	that		EFI_DEVICE_PATH_PROTOCOL		and		EFI_PCI_IO_PROTOCOL		are	present	to	ensure	the	handle	that	is
passed	in	represents	a	PCI	device.	Then	the	driver	should	verify	that	the	device	is	conformant	and
manageable	by	reading	the	ClassCode,	VendorId,	and	DeviceId	from	the	device's	PCI	configuration
header.

The		Start()		function	tells	the	Graphics	driver	to	start	managing	the	controller.	In	this	function,	a
Graphics	driver	should	use	chip-specific	knowledge	to	do	the	following:

1.	 Initialize	the	adapter.

2.	 Enable	the	PCI	device.

3.	 Allocate	resources.

4.	 Construct	data	structures	for	the	driver	to	use	(if	required	by	the	device).

5.	 Enumerate	the	outputs	that	are	enabled	on	the	device.

6.	 Create	child	handles	for	each	detected	(and	enabled)	physical	output	(physical	child	handles)	and
install	EFI_DEVICE_PATH_PROTOCOL.

7.	 Get	EDID	information	from	each	physical	output	device	connected	and	install
EFI_EDID_DISCOVERED_PROTOCOL	on	the	child	handle.

8.	 Create	child	handles	for	each	valid	combination	of	2	or	more	video	outputs	(logical	child	handles)
and	install	EFI_DEVICE_PATH_PROTOCOL.

9.	 Check	RemainingDevicePath	to	see	if	the	correct	child	or	children	were	created	or	if	NULL	select	a
default	set.	If	incorrect	children	(no	defaults)	clean	up	memory	and	return	EFI_UNSUPPORTED.	If
default	or	correct	children	set	them	active.

10.	 Call	GetEdid()	function	to	check	for	overrides	on	each	active	physical	child	handle	and	produce
EFI_EDID_ACTIVE_PROTOCOL	on	each	child	protocol	based	on	the	result.

11.	 Install	EFI_GRAPHICS_OUTPUT_PROTOCOL	on	each	active	child	handle	(physical	or	logical).

12.	 Install	the	EFI_COMPONENT_NAME_PROTOCOL	and	EFI_COMPONENT_NAME2_PROTOCOL.

13.	 In	order	to	support	faster	boot	times,	a	default	mode	set	and	clear	screen	operation	must	not	be
performed	in	the	Start()	function.	This	allows	the	UEFI	Boot	Manager	to	select	the	best	mode	for	the
current	boot	scenario	and	set	the	mode	one	time.

The		Start()		function	should	not	scan	for	devices	every	time	the	driver	is	started.	It	should	depend	on
	RemainingDevicePath		parameter	to	determine	what	to	start.	Only	if		NULL		was	passed	in	should	the	driver
should	create	a	device	handle	for	each	device	that	was	found	in	the	scan	behind	the	controller.
Otherwise	the	driver	should	only	start	what	was	specified	in		RemainingDevicePath	.

The		Stop()		function	performs	the	opposite	operations	as		Start()	.	Generally	speaking,	a	Graphics	driver
is	required	to	do	the	following:

1.	 Uninstall	all	protocols	on	all	child	handles	and	close	all	the	child	handles.

2.	 Uninstall	all	protocols	that	were	attached	on	the	host	controller	handle.

3.	 Close	all	protocol	instances	that	were	opened	in	the	Start()	function.

23.2.3	Driver	Binding	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

601DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

4.	 Release	all	resources	that	were	allocated	for	this	driver.

5.	 Disable	the	adapter.

In	general,	if	it	is	possible	to	support	RemainingDevicePath,	the	driver	should	do	so	to	support	the	rapid
boot	capability	in	the	UEFI	driver	model.

23.2.3	Driver	Binding	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

602DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.2.4	QueryMode(),	SetMode(),	and	Blt()	Implementation

There	are	three	functions	that	make	up	one	method:		QueryMode()	,		SetMode()	,	and		Blt()	.	The	mode	pointer
is	pointing	to	a	structure	that	has	members	so	that	the	consumer	of	the	GOP	protocol	can	get
information	about	the	current	state.

The		QueryMode()		function	is	used	to	return	extended	information	on	one	of	the	supported	video	modes.
For	example,	the	protocol	consumer	could	iterate	through	all	of	the	valid	video	modes	and	see	what
they	offer	in	terms	of	resolution,	color	depth,	etc.	This	function	has	no	effect	on	the	hardware	or	the
currently	displayed	image.	It	is	critical	that		QueryMode()		only	return	modes	that	can	actually	be	displayed
on	the	attached	display	device.	This	means	that	the	UEFI	Driver	must	evaluate	the	modes	that	that
graphics	controller	supports	and	the	modes	that	the	attached	display	supports	and	only	reports	the
intersection	of	those	two	sets.	Otherwise,	a	consumer	of	the	Graphics	Output	Protocol	may	attempt	to
set	a	mode	that	cannot	be	displayed.

The		SetMode()		function	is	how	the	consumer	of	the	Graphics	Output	Protocol	selected	the	specific	mode
to	become	active.		SetMode()		is	also	required	to	clear	the	entire	display	output	and	reset	it	all	to	black.

The		Blt()		function	is	for	transferring	information	(Block	Transfer)	to	and	from	the	video	frame	buffer.
This	is	how	graphics	content	is	moved	to	and	from	the	video	frame	buffer	and	also	allows	graphics
content	to	be	moved	from	one	location	of	the	video	frame	buffer	to	another	location	of	the	video	frame
buffer.	The	prototype	of	the		Blt()		function	is	shown	below.

Example	232-Graphics	Output	Protocol	Blt()	Service

/**

		Blt	a	rectangle	of	pixels	on	the	graphics	screen.	Blt	stands	for	BLock	Transfer.

		@param		This										Protocol	instance	pointer.

		@param		BltBuffer					Buffer	containing	data	to	blit	into	video	buffer.	This	buffer	

																								has	a	size	of	Width	*	Height	*	sizeof(EFI_GRAPHICS_OUTPUT_BLT_PIXEL)

		@param		BltOperation		Operation	to	perform	on	BlitBuffer	and	video	memory

		@param		SourceX							X	coordinate	of	source	for	the	BltBuffer.

		@param		SourceY							Y	coordinate	of	source	for	the	BltBuffer.

		@param		DestinationX		X	coordinate	of	destination	for	the	BltBuffer.

		@param		DestinationY		Y	coordinate	of	destination	for	the	BltBuffer.

		@param		Width									Width	of	rectangle	in	BltBuffer	in	pixels.

		@param		Height								Hight	of	rectangle	in	BltBuffer	in	pixels.	

		@param		Delta									OPTIONAL

		@retval		EFI_SUCCESS												The	Blt	operation	completed.

		@retval		EFI_INVALID_PARAMETER		BltOperation	is	not	valid.

		@retval		EFI_DEVICE_ERROR							A	hardware	error	occured	writting	to	the	video	buffer.

**/

typedef

EFI_STATUS

(EFIAPI	*EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT)(

		IN	EFI_GRAPHICS_OUTPUT_PROTOCOL										*This,

		IN	EFI_GRAPHICS_OUTPUT_BLT_PIXEL									*BltBuffer,	OPTIONAL

		IN	EFI_GRAPHICS_OUTPUT_BLT_OPERATION					BltOperation,

		IN	UINTN																																	SourceX,

		IN	UINTN																																	SourceY,

		IN	UINTN																																	DestinationX,

		IN	UINTN																																	DestinationY,

		IN	UINTN																																	Width,

		IN	UINTN																																	Height,

		IN	UINTN																																	Delta	OPTIONAL	

);

23.2.4	QueryMode(),	SetMode(),	and	Blt()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

603DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

In	this	function	the	driver	must	translate	the	entire	Blt	operation	into	the	correct	commands	for	the
graphics	adapter	that	it	is	managing.	This	can	by	be	done	by	performing	PCI	memory	mapped	I/O	or	port
/IO	operations	or	by	performing	a	DMA	operation.	The	exact	method	is	specific	to	the	graphics	silicon.

A	critical	consideration	of	implementing	the		Blt()		function	is	to	get	the	highest	performance	possible
for	the	user.	A	common	problem	is	that	scrolling	the	screen	results	in	significant	lags	such	that	the	user
experiences	a	less	than	optimal	perception.	This	could	be	caused	by	the	lags	that	are	normally	present
when	reading	back	from	the	frame	buffer.	A	possible	solution	is	to	have	a	copy	of	the	current	frame
buffer	in	a	memory	buffer	for	use	in	reads.

The	screen	is	defined	in	terms	of	pixels	and	the	buffer	is	formatted	as	follows.	For	a	given	pixel	at
location	X,Y	the	location	in	the	buffer	is		Buffer[((Y*<<ScreenWidth>>)+X)]	.	The	screen	is	described	according
to	the	following	figure.

Figure	28-Software	BLT	Buffer

An	important	optimization	to	make	in	graphics	drivers	is	for	scrolling.	Scrolling	is	one	of	the	most
common	operations	to	occur	on	a	pre-boot	graphics	adapter	due	to	the	common	use	of	text	based
consoles.	A	method	to	scroll	the	screen	can	be	viewed	in	EDK	II	in	the	GraphicsConsole	driver
(\MdeModulePkg\Universal\Console\GraphicsConsoleDxe).

The		EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE		object	pointed	to	by	the		Mode		pointer	is	populated	when	the	graphics
controller	is	initialized,	and	must	be	updated	whenever	SetMode()	is	called.	The	FrameBufferBase
member	of	this	object	may	be	used	by	a	UEFI	OS	Loader	or	OS	Kernel	to	update	the	contents	of	the
graphical	display	after	ExitBootServices()	is	called	and	the	Graphics	Output	Protocol	services	are	not
longer	available.	A	UEFI	OS	may	choose	to	use	this	method	until	an	OS	driver	for	the	graphics	controller
can	be	installed	and	started.

23.2.4	QueryMode(),	SetMode(),	and	Blt()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

604DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.3	EDID	Discovered	Protocol	Implementation

This	protocol	contains	the	EDID	information	that	is	retrieved	from	the	display	device	attached	to	a	video
output	controller.	This	information	may	differ	from	the	EDID	Active	Protocol	since	the	EDID	Active
Protocol	takes	into	account	any	interaction	with	the	EDID	Override	Protocol	that	was	consumed	by	this
driver.	This	protocol	is	installed	on	the	child	handle	that	represents	a	video	output	and	must	only
represent	a	single	video	output	device.	This	protocol	does	not	provide	any	services.	It	only	provides	a
pointer	to	a	buffer	with	the	EDID	formatted	data.

Example	233-EDID	Discovered	Protocol

///

///	This	protocol	contains	the	EDID	information	retrieved	from	a	video	output

///	device.

///

typedef	struct	{

		///

		///	The	size,	in	bytes,	of	the	Edid	buffer.	0	if	no	EDID	information

		///	is	available	from	the	video	output	device.	Otherwise,	it	must	be	a

		///	minimum	of	128	bytes.

		///

		UINT32	SizeOfEdid;

		///

		///	A	pointer	to	a	read-only	array	of	bytes	that	contains	the	EDID

		///	information	for	an	active	video	output	device.	This	pointer	is

		///	NULL	if	no	EDID	information	is	available	for	the	video	output

		///	device.	The	minimum	size	of	a	valid	Edid	buffer	is	128	bytes.

		///	EDID	information	is	defined	in	the	E-DID	EEPROM

		///	specification	published	by	VESA	(www.vesa.org).

		///

		UINT8	*Edid;

}	EFI_EDID_DISCOVERED_PROTOCOL;

extern	EFI_GUID	gEfiEdidDiscoveredProtocolGuid;

23.3	EDID	Discovered	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

605DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.4	EDID	Active	Protocol	Implementation

The		EFI_EDID_ACTIVE_PROTOCOL		provides	information	to	the	system	about	a	video	output	device.	This	is
retrieved	from	either	the		EFI_EDID_DISCOVERED_PROTOCOL		or	the		EFI_EDID_OVERRIDE_PROTOCOL	.	The	protocol	interface
structure	is	defined	below.	The	EDID	information	for	the	video	output	device	(for	example	the	monitor)
connected	to	this	graphics	output	device	is	populated	into	this	protocol	for	use	by	the	system.	It	is	the
job	of	the	driver	to	populate	this	information.	The	minimum	valid	size	of	EDID	information	is	128	bytes.
See	the	EDID	EEPROM	specification	for	details	on	the	format	of	an	EDID.	This	protocol	does	not	provide
any	services.	It	only	provides	a	pointer	to	a	buffer	with	the	EDID	formatted	data.

Example	234-EDID	Active	Protocol

///

///	This	protocol	contains	the	EDID	information	for	an	active	video	output	device.

///	This	is	either	the	EDID	information	retrieved	from	the

///	EFI_EDID_OVERRIDE_PROTOCOL	if	an	override	is	available,	or	an	identical	copy	of

///	the	EDID	information	from	the	EFI_EDID_DISCOVERED_PROTOCOL	if	no	overrides	are

///	available.

///

typedef	struct	{

		///

		///	The	size,	in	bytes,	of	the	Edid	buffer.	0	if	no	EDID	information

		///	is	available	from	the	video	output	device.	Otherwise,	it	must	be	a

		///	minimum	of	128	bytes.

		///

		UINT32	SizeOfEdid;

		///

		///	A	pointer	to	a	read-only	array	of	bytes	that	contains	the	EDID

		///	information	for	an	active	video	output	device.	This	pointer	is

		///	NULL	if	no	EDID	information	is	available	for	the	video	output

		///	device.	The	minimum	size	of	a	valid	Edid	buffer	is	128	bytes.

		///	EDID	information	is	defined	in	the	E-DID	EEPROM

		///	specification	published	by	VESA	(www.vesa.org).

		///

		UINT8	*Edid;

}	EFI_EDID_ACTIVE_PROTOCOL;

extern	EFI_GUID	gEfiEdidActiveProtocolGuid;

23.4	EDID	Active	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

606DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.5	EDID	Override	Protocol	Implementation

The	UEFI	platform	firmware	may	produce		EFI_EDID_OVERRIDE_PROTOCOL		in	a	platform	specific	driver
implementation.	This	implementation	of	this	protocol	is	not	the	responsibility	of	the	UEFI	Driver	that
produces	the	Graphics	Output	Protocol.	If	the	UEFI	platform	firmware	produces	this	protocol,	then	UEFI
Driver	for	a	graphics	controller	must	use	this	information	when	producing	the	EDID	Active	Protocol	on
the	same	handle	as	the	Graphics	Output	Protocol.

The	implementation	of	the	EDID	Override	Protocol	is	typically	found	in	the	file	EdidOverride.c.	Appendix	A
contains	a	template	for	an	EdidOverride.c	file	for	a	platform	specific	UEFI	Driver.	The	list	of	tasks	to
implement	the	EDID	Override	Protocol	is	as	follows:

Add	global	variable	for	the		EFI_EDID_OVERRIDE_PROTOCOL		instance	to		EdidOverride.c	.

Implement	the		GetEdid()		service	in		EdidOverride.c	.

The	implementation	of	the	EDID	Override	Protocol	is	typically	in	a	Service	Driver.	This	means	that	the
EDID	Override	Protocol	is	typically	installed	onto	a	new	handle	in	the	Handle	Database	in	the
platform	specific	driver's	entry	point.

The	following	example	shows	the	protocol	interface	structure	for	the	EDID	Override	Protocol	for
reference.

Example	235-DID	Override	Protocol

typedef	struct	_EFI_EDID_OVERRIDE_PROTOCOL	EFI_EDID_OVERRIDE_PROTOCOL;

///

///	This	protocol	is	produced	by	the	platform	to	allow	the	platform	to	provide

///	EDID	information	to	the	producer	of	the	Graphics	Output	protocol.

///

struct	_EFI_EDID_OVERRIDE_PROTOCOL	{

		EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID	GetEdid;

};

extern	EFI_GUID	gEfiEdidOverrideProtocolGuid;

23.5	EDID	Override	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

607DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

23.5.1	GetEdid()	Implementation

The		GetEdid()		function	returns	the	handle,	attributes	(override	always,	never,	only	if	nothing	is	returned),
and	the	new	EDID	information.	This	is	then	used	by	UEFI	Drivers	for	graphics	controller	to	produce	the
EDID	Active	Protocol.

23.5.1	GetEdid()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

608DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24	Mass	Storage	Driver	Design	Guidelines
This	chapter	covers	the	general	guidelines	for	implementing	UEFI	Drivers	for	mass	storage	devices.	Most
mass	storage	devices	reside	on	industry	standard	busses	such	as	ATA,	SCSI,	or	USB.	This	means	that
the	design	guidelines	as	described	in	Chapter	21	for	ATA,	Chapter	20	for	SCSI,	or	Chapter	19	for	USB
must	be	followed	along	with	the	general	guidelines	described	in	Chapter	4	of	this	guide.

If	a	mass	storage	device	is	intended	to	be	used	as	a	boot	device	for	a	UEFI	operating	system	or	UEFI
applications,	then	a	UEFI	Driver	must	be	implemented	that	produces	the	Block	I/O	Protocol.	If	the	UEFI
Driver	is	required	to	be	conformant	with	the	UEFI	Specification	2.3.1	or	higher,	then	the	Block	I/O	2
Protocol	must	also	be	produced.	If	the	mass	storage	device	supports	the	SPC-4	or	ATA8-ACS	security
commands,	then	the	Storage	Security	Command	Protocol	must	also	be	produced.	A	mass	storage
device	must	either	directly	support	or	be	able	to	emulate	the	following	operations:

Read	blocks	of	data	from	the	mass	storage	device.

Write	blocks	of	data	to	the	mass	storage	device.

Determine	the	size	of	the	blocks	on	the	mass	storage	device.

Determine	the	total	number	of	blocks	on	the	mass	storage	device.

If	the	mass	storage	device	supports	removable	media,	then	methods	must	exist	to	determine	if
media	is	present,	media	is	not	present,	and	if	the	media	has	been	changed.

If	a	mass	storage	device	does	not	meet	these	requirements,	but	still	must	support	being	used	as	a
boot	device,	then	consider	implementing	a	UEFI	Driver	that	produces	either	the	Simple	File	System
Protocol	or	the	Load	File	Protocol.	Please	see	the	Media	Access	chapter	of	the	UEFI	Specification	for
details	on	the	Simple	File	System	Protocol	and	Chapter	27	for	details	on	the	Load	File	Protocol.

The	EDK	II	provides	a	set	of	platform	agnostic	drivers	in	the		MdeModulePkg		and	the		FatBinPkg		that	consume
the	Block	I/O	Protocols	and	produce	the	Simple	File	System	Protocol	which	is	one	of	the	two	protocols
from	which	a	UEFI	Boot	Manager	is	able	to	boot	a	UEFI	operating	system	or	a	UEFI	application.	These
platform	agnostic	drivers	allow	the	contents	of	the	mass	storage	media	to	be	accessed	without	any
specialized	knowledge	of	the	specific	device	or	controller.	The	set	platform	agnostic	drivers	UEFI	Drivers
include:

	MdeModulePkg/Universal/Disk/DiskIoDxe	

	MdeModulePkg/Universal/Disk/PartitionDxe	

	MdeModulePkg/Universal/Disk/UnicodeCollation	

	FatBinPkg/EnhancedFatDxe	

24	Mass	Storage	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

609DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type

Optional	UEFI	Driver	features

Supported	CPU	architectures

Consumed	protocols	that	are	used	to	produce	the	mass	storage	device	related	protocols.

UEFI	drivers	that	manage	mass	storage	devices	typically	follow	the	UEFI	Driver	Model	because	these
devices	are	typically	on	industry	standard	busses	such	as	USB,	SCSI,	or	ATA.	However,	it	is	possible	to
implement	UEFI	Drivers	for	mass	storage	devices	that	are	not	on	industry	standard	busses	supported
by	the	UEFI	Specification.	In	these	cases,	a	Root	Bridge	Driver	implementation	that	produces	a	handles
for	mass	storage	devices	in	the	driver	entry	point	may	be	more	appropriate	than	a	UEFI	Driver	Model
implementation.

24.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

610DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.2	Block	I/O	Protocol	Implementations

The	implementation	of	the	Block	I/O	Protocols	is	typically	found	in	the	file	Block.c.	Appendix	A	contains	a
template	for	a	BlockIo.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	Block	I/O	Protocols	is	as
follows:

Add	global	variable	for	the		EFI_BLOCK_IO_PROTOCOL		instance	to		BlockIo.c	.

Add	global	variable	for	the		EFI_BLOCK_IO2_PROTOCOL		instance	to		BlockIo.c	.

Add	global	variable	for	the		EFI_BLOCK_IO_MODE		structure	to		BlockIo.c	.

Implement	the	Block	I/O	Protocol	and	Block	I/O	2	Protocol	services	in		BlockIo.c	.

Example	236,	below,	shows	the	protocol	interface	structure	for	the	Block	I/O	Protocol	and	the	following
Example	237	shows	the	protocol	interface	structure	for	the	Block	I/O	2	Protocol	for	reference.	These	two
protocols	are	very	similar	and	are	both	composed	of	four	services	and	a	pointer	to	a	structure	that
provides	detailed	information	on	the	currently	mounted	media.	The	main	difference	between	these	two
protocols	is	that	the	Block	I/O	2	Protocol	supports	non-blocking	operations.

Example	236-Block	I/O	Protocol

typedef	struct	_EFI_BLOCK_IO_PROTOCOL	EFI_BLOCK_IO_PROTOCOL;

///

///	This	protocol	provides	control	over	block	devices.

///

struct	_EFI_BLOCK_IO_PROTOCOL	{

		///

		///	The	revision	to	which	the	block	IO	interface	adheres.	All	future

		///	revisions	must	be	backwards	compatible.	If	a	future	version	is	not

		///	back	wards	compatible,	it	is	not	the	same	GUID.

		///

		UINT64	Revision;

		///

		///	Pointer	to	the	EFI_BLOCK_IO_MEDIA	data	for	this	device.

		///

		EFI_BLOCK_IO_MEDIA	*Media;

		EFI_BLOCK_RESET	Reset;

		EFI_BLOCK_READ	ReadBlocks;

		EFI_BLOCK_WRITE	WriteBlocks;

		EFI_BLOCK_FLUSH	FlushBlocks;

};

extern	EFI_GUID	gEfiBlockIoProtocolGuid;

Note:	Media	must	be	updated	each	time	that	media	in	the	mass	storage	device	is	inserted	or	removed.
This	allows	the	consumers	of	the	Block	I/O	Protocol	to	retrieve	the	state	of	the	currently	mounted
media.

Example	237-Block	I/O	2	Protocol

typedef	struct	_EFI_BLOCK_IO2_PROTOCOL	EFI_BLOCK_IO2_PROTOCOL;

///

///	The	Block	I/O2	protocol	defines	an	extension	to	the	Block	I/O	protocol	which

///	enables	the	ability	to	read	and	write	data	at	a	block	level	in	a	non-blocking

24.2	Block	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

611DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	manner.

///

struct	_EFI_BLOCK_IO2_PROTOCOL	{

		///

		///	A	pointer	to	the	EFI_BLOCK_IO_MEDIA	data	for	this	device.

		///	Type	EFI_BLOCK_IO_MEDIA	is	defined	in	BlockIo.h.

		///

		EFI_BLOCK_IO_MEDIA	*Media;

		EFI_BLOCK_RESET_EX	Reset;

		EFI_BLOCK_READ_EX	ReadBlocksEx;

		EFI_BLOCK_WRITE_EX	WriteBlocksEx;

		EFI_BLOCK_FLUSH_EX	FlushBlocksEx;

};

extern	EFI_GUID	gEfiBlockIo2ProtocolGuid;

Note:	Media	must	be	updated	each	time	that	that	media	in	the	mass	storage	device	is	inserted	or
removed.	This	allows	the	consumers	of	the	Block	I/O	2	Protocol	to	retrieve	the	state	of	the	currently
mounted	media.

24.2	Block	I/O	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

612DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.2.1	Reset()	Implementation

The		Reset()		function	resets	the	block	device	hardware.	During	this	operation	the	UEFI	Driver	must
ensure	that	the	device	is	functioning	correctly.	Neither	of	these	operations	should	take	a	significant
amount	of	time.	If	the	ExtendedVerification	flag	is	set	to		TRUE	,	then	the	driver	may	take	extra	time	to
make	sure	that	the	device	is	functioning.

24.2.1	Reset()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

613DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.2.2	ReadBlocks()	and	ReadBlocksEx()	Implementation

Reading	blocks	from	media	typically	uses	the	following	order	of	operations:

1.	 Verify	media	presence.	This	is	critical	for	removable	or	swappable	media.

2.	 If	a	media	change	event	is	detected,	then	reinstall	the	Block	I/O	Protocols	using	the	UEFI	Boot
Service		ReinstallProtocolInterface()	.	A	media	change	event	can	be	a	change	from	the	media	present
state	to	the	media	not	present	state.	A	change	from	the	media	not	present	state	to	the	media
present	state.	The	BlockSize	field	of	the	Media	structure	must	have	a	nonzero	value,	even	when	no
media	is	present.

If	there	is	no	media,	return	EFI_NO_MEDIA.

If	the	media	is	different,	return	EFI_MEDIA_CHANGED.

3.	 Verify	parameters

The	Buffer,	sized	BufferSize,	must	be	a	whole	number	of	blocks

The	read	does	not	start	past	the	end	of	the	media

The	read	does	not	extend	past	the	end	of	the	media

The	Buffer	is	aligned	as	required

4.	 Read	the	requested	sectors	from	the	media

If	a	non-blocking	request	is	made	through	ReadBlocksEx(),	then	start	the	request	and	if	the
request	is	expected	to	take	some	time	to	complete,	set	up	a	timer	event	to	periodically	check
the	completion	status	and	return	immediately.	When	the	request	is	complete,	signal	the	event
passed	into	ReadBlocksEx()	to	inform	the	caller	that	the	previous	request	has	been	completed.

5.	 If	needed,	copy	the	appropriate	portion	of	the	read	into	Buffer.

(Optional)	Update	the	driver's	cache	for	better	performance.

24.2.2	ReadBlocks()	and	ReadBlocksEx()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

614DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.2.3	WriteBlocks()	and	WriteBlockEx()	Implementation

Writing	blocks	from	media	typically	uses	the	following	order	of	operations:

1.	 Verify	media	presence.	This	is	critical	for	removable	or	swappable	media.

2.	 If	a	media	change	event	is	detected,	then	reinstall	the	Block	I/O	Protocols	using	the	UEFI	Boot
Service	ReinstallProtocolInterface().	A	media	change	event	can	be	a	change	from	the	media	present
state	to	the	media	not	present	state.	A	change	from	the	media	not	present	state	to	the	media
present	state	A	change	from	the	media	present	state	to	the	media	present	state	with	different
media	in	the	device	being	managed.

3.	 If	there	is	no	media	return	EFI_NO_MEDIA.

4.	 If	the	media	is	different	return	EFI_MEDIA_CHANGED.

5.	 Get	the	media's	block	size.	The	BlockSize	field	of	the	Media	structure	must	have	a	non-zero	value,
even	when	no	media	is	present.

6.	 Verify	parameters.

7.	 The	Buffer,	sized	BufferSize,	is	a	whole	number	of	blocks.

8.	 The	write	does	not	start	past	the	end	of	the	media.

9.	 The	write	does	not	extend	past	the	end	of	the	media.

10.	 The	Buffer	is	aligned	as	required.

11.	 If	needed,	copy	the	appropriate	portion	of	the	buffer	to	a	location	visible	to	the	mass	storage
device.

12.	 Write	the	appropriate	sectors	to	the	media

13.	 If	a	non-blocking	request	is	made	through	WriteBlocksEx(),	then	start	the	request	and	if	the	request
is	expected	to	take	some	time	to	complete,	set	up	a	timer	event	to	periodically	check	the
completion	status	and	return	immediately.	When	the	request	is	complete,	signal	the	event	passed
into	WriteBlocksEx()	to	inform	the	caller	that	the	previous	request	has	been	completed.

14.	 (Optional)	Update	the	driver's	cache	for	better	performance.

24.2.3	WriteBlocks()	and	WriteBlockEx()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

615DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.2.4	FlushBlocks()	and	FlushBlocksEx()	Implementation

	FlushBlocks()		and		FlushBlocksEx()		are	used	to	ensure	that	all	pending	writes	have	been	completed	on	the
mass	storage	device.	This	can	be	used	as	part	of	a	check	before	removing	some	media	from	the
system.	Combinations	of	both	read	and	write	operations	may	be	performed	as	part	of	this	operation.

If	a	non-blocking	request	is	made	through		FlushBlocksEx()	,	then	start	the	request	and	if	the	request	is
expected	to	take	some	time	to	complete,	set	up	a	timer	event	to	periodically	check	the	completion
status	and	return	immediately.	When	the	request	is	complete,	signal	the	event	passed	into
	FlushBlocksEx()		to	inform	the	caller	that	the	previous	request	has	been	completed.

24.2.4	FlushBlocks()	and	FlushBlocksEx()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

616DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

24.3	Storage	Security	Protocol	Implementation

The	implementation	of	the	Storage	Security	Protocol	is	only	required	if	the	mass	storage	device
supports	the	SPC-4	or	ATA8-ACS	security	commands.	The	implementation	of	the	Storage	Security
Protocol	is	typically	found	in	the	file	Block.c.	Appendix	A	contains	a	template	for	a	BlockIo.c	file	for	a	UEFI
Driver.	The	list	of	tasks	to	implement	the	Storage	Security	Protocol	is	as	follows:

Add	global	variable	for	the		EFI_STORAGE_SECURITY_COMMAND_PROTOCOL		instance	to		BlockIo.c	.

Implement	the	Storage	Security	Command	Protocol	services	in		BlockIo.c	.

This	example	shows	the	protocol	interface	structure	for	the	optional	Storage	Security	Command
Protocol	for	reference.	It	is	composed	of	two	services	to	send	and	receive	data.

Example	238-Storage	Security	Command	Protocol

typedef	struct	_EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

		EFI_STORAGE_SECURITY_COMMAND_PROTOCOL;

///

///	The	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	is	used	to	send	security	protocol

///	commands	to	a	mass	storage	device.	Two	types	of	security	protocol	commands

///	are	supported.	SendData	sends	a	command	with	data	to	a	device.	ReceiveData

///	sends	a	command	that	receives	data	and/or	the	result	of	one	or	more	commands

///	sent	by	SendData.

///

///	The	security	protocol	command	formats	supported	shall	be	based	on	the

///	definition	of	the	SECURITY	PROTOCOL	IN	and	SECURITY	PROTOCOL	OUT	commands

///	defined	in	SPC-4	If	the	device	uses	the	SCSI	command	set,	no	translation	is

///	needed	in	the	firmware	and	the	firmware	can	package	the	parameters	into	a

///	SECURITY	PROTOCOL	IN	or	SECURITY	PROTOCOL	OUT	command	and	send	the	command	to

///	the	device.	If	the	device	uses	a	non-SCSI	command	set,	the	firmware	shall	map

///	the	command	and	data	payload	to	the	corresponding	command	and	payload	format

///	defined	in	the	non-SCSI	command	set	(for	example,	TRUSTED	RECEIVE	and	TRUSTED

///	SEND	in	ATA8-ACS).

///

///	The	firmware	shall	automatically	add	an	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

///	for	any	storage	devices	detected	during	system	boot	that	support	SPC-4,

///	ATA8-ACS	or	their	successors.

///

struct	_EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	{

		EFI_STORAGE_SECURITY_RECEIVE_DATA	ReceiveData;

		EFI_STORAGE_SECURITY_SEND_DATA	SendData;

};

extern	EFI_GUID	gEfiStorageSecurityCommandProtocolGuid;

The	EDK	II	has	a	complete	implementation	of	the	Storage	Security	Protocol	for	ATA	device	in	the
	MdeModulePkg		in	the	directory		MdeModulePkg/Bus/Ata/AtaBusDxe	.	This	can	be	used	as	a	reference	for
implementations	of	the	Storage	Security	Protocol	for	mass	storage	devices	on	other	bus	types.

24.3	Storage	Security	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

617DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25	Network	Driver	Design	Guidelines
This	chapter	focuses	on	the	design	and	implementation	of	UEFI	Drivers	for	network	interface	controllers.
These	UEFI	Drivers	typically	bus	drivers	follow	the	UEFI	Driver	Model.	Some	example	devices	include	add-
in	PCI	network	adapters,	USB	network	controllers,	cardbus	network	cards,	and	LAN-on-motherboard
network	devices.	This	list	illustrates	that	most	network	interface	controllers	are	PCI	devices	or	USB
devices.	As	a	result,	the	UEFI	Drivers	for	network	interface	controllers	must	follow	all	of	the	design
guidelines	described	in	Chapter	18	for	PCI	or	Chapter	19	for	USB,	and	must	also	follow	the	general
guidelines	described	in	Chapter	4.

If	a	network	interface	controller	is	intended	to	be	used	as	a	boot	device	for	a	UEFI	operating	system	or
UEFI	applications,	then	a	UEFI	Driver	must	be	implemented	that	produces	Network	Interface	Identifier
Protocol	and	UNDI,	the	Simple	Network	Protocol,	or	the	Managed	Network	Protocol.	If	the	network
interface	controller	hardware	supports	VLAN,	then	the	VLAN	Config	Protocol	must	be	implemented.	If	the
UEFI	Driver	for	a	network	interface	controller	only	produces	the	Managed	Network	Protocol,	then	the
UEFI	Driver	must	also	produce	the	VLAN	Config	Protocol	even	if	the	network	interface	controller	does	not
support	VLAN.

All	three	UEFI	Driver	designs	for	network	interface	controllers	are	covered	in	this	chapter.	There	are
several	factors	that	affect	the	design	of	a	UEFI	Driver	for	a	network	interface	controller.	The	following
table	summarizes	the	major	features	for	each	of	the	three	possible	UEFI	Driver	designs.

Table	36-Network	driver	differences

Feature NII	and
UNDI

Simple	Network
Protocol

Managed	Network
Protocol

UEFI	Runtime	Driver Yes No No

Depends	on	platform	agnostic
UEFI	Driver	for Yes No No

Depends	on	platform	agnostic
UEFI	Driver	for Yes Yes No

Requires	UNDI	interface Yes No No

Supports	EBC	CPU	Architecture No Yes Yes

Requires	Exit	Boot	Services	Event Yes Maybe Maybe

Requires	Set	Virtual	Address	Map
Event Yes No No

The	EDK	II	provides	a	set	of	platform	agnostic	drivers	in	the		MdeModulePkg		and	the		NetworkPkg		that	consume
the	protocols	produced	by	a	UEFI	Driver	for	a	network	interface	controller	and	produce	the	Load	File
Protocol	which	is	one	of	the	two	protocols	from	which	a	UEFI	Boot	Manager	is	able	to	boot	a	UEFI
operating	system	or	a	UEFI	application.	The	Load	File	Protocol	allows	a	UEFI	operating	system	or	UEFI
application	to	be	booted	from	a	properly	configured	PXE	server.	The	platform	agnostic	drivers	allow	the
services	provided	by	the	network	interface	controller	to	be	accessed	without	any	specialized	knowledge
of	the	specific	device	or	controller.	The	set	platform	agnostic	UEFI	Drivers	include:

	MdeModulePkg/Universal/Network/ArpDxe	

	MdeModulePkg/Universal/Network/Dhcp4Dxe	

	MdeModulePkg/Universal/Network/DpcDxe	

	MdeModulePkg/Universal/Network/Ip4ConfigDxe	

25	Network	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

618DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	MdeModulePkg/Universal/Network/Ip4Dxe	

	MdeModulePkg/Universal/Network/IScsiDxe	

	MdeModulePkg/Universal/Network/MnpDxe	

	MdeModulePkg/Universal/Network/Mtftp4Dxe	

	MdeModulePkg/Universal/Network/SnpDxe	

	MdeModulePkg/Universal/Network/Tcp4Dxe	

	MdeModulePkg/Universal/Network/Udp4Dxe	

	MdeModulePkg/Universal/Network/UefiPxeBcDxe	

	MdeModulePkg/Universal/Network/VlanConfigDxe	

	NetworkPkg/Dhcp6Dxe	

	NetworkPkg/Ip6Dxe	

	NetworkPkg/IpSecDxe	

	NetworkPkg/IScsiDxe	

	NetworkPkg/Mtftp6Dxe	

	NetworkPkg/TcpDxe	

	NetworkPkg/Udp6Dxe	

	NetworkPkg/UefiPxeBcDxe	

These	platform	agnostic	drivers	also	provide	support	for	iSCSI	which	produces	the	Block	I/O	Protocol	for
a	network	boot	target.	Additional	platform	agnostic	drivers	produce	the	Simple	File	System	Protocol	from
a	Block	I/O	Protocol.	Those	details	are	provided	in	Chapter	24	on	mass	storage	devices.

25	Network	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

619DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type

Optional	UEFI	Driver	features

Supported	CPU	architectures

Consumed	protocols	that	are	used	to	produce	the	network	interface	controller	related	protocols.

UEFI	drivers	that	manage	network	interface	controllers	typically	follow	the	UEFI	Driver	Model	because	the
devices	are	typically	on	industry	standard	busses	such	as	PCI	or	USB.	However,	it	is	possible	to
implement	UEFI	drivers	for	network	interface	controllers	that	are	not	on	industry	standard	busses.	In
these	cases,	a	Root	Bridge	Driver	implementation	that	produces	a	handle	for	network	interface
controller	in	the	driver	entry	point	may	be	more	appropriate	than	a	UEFI	Driver	Model	implementation.

25.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

620DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.2	NII	Protocol	and	UNDI	Implementations

Network	drivers	that	follow	the	UNDI	definition	from	the	UEFI	Specification	are	unique	compared	to	all
others	peripheral	drivers.

UEFI	Drivers	that	produce	UNDI	interfaces	must	be	UEFI	Runtime	Drivers.	This	allows	a	UEFI	operation
system	to	potentially	use	the	services	of	this	UEFI	Runtime	Driver	to	provide	basic	network
connectivity	in	boot	scenarios	where	the	OS	driver	for	the	network	interface	controller	is	not
available.

UNDI	is	not	a	protocol	interface.	The	Network	Interface	Identifier	Protocol	defines	the	entry	point	to
the	UNDI	structure,	but	UNDI	itself	is	not	a	protocol.	The	Command	Descriptor	Block	(CDB)	that	the
caller	passed	into	each	UNDI	request	must	provide	services	that	allow	the	UNDI	to	access	the
network	interface	controller	hardware.

See	the	Universal	Network	Driver	Interfaces	appendix	of	the	UEFI	Specification	for	more	details	on
UNDI	adapters.

Figure	29-UEFI	UNDI	Network	Stack

The	implementation	of	the	Network	Interface	Identifier	Protocol	is	typically	found	in	the	file	NiiUndi.c.
Appendix	A	contains	a	template	for	a	NiiUndi.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the
Network	Interface	Identifier	Protocol	and	UNDI	is	as	follows:

Add	global	variable	for	the		EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL		instance	to		NiiUndi.c	.

Implement	the	UNDI	interface	in		NiiUndi.c	.

25.2	NII	Protocol	and	UNDI	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

621DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Create	child	handle	in	Driver	Binding	Protocol		Start()		and	install	the	NII	Protocol	and	the	Device	Path
Protocol.

Create	an	Exit	Boot	Services	Event	to	disable	DMA	when	packets	are	received.

Create	a	Set	Virtual	Address	Map	Event	to	convert	physical	addresses	to	virtual	addresses.

The	following	example	shows	the	protocol	interface	structure	for	the	Network	Interface	Identifier
Protocol	for	reference.	The	Network	Interface	Identifier	Protocol	is	different	from	many	other	protocols	in
that	it	has	no	functions	inside	it,	and	instead	is	only	composed	of	data	fields.	These	data	fields	share
information	with	the	platform	about	the	network	interface	controller	capabilities.	The	field	called		Id	
provides	the	address	of	a	data	structure	for	the	UNDI	that	includes	methods	for	the	platform	to	call	the
UNDI	interfaces.

Example	239-Network	Interface	Identifier	Protocol

typedef	struct	_EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

		EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL;

///

///	An	optional	protocol	that	is	used	to	describe	details	about	the	software

///	layer	that	is	used	to	produce	the	Simple	Network	Protocol.

///

struct	_EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL	{

		///

		///	The	revision	of	the	EFI_NETWORK_INTERFACE_IDENTIFIER	protocol.

		///

		UINT64	Revision;

		///

		///	The	address	of	the	first	byte	of	the	identifying	structure	for	this	network

		///	interface.	This	is	only	valid	when	the	network	interface	is	started

		///	(see	Start()).	When	the	network	interface	is	not	started,	this	field	is	set

		///	to	zero.

		///

		UINT64	Id;

		///

		///	The	address	of	the	first	byte	of	the	identifying	structure	for	this

		///	network	interface.	This	is	set	to	zero	if	there	is	no	structure.

		///

		UINT64	ImageAddr;

		///

		///	The	size	of	unrelocated	network	interface	image.

		///

		UINT32	ImageSize;

		///

		///	A	four-character	ASCII	string	that	is	sent	in	the	class	identifier	field	of

		///	option	60	in	DHCP.	For	a	Type	of	EfiNetworkInterfaceUndi,	this	field	is	UNDI.

		///

		CHAR8	StringId[4];

		///

		///	Network	interface	type.	This	will	be	set	to	one	of	the	values

		///	in	EFI_NETWORK_INTERFACE_TYPE.

		///

		UINT8	Type;

		///

		///	Major	version	number.

		///

		UINT8	MajorVer;

		///

		///	Minor	version	number.

		///

		UINT8	MinorVer;

		///

		///	TRUE	if	the	network	interface	supports	IPv6;	otherwise	FALSE.

		///

		BOOLEAN	Ipv6Supported;

		///

		///	The	network	interface	number	that	is	being	identified	by	this	Network

		///	Interface	Identifier	Protocol.	This	field	must	be	less	than	or	equal

25.2	NII	Protocol	and	UNDI	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

622DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		///	to	the	IFcnt	field	in	the	!PXE	structure.

		///

		UINT8	IfNum;

};

extern	EFI_GUID	gEfiNetworkInterfaceIdentifierProtocolGuid_31;

The	following	table	shows	the	data	structure	called		!PXE		that	resides	at	address	specified	by	the		Id	
field	of	the	Network	Interface	Identifier	Protocol.

Table	37-!PXE	interface	structure

!PXE	SW	UNDI

Offset 0x00 0x01 0x02 0x03

0x00 Signature

0x04 Len Fudge Rev IFcnt

0x08 Major Minor Reserved

0x0C Implementation

0x10 Entry	Point

0x14 Entry	Point

0x18 Reserved #bus

0x1C Bus	Types(s)

0x20 More	Bus	Types(s)

This	table	shows	the	layout	of	the	Command	Descriptor	Block	(CDB)	structure	that	is	passed	into	the
function	specified	by	the	Entry	Point	field	of	the	!PXE	structure.

Table	38-CDB	structure

Command	descriptor	block	(CDB)

Offset 0x00 0x01 0x02 0x03

0x00 OpCode OpFlags

0x04 CPBsize DBsize

0x08 CPBaddr

0x0C CPBaddr

0x10 DBaddr

0c14 DBaddr

0x18 StatCode StatFlags

0x1C IFnum Control

The	UEFI	Driver	for	a	network	interface	controller	that	implements	an	UNDI	must	implement	all	the	UNDI
related	OpCodes	required	by	the	UEFI	Specification.

25.2	NII	Protocol	and	UNDI	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

623DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.2.1	Exit	Boot	Services	Event

UEFI	Drivers	for	network	interface	controllers	that	perform	DMA	operations	to	a	buffer	in	system	memory
in	response	to	a	received	packet	must	create	an	Exit	Boot	Services	Event	in	the	Driver	Binding	Protocol
	Start()		function.	The	notification	function	associated	with	this	Exit	Boot	Services	Event	must	update	the
network	interface	controller	hardware	to	disable	all	further	DMA	activity.	This	guarantees	that	after
	ExitBootServices()		is	called,	that	the	receive	resources	allocated	to	network	driver	are	freed	for	OS	usage.

Caution:	If	the	network	interface	controller	performs	DMA	due	to	received	packets	into	system	memory
after	ExitBootServices()	is	called,	the	DMA	operations	may	corrupt	memory	that	is	now	owned	by	the
operating	system.

25.2.1	Exit	Boot	Services	EventEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

624DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.2.2	Set	Virtual	Address	Map	Event

If	a	UEFI	Runtime	Driver	dynamically	allocates	memory	buffers,	then	the	pointers	to	those	allocations
and	pointers	within	those	allocations	must	be	converted	to	virtual	addresses	when	a	UEFI	operating
system	calls	the	UEFI	Runtime	Service		SetVitualAddressMap()	.	UEFI	Drivers	for	network	interface	controllers
that	manage	this	type	of	buffer	must	create	a	Set	Virtual	Address	Map	Event	in	the	Driver	Binding
Protocol		Start()		function.	The	notification	function	associated	with	this	Set	Virtual	Address	Map	Event
must	use	the	UEFI	Runtime	Service	called		ConvertPointer()		to	perform	conversions	from	physical
addresses	to	virtual	addresses	on	all	pointers.	These	conversions	must	be	performed	bottom-up	since
the	virtual	pointers	are	not	valid	until	the		SetVirtualAddressMap()		returns	to	the	UEFI	operating	system.

25.2.2	Set	Virtual	Address	Map	EventEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

625DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.2.3	Memory	leaks	caused	by	UNDI

UNDI	drivers	transfer	data	in	the	system	through	memory	buffers.	To	perform	its	function,	the	UNDI
driver	often	allocates	many	buffers	for	data	transfer.	If	those	buffers	are	not	tracked	properly,	it	is
possible	to	lose	them	in	the	shuffle,	and	they	are	not	returned	to	the	system	memory	management.
This	can	cause	a	memory	leak.	When	a	buffer	is	being	used	(taken	off	the	waiting	queue	and	made
active)	there	is	a	chance	of	losing	the	pointer	to	that	buffer	in	the	process,	which	again,	causes	a
memory	leak.

When	transmitting,	the	UNDI	driver	must	keep	track	of	which	buffers	have	been	completed,	and	return
those	buffer	addresses	from	the	GetStatus	API.	This	allows	the	top	level	stack	to	disposition	the	buffer
(reuse	or	de-allocate)	and	not	leak	memory.

25.2.3	Memory	leaks	caused	by	UNDIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

626DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.3	Simple	Network	Protocol	Implementations

Exposing	SNP	instead	of	NII	and	UNDI	has	some	advantages	and	some	disadvantages	over	using	NII	and
UNDI.	SNP-based	network	drivers	are	never	UEFI	Runtime	Drivers,	so	such	drivers	do	not	have	to	worry
about	meeting	the	UEFI	Runtime	Driver	requirements.	This	allows	an	SNP	driver	to	be	compiled	for	all	the
CPU	architectures	supported	by	the	UEFI	Specification	including	EBC.	SNP	may	be	required	for	some
nonstandard	network	interface	controllers	that	cannot	meet	the	UNDI	requirements.

When	a	network	driver	exposes	SNP	directly	the	system	firmware	layers	MNP	on	top	of	SNP	and	does	not
use	its	internal	SNP	driver	as	part	of	this	network	stack.

The	following	figure	shows	a	possible	network	stack	based	on	a	network	driver	producing	SNP.	The
inclusion	of	Load	File	Protocol	is	not	guaranteed	here,	but	is	a	choice	made	by	the	system	firmware.

Figure	30-SNP	Based	Network	Stack

The	implementation	of	the	Simple	Network	Protocol	is	typically	found	in	the	file	SimpleNetwork.c.
Appendix	A	contains	a	template	for	a	SimpleNetwork.c	file	for	a	UEFI	Driver.	The	list	of	tasks	to
implement	the	Simple	Network	Protocol	is	as	follows:

Add	global	variable	for	the		EFI_SIMPLE_NETWORK_PROTOCOL		instance	to		SimpleNetworkProtocol.c	.

Create	child	handle	in	Driver	Binding	Protocol		Start()		and	install	the	Simple	Network	Protocol	and
the	Device	Path	Protocol.	Also	allocate	and	initialize	an		EFI_SIMPLE_NETWORK_MODE		structure	in	the	Simple
Network	Protocol.

Implement	the	Simple	Network	Protocol	services	in		SimpleNetwork.c	.

Create	an	Exit	Boot	Services	Event	to	disable	DMA	when	packets	are	received.

The	following	example	shows	the	protocol	interface	structure	for	the	Simple	Network	Protocol	for
reference.	This	protocol	is	composed	of	13	services,	an		EFI_EVENT		that	can	be	used	to	poll	when	a
packet	has	been	received,	and	a		Mode		structure	that	contains	details	on	the	attributes	and	capabilities
of	the	network	interface	controller.

25.3	Simple	Network	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

627DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Example	240-Simple	Network	Protocol

typedef	struct	_EFI_SIMPLE_NETWORK_PROTOCOL	EFI_SIMPLE_NETWORK_PROTOCOL;

///

///	The	EFI_SIMPLE_NETWORK_PROTOCOL	protocol	is	used	to	initialize	access

///	to	a	network	adapter.	Once	the	network	adapter	initializes,

///	the	EFI_SIMPLE_NETWORK_PROTOCOL	protocol	provides	services	that

///	allow	packets	to	be	transmitted	and	received.

///

struct	_EFI_SIMPLE_NETWORK_PROTOCOL	{	///

		///	Revision	of	the	EFI_SIMPLE_NETWORK_PROTOCOL.	All	future	revisions	must

		///	be	backwards	compatible.	If	a	future	version	is	not	backwards	compatible

		///	it	is	not	the	same	GUID.

		///

		UINT64	Revision;

		EFI_SIMPLE_NETWORK_START	Start;

		EFI_SIMPLE_NETWORK_STOP	Stop;

		EFI_SIMPLE_NETWORK_INITIALIZE	Initialize;

		EFI_SIMPLE_NETWORK_RESET	Reset;

		EFI_SIMPLE_NETWORK_SHUTDOWN	Shutdown;

		EFI_SIMPLE_NETWORK_RECEIVE_FILTERS	ReceiveFilters;

		EFI_SIMPLE_NETWORK_STATION_ADDRESS	StationAddress;

		EFI_SIMPLE_NETWORK_STATISTICS	Statistics;

		EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC	MCastIpToMac;

		EFI_SIMPLE_NETWORK_NVDATA	NvData;

		EFI_SIMPLE_NETWORK_GET_STATUS	GetStatus;

		EFI_SIMPLE_NETWORK_TRANSMIT	Transmit;

		EFI_SIMPLE_NETWORK_RECEIVE	Receive;

		///

		///	Event	used	with	WaitForEvent()	to	wait	for	a	packet	to	be	received.

		///

		EFI_EVENT	WaitForPacket;

		///

		///	Pointer	to	the	EFI_SIMPLE_NETWORK_MODE	data	for	the	device.

		///

		EFI_SIMPLE_NETWORK_MODE	*Mode;

};

extern	EFI_GUID	gEfiSimpleNetworkProtocolGuid;

25.3	Simple	Network	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

628DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

25.4	Managed	Network	Protocol	Implementations

Exposing	MNP	instead	has	many	of	the	same	advantages	of	implementing	SNP	and	it	reduces	one	extra
layer	of	drivers.	One	disadvantage	of	implementing	MNP	instead	of	SNP,	or	NII	and	UNDI	is	that	the	VLAN
Config	Protocol	must	also	be	implemented.	In	addition,	the	Managed	Network	Protocol	also	requires	a
Service	Binding	Protocol	to	be	implemented.	See	Chapter	10	covering	the	Service	Binding	Protocol.	In
many	cases,	since	two	additional	protocols	must	be	implemented	in	addition	to	the	Managed	Network
Protocol,	it	is		recommended		that	the	Simple	Network	Protocol	be	implemented	instead	of	the	Managed
Network	Protocol.

25.4	Managed	Network	Protocol	ImplementationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

629DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

26	User	Credential	Driver	Design	Guidelines
The	User	Credential	Protocol	provides	a	method	to	identify	the	user	of	a	platform.	If	a	device	provides	a
method	to	identify	the	user	of	a	platform	such	as	entering	a	password,	reading	a	fingerprint,	or	reading
a	smart	token,	then	a	UEFI	Driver	that	produces	the	User	Credential	Protocol	should	be	implemented.

The	EDK	II	provides	the	following	two	implementations	of	the	User	Credential	Protocol	in	the		SecurityPkg	.
The	fist	one	interacts	with	the	user	to	retrieve	a	password	entered	through	a	keyboard.	The	second
one	uses	a	content	stored	on	a	USB	Flash	drive	as	a	token.

	SecurityPkg\UserIdentification\PwdCredentialProviderDxe	

	SecurityPkg\UserIdentification\UsbCredentialProviderDxe	

26	User	Credential	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

630DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

26.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type

Optional	UEFI	Driver	features

Supported	CPU	architectures

Consumed	protocols	that	are	used	to	produce	the	User	Credential	Protocol.

UEFI	drivers	that	produce	the	User	Credential	Protocol	typically	follow	the	UEFI	Driver	Model.	However,	it
is	possible	to	implement	UEFI	Drivers	that	directly	produce	the	User	Credential	Protocol	for	a	single
device	in	a	platform	or	a	software	only	based	identification	method.	In	this	case	a	Root	Bridge	Driver
implementation	may	be	more	appropriate	than	a	UEFI	Driver	Model	implementation.

26.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

631DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

26.2	User	Credential	Protocol	Implementation

The	implementation	of	the	User	Credential	Protocol	is	typically	found	in	the	file		UserCredential.c	.	Appendix
A	contains	a	template	for	a		UserCredential.c		file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	User
Credential	Protocol	is	as	follows:

Add	global	variable	for	the		EFI_USER_CREDENTIAL2_PROTOCOL		instance	to		UserCredential.c	.

Add	implementations	of	the	services	produced	by	the	User	Credential	Protocol	to		UserCredential.c	.

Implement	HII	forms	for	interacting	with	the	user	during	the	user	identify	process	using	a	formset
GUID	of		EFI_USER_CREDENTIAL_PROTOCOL_GUID	.	See	Chapter	12	for	details	on	HII	forms.

Implement	HII	Config	Access	Protocol	to	retrieve	and	save	configuration	information	associated	with
the	HII	forms.	See	Chapter	12	for	details	on	the	HII	Config	Access	Protocol.	The	implementation	of
the	HII	Config	Access	Protocol	is	typically	found	in	the	file	HiiConfigAccess.c.	Appendix	A	contains	a
template	for	a	HiiConfigAccess.c	file	for	a	UEFI	Driver.

The	example	below	shows	the	protocol	interface	structure	for	the	User	Credential	Protocol	for
reference.	This	protocol	is	composed	of	two	GUIDs,	11	services,	and	a	capabilities	value.	These	services
are	used	by	a	User	Identity	Manager	to	identify	the	current	user	of	a	platform.

Example	241-User	Credential	Protocol

typedef	struct	_EFI_USER_CREDENTIAL2_PROTOCOL	EFI_USER_CREDENTIAL2_PROTOCOL;

///

///	This	protocol	provides	support	for	a	single	class	of	credentials

///

struct	_EFI_USER_CREDENTIAL2_PROTOCOL	{

		EFI_GUID																						Identifier;			///<	Uniquely	identifies	this

																																														///<	credential	provider.

		EFI_GUID																						Type;									///<	Identifies	this	class	of	User

																																														///<Credential	Provider.

		EFI_CREDENTIAL2_ENROLL								Enroll;

		EFI_CREDENTIAL2_FORM										Form;

		EFI_CREDENTIAL2_TILE										Tile;

		EFI_CREDENTIAL2_TITLE									Title;

		EFI_CREDENTIAL2_USER										User;

		EFI_CREDENTIAL2_SELECT								Select;

		EFI_CREDENTIAL2_DESELECT						Deselect;

		EFI_CREDENTIAL2_DEFAULT							Default;

		EFI_CREDENTIAL2_GET_INFO						GetInfo;

		EFI_CREDENTIAL2_GET_NEXT_INFO	GetNextInfo;

		EFI_CREDENTIAL_CAPABILITIES			Capabilities;

		EFI_CREDENTIAL2_DELETE								Delete;

};

extern	EFI_GUID	gEfiUserCredential2ProtocolGuid;

26.2	User	Credential	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

632DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

27	Load	File	Driver	Design	Guidelines
The	Load	File	Protocol	is	used	to	support	booting	from	a	device	type	which	does	not	fit	cleanly	into	any
of	the	standard	device	types	supported	by	the	UEFI	Specification.	A	UEFI	Boot	Manager	can	only	boot
through	the	Simple	File	System	Protocol	or	the	Load	File	Protocol.	If	a	device	must	be	a	boot	device	and
cannot	directly	or	indirectly	produce	the	Simple	File	System	Protocol	or	indirectly	produce	the	Load	File
Protocol,	then	a	Load	File	Protocol	must	be	implemented.	The	indirect	production	of	Simple	File	System
and	the	Load	File	Protocol	may	not	always	be	obvious.	The	EDK	II	provides	a	number	of	platform-agnostic
drivers	that	help	produce	the	Simple	File	System	Protocol	and	the	Load	File	Protocol	through	several
layers	of	UEFI	drivers.	For	example,	a	UEFI	Driver	that	produces	the	Block	I/O	Protocol	is	sufficient	to
produce	the	Simple	File	System	Protocol	if	the	Disk	I/O	Driver,	Partition	Driver,	and	FAT	File	System	Driver
are	also	included	in	the	platform.	Review	all	the	other	boot	device	types	described	in	this	guide	and	the
UEFI	Specification	before	choosing	to	implement	the	Load	File	Protocol.

Note:	The	Load	File	Protocol	should	not	be	implemented	for	any	standard	device	type	which	has	a
defined	driver	hierarchy	(e.g.	USB,	SCSI,	and	ATA).

27	Load	File	Driver	Design	GuidelinesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

633DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

27.1	Assumptions

The	rest	of	this	chapter	assumes	that	the	Driver	Checklist	in	Chapter	2	has	been	followed	and	that	the
following	items	have	already	been	identified:

UEFI	Driver	Type

Optional	UEFI	Driver	features

Supported	CPU	architectures

Consumed	protocols	that	are	used	to	produce	the	User	Credential	Protocol.

UEFI	drivers	that	produce	the	Load	File	Protocol	typically	follow	the	UEFI	Driver	Model.

However,	it	is	possible	to	implement	UEFI	drivers	that	directly	produce	the	Load	File	Protocol	for	a	single
device	in	a	platform.	In	this	case	a	Root	Bridge	Driver	implementation	may	be	more	appropriate	than	a
UEFI	Driver	Model	implementation.

27.1	AssumptionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

634DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

27.2	Load	File	Protocol	Implementation

The	implementation	of	the	Load	File	Protocol	is	typically	found	in	the	file		LoadFile.c	.	Appendix	A	contains
a	template	for	a		LoadFile.c		file	for	a	UEFI	Driver.	The	list	of	tasks	to	implement	the	Load	File	Protocol	is	as
follows:

Add	global	variable	for	the		EFI_LOAD_FILE_PROTOCOL		instance	to		LoadFile.c	.

Implement	the		LoadFile()		service	in		LoadFile.c	.

The	example	below	shows	the	protocol	interface	structure	for	the	Load	File	Protocol	for	reference.	This
protocol	is	composed	of	a	single	service	called		LoadFile()	.	This	service	is	typically	used	by	a	UEFI	Boot
Manager	to	boot	a	UEFI	OS	Loader	or	other	UEFI	Application	from	a	device	that	does	not	directly	or
indirectly	support	the	Simple	File	System	Protocol.

Example	242-Load	File	Protocol

typedef	struct	_EFI_LOAD_FILE_PROTOCOL	EFI_LOAD_FILE_PROTOCOL;

struct	_EFI_LOAD_FILE_PROTOCOL	{

		EFI_LOAD_FILE	LoadFile;

};

extern	EFI_GUID	gEfiLoadFileProtocolGuid;

27.2	Load	File	Protocol	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

635DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

27.2.1	LoadFile()	Implementation

The	singular	function		LoadFile()		of	this	protocol	causes	the	driver	to	load	the	specified	file	from	media
into	a	buffer	in	system	memory	without	the	overlying	layers	knowing	anything	about	the	media	that	the
file	is	stored	on.

Verify	that	the	FilePath	represents	a	file	accessible	by	this	device.

Verify	that	the	file	specified	by	FilePath	exists.	If	it	does	not	exist,	check	BootPolicy	to	see	if	inexact
FilePath	is	allowed.

Verify	that	Buffer	is	large	enough	to	return	the	entire	file	by	examining

BufferSize	parameter.	If	not	large	enough,	place	correct	size	in	BufferSize	and	return		EFI_BUFFER_TOO_SMALL	.

27.2.1	LoadFile()	ImplementationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

636DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28	IPF	Platform	Porting	Considerations
When	writing	a	UEFI	driver,	there	are	steps	that	can	be	taken	to	help	make	sure	the	driver	functions
properly	on	an	IPF	platform.	The	guidelines	listed	in	this	chapter	help	improve	the	portability	of	UEFI
drivers,	and	explain	some	of	the	pitfalls	that	may	be	encountered	when	a	UEFI	driver	is	ported	to	an	IPF
platform.

Chapter	4	covers	the	general	guidelines	for	implementing	a	UEFI	Driver	that	is	compatible	with	both	32-
bit	and	64-bit	CPU	architectures.	If	a	32-bit	UEFI	Driver	is	being	ported	to	IPF,	then	make	sure	the
guidelines	from	Chapter	4	are	followed.	This	chapter	focuses	on	issues	that	are	specific	to	IPF.	In
general,	the	guidelines	for	implementing	a	UEFI	Driver	for	IPF	are	more	rigorous	that	other	CPU
architectures.	If	a	UEFI	Driver	is	implemented	and	validated	for	IPF,	then	there	is	a	good	chance	that	the
UEFI	Driver	can	be	easily	ported	to	most	of	the	other	CPU	architecture	supported	by	the	UEFI
Specification.

In	addition,	the	DIG64	Specification	requires	some	protocols	that	are	considered	obsolete	by	the	latest
UEFI	Specification.	This	means	UEFI	Drivers	for	IPF	may	have	to	produce	some	extra	protocols	from	older
versions	of	the	EFI	Specification	and	UEFI	Specification	in	order	to	be	conformant	with	the	DIG64
Specification.	The	additional	protocols	are	listed	below.	Other	chapters	of	the	guide	provide
recommendations	on	how	to	implement	these	protocols	and	this	topic	will	not	be	covered	further	in	this
chapter.

Component	Name	Protocol

Driver	Configuration	Protocol

Driver	Diagnostics	Protocol

28	IPF	Platform	Porting	ConsiderationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

637DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.1	General	notes	about	porting	to	IPF	platforms

When	porting	to	IPF	platform,	most	developers	take	as	much	code	as	possible	that	already	exists	and
reuse	it	for	the	IPF	platform.	Unfortunately,	some	developers	porting	code	do	not	rigorously	follow	the
UEFI	conventions,	such	as	using	only	the	data	types	defined	in	the	Calling	Conventions	section	of	the
UEFI	Specification.	Others	may	not	follow	best	coding	practices.	This	is	a	critical	issue	for	IPF	platforms
because,	although	such	code	might	work	the	first	time,	it	may	fail	a	more	complete	set	of	validation
tests.	It	is	also	very	likely	that	the	code	may	not	work	when	compiled	with	a	different	compiler,	or	after
another	developer	performs	maintenance	on	the	code.

Use	data	types	defined	by	the	Calling	Conventions	section	of	the	UEFI	Specification.

Use	compiler	flag	settings	that	guarantee	that	the	UEFI	calling	conventions	for	IPF	are	followed.

If	a	UEFI	driver	contains	assembly	language	sources	for	a	different	CPU	architecture,	then	those
sources	must	be	converted	to	either	IPF	assembly	language	sources	or	to	CPU	agnostic	C	language
sources.	Conversion	to	C	language	sources	is		recommended		and	the	EDK	II	library		BaseLib		and	other
EDK	II	libraries	provide	functions	that	may	reduce	or	eliminate	the	need	to	assembly	code	in	UEFI
Drivers.

Avoid	alignment	faults.	This	is	the	top	issue	in	porting	a	UEFI	driver	to	an	IPF	platform.	Alignment
faults	may	be	due	to	type	casting,	packed	data	structures,	or	unaligned	data	structures.

28.1	General	notes	about	porting	to	IPF	platformsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

638DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.2	Alignment	Faults

The	single	most	common	issue	with	UEFI	drivers	for	IPF	platforms	is	alignment.	Alignment	faults	cannot
occur	on	IA32,	X64,	or	EBC	platforms,	but	can	occur	on	IPF	platforms.	The	IPF	platform	requires	that	all
transactions	be	performed	only	on	natural	boundaries.	This	requirement	means	that	a	64-bit	read	or
write	transaction	must	begin	on	an	8-byte	boundary,	a	32-bit	read	or	write	transaction	must	begin	on	a
4-byte	boundary,	and	a	16-bit	read	or	write	transaction	must	begin	on	a	2-byte	boundary.

In	most	cases,	the	driver	writer	does	not	need	to	worry	about	this	issue	because	the	C	compiler
guarantees	that	accessing	global	variables,	function	parameters,	local	variables,	and	fields	of	data
structures	do	not	cause	alignment	faults.

Alignment	faults	can	be	generated	when:

C	code	can	generate	an	alignment	fault	when	a	pointer	is	cast	from	one	type	to	another	or	when
packed	data	structures	are	used.

Data	structures	are	declared	to	be	byte	packed	using		#pragma	pack(1)		or	equivalent.

Assembly	language	can	generate	an	alignment	fault,	but	it	is	the	assembly	programmer's
responsibility	to	ensure	alignment	faults	are	not	generated.	This	topic	is	not	covered	further	in	this
guide.

28.2	Alignment	FaultsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

639DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.3	Casting	Pointers

The	example	below	shows	an	example	that	generates	an	alignment	fault	on	an	IPF	platform.	The	first
read	access	through	SmallValuePointer	is	aligned	because	LargeValue	is	on	a	64-bit	boundary.	However,
the	second	read	access	though	SmallValuePointer	generates	an	alignment	fault	because
SmallValuePointer	is	not	on	a	32-bit	boundary.	The	problem	is	that	an	8-bit	pointer	was	cast	to	a	32-bit
pointer.	Whenever	a	cast	is	made	from	a	pointer	to	a	smaller	data	type	to	a	pointer	to	a	larger	data
type,	there	is	a	chance	that	the	pointer	to	the	larger	data	type	is	unaligned.

Example	243-Pointer-cast	alignment	fault

#include	<Uefi.h>

UINT64	LargeValue;

UINT32	*SmallValuePointer;

UINT32	SmallValue;

SmallValuePointer	=	(UINT32	*)	&LargeValue;

//

//	Works

//

SmallValue								=	*SmallValuePointer;

SmallValuePointer	=	(UINT32	*)((UINT8	*)&LargeValue	+	1);

//

//	Fails.	Generates	an	alignment	fault

//

SmallValue								=	*SmallValuePointer;

Example	244,	below,	shows	the	same	example	as	Example	243,	above,	but	has	been	modified	to
prevent	the	alignment	fault.	The	second	read	access	through	SmallValuePointer	is	replaced	with	a	call
to	the	EDK	II	library		BaseLib		function	called		ReadUnaligned32()		that	treats	the	32-bit	value	as	an	array	of
bytes.	The	individual	bytes	are	read	and	combined	into	a	32-bit	value.	The	generated	object	code	is
larger	and	slower,	but	it	is	functional	on	all	CPU	architectures	supported	by	the	UEFI	Specification.

Example	244-Corrected	pointer-cast	alignment	fault

#include	<Uefi.h>

#include	<Library/BaseLib.h>

UINT64	LargeValue;

UINT32	*SmallValuePointer;

UINT32	SmallValue;

SmallValuePointer	=	(UINT32	*)	&LargeValue;

//

//	Works

//

SmallValue								=	*SmallValuePointer;

SmallValuePointer	=	(UINT32	*)((UINT8	*)&LargeValue	+	1);

//

//	Works

//

SmallValue								=	ReadUnaligned32	(SmallValuePointer);

EDK	II	library		BaseLib		provides	several	functions	to	help	perform	unaligned	accessed	in	a	safe	manner.
These	functions	perform	a	direct	access	on	CPU	architectures	that	do	not	generate	alignment	faults,
and	break	the	access	up	into	small	aligned	pieces	on	CPU	architectures	that	do	generate	alignment

28.3	Casting	PointersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

640DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

faults.	The	list	of	unaligned	access	functions	from	the	EDK	II	library		BaseLib		includes	the	following:

	ReadUnaligned64()	

	ReadUnaligned32()	

	ReadUnaligned24()	

	ReadUnaligned16()	

	WriteUnaligned64()	

	WriteUnaligned32()	

	WriteUnaligned24()	

	WriteUnaligned16()	

28.3	Casting	PointersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

641DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.4	Packed	Structures

The	following	example	shows	another	example	that	generates	an	alignment	fault	on	an	IPF	platform.
The	first	read	access	from	MyStructure.First	always	works	because	the	8-bit	value	is	always	aligned.
However,	the	second	read	access	from	MyStructure.Second	always	fails	because	the	32-bit	value	is
never	aligned	on	a	4-byte	boundary.

Example	245-Packed	structure	alignment	fault

#include	<Uefi.h>

#pragma	pack(1)

typedef	struct	{

		UINT8		First;

		UINT32	Second;

}	MY_STRUCTURE;

#pragma	pack()

MY_STRUCTURE	MyStructure;

UINT8								FirstValue;

UINT32							SecondValue;

//

//	Works

//

FirstValue			=	MyStructure.First;

//

//	Fails.	Generates	an	alignment	fault

//

SecondValue		=	MyStructure.Second;

The	next	example	shows	the	same	example	as	Example	245,	above,	but	has	been	modified	to	prevent
the	alignment	fault.	The	second	read	access	from	MyStructure.Second	is	replaced	with	a	call	to	the	EDK
II	library		BaseLib		function	called		ReadUnaligned32()		that	treats	the	32-bit	value	as	an	array	of	bytes.	The
individual	bytes	are	read	and	combined	into	a	32-bit	value.	The	generated	object	code	is	larger	and
slower,	but	it	is	functional	on	all	CPU	architectures	supported	by	the	UEFI	Specification.

Example	246-Corrected	packed	structure	alignment	fault

#include	<Uefi.h>

#include	<Library/BaseLib.h>

#pragma	pack(1)

typedef	struct	{

		UINT8	First;

		UINT32	Second;

}	MY_STRUCTURE;

#pragma	pack()

MY_STRUCTURE		MyStructure;

UINT8									FirstValue;

UINT32								SecondValue;

//

//	Works

//

FirstValue		=	MyStructure.First;

//

//	Works

//

SecondValue	=	ReadUnaligned32	((VOID	*)&MyStructure.Second);

28.4	Packed	StructuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

642DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

If	a	data	structure	is	copied	from	one	location	to	another,	then	both	the	source	and	the	destination
pointers	for	the	copy	operation	should	be	aligned	on	a	64-bit	boundary.	The	EDK	II	library		BaseMemoryLib	
provides	the		CopyMem()		service	that	handles	unaligned	copy	operations,	so	an	alignment	fault	is	never
generated	by	the	copy	operation	itself.

However,	if	the	fields	of	the	data	structure	at	the	destination	location	are	accessed,	they	may	generate
alignment	faults	if	the	destination	address	is	not	aligned	on	a	64-bit	boundary.	There	are	cases	where
an	aligned	structure	may	be	copied	to	an	unaligned	destination,	but	the	fields	of	the	destination	buffer
must	not	be	accessed	after	the	copy	operation	is	completed.	An	example	of	this	case	is	when	a	packed
data	structure	is	built	and	stored	on	a	mass	storage	device	or	transmitted	on	a	network.

28.4	Packed	StructuresEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

643DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.5	UEFI	Device	Paths

The	technique	of	using	the	EDK	II	library	BaseLib	functions	to	perform	unaligned	reads	and	writes	is
functional,	but	can	become	tedious	if	a	large	number	of	fields	in	data	structures	need	to	be	accessed.
In	these	cases,	it	may	be	necessary	to	copy	a	data	structure	from	an	unaligned	source	location	to	an
aligned	destination	location	so	that	the	fields	of	the	data	structure	can	be	accessed	without
generating	an	alignment	fault.	Two	examples	of	this	scenario	are	parsing	UEFI	device	path	nodes	and
parsing	network	packets.

The	device	path	nodes	in	a	UEFI	device	path	are	packed	together	so	they	take	up	as	little	space	as
possible	when	they	are	stored	in	environment	variables	such	as	ConIn,	ConOut,	StdErr,	Boot####,	and
Driver####.	As	a	result,	individual	device	path	nodes	may	not	be	aligned	on	a	64-bit	boundary.	UEFI
device	paths	and	UEFI	device	paths	nodes	may	be	passed	around	as	opaque	data	structures,	but
whenever	the	fields	of	a	UEFI	device	path	node	are	accessed,	the	device	path	node	must	be	copied	to	a
location	that	is	guaranteed	to	be	on	a	64-bit	boundary.	Likewise,	network	packets	are	packed	so	they
take	up	as	little	space	as	possible.	As	each	layer	of	a	network	packet	is	examined,	the	packet	may	need
to	be	copied	to	a	64-bit	aligned	location	before	the	individual	fields	of	the	packet	are	examined.

The	following	example	shows	an	example	of	a	function	that	parses	a	UEFI	device	path	and	extracts	the
32-bit	HID	and	UID	from	an	ACPI	device	path	node.	This	example	generates	an	alignment	fault	if
DevicePath	is	not	aligned	on	a	32-bit	boundary.

Example	247-UEFI	device	path	node	alignment	fault

#include	<Uefi.h>

#include	<Protocol/DevicePath.h>

VOID

EFIAPI

GetAcpiHidUid	(

			EFI_DEVICE_PATH_PROTOCOL		*DevicePath,

			UINT32																				*Hid,

			UINT32																				*Uid

)

{

		ACPI_HID_DEVICE_PATH		*AcpiDevicePath;

		AcpiDevicePath	=	(ACPI_HID_DEVICE_PATH	*)DevicePath;

		//

		//	Wrong.	May	cause	an	alignment	fault.

		//

		*Hid	=	AcpiDevicePath->HID;

		//

		//	Wrong.	May	cause	an	alignment	fault.

		//

		*Uid	=	AcpiDevicePath->UID;

}

Example	248,	below,	shows	the	corrected	version	of	Example	247,	above.	Because	the	alignment	of
DevicePath	cannot	be	guaranteed,	the	solution	is	to	copy	the	ACPI	device	path	node	from	DevicePath
into	an	ACPI	device	path	node	structure	that	is	declared	as	the	local	variable	AcpiDevicePath.	A
structure	declared	as	a	local	variable	is	guaranteed	to	be	on	a	64-bit	boundary	on	IPF	platforms.	The
fields	of	the	ACPI	device	path	node	can	then	be	safely	accessed	without	generating	an	alignment	fault.

Example	248-Corrected	UEFI	device	path	node	alignment	fault

#include	<Uefi.h>

28.5	UEFI	Device	PathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

644DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#include	<Protocol/DevicePath.h>

#include	<Library/BaseMemoryLib.h>

VOID

EFIAPI

GetAcpiHidUid	(

			EFI_DEVICE_PATH_PROTOCOL		*DevicePath,

			UINT32																				*Hid,

			UINT32																				*Uid

)

{

		ACPI_HID_DEVICE_PATH		AcpiDevicePath;

		CopyMem	(&AcpiDevicePath,	DevicePath,	sizeof	(ACPI_HID_DEVICE_PATH));

		//

		//	Correct.	Guaranteed	not	to	generate	an	alignment	fault.

		//

		*Hid	=	AcpiDevicePath.HID;

		//

		//	Correct.	Guaranteed	not	to	generate	an	alignment	fault.

		//

		*Uid	=	AcpiDevicePath.UID;

}

28.5	UEFI	Device	PathsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

645DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.6	PCI	Configuration	Header	64-bit	BAR

Another	source	of	alignment	faults	is	when	64-bit	BAR	values	are	accessed	in	a	PCI	configuration
header.	A	PCI	configuration	header	has	room	for	up	to	six	32-bit	BAR	values	or	three	64-bit	BAR	values.	A
PCI	configuration	header	may	also	contain	a	mix	of	both	32-bit	BAR	values	and	64-bit	BAR	values.	All	32-
bit	BAR	values	are	guaranteed	to	be	on	a	32-bit	boundary.	However,	64-bit	BAR	values	may	be	on	a	32-
bit	boundary	or	a	64-bit	boundary.	As	a	result,	every	time	a	64-bit	BAR	value	is	accessed,	it	must	be
assumed	to	be	on	a	32-bit	boundary	in	order	to	guarantee	that	an	alignment	fault	is	not	generated.

The	following	two	methods	can	be	used	to	prevent	an	alignment	fault	when	a	64-bit	BAR	value	is
extracted	from	a	PCI	configuration	header:

Use		ReadUnaligned64()		to	read	the	BAR	contents

Use		CopyMem()		to	transfer	the	BAR	contents	into	a	64-bit	aligned	location.

Collect	the	two	32-bit	values	that	compose	the	64-bit	BAR,	and	combine	them	into	a	64-bit	value.

The	example	below	shows	the	incorrect	method	of	extracting	a	64-bit	BAR	from	a	PCI	configuration
header,	and	then	shows	three	correct	methods.

Example	249-Accessing	a	64-bit	BAR	in	a	PCI	configuration	header

#include	<Uefi.h>

#include	<IndustryStandard/Pci.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/BaseLib.h>

UINT64

EFIAPI

Get64BitBarValue	(

			PCI_TYPE00		*PciConfigurationHeader,

			UINTN							BarOffset

)

{

		UINT64		*BarPointer64;

		UINT32		*BarPointer32;

		UINT64		BarValue;

		BarPointer64	=	(UINT64	*)((UINT8	*)PciConfigurationHeader	+	BarOffset);

		BarPointer32	=	(UINT32	*)((UINT8	*)PciConfigurationHeader	+	BarOffset);

		//

		//	Wrong.	May	cause	an	alignment	fault.

		//

		BarValue	=	*BarPointer64;

		//

		//	Correct.	Guaranteed	not	to	generate	an	alignment	fault.

		//

		BarValue	=	ReadUnaligned64	(BarPointer64);

		//

		//	Correct.	Guaranteed	not	to	generate	an	alignment	fault.

		//

		CopyMem	(&BarValue,	BarPointer64,	sizeof	(UINT64));

		//

		//	Correct.	Guaranteed	not	to	generate	an	alignment	fault.

		//

		BarValue	=	(UINT64)(*BarPointer32	|	LShiftU64	(*(BarPointer32	+	1),	32));

		return	BarValue;

}

28.6	PCI	Configuration	Header	64-bit	BAREDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

646DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.6	PCI	Configuration	Header	64-bit	BAREDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

647DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

28.7	Speculation	and	floating	point	register	usage

IPF	platforms	support	speculative	memory	accesses	and	a	large	number	of	floating	point	registers.	UEFI
drivers	that	are	compiled	for	IPF	platforms	must	follow	the	calling	conventions	defined	in	the	SAL
Specification.	The	SAL	Specification	only	allows	the	first	32	floating	point	registers	to	be	used	and
defines	the	amount	of	speculation	support	that	a	platform	is	required	to	implement	for	the	UEFI	pre-
boot	environment.	These	requirements	mean	that	the	correct	compiler	and	linker	switches	must	be	set
correctly	to	guarantee	that	these	calling	conventions	are	followed.	The	EDK	II	provides	proper	compiler
and	linker	settings	for	several	tool	chains	that	support	IPF	platforms.	These	settings	may	have	to	be
adjusted	if	updates	to	a	tool	chain	are	release	or	if	a	different	tool	chain	is	used.	The	following	table
shows	the	compiler	flags	for	a	few	different	compilers.	The	compiler	flag	that	specifies	that	only	the	first
32	floating	point	registers	may	be	used	for	Microsoft*	compilers	is		/QIPF_fr32	.	The	equivalent	flag	of	Intel
compilers	is		/QIA64_fr32	.

28.7	Speculation	and	floating	point	register	usageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

648DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29	EFI	Byte	Code	Porting	Considerations
There	are	a	few	considerations	to	keep	in	mind	when	writing	drivers	that	may	be	ported	to	EBC	(EFI	byte
code).	This	chapter	describes	these	considerations	in	detail	and,	where	applicable,	provides	solutions
to	address	them.	If	UEFI	drivers	are	implemented	with	these	considerations	in	mind,	the	C	code	may	not
require	any	changes.	In	this	case,	a	native	driver	may	be	ported	to	EBC	simply	by	recompiling	the	driver
sources	using	the	Intel(R)	C	Compiler	for	EFI	Byte	Code.	The	tasks	required	to	convert	a	UEFI	Driver	to
an	EBC	include	the	following:

Port	assembly	language	sources	to	C	language	sources.

Port	C++	language	sources	to	C	language	sources.

Eliminate	use	of	the	float	type.

Convert	floating	point	math	operations	to	integer	math	operations.

Eliminate	use	of	sizeof()	in	statements	that	require	a	constant.

Avoid	arithmetic	operations	and	comparisons	between	natural	integers	and	fixed	size	integers.
Some	specific	combinations	produce	unexpected	results.

Optimize	for	performance

29	EFI	Byte	Code	Porting	ConsiderationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

649DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.1	No	Assembly	Support

The	only	tools	that	are	provided	with	the	Intel(R)	C	Compiler	for	EFI	Byte	Code	are	a	C	compiler	and	a
linker.	No	assemblers	for	EBC	are	provided.	The	lack	of	an	EBC	assembler	is	by	design,	because	the	EBC
instruction	set	is	optimized	for	a	C	compiler.	If	a	UEFI	Driver	is	being	ported	to	EBC,	all	assembly
language	sources	for	32-bit	and	64-bit	processors	must	be	ported	to	C	language	sources.

29.1	No	Assembly	SupportEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

650DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.2	No	C++	Support

The	Intel(R)	C	Compiler	for	EFI	Byte	Code	does	not	support	C++.	If	there	is	any	C++	code	in	a	UEFI	driver
being	ported	to	EBC,	then	that	C++	language	sources	must	be	converted	to	C	language	sources.

29.2	No	C++	SupportEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

651DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.3	No	Floating	Point	Support

There	is	no	floating-point	support	in	the	EBC	virtual	machine,	which	means	that	the	type		float		is	not
supported	by	the	Intel(R)	C	Compiler	for	EFI	Byte	Code.	If	a	UEFI	Driver	is	being	ported	to	EBC	and	the
UEFI	Driver	uses	floating-point	math,	then	the	UEFI	Driver	must	be	converted	to	use	fixed-point	math
based	on	integer	operands	and	operators.

29.3	No	Floating	Point	SupportEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

652DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.4	Use	of	sizeof()

In	some	cases,		sizeof()		is	computed	at	runtime	for	EBC	code,	whereas		sizeof()		is	never	computed	at
runtime	for	native	code.	Because	pointers	and	the	UEFI	data	types		INTN		and		UINTN		are	different	sizes
on	different	CPU	architectures,	an	EBC	image	must	adapt	to	the	platform	on	which	it	is	executing.	The
example	below	shows	several	examples	of	simple	and	complex	data	types.	For	the	types	that	return
different	sizes	for	32-bit	versus	64-bit	processors,	the	EBC	compiler	generates	code	that	computes	the
correct	values	at	runtime	when	executing	on	32-bit	and	64-bit	processors.

Example	250-Size	of	data	types	with	EBC

#include	<Uefi.h>

typedef	enum	{

		Red,

		Green,

		Blue

}	COLOR_TYPE;

#pragma	pack(1)

typedef	struct	{

		UINT64	ValueU64;

		UINT32	ValueU32;

		UINT16	ValueU16;

		UINT8	ValueU8;

}	FIXED_STRUCTURE;

typedef	struct	{

		UINTN	ValueUN;

		VOID	*Pointer;

		UINT64	ValueU64;

		UINT32	ValueU32;

}	VARIABLE_STRUCTURE;

#pragma	pack()

UINT64	Size;

Size	=	sizeof	(UINT64);								//	8	bytes	on	all	CPUs

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(UINT32);								//	4	bytes	on	all	CPUs

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(UINT16);								//	2	bytes	on	all	CPUs

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(UINT8);									//	1	byte	on	all	CPUs

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(UINTN);									//	4	bytes	on	32-bit	CPU,	8	bytes	on	64-bit	CPU

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(INTN);										//	4	bytes	on	32-bit	CPU,	8	bytes	on	64-bit	CPU

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(COLOR_TYPE);				//	4	bytes	on	32-bit	CPU,	8	bytes	on	64-bit	CPU

Print	(L"Size	=	%d\n",	Size);

Size	=	sizeof	(VOID	*);								//	4	bytes	on	32-bit	CPU,	8	bytes	on	64-bit	CPU

Print	(L"Size	=	%d\n",	Size);

//

//	15	bytes	on	32-bit	CPU,	15	bytes	on	64-bit	CPU

//

Size	=	sizeof	(FIXED_STRUCTURE);

Print	(L"Size	=	%d\n",	Size);

//

//	20	bytes	on	32-bit	CPU,	28	bytes	on	64-bit	CPU

//

Size	=	sizeof	(VARIABLE_STRUCTURE);

Print	(L"Size	=	%d\n",	Size);

29.4	Use	of	sizeof()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

653DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.4	Use	of	sizeof()EDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

654DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.4.1	Global	Variable	Initialization

In	a	native	compile	the	value	of		sizeof	(UINTN)		is	computed	by	the	compiler	at	compile	time.	This	can	be
done	because	the	compiler	already	knows	the	instruction	set	architecture.	The	EBC	compiler	cannot	do
that	in	the	same	way.	Instead,	it	generates	code	to	calculate	this	value	at	execution	time	if	the	result	is
different	on	different	CPU	architectures.	This	limitation	means	that	EBC	code	cannot	use		sizeof	(UINTN)	,
	sizeof	(INTN)	,	and		sizeof	(VOID	*)		(or	other	pointer	types)	in	C	language	statements	that	require	constant
expressions.

Note:	The	type	EFI_STATUS	is	required	to	by	type	UINTN	by	the	UEFI	Specification.	This	means	that	a
variable	of	type	EFI_STATUS	cannot	be	used	in	C	language	statements	that	require	constant
expressions.	The	code	in	the	following	example	fails	when	compiled	for	EBC.

Example	251-Global	Variable	Initialization	that	fails	for	EBC

#include	<Uefi.h>

#include	<UefiBootServicesTableLib.h>

//

//	Global	variable	definitions

//

UINTN	IntegerSize	=	sizeof	(UINTN);								//	EBC	compiler	error

UINTN	PointerSize	=	sizeof	(VOID	*);							//	EBC	compiler	error

EFI_STATUS	Status	=	EFI_INVALID_PARAMETER;	//	EBC	compiler	error

The	following	example	shows	one	method	to	address	the	EBC	compiler	errors	in	the	previous	example.
The	general	technique	is	to	move	the	initialization	of	global	variables	that	are	impacted	by	the	EBC
specific	issue	into	the	driver	entry	point	or	other	function	that	executes	before	the	global	variables	are
used.

Example	252-Global	Variable	Initialization	that	works	for	EBC

#include	<Uefi.h>

#include	<UefiBootServicesTableLib.h>

//

//	Global	variable	definition

//

UINTN							IntegerSize;

UINTN							PointerSize;

EFI_STATUS		Status;

VOID

InitializeGlobals	(

			VOID

)

{

		IntegerSize	=	sizeof	(UINTN);

		PointerSize	=	sizeof	(VOID	*);

		Status						=	EFI_INVALID_PARAMETER;

}

29.4.1	Global	Variable	InitializationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

655DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.4.2	CASE	Statements

Because	pointers	and	the	data	types		INTN		and		UINTN		are	different	sizes	on	different	instruction	set
architectures	and	case	statements	are	determined	at	compile	time;	the		sizeof()		function	cannot	be
used	in	a		case		statement	with	an	indeterminately	sized	data	type	because	the		sizeof()		function	cannot
be	evaluated	to	a	constant	by	the	EBC	compiler	at	compile	time.	UEFI	status	codes	values	such	as
	EFI_SUCCESS		and		EFI_UNSUPPORTED		are	defined	differently	on	different	CPU	architectures.	As	a	result,	UEFI
status	codes	cannot	be	used	in		case		expressions.	The	following	example	shows	examples	using		case	
statements.

Example	253-Case	statements	that	fail	for	EBC

#include	<Uefi.h>

UINTN	Value;

switch	(Value)	{

case	0:																				//	Works	because	0	is	a	constant.

		break;

case	sizeof	(UINT16):						//	Works	because	sizeof	(UINT16)	is	always	2	

		break;	

case	sizeof	(UINTN):							//	EBC	compiler	error.	sizeof	(UINTN)	is	not	constant.

		break;

case	EFI_UNSUPPORTED:						//	EBC	compiler	error.	EFI_UNSUPPORTED	is	not	constant.

		break;

}

One	solution	to	this	issue	is	to	convert		case		statements	into		if	/	else		statements.	The	example	below
shows	the	equivalent	functionality	as	Example	253,	above,	but	does	not	generate	any	EBC	compiler
errors.

Example	254-Case	statements	that	work	for	EBC

#include	<Uefi.h>

UINTN	Value;

switch	(Value)	{

case	0:																		//	Works	because	0	is	a	constant.

		break;

case	sizeof	(UINT16):				//	Works	because	sizeof	(UINT16)	is	always	2

		break;

}

if	(Value	==	sizeof	(UINTN))	{

}	else	if	(Value	==	EFI_UNSUPPORTED)	{

}

29.4.2	CASE	StatementsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

656DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.5	Natural	Integers	and	Fixed	Size	Integers

UEFI	Drivers	should	only	use	the	integer	data	types	defined	in	the	Calling	Conventions	section	of	the
UEFI	Specification.	Even	when	this	recommendation	is	followed,	there	is	an	additional	limitation	of	the
EBC	architecture.	UEFI	Drivers	with	arithmetic	calculations	and	comparisons	between	following	integer
types	must	be	avoided:

	INTN		and		UINT8	

	INTN		and		UINT16	

	INTN		and		UINT32	

	UINTN		and		INT64	

29.5	Natural	Integers	and	Fixed	Size	IntegersEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

657DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.6	Memory	ordering

The	EBC	architecture	is	required	to	be	strongly	ordered,	and	the	EBC	virtual	machine	interpreter
ensures	that	all	memory	transactions	are	strongly	ordered.	The	EDK	II	includes	a	complete
implementation	of	the	EBC	virtual	machine	interpreter	in	the		MdeModulePkg		in	the	directory
	MdeModulePkg/Universal/EbcDxe	.

EBC	drivers	are	not	required	to	use	the	EDK	II	library		BaseLib		function		MemoryFence()		when	strong	ordering
is	required.	However,	UEFI	Drivers	compiled	for	other	CPU	architectures	may	require	the	use	of	the
	MemoryFence()		function	to	enforce	strong	ordering.	The	EDK	II	library		BaseLib		implementation	of
	MemoryFence()		for	EBC	is	an	empty	function.	This	means	there	is	no	performance	penalty	for		MemoryFence()	
calls	in	UEFI	Drivers	compiled	for	EBC.

29.6	Memory	orderingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

658DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.7	Performance	considerations

All	EBC	executables	require	an	EBC	virtual	machine	interpreter	to	be	executed.	Because	all	EBC
executables	are	running	through	an	interpreter,	they	execute	slower	than	native	UEFI	executables.	As	a
result,	a	UEFI	driver	that	is	compiled	with	an	EBC	compiler	should	be	optimized	for	performance	to
improve	the	usability	of	the	UEFI	Driver.	Chapter	4	covers	speed	optimization	techniques	that	may	be
used	to	improve	the	performance	of	all	UEFI	Drivers.

The	simplest	way	to	maximize	the	speed	of	a	UEFI	Driver	compiled	for	EBC	is	to	maximize	the	use	of	UEFI
Boot	Services,	UEFI	Runtime	Services,	and	protocols	produced	by	other	UEFI	components.	These	calls
outside	of	the	UEFI	Driver	compiled	for	EBC	help	improve	performance	because	those	other	services
may	be	native	calls	that	can	be	executed	without	the	overhead	of	the	EBC	virtual	machine	interpreter.	If
all	UEFI	Drivers	compiled	for	EBC	follow	the	recommendation,	even	if	one	UEFI	Driver	compiled	for	EBC
calls	another	UEFI	Driver	compiled	for	EBC,	the	overhead	of	the	EBC	interpreter	is	still	minimized.

29.7	Performance	considerationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

659DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.7.1	Performance	considerations	for	data	types

Avoid	declaration	and	initialization	of	variables	or	structures	that	contain	native	length	data	types	such
as		INTN	,		UINTN	,	and	pointers.	One	of	the	issues	with	initializing	variables	occurs	during	optimization.	If
variables	are	initialized	statically,	the	compiler	optimizes	them	for	size	and,	for	example,	gives	the
variable	a	32-bit	placement	or	a	16-bit	placement.	This	can	create	problems	if	the	variables	are	a	size
that	is	different	on	different	CPU	architectures.

TIP:	Initialize	variables	separately	from	declaring	them.

The	amount	of	variable	initialization	that	is	performed	during	EBC	runtime	initialization	can	be
determined	by	viewing	the	PE/COFF	sections	of	a	UEFI	Driver	compiled	for	EBC.	The	linker	provided	with
Microsoft*	tools	provides	a	method	to	perform	this	operation.

The	command	is:		link	-dump	-headers	<filename>	.	This	command	dumps	the	different	parts	of	an	.EFI	file.	The
goal	is	to	minimize	the	VARBSS	section	while	maximizing	the	.data	and	.rdata	sections	of	the	PE/COFF
image.

29.7.1	Performance	considerations	for	data	typesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

660DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

29.8	UEFI	Driver	Entry	Point

The	entry	point	to	an	EBC	compiled	image	is	a	function	is	always	called		EfiStart()	.	This	is	the	function
that	is	shown	as	the	entry	point	in	the	PE/COFF	image	that	is	produced	by	an	EBC	compile/link
operation.	The		EfiStart()		function	performs	the	EBC	runtime	initialization	that	may	vary	from	one	UEFI
Driver	to	another.	At	the	end	of	the	EBC	runtime	initialization,	the	function		EfiMain()		is	called.	The	EDK	II
build	system	and	libraries	take	care	of	these	details,	so	a	UEFI	Driver	implementation	never	contains
functions	with	these	names.	In	fact,	the	symbols		EfiStart()		and		EfiMain()		must	be	considered	reserved,
and	cannot	be	used	as	function	names	or	variable	names	in	any	UEFI	driver	implementation	that	is
compiled	for	EBC.

The	INF	file	for	a	UEFI	Driver	declares	the	C	entry	point	in	the		[Defines]		section	in	a	define	called
	ENTRY_POINT	.	All	UEFI	Drivers	are	linked	to	the	EDK	II	library	instance	from	the		MdePkg		called
	UefiDriverEntryPoint	,	and	the		UefiDriverEntryPoint		library	instance	is	responsible	for	calling	the	library
constructors	for	all	the	libraries	that	a	UEFI	Driver	is	using	either	directly	or	indirectly.	Once	all	the	library
constructors	have	been	called,	control	is	transferred	to	the		ENTRY_POINT		function	defined	in	the	INF	file.
This	is	where	the	C	sources	for	a	UEFI	Driver	implementation	begin	and	the	driver	specific	initialization	is
performed.

The	sequence	of	calls	in	a	UEFI	Driver	entry	point	compiled	for	EBC	is	as	follows:

	EfiStart()		-	PE/COFF	entry	point	that	performs	the	required	EBC	runtime	initialization.	Calls		EfiMain()	.

	EfiMain()		-	Calls		_ModuleEntryPoint()	

	_ModuleEntryPoint()		-	Calls	EDK	II	library	constructors.	Calls		ENTRY_POINT		function	defined	in	INF	file.

	ENTRY_POINT		function	-	Performs	UEFI	Driver	specific	initialization.

Knowledge	of	this	specific	sequence	of	calls	is	not	typically	required	by	a	UEFI	Driver	developer	because
it	is	very	rare	for	anything	to	go	wrong	in		EfiStart()	,		EfiMain()		or		_ModuleEntryPoint()		functions.	However,	if
a	UEFI	Driver	compiled	for	EBC	is	being	debugged,	it	is	important	to	know	that	these	extra	actions	do
occur	between	the	entry	point	of	the	PE/COFF	image	and	the	first	line	of	C	source	code	in	the	UEFI
Driver	implementation.

29.8	UEFI	Driver	Entry	PointEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

661DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30	Building	UEFI	Drivers
This	chapter	provides	an	overview	of	how	to	compile	and	link	a	UEFI	Driver	in	an	EDK	II	build	environment
to	produce	a	UEFI	conformant	UEFI	Driver	image	that	may	be	loaded	and	executed	on	a	UEFI
conformant	platform.	The	steps	required	include:

Create	an	EDK	II	package,	if	required,	for	the	UEFI	Driver

Create	directory	for	UEFI	Driver	in	an	existing	EDK	II	package.

Add	INF	file	and	all	source	files	to	UEFI	Driver	directory.

Add	file	path	to	INF	file	to	EDK	II	package	DSC	file.

Build	UEFI	Driver	using	the	EDK	II	build	tool	called		build.exe	.

Locate	UEFI	Driver	in	the	build	output	directory	specified	by	DSC	file.

For	detailed	information,	refer	to	the	EDK	II	Build	Specification	on	www.tianocore.orgwww.tianocore.org

30	Building	UEFI	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

662DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/

30.1	Prerequisites

Before	a	UEFI	Driver	can	be	built,	an	EDK	II	build	environment	must	be	established	on	a	development
system.	The	EDK	II	project	is	maintained	by	the	TianoCore	community	on	GitHub,	and	validated	releases
of	the	EDK	II	project	are	periodically	posted.	The	current	validated	release	as	of	June,	2017	is	UDK2017.
It	is	recommended	that	a	validated	release	be	used	for	UEFI	Driver	development	instead	of	the	trunk
of	the	EDK	II	project,	because	the	trunk	is	under	active	development.	The	validated	release	page
includes	links	to	documentation	to	help	setup	a	build	environment	on	a	development	system.	Verify	that
one	of	the	standard	platforms	builds	correctly	before	proceeding.

In	most	cases,	building	a	UEFI	Driver	only	requires	a	few	directories	from	an	EDK	II	build	environment.
These	include:

	BaseTools		-	Contains	EDK	II	build	tools

	Conf		-	Contains	configuration	files	for	EDK	II	build	tools	and	supported	compilers	and	linkers

	MdePkg		-	Contains	the	include	files	and	libraries	to	support	industry	standard	specifications.	This
content	includes	all	of	the	published	UEFI	Specifications	and	EFI	Specifications	as	well	as	includes
files	for	industry	standard	buses	such	as	PCI,	USB,	and	SCSI.

	MdeModulePkg		-	Contains	UEFI	Drivers	that	can	be	used	as	reference.	Also	contains	HII	related	libraries
that	may	be	used	by	UEFI	Drivers	that	produce	HII	packages.

	OptionRomPkg		-	Sample	package	with	three	UEFI	Drivers	and	a	UEFI	Application	that	can	be	used	as	a
template	for	a	device	manufactures	own	package	for	UEFI	Driver	development.

	MyDriverPkg		-	Example	EDK	II	package	that	contains	the	UEFI	Drivers	implemented	by	a	device
manufacturer.	This	directory	name	is	only	used	for	discussion	purposes.	Device	manufacturers	may
generate	their	own	directory	name	for	their	own	package	and	may	generate	more	than	one
package	for	their	UEFI	Driver	content	if	required.

30.1	PrerequisitesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

663DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/edk2/releases/tag/vUDK2017

30.2	Create	EDK	II	Package

The	first	step	is	to	make	sure	there	is	an	EDK	II	package	available	to	which	a	new	UEFI	Driver	can	be
added.	If	an	EDK	II	package	has	already	been	created	for	UEFI	Driver	work,	then	this	step	may	be
skipped.	Otherwise	the	following	steps	are	required:

Create	a	new	directory	that	is	a	peer	to		MdePkg		(e.g.		MyDriverPkg).

Create	a	subdirectory	called		Include		(e.g.		MyDriverPkg/Include).

Create	a	subdirectory	of		Include		called		Protocol		(e.g.		MyDriverPkg/Include/Protocol).

Create	a	subdirectory	of		Include		called		Guid		(e.g.		MyDriverPkg/Include/Guid).

Create	a	subdirectory	of		Include		called		Library		(e.g.		MyDriverPkg/Include/Library).

Add	DEC	file	to	the	new	package	directory	(e.g.		MyDriverPkg/MyDriverPkg.dec).

Add	DSC	file	to	the	new	package	directory	(e.g.		MyDriverPkg/MyDriverPkg.dsc).

The	following	example	shows	an	example	directory	structure	for	an	EDK	II	WORKSPACE	after	creating	the
new	package	called		MyDriverPkg		following	the	steps	listed	above.	The		Include		subdirectory	is	a	place
holder	in	case	new	Protocols,	GUIDs,	or	Library	Classes	are	required	to	support	new	UEFI	Driver
implementations.

Example	255-EDK	II	Package	Directory

BaseTools/	Conf/

MdePkg/

MdeModulePkg/

OptionRomPkg/	MyDriverPkg/

MyDriverPkg.dec

MyDriverPkf.dsc	Include/

Protocol/	Guid/

Library/

The	following	example	shows	an	example	DEC	file		MyDriverPkg/MyDriverPkg.dec	.	Every	new	DEC	file	must	have
a	unique	GUID	value	and	name.

Example	256-EDK	II	Package	DEC	File

[Defines]

		DEC_SPECIFICATION	=	0x00010005

		PACKAGE_NAME						=	MyDriverPkg

		PACKAGE_GUID						=	E972EFA5-75CC-4ade-A719-60DD9AE5217B

		PACKAGE_VERSION			=	0.10

[Includes]	Include

The	example	below	shows	an	example	DSC	file		MyDriverPkg/MyDriverPkg.dsc	.	Every	new	DSC	must	have	a
unique		PLATFORM_GUID		value,		PLATFORM_NAME		and		OUTPUT_DIRCTORY		path.	This	DSC	file	example	also	contains	the
library	mapping	required	to	build	a	UEFI	conformant	UEFI	Driver.	Many	other	library	mappings	are
possible	with	the	content	from	the	EDK	II	project,	but	many	of	this	mappings	use	services	that	are	not
defined	by	the	UEFI	Specification,	so	the	use	of	alternate	mapping	may	produce	a	UEFI	Driver	that	runs
correctly	on	some	platforms	but	not	others.

Example	257-EDK	II	Package	DSC	File

[Defines]

		PLATFORM_NAME											=	MyDriverPkg

30.2	Create	EDK	II	PackageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

664DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		PLATFORM_GUID											=	7C297DD4-65D9-4dfe-B609-94330E607888

		PLATFORM_VERSION								=	0.10

		DSC_SPECIFICATION							=	0x00010005

		OUTPUT_DIRECTORY								=	Build/MyDriverPkg

		SUPPORTED_ARCHITECTURES	=	IA32|IPF|X64|EBC|ARM

		BUILD_TARGETS											=	DEBUG|RELEASE

		SKUID_IDENTIFIER								=	DEFAULT

[LibraryClasses]

		UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf

		UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf

		UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf

		UefiLib|MdePkg/Library/UefiLib/UefiLib.inf

		UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf

		UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf

		MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf

		DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

		UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf

		UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf

		BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

		BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

		SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationLib.inf

		PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf

		DebugLib|MdePkg/Library/UefiDebugLibStdErr/UefiDebugLibStdErr.inf

		DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf

		PostCodeLib|MdePkg/Library/BasePostCodeLibPort80/BasePostCodeLibPort80.inf

		PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

30.2	Create	EDK	II	PackageEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

665DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.3	Create	UEFI	Driver	Directory

The	next	step	is	to	create	a	subdirectory	in	an	EDK	II	package	for	the	UEFI	Driver	contents	including	an
INF	file	and	all	source	files	required	to	build	the	UEFI	Driver.	There	are	no	restrictions	on	the	directory
structure	organization	within	an	EDK	II	package.	The	examples	shown	here	are	simple	and	only	use	one
layer	of	directories.	The		MdeModulePkg		is	an	example	of	an	EDK	II	package	with	about	100	UEFI	Drivers	and
a	more	complex	directory	structure	to	organize	the	UEFI	Drivers	based	on	the	protocol	they	consume
and	the	features	they	provide.

Appendix	A	contains	a	template	for	an	INF	file	for	a	UEFI	Driver	and	a	UEFI	Runtime	Driver.	This	template
should	be	sufficient	for	most	UEFI	Driver	implementations.	The	EDK	Build	Specifications	on
http://www.tianocore.org	provide	the	full	description	of	INF	files	and	their	supported	syntax	for
describing	all	the	packages,	sources,	library	classes,	protocols,	and	GUIDs	required	to	compile	and	link
a	UEFI	Driver.

The	example	below	shows	an	example	directory	structure	for	an	EDK	II	WORKSPACE	after	creating	the
new	package	called		MyDriverPkg		following	the	steps	listed	above	and	creating	a	subdirectory	called
	MyDriver		and	adding	an	INF	file	and	a	C	source	file.

Example	258-UEFI	Driver	Directory

BaseTools/	Conf/

MdePkg/

MdeModulePkg/

OptionRomPkg/	MyDriverPkg/

MyDriverPkg.dec

MyDriverPkf.dsc	Include/

Protocol/	Guid/

Library/	MyDriver/

MyDriver.inf

MyDriver.c

The	following	example	shows	an	example	INF	file		MyDriverPkg/MyDriver/MyDriver.inf	.	Every	new	INF	must	have	a
unique		FILE_GUID		value	and		BASE_NAME	.	This	INF	file	example	only	uses	the	services	from	a	single	library
class	called		UefiDriverEntryPoint	.	Every	UEFI	Driver	must	use	this	Library	Class.	Examples	in	earlier
chapters	show	more	complex	driver	examples	that	use	more	library	classes.	The	DSC	file	in	the	previous
section	contains	a	mapping	for	the		UefiDriverEntryPoint		library	and	that	mapping	is	to
	MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf	.

Example	259-UEFI	Driver	INF	File

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	MyDriver

		FILE_GUID						=	1C0D95A7-C0D6-4054-9245-8E2C81FC9ECD

		MODULE_TYPE				=	UEFI_DRIVER

		VERSION_STRING	=	1.0

		ENTRY_POINT				=	MyDriverEntryPoint

[Sources]

		MyDriver.c

[Packages]

		MdePkg/MdePkg.dec

[LibraryClasses]

		UefiDriverEntryPoint

30.3	Create	UEFI	Driver	DirectoryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

666DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/

The	following	example	shows	a	sample	C	source	file	MyDriverPkg/MyDriver/MyDriver.c	that	does	not	do
anything	other	than	just	return	EFI_SUCCESS.

Example	260-UEFI	Driver	C	Source	File

#include	<Uefi.h>

EFI_STATUS

EFIAPI

MyDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		return	EFI_SUCCESS;

}

30.3	Create	UEFI	Driver	DirectoryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

667DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.3.1	Disk	I/O	Driver	Example

A	more	complete	example	of	a	simple	UEFI	Driver	that	follows	the	UEFI	Driver	Model	is	the	Disk	I/O	driver
in	the	MdeModulePkg.	The	directory	path	and	INF	file	and	source	files	are	shown	in	the	example	below.

Example	261-Disk	I/O	UEFI	Driver	Source	Files

MdeModulePkg\

Universal\	Disk\

DiskIoDxe\

ComponentName.c

Diskio.c

Diskio.h

DiskIoDxe.inf

30.3.1	Disk	I/O	Driver	ExampleEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

668DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.3.2	Reserved	Directory	Names

The	UEFI	Drivers	in	the	two	examples	above	do	not	contain	any	instruction	set	architecture-specific	files.
This	absence	means	that	this	driver	is	designed	to	be	portable	between	all	CPU	architecture	supported
by	the	UEFI	Specification.	If	a	UEFI	Driver	requires	instruction	set	architecture-specific	source	files,	then
those	source	files	are	typically	placed	in	subdirectories	below	the	UEFI	driver's	main	directory	in	an	EDK
II	package.	A	separate	subdirectory	is	required	for	each	instruction	set	architecture	that	the	UEFI	Driver
supports.	The	table	below	lists	the	directory	names	that	are	reserved	for	the	instruction	set
architecture-specific	files.

Table	39-Reserved	directory	names

Directory	name Notes

Ia32 May	contain		.c	,		.h	,	and		.asm		files.

Ipf May	contain		.c	,		.h	,	and		.s		files.

Ebc May	contain		.c		and		.h		files.

X64 May	contain		.c	,		.h	,	and		.asm		files.

Note:	Code	written	in	EBC	is	still	C	language	code,	and	the	sources	look	the	same	as	for	any	other
driver.	It	is	when	the	compiler	converts	it	from	a	high-level	language	(C)	to	object	code	(EBC	versus
native	code)	that	the	difference	becomes	evident.

For	EBC,	the	object	code	generated	is	not	native	to	the	processor	but	rather	is	pseudo-object-code
that	looks	like	RISC	processor	object	code.	That	code	is	fed	into	an	interpreter,	which	interprets	each
instruction	and	acts	upon	it.	The	EBC	output	is	not	32-bit	or	64-bit-based,	but	rather	conforms	to	its
own	standard.	Thus	a	system	with	a	valid	interpreter	for	its	architecture	can	translate	EBC	compiled
code	into	operational	instructions	on	any	given	architecture.

30.3.2	Reserved	Directory	NamesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

669DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.3.3	EBC	Virtual	Machine	Driver	Example

The	following	example	shows	the	directory	structure	for	another	driver	that	includes	instruction	set
architecture-specific	files	for	three	of	the	supported	instruction	sets.	The	files		EbcLowLevel.asm		and
	EbcLowLevel.s		contain	logic	that	must	be	implemented	in	assembly	to	handle	the	transitions	between
native	execution	and	the	EBC	interpreter.	Doing	so	makes	the	driver	work	on	all	three	supported
architectures,	but	the	UEFI	driver	takes	longer	to	develop	and	is	more	difficult	to	maintain	if	any
changes	are	required	in	the	instruction	set	architecture-specific	components.

If	possible,	a	UEFI	driver	should	be	implemented	in	C	with	no	instruction	set	architecture-specific	files,
which	reduces	the	development	time,	reduces	maintenance	costs,	and	increases	portability.

Example	262-EBC	driver	with	instruction	set	architecture-specific	files

MdeModulePkg\	Universal\	EbcDxe\

EbcDxe.inf

EbcExecute.c

EbcExecute.h	EbcInt.c

EbcInt.h

Ia32\

EbcSupport.c

EbcLowLevel.asm

EbcLowLevel.S	Ipf\

EbcSupport.c

EbcSupport.h

EbcLowLevel.s	X64\

EbcSupport.c

EbcLowLevel.asm

EbcLowLevel.S

30.3.3	EBC	Virtual	Machine	Driver	ExampleEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

670DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.4	Adding	a	UEFI	Driver	to	DSC	File

The	list	of	UEFI	Drivers	that	need	to	be	built	must	be	added	to	the		[Components]		section	of	a	DSC	file.
Once	a	UEFI	Driver	has	been	added	to	the		[Components]		section,	an	attempt	is	made	to	build	the	UEFI
Driver	every	time	the	EDK	II	build	tool	called		build.exe		is	invoked	with	the	appropriate	parameters.

This	example	shows	the	same	example	DSC	file		MyDriverPkg/MyDriverPkg.dsc	,	except	it	has	now	been	updated
to	list		MyDriverPkg/MyDriver/MyDriver.inf		in	the		[Components]		section.

Example	263-EDK	II	Package	DSC	File

[Defines]

		PLATFORM_NAME											=	MyDriverPkg

		PLATFORM_GUID											=	7C297DD4-65D9-4dfe-B609-94330E607888

		PLATFORM_VERSION								=	0.10

		DSC_SPECIFICATION							=	0x00010005

		OUTPUT_DIRECTORY								=	Build/MyDriverPkg

		SUPPORTED_ARCHITECTURES	=	IA32|IPF|X64|EBC|ARM

		BUILD_TARGETS											=	DEBUG|RELEASE

		SKUID_IDENTIFIER								=	DEFAULT

[LibraryClasses]

		UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf

		UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf

		UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf

		UefiLib|MdePkg/Library/UefiLib/UefiLib.inf

		UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf

		UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf

		MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf

		DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

		UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf

		UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf

		BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

		BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

		SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationLib.inf

		PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf

		DebugLib|MdePkg/Library/UefiDebugLibStdErr/UefiDebugLibStdErr.inf

		DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf

		PostCodeLib|MdePkg/Library/BasePostCodeLibPort80/BasePostCodeLibPort80.inf	PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNu

ll.inf

[Components]

		MyDriverPkg/MyDriver/MyDriver.inf

30.4	Adding	a	UEFI	Driver	to	DSC	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

671DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

30.5	Building	a	UEFI	driver

Building	a	UEFI	Driver	involves	the	use	of	the		build.exe		command	provided	with	the

EDK	II	tools.	If	the	pre-requisites	were	followed	at	the	beginning	of	this	chapter,	then	the	only	flag	that
need	to	be	passed	into		build.exe		is	the	DSC	file	that	is	to	be	used	for	the	build.

	build	-p	MyDriverPkg/MyDriverPkg.dsc	

If	the	build	competes	successfully,	then	the	UEFI	Driver	generated	can	be	found	in	the	build	output
directory	that	is	specified	in	the	DSC	file.	In	the	example	above,		OUTPUT_DIRECTORY		is	set	to		Build/MyDriverPkg	.
The	following	example	shows	where		MyDriver.efi		is	located.	This	specific	example	shows	that	a		DEBUG	
build	was	used	with	a	Microsoft	family	compiler	to	generate		MyDriver.efi		for	IA32.

Example	264-Build	Output	Directory

Build\

MyDriverPkg\

DEBUG_VS2005x86\

IA32\

MyDriver.efi

If	a	UEFI	Driver	needs	to	be	built	as	a		DEBUG		build	or	a		RELEASE		build,	this	can	be	specified	on	the
command	line.	The	following	two	examples	show	how	to	build	for		DEBUG		and		RELEASE	.	If	the		-b		flag	is	not
specified,	then	the	build	type	is	retrieved	from		Conf/target.txt	.

	build	-b	DEBUG	-p	MyDriverPkg/MyDriverPkg.dsc	

	build	-b	RELEASE	-p	MyDriverPkg/MyDriverPkg.dsc	

If	a	UEFI	Driver	needs	to	be	built	for	other	CPU	architectures,	then	those	can	also	be	specified	on	the
command	line.	The	following	4	examples	show	how	to	build	for	IA32,	X64,	IPF,	and	EBC	if	the	compiler
and	linkers	installed	support	all	these	architectures.

	build	-a	IA32	-p	MyDriverPkg/MyDriverPkg.dsc	

	build	-a	X64	-p	MyDriverPkg/MyDriverPkg.dsc	

	build	-a	IPF	-p	MyDriverPkg/MyDriverPkg.dsc	

	build	-a	EBC	-p	MyDriverPkg/MyDriverPkg.dsc	

The	4	separate	commands	above	can	also	be	combined	into	a	single	command:

	build	-a	IA32	-a	X64	-a	IPF	-a	EBC	-p	MyDriverPkg/MyDriverPkg.dsc	

The	EDK	II	also	supports	a	configuration	file	for	builds	in	the	file	path		Conf/target.txt	.

This	file	may	be	updated	with	the	specific	configuration	that	is	most	commonly	used.	For	example,	the
	ACTIVE_PLATFORM		can	be	set	to		MyDriverPkg/MyDriverPkg.dsc	,	and	the	build	command	can	then	be	invoked	with
no	parameters	at	all:

	build	

Please	see	the	EDK	II	User's	Manual	and	other	EDK	II	documents	for	more	details	on	how	to	use	the
build	command	and	for	details	on	INF	files,	DEC	files,	and	DSC	files.

30.5	Building	a	UEFI	driverEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

672DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31	Testing	and	Debugging	UEFI	Drivers
This	chapter	includes	some	best	practices	for	testing	a	debugging	UEFI	Drivers	that	should	help
minimize	production	issues	and	simplify	debugging.	The	most	common	tool	used	to	do	initial	testing	of	a
UEFI	Driver	is	the	UEFI	Shell.	Once	the	basic	functionality	is	established,	more	rigorous	testing	can	be
performed.	At	a	minimum	a	UEFI	Driver	should	be	tested	with	the	following	scenarios.	This	chapter
focuses	on	use	of	the	UEFI	Shell	and	method	of	augmenting	UEFI	Drivers	to	improve	debug	ability.

Use	UEFI	Shell	for	basic	functionality	and	debug

Run	UEFI	Self-Certification	Tests	available	from	http://www.uefi.org/testtools

Install	UEFI	Operating	Systems

Boot	UEFI	operating	Systems

31	Testing	and	Debugging	UEFI	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

673DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.uefi.org/testtools

31.1	Native	and	EBC

When	possible,	provide	a	driver	in	both	native-instruction-set	and	EBC	binary	forms.	Providing	both	of
these	forms	allows	the	OEM	firmware	to	simulate	testing	the	driver	in	a	fast,	best-case	scenario	and	a
slower	scenario.	If	the	driver	is	tested	to	work	as	both	an	EBC	and	native-instruction-set	binary,	it	is
expected	that	there	are	fewer	timing	sensitivities	to	the	driver,	and	it	is	more	robust.

31.1	Native	and	EBCEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

674DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.2	Compiler	Optimizations

When	optimization	is	enabled,	the	code	being	debugged	is	different	than	the	code	debugged	without
optimization.	For	example,	some	instructions	might	be	more	efficient	for	the	processor	when
optimization	is	turned	on	but	they	may	introduce	timing	issues.

TIP:	Disable	compiler	optimizations	during	the	development	and	debugging	phases.

The	example	below	shows	the		[BuildOptions]		section	that	may	be	added	to	the	DSC	example	from
Chapter	30	to	disable	compiler	optimizations	for	all	compilers.

Example	265-EDK	II	Package	DSC	File	with	Optimizations	Disabled

[BuildOptions]

		GCC:*_*_*_CC_FLAGS			=	-O0

		INTEL:*_*_*_CC_FLAGS	=	/Od

		MSFT:*_*_*_CC_FLAGS		=	/Od

31.2	Compiler	OptimizationsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

675DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3	UEFI	Shell	Debugging

There	are	several	UEFI	Shell	commands	that	can	be	used	to	help	debug	UEFI	drivers.	These	UEFI	Shell
commands	are	documented	in	the	EFI	Shell	Users	Guide.

Caution:	The	UEFI	Shell	that	is	included	in	EDK	II	is	a	reference	implementation	of	a	UEFI	Shell	that	may
be	customized	for	various	platforms.	As	a	result,	the	UEFI	Shell	commands	described	here	may	not
behave	identically	on	all	platforms.

A	detailed	description	of	a	UEFI	Shell	commands	may	be	displayed	by	using	the	built-in	UEFI	Shell		help	
command.	The	following	table	lists	UEFI	Shell	commands	that	may	be	useful	when	testing	and
debugging	UEFI	drivers	along	with	the	protocol	and/or	service	exercised.	Type		shell	-h		to	get	a	list	of	all
available	shell	commands.

31.3	UEFI	Shell	DebuggingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

676DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.1	Testing	Specific	Protocols

The	following	table	lists	Shell	commands	that	might	be	useful	in	testing	specific	protocols.

31.3.1	Testing	Specific	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

677DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	40-UEFI	Shell	commands

Command Protocol
tested Service	tested

Load	-nc Driver	entry	point.

Driver	Binding Supported()

Load Driver	entry	point.

Driver	Binding Supported()

Driver	Binding Start()

Unload Loaded	Image Unload()

Connect Driver	Binding Supported()

Driver	Binding Start()

Disconnect Driver	Binding
Stop().	Note:	The	UEFI	driver	must	specifically	disconnect
(destroy)	all	child	handles	and	device	paths	associated	with
the	handle	for	the	driver	being	stopped.

Reconnect Driver	Binding Supported()

Driver	Binding Start()

Driver	Binding Stop()

Drivers
Component
Name	and
Component
Name2

GetDriverName()

Devices
Component
Name	and
Component
Name2

GetDriverName()

GetControllerName()

DevTree
Component
Name	and
Component
Name2

GetControllerName()

Dh	-d
Component
Name	and
Component
Name2

GetDriverName()

GetControllerName()

DrvCfg	-s
Driver
Configuration
and	Driver
Configuration	2

This	command	used	to	test	the	SetOptions()	service.	These
protocols	are	supported	by	EFI	1.10	and	UEFI	2.0.

DrvCfg	-f
Driver
Configuration
and	Driver
Configuration	2

This	command	used	to	test	the

ForceDefaults()	service.	These	protocols	are	supported	by	EFI
1.10	and	UEFI	2.0.

DrvCfg	-v
Driver
Configuration
and	Driver
Configuration	2

This	command	used	to	test	the	OptionsValid()	service.	These
protocols	are	supported	by	EFI	1.10	and	UEFI	2.0.

31.3.1	Testing	Specific	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

678DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

DrvDiag
Driver
Diagnostics	and
Driver
Diagnostics2

RunDiagnostics()

31.3.1	Testing	Specific	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

679DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.2	Other	Testing

There	are	other	tests	that	can	be	performed	from	within	the	UEFI	shell.	These	are	not	testing	a	specific
protocol,	but	are	testing	functionality	and	for	other	coding	practices.

31.3.2	Other	TestingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

680DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	41-Other	Shell	Testing	Procedures

Shell
Command
Sequence

What	it	tests

	Shell>	Memmap		
	Shell>	Dh		
	Shell>	Load

DriverName.efi		
	Shell>	Memmap		
	Shell>	Dh		
	Shell>	Unload

DriverHandle		
	Shell>	Memmap		
	Shell>	Dh	

Tests	for	incorrectly	matched	up	DriverEntryPoint	and	Unload()	functions.	This
catches	memory	allocation	that	is	not	unallocated,	and	catches	protocols	that
are	installed	and	not	uninstalled,	etc.

	Shell>	Memmap		
	Shell>	Connect

DeviceHandle

DriverHandle		
	Shell>	Memmap		
	Shell>

Disconnect

DeviceHandle

DriverHandle		
	Shell>	Memmap		
	Shell>

Reconnect

DeviceHandle		
	Shell>	Memmap	

Tests	for	incorrectly	matched	up	Driver	Binding	Start()	and	Stop()	functions.	This
catches	memory	allocation	that	is	not	unallocated.

	Shell>	dh		
	Shell>	Connect

DeviceHandle

DriverHandle		
	Shell>	dh		
	Shell>

Disconnect

DeviceHandle

DriverHandle		
	Shell>	dh		
	Shell>

Reconnect

DeviceHandle		
	Shell>	dh	

Tests	for	incorrectly	matched	up	Driver	Binding	Start()	and	Stop()	functions.	This
catches	protocols	that	are	installed	and	not	uninstalled.

	Shell>	OpenInfo

DeviceHandle		
	Shell>	Connect

DeviceHandle

DriverHandle		
	Shell>	OpenInfo

DeviceHandle		
	Shell>

Disconnect

DeviceHandle

DriverHandle		
	Shell>	OpenInfo

DeviceHandle		
	Shell>

Reconnect

DeviceHandle		
	Shell>	OpenInfo

DeviceHandle	

Tests	for	incorrectly	matched	up	Driver	Binding	Start()	and	Stop()	functions.	This
catches	protocols	that	are	opened	and	not	closed.

31.3.2	Other	TestingEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

681DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.3	Loading	UEFI	drivers

The	following	table	lists	the	UEFI	Shell	commands	that	are	available	to	load	and	start	UEFI	drivers.

31.3.3	Loading	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

682DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	42-UEFI	Shell	commands	for	loading	UEFI	drivers

Command Description

Load

Loads	a	UEFI	driver	from	a	file.	UEFI	driver	files	typically	have	an	extension	of		.efi	.
The		Load		command	has	one	important	option,	the		-nc		("No	Connect")	option,	for
UEFI	driver	developers.	When	the		Load		command	is	used	without	the		-nc		option,
then	the	loaded	driver	is	automatically	connected	to	any	devices	in	the	system	that
it	is	able	to	manage.	This	means	that	the	UEFI	driver's	entry	point	is	executed	and
then	the	UEFI	Boot	Service		ConnectController()		is	called.	If	the	UEFI	driver	produces
the	Driver	Binding	Protocol	in	the	driver's	entry	point,	then	the		ConnectController()		call
exercises	the		Supported()		and		Start()		services	of	Driver	Binding	Protocol	that	was
produced.	If	the		-nc		option	is	used	with	the		Load		command,	then	this	automatic
connect	operation	is	not	performed.	Instead,	only	the	UEFI	driver's	entry	point	is
executed.	When	the		-nc		option	is	used,	the	UEFI	Shell	command		connect		can	be
used	to	connect	the	UEFI	driver	to	any	devices	in	the	system	that	it	is	able	to
manage.	The		Load		command	can	also	take	wild	cards,	so	multiple	UEFI	drivers	can
be	loaded	at	the	same	time.	The	code	below	shows	the	following	examples	of	the
	Load		command:	

Example	1:	Loads	and	does	not	connect	the	UEFI	driver	image		EfiDriver.efi	.	This
example	exercises	only	the	UEFI	driver's	entry	point:
	fs0:>	Load	-nc	EfiDriver.efi		

Example	2:	Loads	and	connects	the	UEFI	driver	image	called		EfiDriver.efi	.	This
example	exercises	the	UEFI	driver's	entry	point	and	the		Supported()		and		Start()	
functions	of	the	Driver	Binding	Protocol:
	fs0:>	Load	EfiDriver.efi		

Example	3:	Loads	and	connects	all	the	UEFI	drivers	with	an		.efi		extension	from
	fs0:	,	exercising	the	UEFI	driver	entry	points	and	their		Supported()		and		Start()	
functions	of	the	Driver	Binding	Protocol:
`fs0:>	Load	.efi`

LoadPciRom
This	command	used	to	simulate	the	load	of	a	PCI	option	ROM	by	the	PCI	bus	driver.
It	also	supports	the		-nc		flag	like	the		Load		command,	but	takes	the	name	of	a	PCI
Option	ROM	file	instead	of	an		.efi		file.

31.3.3	Loading	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

683DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.4	Unloading	UEFI	drivers

This	table	lists	UEFI	Shell	commands	that	can	be	used	to	unload	a	UEFI	driver	if	it	is	unloadable.

Table	43-UEFI	Shell	commands	for	unloading	UEFI	drivers

Command

Shell>	Unload	27

31.3.4	Unloading	UEFI	driversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

684DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.5	Connecting	UEFI	Drivers

The	table	below	lists	the	UEFI	Shell	commands	that	can	be	used	to	test	the	connecting	of	UEFI	drivers
to	devices.	There	command	support	many	flags,	so	only	a	few	are	shown	in	the	table	below.

Table	44-UEFI	Shell	commands	for	connecting	UEFI	drivers

Command Description

Connect Can	be	used	to	connect	all	UEFI	drivers	to	all	devices	in	the	system	or	connect	UEFI
drivers	to	a	single	device.

Disconnect Stops	UEFI	drivers	from	managing	a	device.

Reconnect

Is	the	equivalent	of	executing	the		Disconnect		and		Connect		commands	back	to	back.
The		Reconnect		command	is	the	best	command	for	testing	the	Driver	Binding	Protocol
of	UEFI	drivers.	This	command	tests	the		Supported()	,		Start()	,	and		Stop()		services	of
the	Driver	Binding	Protocol.	The		Reconnect	-r		command	tests	the	Driver	Binding
Protocol	for	every	UEFI	driver	that	follows	the	UEFI	driver	model.	Use	this	command
before	a	UEFI	driver	is	loaded	to	verify	that	the	current	set	of	drivers	pass	the
	Reconnect	-r		test,	and	then	load	the	new	UEFI	driver	and	rerun	the		Reconnect	-r		test.	A
UEFI	driver	is	not	complete	until	it	passes	this	interoperability	test	with	the	UEFI	core
and	the	full	set	of	UEFI	drivers	at	least	3	times	in	a	row.

31.3.5.1	Connect

This	UEFI	Shell	command	requests	UEFI	drivers	to	start	managing	a	device.	This	command	tests	the
Driver	Binding	Protocol		Supported()		and		Start()		functions	in	the	driver	that	has	the	specified	handle.	The
	Start()		function	may	create	new	child	handles	if	the	UEFI	Driver	is	a	bus	driver	or	a	hybrid	driver.

The		Connect		command	can	be	used	to	connect	all	UEFI	drivers	to	all	devices	in	the	system	or	connect
UEFI	drivers	to	a	single	device.	Here	are	several	examples	of	using	the		Connect		command:

Example	1:	Connects	all	drivers	to	all	devices:		fs0:>	Connect	-r	

Example	2:	Connects	all	drivers	to	the	device	that	is	abstracted	by	handle	23:		fs0:>	Connect	23	

Example	3:	Connects	the	UEFI	driver	on	handle	27	to	the	device	on	handle	23:		fs0:>	Connect	23	27	

In	Example	3,	note	that	there	is	a	handle	for	the	driver	and	a	handle	for	the	hardware	device.	The
	Connect		command	makes	the	connection	between	the	two	handles.	The		Start()		service	associates	the
driver	with	the	specified	hardware.	If	the	driver	needs	to	create	a	child	handle	for	the	device,	it	does	so
as	part	of	its		Start()		function.	Although	the	handles	cannot	be	known	until	the	driver	is	executed,	the
handle	database	can	be	evaluated	to	determine	the	handle	numbers	that	are	passed	to	the	connect
command.

31.3.5.2	Disconnect

The		Disconnect		UEFI	command	stops	UEFI	drivers	from	managing	a	device.	This	command	tests	the	Driver
Binding	Protocol		Stop()		function	in	the	driver.

This	UEFI	Shell	command	does	not	allow	a	driver	to	be	disconnected	unless	all	the	child	handles
associated	with	that	driver	are	destroyed	first.	Basically,	this	UEFI	Shell	command	does	not	allow	any
orphans	to	be	left	in	the	system.

TIP:	When	disconnecting	drivers	one	at	a	time,	begin	at	the	lowest	level	of	child	handle	and	work	up	the
device	tree	one	node	at	a	time.	The	UEFI	Shell	command	devtree	provides	a	device	tree	view.

31.3.5	Connecting	UEFI	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

685DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

The	code	below	shows	the	following	examples	of	using	the		Disconnect		command:

Caution:	The	Disconnect	command	supports	a	-r	switch	that	can	be	used	without	any	other
parameters.	Do	NOT	use	this	mode	of	the	Disconnect	command	because	it	will	disconnect	all	UEFI
Drivers	from	all	devices	in	the	entire	platform	which	typically	includes	the	consoles	devices.

Example	1:	Disconnects	all	the	UEFI	drivers	from	the	device	represented	by	handle	23:

	fs0:>	Disconnect	23	

Example	2:	Disconnects	all	UEFI	drivers	on	handle	23	and	the	child	process	(27)	which	was	created
by	that	driver:

	fs0:>	Disconnect	23	27	

Example	3:	Disconnects	the	UEFI	driver	represented	by	handle	29	The	UEFI	driver	on	handle	29
produced	a	child	(32)	and	is	managing	a	device	(44),	which	has	a	device	path	associated	with	it.	In
order	to	disconnect	the	driver,	the	child	and	the	device	path	managed	by	that	driver	are	destroyed
along	with	stopping	the	driver.

	fs0:>	Disconnect	29	32	44	

31.3.5.3	Reconnect

The	code	below	shows	the	following	examples	of	the		Reconnect		command:

Example	1:	Reconnects	all	the	UEFI	drivers	to	the	device	handle	23:

	fs0:>	Reconnect	23	

Example	2:	Reconnects	the	UEFI	driver	on	handle	27	to	the	device	on	handle	23:

	fs0:>	Reconnect	23	27	

Example	3:	Reconnects	all	the	UEFI	drivers	in	the	system:

	fs0:>	Reconnect	-r	

31.3.5	Connecting	UEFI	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

686DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.6	Driver	and	Device	Information

The	following	table	lists	the	UEFI	Shell	commands	that	can	be	used	to	dump	information	about	the	UEFI
Drivers	that	follow	the	UEFI	Driver	Model.	Each	of	these	commands	shows	information	from	a	slightly
different	perspective.

31.3.6	Driver	and	Device	InformationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

687DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	45-UEFI	Shell	commands	for	driver	and	device	information

Command Description

Drivers

Lists	all	the	UEFI	drivers	that	follow	the	UEFI	driver	model.	It	uses	the		GetDriverName()	
service	of	the	Component	Name	protocols	to	retrieve	the	human-readable	name	of
each	UEFI	driver	if	it	is	available.	It	also	shows	the	file	path	from	which	the	UEFI
driver	was	loaded.	As	UEFI	drivers	are	loaded	with	the		Load		command,	they	appear
in	the	list	of	drivers	produced	by	the		Drivers		command.	The		Drivers		command	can
also	show	the	name	of	the	UEFI	driver	in	different	languages.	The	code	below	shows
the	following	examples	of	the		Drivers		command:	
Example	1:	Shows	the		Drivers		command	being	used	to	list	the	UEFI	drivers	in	the
default	language.	
	fs0:>	Drivers		
Example	2:	Shows	the	driver	names	in	Spanish.	
	fs0:>	Drivers	-lsp	

Devices

Lists	all	the	devices	that	are	being	managed	or	produced	by	UEFI	drivers	that	follow
the	UEFI	driver	model.	This	command	uses	the		GetControllerName()		service	of	the
Component	Name	protocols	to	retrieve	the	human-readable	name	of	each	device
that	is	being	managed	or	produced	by	UEFI	drivers.	If	a	human-readable	name	is	not
available,	then	the	EFI	device	path	is	used.

DevTree

Similar	to	the		Devices		command.	Lists	all	the	devices	being	managed	by	UEFI	drivers
that	follow	the	UEFI	driver	model.	This	command	uses	the		GetControllerName()		service
of	the	Component	Name	Protocols	to	retrieve	the	human-readable	name	of	each
device	that	is	being	managed	or	produced	by	UEFI	drivers.	If	the	human-readable
name	is	not	available,	then	the	EFI	device	path	is	used.	This	command	also	visually
shows	the	parent/child	relationships	between	all	of	the	devices	by	displaying	them	in
a	tree	structure.	The	lower	a	device	is	in	the	tree	of	devices,	the	more	the	device
name	is	indented.	The	code	below	shows	the	following	examples	of	the		DevTree	
command:	

Example	1:	Displays	the	device	tree	with	the	device	names	in	the	default	language.	
	fs0:>	DevTree		

Example	2:	Displays	the	device	tree	with	the	device	names	in	Spanish.	
	fs0:>	DevTree	-lsp		

Example	3:	Displays	the	device	tree	with	the	device	names	shown	as	EFI	device
paths.	
	fs0:>	DevTree	-d	

Dh	-d

Provides	a	more	detailed	view	of	a	single	driver	or	a	single	device	than	the		Drivers	,
	Devices	,	and		DevTree		commands.	If	a	driver	binding	handle	is	used	with	the		Dh	-d	
command,	then	a	detailed	description	of	that	UEFI	driver	is	provided	along	with	the
devices	that	the	driver	is	managing	and	the	child	devices	that	the	driver	has
produced.	If	a	device	handle	is	used	with	the		Dh	-d		command,	then	a	detailed
description	of	that	device	is	provided	along	with	the	drivers	that	are	managing	that
device,	that	device's	parent	controllers,	and	the	device's	child	controllers.	If	the		Dh	-
d		command	is	used	without	any	parameters,	then	detailed	information	on	all	of	the
drivers	and	devices	is	displayed.	The	code	below	shows	the	following	examples	of
the		Dh	-d		command:	
Example	1:	Displays	the	details	on	the	UEFI	driver	on	handle	27.	
	fs0:>	Dh	-d	27		
Example	2:	Displays	the	details	for	the	device	on	handle	23.	
	fs0:>	Dh	-d	23		
Example	3:	Shows	details	on	all	the	drivers	and	devices	in	the	system.	
	fs0:>	Dh	-d	

OpenInfo
Provides	detailed	information	on	a	device	handle	managed	by	one	or	more	UEFI
drivers	that	follow	the	UEFI	driver	model.	The		OpenInfo		command	displays	each
protocol	interface	installed	on	the	device	handle,	and	the	list	of	agents	that	have
opened	that	protocol	interface	with	the		OpenProtocol()		Boot	Service.

31.3.6.1	Devices

31.3.6	Driver	and	Device	InformationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

688DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

This	command	lists	all	the	devices	that	are	being	managed	or	produced	by	UEFI	drivers	that	follow	the
UEFI	driver	model.	This	command	uses	the		GetControllerName()		service	of	the	Component	Name	protocols
to	retrieve	the	human-readable	name	of	each	device	that	is	being	managed	or	produced	by	UEFI
drivers.	If	a	human-readable	name	is	not	available,	then	the	EFI	device	path	is	used.

For	Component	Name:	use	the	3-letter	language	localization

For	Component	Name2:	use	the	2x3-letter	language	localization

The	code	below	shows	the	following	examples	of	the		Devices		command.	The	-l	switch	specifies	the
localized	language.

Example	1:	Shows	the		Devices		command	being	used	to	list	the	UEFI	drivers	in	the	default	language.

	fs0:>	Devices	

Example	2:	Shows	the	device	names	in	Spanish.

	fs0:>	Devices	-lspa	fs0:>	Devices	-lsp	

This	command	is	backwards	compatible.	If	the	system	supports	both	the	Component	Name	Protocol	and
the	Component	Name2	Protocol,	the	driver	can	produce	both	protocols.	If	the	system	supports	only	2-
letter	localizations,	an	error	is	generated	if	at	attempt	is	made	to	enter	the	2-leter	localization.

31.3.6.2	OpenInfo	command

This	command	provides	detailed	information	on	a	device	handle	that	is	being	managed	by	one	or	more
UEFI	drivers	that	follow	the	UEFI	driver	model.	The		OpenInfo		command	displays	each	protocol	interface
installed	on	the	device	handle,	and	the	list	of	agents	that	have	opened	that	protocol	interface	with	the
	OpenProtocol()		Boot	Service.

This	command	may	be	used	to	display	information	for	devices	or	drivers.

Example	1:	The	following	example	shows	the		OpenInfo		command	being	used	to	display	the	list	of
protocol	interfaces	on	device	handle	23	along	with	the	list	of	agents	that	have	opened	those
protocol	interfaces.

	fs0:>	OpenInfo	23	

Example	2:	The	following	example	shows	the		OpenInfo		command	being	used	to	display	the	list	of
devices	and/or	child	processes	being	managed	by	a	driver.

	fs0:>	OpenInfo	15	

Example	3:	The		OpenInfo		command	may	be	used	along	with	the		Connect	,		Disconnect	,	and		Reconnect	
commands	to	verify	that	a	UEFI	driver	is	opening	and	closing	protocol	interfaces	correctly.	For
example:

	fs0:>	Connect	23	fs0:>	OpenInfo	23	

31.3.6	Driver	and	Device	InformationEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

689DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.7	Testing	the	Driver	Configuration	Protocol

The	DrvCfg	command	may	be	used	to	list	all	devices	that	are	being	managed	by	UEFI	drivers	that
support	the	Driver	Configuration	Protocols.	The		Devices		and		Drivers		commands	show	the	drivers	that
support	the	Driver	Configuration	Protocol	and	the	devices	that	those	drivers	are	managing	or	have
produced.	Once	a	device	is	selected,	the		DrvCfg		command	may	be	used	to	invoke	the		SetOptions()	,
	ForceDefaults()	,	or		OptionsValid()		services	of	the	Driver	Configuration	Protocol.	The	code	below	shows
examples	of	using	the		DrvCfg		command:

Example	1:	Displays	all	the	devices	that	are	being	managed	by	UEFI	drivers	that	support	the
obsolete	Driver	Configuration	Protocol.

	fs0:>	DrvCfg	

Example	2:	Forces	defaults	on	all	the	devices	in	the	system.

	fs0:>	DrvCfg	-f	

Example	3:	Validates	the	options	on	all	the	devices	in	the	system.

	fs0:>	DrvCfg	-v	

Example	4:	Invokes	the		SetOptions()		service	of	the	Driver	Configuration	Protocol	for	the	driver	on
handle	23	and	its	child	process	(27).

	fs0:>	DrvCfg	-s	23	27	

31.3.7	Testing	the	Driver	Configuration	ProtocolEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

690DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.3.8	Testing	the	Driver	Diagnostics	Protocols

The	DrvDiag	UEFI	Shell	command	provides	the	ability	to	test	all	the	services	of	the	two	Driver	Diagnostics
Protocols	that	may	be	produced	by	a	UEFI	driver.	This	command	is	able	to	show	the	devices	that	are
being	managed	by	UEFI	drivers	that	support	the	Driver	Diagnostics	Protocols.	The		Devices		and		Drivers	
commands	show	the	drivers	that	support	the	Driver	Diagnostics	Protocols	and	the	devices	that	those
drivers	are	managing	or	have	produced.	Once	a	device	has	been	chosen,	the		DrvDiag		command	can	be
used	to	invoke	the		RunDiagnostics()		service	of	the	Driver	Diagnostics	Protocols.	The	code	below	shows	the
following	examples	of	the		DrvDiag		command:

Example	1:	Displays	all	the	devices	that	are	being	managed	by	UEFI	drivers	that	support	the	Driver
Diagnostics	Protocols.

	fs0:>	DrvDiag	

Example	2:	Invokes	the		RunDiagnostics()		service	of	the	Driver	Diagnostics	Protocols	in	standard	mode
for	the	driver	on	handle	15	and	the	device	on	handle	19.

	fs0:>	DrvDiag	-s	15	19	

Example	3:	Invokes	the		RunDiagnostics()		service	of	the	Driver	Diagnostics	Protocols	in	manufacturing
mode	for	the	driver	on	handle	15	and	the	device	on	handle	19.

	fs0:>	DrvDiag	-m	15	19	

31.3.8	Testing	the	Driver	Diagnostics	ProtocolsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

691DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.4	Debugging	code	statements

A	UEFI	Driver	may	be	implemented	to	support	both	a	debug	(check)	build	and	a	production	build.	The
debug	build	includes	code	that	helps	debug	a	UEFI	Driver	that	is	not	included	in	normal	production
builds.	UEFI	Driver	sources	are	typically	implemented	with	all	the	debug	build	statements	included.	The
DSC	file	used	to	build	the	UEFI	Driver	with	the	EDK	II	build	tools	contains	statements	to	select	a	debug
build	or	a	production	build	with	no	source	changes	to	the	UEFI	Driver.

The	EDK	II	library	class	called		DebugLib		provides	macros	that	can	be	used	to	insert	debug	code	into	a
checked	build.	This	debug	code	can	greatly	reduce	the	amount	of	time	it	takes	to	root	cause	a	bug.
These	macros	are	typically	enabled	only	for	debug	builds	and	disabled	in	production	builds	so	as	to	not
take	up	any	executable	space.	The	macros	available	through	the	DebugLib	include:

	ASSERT	(Expression)	

	ASSERT_EFI_ERROR	(Status)	

	ASSERT_PROTOCOL_ALREADY_INSTALLED	(Handle,	Guid)	

	DEBUG	((ErrorLevel,	Format,.	.))	

	DEBUG_CODE_BEGIN	()	

	DEBUG_CODE_END	()	

	DEBUG_CODE	(Expression)	

	DEBUG_CLEAR_MEMORY	(Address,	Length)	

	CR	(Record,	TYPE,	Field,	Signature)	

These	macros	are	described	in	details	in	the		MdePkg		documentation	available	from
http://www.tianocore.org.	The	ErrorLevel	parameter	passed	into	the		DEBUG()		macro	allows	a	UEFI	driver
to	assign	a	different	error	level	to	each	debug	message,	which	allows	debug	messages	to	be	filtered.
The	DSC	files	required	to	build	a	UEFI	Driver	can	be	used	to	set	the	ErrorLevel	filter	mask.	The	UEFI	Shell
also	supports	the		Err		command	that	allows	the	user	to	set	the	error	level	filter	mask.

TIP:	Use	a	serial	port	as	a	standard	error	device	during	debug.	This	a	terminal	emulator	to	be	used	to
log	debug	messages	to	a	file.

The	table	below	contains	the	list	of	error	levels	that	are	supported	in	the	UEFI	Shell.	Other	levels	are
usable,	but	not	defined	for	a	specific	area.

31.4	Debugging	code	statementsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

692DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.tianocore.org/

Table	46-Error	levels

Mnemonic Value Description

	DEBUG_INIT	 0x00000001 Initialization

	DEBUG_WARN	 0x00000002 Warnings

	DEBUG_INFO	 0x00000040 Information	messages

	DEBUG_ERROR	 0x80000000 Error	messages.

	DEBUG_FS	 0x00000008 Used	by	UEFI	Drivers	that	produce	the	Simple	File	System
Protocol.

	DEBUG_BLKIO	 0x00001000 Used	by	UEFI	Drivers	that	produce	the	Block	I/O	Protocols.

	DEBUG_NET	 0x00004000 Used	by	UEFI	Drivers	that	produce	the	network	protocols	other
than	NII	and	UNDI.

	DEBUG_UNDI	 0x00010000 Used	by	UEFI	Drivers	that	produce	the	NII	Protocol	and	UNI
interface.

	DEBUG_LOADFILE	 0x00020000 Used	by	UEFI	Drivers	that	produce	the	Load	File	Protocol.

	DEBUG_EVENT	 0x00080000 Event	messages.	Used	from	event	notification	functions	of	UEFI
Drivers.

	DEBUG_LOAD	 0x00000004 Load	events.		DO	NOT	USE	.

	DEBUG_POOL	 0x00000010 Pool	allocations	&	frees.		DO	NOT	USE	.

	DEBUG_PAGE	 0x00000020 Page	allocations	&	frees.		DO	NOT	USE	.

	DEBUG_DISPATCH	 0x00000080 PEI/DXE/SMM	Dispatchers.		DO	NOT	USE	.

	DEBUG_VARIABLE	 0x00000100 Variable.		DO	NOT	USE	.

	DEBUG_BM	 0x00000400 Boot	Manager.		DO	NOT	USE	.

	DEBUG_GCD	 0x00100000 Global	Coherency	Database	changes.		DO	NOT	USE	.

	DEBUG_CACHE	 0x00200000 Memory	range	cache	state	changes.		DO	NOT	USE	.

31.4	Debugging	code	statementsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

693DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.4.1	Configuring	DebugLib	with	EDK	II

The	EDK	II	provides	several	methods	to	manage	the	DebugLib	macros.	These	include:

	MDEPKG_NDEBUG		macro

DebugLib	library	instances

DebugLib	Platform	Configuration	Database	(PCD)	settings

31.4.1.1	MDEPKG_NDEBUG	Define

If		MDEPKG_NDEBUG		is	defined	when	a	UEFI	Driver	is	built,	then	all	the		DebugLib		macros	used	by	a	UEFI	Driver
are	removed.	This	provides	a	smaller	executable,	but	all	debug	log	messages,	assert	condition	checks,
and	debug	code	are	removed	from	the	UEFI	Driver	that	is	produced	by	the	EDK	II	build.	The	example
below	shows	the	addition	of	a		[BuildOptions]		section	to	the	DSC	files	from	Chapter	30.	It	forces
	MDEPKG_NDEBUG		to	be	defined	for		RELEASE		builds,	which	means	all	the		DebugLib		macros	are	disabled	when	the
	-b	RELEASE		flag	is	used	when	building	a	UEFI	Driver.

Example	266-EDK	II	Package	DSC	File	with	Build	Options

[BuildOptions]

		GCC:RELEASE_*_*_CC_FLAGS			=	-DMDEPKG_NDEBUG

		INTEL:RELEASE_*_*_CC_FLAGS	=	/D	MDEPKG_NDEBUG

		MSFT:RELEASE_*_*_CC_FLAGS		=	/D	MDEPKG_NDEBUG

31.4.1.2	DebugLib	Library	Instances

The		MdePkg		provides	4	different	implementations	of	the		DebugLib		library	class.	These	are:

	MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf	

	MdePkg/Library/BaseDebugLibConOut/BaseDebugLibConOut.inf	

	MdePkg/Library/BaseDebugLibStdErr/BaseDebugLibStdErr.inf	

	MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf			BaseDebugLibNull		is	an	implementation	of	the
	DebugLib		with	empty	worker	functions.	This	means	the		DebugLib		macros	are	mapped	to	empty	worker
functions,	so	if	the	library	instances	is	used	by	a	UEFI	Driver,	no	debug	log	messages,	assert
condition	checks,	or	debug	code	are	active.	Using	this	library	mapping	is	not	as	small	as	using
	MDEPKG_NDEBUG	,	but	switching	to	this	library	mapping	does	not	require	a	rebuild	of	the	UEFI	Driver
sources.

	BaseDebugLibStdErr		is	the	recommended	library	instance	for	UEFI	drivers	that	are	being	debugged	and	is
the	library	that	is	used	in	the	example	DSC	file	in	Chapter	30.	This	sends	all	messages	to	the	Standard
Error	console	in	the	UEFI	System	Table.	If	there	is	no	output,	then	the	likely	cause	is	that	the	Standard
Error	device	is	not	configured.	Use	the	platform	setup	to	configure	the	Standard	Error.

	BaseDebugLibConOut		may	be	used	as	a	substitute	for		BaseDebugLibStdErr		when	it	is	not	possible	to	get	the
Standard	Error	console	configured.	This	sends	all	messages	to	the	Standard	Output	console	in	the	UEFI
System	Table.	This	mixes	debug	messages	with	the	normal	console	activity,	so	the	display	may	be
difficult	to	read,	and	since	most	UEFI	consoles	do	not	support	scroll	up	operations,	it	may	be	difficult	to
see	the	messages	when	many	are	displayed.

	BaseDebugLibSerialPort		is	not	a	UEFI	conformant	DebugLib.	It	directly	accesses	serial	port	hardware	through
a		SerialPortLib		library	instance.	This	can	be	useful	when	debugging	UEFI	Drivers	that	execute	before	UEFI
consoles	are	initialized,	such	as	UEFI	Drivers	that	are	loaded	and	executed	from	a	PCI	Option	ROM.	When

31.4.1	Configuring	DebugLib	with	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

694DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

this	library	instance	is	used,	the	UEFI	Driver	writer	must	know	that	there	is	a	serial	port	available	on	the
target	platform	under	test	and	must	configure	a		SerialPortLib		with	for	the	attributes	of	the	specific	serial
port	that	is	to	be	used.

31.4.1.3	DebugLib	Platform	Configuration	Database	Settings

The		MdePkg		library	class		DebugLib		uses	several	Platform	Configuration	Database	(PCD)	setting	to	control
the	behavior	of	the	DebugLib	macros.	The	token	names	for	these	PCD	settings	are	as	follows:

	gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask	

	gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel	

	gEfiMdePkgTokenSpaceGuid.PcdDebugClearMemoryValue	

	PcdDebugPropertyMask		provides	fine	grain	control	over	the	macros	provided	by	the		DebugLib	.	The	previous	two
sections	discuss	how	to	disable	the	entire		DebugLib		and	how	to	select	different		DebugLib		library
instances.		PcdDebugPropertryMask		is	a	bit	mask	that	allows	individual		DebugLib		macro	types	to	be	enabled	or
disabled.	The	example	below	shows	the	bitmask	definitions.		0x01		enables		ASSERT()		macros.		0x02	
enables		DEBUG()		macros.		0x04		enables	the	3		DEBUG_CODE()		macros.		0x08		enables	the

	DEBUG_CLEAR_MEMORY()		macro.		0x10		and		0x20		control	the	behavior	of	the		ASSERT()		macro	if	the	assert
condition	evaluates	to		FALSE	.		0x10		causes	a	CPU	breakpoint	to	be	generated,	which	is	useful	if	a	source
level	debugger	is	being	used,	and		0x20		causes	the	CPU	to	enter	an	infinite	loop	so	execution	of	the
UEFI	Driver	stops.

//

//	Declare	bits	for	PcdDebugPropertyMask

//

#define	DEBUG_PROPERTY_DEBUG_ASSERT_ENABLED	0x01

#define	DEBUG_PROPERTY_DEBUG_PRINT_ENABLED	0x02

#define	DEBUG_PROPERTY_DEBUG_CODE_ENABLED	0x04

#define	DEBUG_PROPERTY_CLEAR_MEMORY_ENABLED	0x08

#define	DEBUG_PROPERTY_ASSERT_BREAKPOINT_ENABLED	0x10

#define	DEBUG_PROPERTY_ASSERT_DEADLOOP_ENABLED	0x20

	Example	267-PcdDebugPropertyMask	bitmask	PcdDebugPrintErrorLevel		provides	a	bitmask	of	the	debug	error	levels	that
are	currently	enabled.	The	debug	print	error	levels	are	shown	in	the	Error	Levels	table	above.	Any
combination	of	the	values	can	be	set	in	the	bitmask.	If	a	bit	is	set,	then		DEBUG()		macros	with	that	same
	ErrorLevel		bit	set	are	printed.

	PcdDebugClearMemoryValue		provides	the	8-bit	byte	value	to	use	when

	DEBUG_CLEAR_MEMORY()		macros	are	used.	This	value	is	typically	set	to		0x00	,	but	it	is	usually	a	good	idea	to	try
a	few	different	values	to	make	sure	code	is	not	improperly	using	buffer	contents	that	have	been
cleared.

The	following	example	shows	the	addition	of	a		[PcdsFixedAtBuild]		section	to	the	DSC	files	from	Chapter	30.
It	sets		PcdDebugPropertyMask		so		DEBUG()	,		ASSERT()	,	and		DEBUG_CODE()		macros	are	enabled	and	a	breakpoint	is
generated	when	an		ASSERT()		is	triggered.	It	also	sets	the		PcdDebugPrintErrorLevel		at	a	fairly	high	verbosity
level	with		DEBUG_ERROR	,		DEBUG_INFO	,		DEBUG_LOAD	,		DEBUG_WARN	,	and		DEBUG_INIT		all	enabled.	Finally,	it	configures
	PcdDebugClearMemoryValue		so		DEBUG_CLEAR_MEMORY()		macros,	when	they	are	enabled,	fill	buffers	with		0x00	.

Example	268-EDK	II	Package	DSC	File	with	Build	Options

[PcdsFixedAtBuild]

		gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x17

		gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000047

		gEfiMdePkgTokenSpaceGuid.PcdDebugClearMemoryValue|0x00

31.4.1	Configuring	DebugLib	with	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

695DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.4.1	Configuring	DebugLib	with	EDK	IIEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

696DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.4.2	Capturing	Debug	Messages

In	addition,	the	parameters	for	the	serial	port	on	the	"target"	system	(the	system	under	test)	must	be
setup	correctly,	including	baud	rate,	data	bits,	stop	bits,	and	flow	control.	The	settings	on	the	target
system	must	match	the	settings	on	the	host	system	that	is	receiving	the	debug	data.	The	EDK	II
includes	sample	code	for	serial	port	debug	output	for	the	PEI	phase,	in	the	MDE	module	package.	The
MDE	module	package	also	includes	sample	code	for	serial	port	debug	output	for	the	DXE	phase

31.4.2	Capturing	Debug	MessagesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

697DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.5	POST	codes

If	a	UEFI	driver	is	being	developed	that	cannot	make	use	of	the		DEBUG()		and		ASSERT()		macros,	then	a
different	mechanism	must	be	used	to	help	in	the	debugging	process.	Under	these	conditions,	it	is
usually	sufficient	to	send	a	small	amount	of	output	to	a	device	to	indicate	what	portions	of	a	UEFI	driver
have	executed	and	where	error	conditions	have	been	detected.

A	few	possibilities	are	presented	in	this	discussion,	but	many	others	are	possible	depending	on	the
devices	that	may	be	available	on	a	specific	platform.	The	first	possibility	is	to	use	a	POST	card.	Another
is	to	use	a	text-mode	VGA	frame	buffer.

It	is	important	to	note	that	mechanisms	are	useful	during	driver	development	and	debug,	but	they
should	never	be	present	in	production	versions	of	UEFI	drivers	because	these	types	of	devices	are	not
present	on	all	platforms	and	accessing	these	devices	may	cause	unexpected	behavior	on	platforms
that	do	not	include	those	devices.

31.5	POST	codesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

698DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.5.1	POST	Card	Debug

A	POST	card	is	an	add-in	card	that	displays	the	hex	value	of	an	8-bit	I/O	write	cycle	to	address	0x80
Some	POST	cards	support	more	than	8-bits	and	use	additional	I/O	port	addresses	such	as	0x81	The	EDK
II	MdePkg	provides	a	library	class	called		PostCodeLib		that	includes	the		POST_CODE()		macro	that	may	be	used
to	abstract	access	to	a	POST	card.	When	a	UEFI	Driver	is	built,	it	can	be	configured	in	the	DSC	file	to
map	the		PostCodeLib		class	to	the		MdePkg/Library/BasePostCodeLibPort80		instance	that	performs	8-bit	writes	to	I/O
port		0x80	.	If	a	platform	has	the	equivalent	POST	card	functionality,	but	it	is	not	located	at	I/O	port		0x80	,
an	alternate	implementation	of	the		PostCodeLib		instance	can	be	provided	that	allows	a	UEFI	Driver	to
send	POST	code	values	to	the	alternate	POST	card	device	without	any	source	code	changes	to	the	UEFI
Driver	itself.	This	example	shows	an	example	usage	of	the		POST_CODE()		macro	to	send	POST	code	values
of		0x10		and		0x11		as	a	UEFI	Driver	enters	and	leaves	the	driver	entry	point.

Example	269-UEFI	Driver	Entry	Point	with	POST_CODE()	Macros

#include	<Uefi.h>

#include	<Library/PostCodeLib.h>

#include	<Library/UefiLib.h>

EFI_STATUS

EFIAPI

AbcDriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		EFI_STATUS		Status;

		POST_CODE	(0x10);

		//

		//	Install	driver	model	protocol(s)	on	ImageHandle

		//

		Status	=	EfiLibInstallDriverBinding	(

													ImageHandle,	//	ImageHandle

													SystemTable,	//	SystemTable

													&gAbcDriverBinding,	//	DriverBinding

													ImageHandle	//	DriverBindingHandle

);

		ASSERT_EFI_ERROR	(Status);

		POST_CODE	(0x11);

		return	Status;

}

The		PostCodeLib		uses	PCDs	to	enable	and	disable	the		POST_CODE()		macros.	This	means	that		POST_CODE()	
macros	can	be	enabled	during	UEFI	Driver	development	and	debug	when	a	platform	with	a	POST	card	is
being	used,	and	can	be	easily	disabled	for	production	builds	of	UEFI	Drivers.	The	example	below
contains	a	portion	of	the	DSC	file	that	shows	how	to	enable		POST_CODE()		macros	in	a	UEFI	Driver.

Example	270-Enable	POST_CODE()	macros	from	DSC	file

[PcdsFixedAtBuild]

		#

		#	Set	POST_CODE_PROPERTY_POST_CODE_ENABLED	bit	(0x8)	in

		#	PcdPostCodePropertyMask	to	enable	POST_CODE()	macros

		#

		gEfiMdePkgTokenSpaceGuid.	PcdPostCodePropertyMask	|0x08

31.5.1	POST	Card	DebugEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

699DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.5.1	POST	Card	DebugEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

700DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

31.5.2	Other	options

Another	option	is	to	use	some	type	of	byte-stream-based	device.	This	device	could	include	a	UART	or	a
SMBus,	for	example.	Like	the	POST	card,	the	idea	is	to	use	the	services	of	the	PCI	Root	Bridge	I/O	or	PCI
I/O	Protocols	to	initialize	and	send	characters	to	the	byte-stream	device.

31.5.2	Other	optionsEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

701DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

32	Distributing	UEFI	Drivers
Once	a	UEFI	Driver	is	implemented	and	validated	and	ready	to	be	released,	there	are	only	a	few	ways
that	the	UEFI	Driver	can	be	installed	onto	a	target	platform.	These	include:

PCI	Option	ROM	on	a	PCI	add-in	card.

Integrated	into	the	platform	firmware	FLASH	image.

A	file	in	an	EFI	System	Partition.

32	Distributing	UEFI	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

702DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

32.1	PCI	Option	ROM

Chapter	18	covers	the	guidelines	for	implementing	a	UEFI	Driver	for	a	PCI	device.	The	end	of	that
chapter	covers	how	to	use	the	tools	provided	with	the	EDK	II	to	convert	one	or	more	UEFI	Drivers	in
PE/COFF	image	formats	into	a	single	PCI	Option	ROM	image	that	may	be	included	with	a	PCI	add-in	card.

When	a	PCI	add-in	card	is	installed	into	a	target	platform,	the	PCI	Option	ROM	contents	are	discovered
by	the	PCI	Bus	Driver	and	UEFI	Drivers	are	loaded	and	executed	automatically.	No	additional	platform
configuration	should	be	required.	Some	platforms	may	provide	setup	options	to	enable/disable	specific
PCI	slots	or	enable/disable	the	loading	of	PCI	Option	ROMs.	If	a	UEFI	Driver	stored	in	a	PCI	Option	ROM	is
not	being	loaded	and	executed,	then	check	the	platform	firmware	configuration	screens.

32.1	PCI	Option	ROMEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

703DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

32.2	Integrated	in	Platform	FLASH

A	manufacturer	that	produces	UEFI	Drivers	for	their	devices	may	choose	to	work	with	platform
manufacturers	to	have	their	UEFI	Drivers	integrated	into	the	UEFI	firmware	for	a	target	platform.	UEFI
Drivers	can	be	provided	in	source	or	binary	form,	and	it	is	up	to	the	platform	manufacturer	to	integrate
those	UEFI	Drivers	into	their	UEFI	platform	firmware	images	and	verify	that	the	UEFI	Driver	is	loaded	and
executed	properly.

32.2	Integrated	in	Platform	FLASHEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

704DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

32.3	EFI	System	Partition

A	device	manufacturer	that	produces	UEFI	Drivers	for	their	devices	may	choose	to	have	their	UEFI
Drivers	installed	onto	an	EFI	System	Partition	on	a	target	platform.	This	method	may	be	selected	for	UEFI
Drivers	that	cannot	be	distributed	using	the	two	methods	described	above.	It	may	also	be	a	convenient
method	for	UEFI	Driver	updates	to	be	distributed	and	installed	onto	target	platforms.	See	the	UEFI
Specification	for	details	on	EFI	System	Partitions	and	http://www.uefi.org	for	details	on	how	device
manufacturers	can	reserve	a	subdirectory	name	for	use	on	EFI	System	Partitions.

Note:	There	is	no	requirement	for	UEFI	conformant	platform	firmware	implementations	to	load	UEFI
Drivers	from	EFI	System	Partitions.	The	capability	is	defined	by	the	UEFI	Specification	but	there	is	no
requirement	that	all	platforms	implement	this	capability.

Since	this	method	depends	on	being	able	to	access	the	EFI	System	Partition,	the	UEFI	Driver	that	is	to
be	installed	on	the	EFI	System	Partition	must	not	be	required	to	access	the	EFI	System	Partition	itself,
either	directly	or	indirectly.	For	example,	a	UEFI	Driver	for	a	SCSI	Host	Controller	cannot	be	installed	on
an	EFI	System	Partition	of	a	mass	storage	device	attached	to	that	same	SCSI	Host	Controller.	However,	if
the	SCSI	Host	Controller	is	a	PCI	add-in	card	with	a	UEFI	Driver	in	a	PCI	Option	ROM	or	the	UEFI	Driver	for
the	SCSI	Host	Controller	is	integrated	in	the	platform	firmware,	it	may	be	possible	to	install	an	update	to
the	UEFI	Driver	for	the	SCSI	Host	Controller	in	an	EFI	System	Partition	on	one	of	the	mass	storage
devices	attached	to	that	SCSI	Host	Controller	as	long	as	the	UEFI	Driver	in	the	PCI	Option	ROM	or	the
platform	firmware	is	functional	enough	to	load	the	updated	UEFI	Driver	from	the	EFI	System	Partition.

There	are	a	few	steps	that	must	be	performed	in	order	for	a	UEFI	Driver	to	be	installed	onto	an	EFI
System	Partition	and	for	that	UEFI	Driver	to	be	automatically	loaded	and	executed	each	time	the	target
platform	is	booted.

1.	 The	UEFI	Driver	must	be	copied	onto	a	mass	storage	device	that	contains	an	EFI	System	Partition.
This	may	require	a	custom	UEFI	Application	to	perform	this	transfer,	or	utilities	such	as	1	the	UEFI
Shell	and	UEFI	Shell	scripts	may	be	used	to	install	a	UEFI	Driver	into	a	device	specific	directory.

2.	 Update	the		Driver####		and		DriverOrder		UEFI	variables	so	the	UEFI	Driver	installed	on	the	EFI	System
Partition	is	automatically	loaded	and	executed	on	every	boot.	These	variables	can	be	updated	from
a	custom	UEFI	Application,	or	OEM	setup	screens	if	this	option	is	exposed.

Tip:	Use	the	UEFI	Shell	drivers	command	to	view	the	set	of	UEFI	Drivers	that	have	been	loaded	and
executed	to	verify	that	a	UEFI	Driver	that	has	been	installed	and	configured	to	load	from	EFI	System
Partition	has	actually	been	loaded	and	executed	by	the	platform	firmware.

32.3	EFI	System	PartitionEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

705DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

http://www.uefi.org/

Appendix	A	EDK	II	File	Templates
This	discussion	contains	templates	and	guidelines	for	creating	files	for	protocols,	GUIDs,	EDK	II	Library
Classes,	and	UEFI	drivers	in	EDK	II	packages.	The	naming	conventions	for	the	driver	entry	point	and	the
functions	exported	by	a	driver	that	are	presented	here	guarantee	that	a	unique	name	is	produced	for
every	function,	which	aides	in	call	stack	analysis	when	root-causing	driver	issues.	The	Doxygen	style
function	header	comment	blocks	have	been	removed	the	file	templates	shown	in	this	appendix	to
highlight	the	source	code	elements	required	to	build	a	UEFI	Driver.	The	function	headers	comments
blocks	can	be	added	by	coping	them	from	the	EDK	II	MdePkg	protocol	include	files	located	in	the
MdePkg/Include/Protocol/	directory.

The	following	expressions	are	used	throughout	this	chapter	to	show	where	protocol	names,	GUID
names,	function	names,	and	driver	names	should	be	substituted	in	a	file	template:

	<<PackageName>>	

Represents	the	name	of	a	package	follows	the	function	or	variable	naming	convention,	which	capitalizes
only	the	first	letter	of	each	word	(e.g.,		MdePkg).

	<<BriefDescription>>	

One	line	brief	description	of	a	file	or	library	or	module.

	<<DetailedDescription>>	

Paragraph	that	is	a	detailed	description	of	a	file	or	library	or	module.

	<<Copyright>>	

One	or	more	copyright	declarations	for	a	file	or	library	or	module.

	<<License>>	

One	or	more	licenses	for	a	file	or	library	or	module.

	<<ProtocolName>>	

Represents	the	name	of	a	protocol	that	follows	the	function	or	variable	naming	convention,	which
capitalizes	only	the	first	letter	of	each	word	(e.g.,		DiskIo).

	<<PROTOCOL_NAME>>	

Represents	the	name	of	a	protocol	that	follows	the	data	structure	naming	convention,	which	capitalizes
all	the	letters	and	separates	each	word	with	an	underscore	'_'	(e.g.,		DISK_IO).

	<<GUID_STRUCT>>	

Represents	the	GUID	value	in	the	format	of	a	C	data	structure.	New	GUID	values	can	be	generated	using
the		GUIDGEN		utility	shipped	with	Microsoft*	compilers,	or	the		uuidgen		command	under	Linux	-	e.g.		{
0x9e34954,	0x6c5,	0x4e1a,	{	0xb7,0xeb,	0x5d,	0x5c,	0x9,	0xca,	0x6d,	0xaf	}	}	.

	<<GUID_REGISTRY_FORMAT>>	

Represents	the	GUID	value	in	Registry	Format.	New	GUID	values	can	be	generated

using	the		GUIDGEN		utility	shipped	with	Microsoft*	compilers,	or	the		uuidgen		command	under	Linux.	(e.g.,
	1E9CD853-7A32-49e0-8140-145CD35C6632)

	<<DriverVersion>>	

A	32-bit	value	representation	for	the	version	of	the	UEFI	Driver	used	to	fill	in	the		Version		field	of	the
Driver	Binding	Protocol.	(e.g.,		0x00000010).

	<<DriverVersionString>>	

A	text	string	representation	for	the	version	of	the	UEFI	Driver.	(e.g.,	1.7).

Appendix	A	EDK	II	File	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

706DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	<<FunctionNameN>>	

Represents	the	nth	name	of	the	protocol	member	functions	that	follow	the	function	or	variable	naming
convention,	which	capitalizes	only	the	first	letter	of	each	word	(e.g.,		ReadDisk).

	<<FUNCTION_NAMEn>>	

Represents	the	nth	name	of	the	protocol	member	functions	that	follows	the	data	structure	naming
convention,	which	capitalizes	all	the	letters	and	separates	each	word	with	an	underscore	'_'	(e.g.,
	READ_DISK).

	<<GuidName>>	

Represents	the	name	of	a	GUID	that	follows	the	function	or	variable	naming	convention,	which
capitalizes	only	the	first	letter	of	each	word	(e.g.,		GlobalVariable).

	<<GUID_NAME>>	

Represents	the	name	of	a	GUID	that	follows	the	data	structure	naming	convention,	which	capitalizes	all
the	letters	and	separates	each	word	with	an	underscore	'_'	(e.g.,		GLOBAL_VARIABLE).

	<<DriverName>>	

Represents	the	name	of	a	driver	that	follows	the	function	or	variable	naming	convention,	which
capitalizes	only	the	first	letter	of	each	word	(e.g.,		Ps2Keyboard).

	<<DRIVER_NAME>>	

Represents	the	name	of	a	driver	that	follows	the	data	structure	naming	convention,	which	capitalizes	all
the	letters	and	separates	each	word	with	an	underscore	'_'	(e.g.,		PS2_KEYBOARD).

	<<DriverVersion>>	

Value	that	represents	the	version	of	the	driver.	Values	from	0x0-0x0f	and	0xFFFFFFF0-0xFFFFFFFF	are
reserved	for	UEFI	drivers	that	are	written	by	OEMs	for	integrated	devices.	Values	from	0x10-0xFFFFFFEF
are	reserved	for	UEFI	drivers	that	are	written	by	IHVs.

	<<Iso639SupportedLanguages>>	

A	null	terminated	ASCII	string	of	one	or	more	3	character	ISO	639-2	language	code	with	no	separator
character.	(e.g.	"eng"	for	English,	"engfra"	for	English	and	French).

	<<Rfc4646SupportedLanguages>>	

A	null	terminated	ASCII	string	of	one	or	more	RFC	4646	language	codes	separated	by	semicolons	(';')
(e.g.	"en"	for	English,	"en-US;fr"	for	U.S.	English	and	French).

	<<UEFI_SYSTEM_TABLE_REVISON>>	

The	32-bit	revision	of	the	UEFI	Specification	that	the	UEFI	Driver	requires	to	run	correctly.	Usually,	one	of
the	define	names	from		<Uefi.h>		is	used,	which	includes	the	following:

EFI_2_31_SYSTEM_TABLE_REVISION

EFI_2_30_SYSTEM_TABLE_REVISION

EFI_2_20_SYSTEM_TABLE_REVISION

EFI_2_10_SYSTEM_TABLE_REVISION

EFI_2_00_SYSTEM_TABLE_REVISION

EFI_1_10_SYSTEM_TABLE_REVISION

EFI_1_02_SYSTEM_TABLE_REVISION

	<<ProtocolNameCn>>	

Appendix	A	EDK	II	File	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

707DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Represents	the	nth	name	of	a	protocol	that	is	consumed	by	a	UEFI	driver	and	follows	the	function	or
variable	naming	convention,	which	capitalizes	only	the	first	letter	of	each	word	(e.g.,		DiskIo).

	<<PROTOCOL_NAME_CN>>	

Represents	the	nth	name	of	a	protocol	that	is	consumed	by	a	UEFI	driver	and	follows	the	data	structure
naming	convention,	which	capitalizes	all	the	letters	and	separates	each	word	with	an	underscore	'_'
(e.g.,		DISK_IO).

	<<ProtocolNamePm>>	

Represents	the	mth	name	of	a	protocol	produced	by	a	UEFI	driver	that	follows	the	function	or	variable
naming	convention	which	capitalizes	only	the	first	letter	of	each	word	(e.g.,		DiskIo).

	<<PROTOCOL_NAME_PM>>	

Represents	the	mth	name	of	a	protocol	that	is	produced	by	a	UEFI	driver	and	follows	the	data	structure
naming	convention,	which	capitalizes	all	the	letters	and	separates	each	word	with	an	underscore	'_'
(e.g.,		DISK_IO).

	<<UsbSpecificationMajorRevision>>	

Denotes	the	major	revision	of	the	USB	Specification	that	a	USB	host	controller	driver	follows	(e.g.	1	for
the	USB	1.1	Specification).

	<<UsbSpecificationMinorRevision>>	

Denotes	the	minor	revision	of	that	USB	Specification	that	a	USB	host	controller	driver	follows	(e.g.	0	for
the	USB	2.0	Specification).

Appendix	A	EDK	II	File	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

708DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.1	UEFI	Driver	Template

UEFI	driver	sources	are	typically	placed	in	a	EDK	II	package.	There	are	no	restrictions	on	the	directory
structure	within	an	EDK	II	package.	A	common	convention	for	UEFI	Drivers	related	to	industry	standard
busses	is	to	place	the	UEFI	Driver	in	a	directory	path	the	such	as
	/<<PackageName>>/Bus/<<BUSTYPE>>/<<DriverName>>	.	The	directory	structure	for	a	single	UEFI	Driver	does	not	have	to
be	flat.	Multiple	closely	related	UEFI	Drivers	may	be	placed	in	subdirectories.	The	directory	name	for	a
UEFI	driver	is	typically	of	the	form		<<DriverName>>	.	For	example,	the	USB	keyboard	driver	in	the		MdeModulePkg	
is	located	in	the	directory		\MdeModulePkg\Bus\Usb\UsbKb	.

Simple	UEFI	drivers	typically	have	the	following	three	files	in	their	driver	directory:

	<<DriverName>>.inf	

	<<DriverName>>.h	

	<<DriverName>>.c	

It	is	possible	to	reduce	the	number	of	files	down	to	just		<<DriverName>>	.inf	and		<<DriverName>>	.c.	However,	if
the	complexity	of	the	UEFI	Driver	increases	over	time	where	a	splitting	out	a	second	.c	file	makes	sense,
then	a	common	.h	file	is	usually	required.	If	a	UEFI	Driver	is	implemented	with	a	common	.h	file	from	the
beginning,	then	additional	.c	file	can	be	added	without	have	to	reorganize	the	other	source	files.	The
	<<DriverName>>	.inf	file	describes	the	information	the	EDK	II	build	system	required	to	build	UEFI	Driver	into	a
UEFI	conformant	executable	image.	This	includes	elements	such	as	source	filenames,	EDK	II	package
dependencies,	libraries	that	are	used,	Protocols	that	are	produced/consumed,	and	GUIDs	that	are
used.

The		<<DriverName>>	.h	file	includes	the	standard	UEFI	include	file,	include	files	for	libraries	that	the	UEFI
Driver	uses,	and	include	files	for	protocols	or	GUIDs	that	the	UEFI	Driver	either	produces	or	consumes.
In	addition,	the		<<DriverName>>	.h	file	may	contain	the	function	prototypes	for	the	public	APIs	that	are
produced	by	the	UEFI	Driver	and	declarations	for	#defines	and	data	structures	that	are	internal	to	the
UEFI	Driver	implementation.

The		<<DriverName>>	.c	file	contains	the	driver	entry	point.	If	a	UEFI	driver	produces	the	Driver	Binding
Protocol,	then	the		<<DriverName>>	.c	file	typically	contains	the	Supported(),	Start(),	and	Stop()	services.
The		<<DriverName>>	.c	file	may	also	contain	the	services	for	other	protocol(s)	that	the	UEFI	driver	produces.

Complex	UEFI	drivers	that	produce	more	than	one	protocol	may	be	broken	up	into	multiple	source	files.
The	natural	organization	is	to	place	the	implementation	of	each	protocol	that	is	produced	in	a	separate
file	of	the	form		<<ProtocolName>>.c		or		<<DriverName>><<ProtocolName>>.c	.	For	example,	the	disk	I/O	driver	produces
the	Driver	Binding	Protocol,	the	Disk	I/O	Protocol,	the	Component	Name	Protocol,	and	the	Component
Name2	Protocol.	The		DiskIo.c		file	contains	the	Driver	Binding	Protocol	and	Disk	I/O	Protocol
implementations.	The		ComponentName.c		file	contains	the	implementation	of	the	Component	Name	Protocol
and	the	Component	Name2	Protocol.

A.1.1		<<DriverName>>.inf		File	for	a	UEFI	Driver

A	UEFI	Driver	module	information	file	typically	consists	of	the	following	elements.	The	following	example
shows	a	template	of	an	INF	file	with	these	same	elements.

[Defines]	section	that	declares	a	name	for	GUID	for	the	UEFI	Driver	along	with	the	name	of	the
function	that	is	the	entry	point	to	the	UEFI	Driver.

[Sources]	section	with	the	list	of	.c	and	.h	files	required	to	build	the	UEFI	Driver.

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

709DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

[Packages]	section	with	the	list	of	EDK	II	packages	that	the	UEFI	Driver	requires	to	build.	All	UEFI
Drivers	use	MdePkg/MdePkg.dec	for	the	definitions	from	the	UEFI	Specification.	If	a	UEFI	Driver
implementation	uses	Protocols	or	GUIDs	declared	in	other	EDK	II	Packages,	then	those	packages
must	be	listed	in	this	section	too.

[LibraryClasses]	section	with	the	list	of	libraries	that	the	UEFI	Driver	uses.

[Protocols]	section	with	the	list	of	protocols	that	the	UEFI	Driver	produces	or	consumes.

[Guids]	section	with	the	list	of	GUIDs	that	the	UEFI	Driver	produces	or	consumes.

Example	A-1-UEFI	Driver	INF	file	template

##	@file

#	<<BriefDescription>>

#

#	<<DetailedDescription>>

#

#	<<Copyright>>

#

#	<<License>>

#

##

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	<<DriverName>>

		FILE_GUID						=	<<GUID_REGISTRY_FORMAT>>

		MODULE_TYPE				=	UEFI_DRIVER

		VERSION_STRING	=	<<DriverVersionString>>

		ENTRY_POINT				=	<<DriverName>>DriverEntryPoint

[Sources]

		<<DriverName>>.h

		<<DriverName>>.c

[Packages]

		MdePkg/MdePkg.dec

		#

		#	List	other	packages	that	the	UEFI	Driver	depends	upon

		#

		<<PackageName>>/<<PackageName>>.dec

[LibraryClasses]

		UefiDriverEntryPoint

		UefiBootServicesTableLib

		MemoryAllocationLib

		BaseMemoryLib

		BaseLib

		UefiLib

		DevicePathLib

		DebugLib

		#

		#	List	of	additional	libraries	that	the	UEFI	Driver	uses

		#

[Protocols]

		#

		#	List	of	Protocols	the	UEFI	Driver	produces	or	consumes

		#

		gEfi<<ProtocolName>>ProtocolGuid

[Guids]

		#

		#	List	of	GUIDs	the	UEFI	Driver	produces	or	consumes

		#

		gEfi<<GuidName>>Guid

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

710DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.1.2		<<DriverName>>.inf		File	for	a	UEFI	Runtime	Driver

The	requirements	for	the	module	information	file	for	a	UEFI	Runtime	Driver	are	slightly	different	than	UEFI
Drivers.	The		MODULE_TYPE		must	be	set	to		DXE_RUNTIME_DRIVER		and	the	INF	file	must	include	a	fixed		[Depex]	
section.	All	other	requirements	are	the	same.	The	example	below	shows	a	template	of	an	INF	file	for	a
UEFI	Runtime	Driver	and	also	adds	the		UefiRuntimeServicesTableLib		and		UefiRuntimeLib		to	the		[LibraryClasses]	
section	because	those	two	library	classes	are	commonly	used	by	UEFI	Runtime	Drivers.

Example	A-2-UEFI	Runtime	Driver	INF	file	template

##	@file

#	<<BriefDescription>>

#

#	<<DetailedDescription>>

#

#	<<Copyright>>

#

#	<<License>>

#

##

[Defines]

		INF_VERSION				=	0x00010005

		BASE_NAME						=	<<DriverName>>

		FILE_GUID						=	<<GUID_REGISTRY_FORMAT>>

		MODULE_TYPE				=	DXE_RUNTIME_DRIVER

		VERSION_STRING	=	<<DriverVersionString>>

		ENTRY_POINT				=	<<DriverName>>DriverEntryPoint

[Sources]

		<<DriverName>>.h

		<<DriverName>>.c

[Packages]

		MdePkg/MdePkg.dec

		#

		#	List	other	packages	that	the	UEFI	Driver	depends	upon

		#

		<<PackageName>>/<<PackageName>>.dec

[LibraryClasses]

		UefiDriverEntryPoint

		UefiBootServicesTableLib

		MemoryAllocationLib

		BaseMemoryLib

		BaseLib

		UefiLib

		DevicePathLib

		DebugLib

		UefiRuntimeServicesTableLib

		UefiRuntimeLib

		#

		#	List	of	additional	libraries	that	the	UEFI	Driver	uses

		#

[Protocols]

		#

		#	List	of	Protocols	the	UEFI	Driver	produces	or	consumes

		#

		gEfi<<ProtocolName>>ProtocolGuid

[Guids]

		#

		#	List	of	GUIDs	the	UEFI	Driver	produces	or	consumes

		#

		gEfi<<GuidName>>Guid

[Depex]

		gEfiBdsArchProtocolGuid															AND	

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

711DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		gEfiCpuArchProtocolGuid															AND	

		gEfiMetronomeArchProtocolGuid									AND

		gEfiMonotonicCounterArchProtocolGuid		AND	

		gEfiRealTimeClockArchProtocolGuid					AND	

		gEfiResetArchProtocolGuid													AND	

		gEfiRuntimeArchProtocolGuid											AND	

		gEfiSecurityArchProtocolGuid										AND	

		gEfiTimerArchProtocolGuid													AND	

		gEfiVariableWriteArchProtocolGuid					AND	

		gEfiVariableArchProtocolGuid										AND	

		gEfiWatchdogTimerArchProtocolGuid

A.1.3		<<DriverName>>.h		File

A	UEFI	driver	include	file	contains	the	following:

	#ifndef		/		#define		for	the	driver	include	file

	#include		statements	for	the	standard	UEFI	and	UEFI	driver	library	include	files.

	#include		statements	for	all	the	protocols	and	GUIDs	that	are	consumed	by	the	driver.

	#include		statements	for	all	the	protocols	and	GUIDs	that	are	produced	by	the	driver.

	#define		for	a	unique	signature	that	is	used	in	the	private	context	data	structure	(see	Chapter	8).

	typedef	struct		for	the	private	context	data	structure	(see	Chapter	8).

	#define		statements	to	retrieve	the	private	context	data	structure	from	each	protocol	that	is
produced	(see	Chapter	8).

	extern		statements	for	the	global	variables	that	the	driver	produces.

Function	prototype	for	the	driver's	entry	point.

Function	prototypes	for	all	of	the	APIs	in	the	produced	protocols

	#endif		statement	for	the	driver	include	file

This	example	shows	a	template	for	a	UEFI	Driver	include	file.

Example	A-3-UEFI	Driver	include	file	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#ifndef	__EFI_<<DRIVER_NAME>>_H__

#define	__EFI_<<DRIVER_NAME>>_H__

#include	<Uefi.h>

//

//	Include	Protocols	that	are	consumed

//

#include	<Protocol/<<ProtocolNameC1>>.h>

#include	<Protocol/<<ProtocolNameC2>>.h>

//	.	.

#include	<Protocol/<<ProtocolNameCn>>.h>

//

//	Include	Protocols	that	are	produced

//

#include	<Protocol/<<ProtocolNameP1>>.h>

#include	<Protocol/<<ProtocolNameP2>>.h>

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

712DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

//	.	.

#include	<Protocol/<<ProtocolNamePm>>.h>

//

//	Include	GUIDs	that	are	consumed

//

#include	<Guid/<<GuidName1>>.h>

#include	<Guid/<<GuidName2>>.h>

//	.	.

#include	<Guid/<<GuidNamep>>.h>

//

//	Include	Library	Classes	commonly	used	by	UEFI	Drivers

//

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/BaseLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DevicePathLib.h>

#include	<Library/DebugLib.h>

//

//	Include	additional	Library	Classes	that	are	used

//

#include	<Library/<<LibraryName1>>.h>

#include	<Library/<<LibraryName2>>.h>

//	.	.

#include	<Library/<<LibraryNameq>>.h>

//

//	Define	driver	version	Driver	Binding	Protocol

//

#define	<<DRIVER_NAME>_VERSION>>	<<DriverVersion>>

//

//	Private	Context	Data	Structure

//

#define	<<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE	SIGNATURE_32	('A','B','C','D')

typedef	struct	{

		UINTN	Signature;

		EFI_HANDLE	Handle;

		//

		//	Pointers	to	consumed	protocols

		//

		EFI_	<<PROTOCOL_NAME_C1>>_PROTOCOL	*	<<ProtocolNameC1>>;

		EFI_	<<PROTOCOL_NAME_C2>>_PROTOCOL	*	<<ProtocolNameC2>>;

		//	.	.

		EFI_	<<PROTOCOL_NAME_Cn>>_PROTOCOL	*	<<ProtocolNameCn>>;

		//

		//	Produced	protocols

		//

		EFI_	<<PROTOCOL_NAME_P1>>_PROTOCOL	<<ProtocolNameP1>>;

		EFI_	<<PROTOCOL_NAME_P2>>_PROTOCOL	<<ProtocolNameP2>>;

		//	.	.

		EFI_	<<PROTOCOL_NAME_Pm>>_PROTOCOL	<<ProtocolNamePm>>;

		//

		//	Private	functions	and	data	fields

		//

}	<<DRIVER_NAME>>_PRIVATE_DATA;

#define	<<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P1>>_THIS(a)	\

		CR(\

				a,																																					\

				<<DRIVER_NAME>>_PRIVATE_DATA,										\

				<<ProtocolNameP1>>,																				\

				<<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE	\

)

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

713DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

#define	<<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_P2>>_THIS(a)	\

		CR(\

				a,																																					\

				<<DRIVER_NAME>>_PRIVATE_DATA,										\

				<<ProtocolNameP2>>,																				\

				<<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE	\

)

//	.	.

#define	<<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pm>>_THIS(a)	\

		CR(\

				a,																																					\

				<<DRIVER_NAME>>_PRIVATE_DATA,										\

				<<ProtocolNamePm>>,																				\

				<<DRIVER_NAME>>_PRIVATE_DATA_SIGNATURE	\

)

//

//	Required	Global	Variables

//

extern	EFI_DRIVER_BINDING_PROTOCOL	g<<DriverName>>DriverBinding;

//

//	Optional	Global	Variables	depending	on	driver	features

//

extern	EFI_COMPONENT_NAME2_PROTOCOL										g<<DriverName>>ComponentName2;

extern	EFI_HII_CONFIG_ACCESS_PROTOCOL								g<<DriverName>>ConfigAccess;

extern	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL						g<<DriverName>>DriverDiagnostics2;

extern	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL			g<<DriverName>>DriverFamilyOverride;

extern	EFI_DRIVER_HEALTH_PROTOCOL												g<<DriverName>>DriverHealth;

//

//	Optional	Global	Variables	for	compatibility	with	UEFI	2.0

//

extern	EFI_DRIVER_CONFIGURATION2_PROTOCOL				g<<DriverName>>DriverConfiguration2;

//

//	Optional	Global	Variables	for	compatibility	with	EFI	1.10

//

extern	EFI_COMPONENT_NAME_PROTOCOL											g<<DriverName>>ComponentName;

extern	EFI_DRIVER_CONFIGURATION_PROTOCOL					g<<DriverName>>DriverConfiguration;

extern	EFI_DRIVER_DIAGNOSTICS_PROTOCOL							g<<DriverName>>DriverDiagnostics;

//

//	Function	ptototypes	for	the	APIs	in	the	Produced	Protocols

//

#endif

A.1.4		<<DriverName>>.c		File

A	UEFI	source	file	contains:

	#include		statement	for		<<DriverName>>.h	.

Global	variable	declarations

The	UEFI	driver	entry	point	function

The		Supported()	,		Start()	,	and		Stop()		functions

Implementation	of	the	APIs	from	the	produced	protocols

The	following	example	shows	a	template	for	the	main	source	file	of	a	UEFI	Driver	that	follows	the	UEFI
Driver	Model	and	produces	the	Driver	Binding	Protocol.	The	structure	for	the	Driver	Supported	EFI
Version	Protocol	is	also	declared,	but	is	not	installed	in	the	Driver	Entry	Point	because	that	protocol	is
optional.	This	template	contains	a	template	of	an	empty	function	from	additional	protocols	that	the	UEFI

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

714DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Driver	may	produce.	The	functions	from	the	various	protocols	that	a	UEFI	driver	may	produce	are
discussed	in	later	sections.	There	are	many	optional	UEFI	Driver	features	that	are	not	shown	in	this
specific	template.	Each	of	those	optional	features	are	discussed	in	earlier	chapters	along	with	details
on	how	to	add	each	of	those	optional	features	to	a	UEFI	Driver.

Example	A-4-UEFI	Driver	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED	EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL	

g<<DriverName>>DriverSupportedEfiVersion	=	{

		sizeof	(EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL),

		<<UEFI_SYSTEM_TABLE_REVISON>>

};

EFI_DRIVER_BINDING_PROTOCOL	g<<DriverName>>DriverBinding	=	{

		<<DriverName>>DriverBindingSupported,

		<<DriverName>>DriverBindingStart,

		<<DriverName>>DriverBindingStop,

		<<DRIVER_NAME>>_VERSION,

		NULL,

		NULL

};

EFI_STATUS

EFIAPI

<<DriverName>>DriverEntryPoint	(

		IN	EFI_HANDLE								ImageHandle,

		IN	EFI_SYSTEM_TABLE		*SystemTable

)

{

		//

		//	Install	UEFI	Driver	Model	protocol(s).

		//

		Status	=	EfiLibInstallDriverBindingComponentName2	(

													ImageHandle,

													SystemTable,

													&g<<DriverName>>DriverBinding,

													ImageHandle,

													&g<<DriverName>>ComponentName,

													&g<<DriverName>>ComponentName2

);

		ASSERT_EFI_ERROR	(Status);

		return	Status;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverBindingSupported	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverBindingStart	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

715DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	EFI_DEVICE_PATH_PROTOCOL					*RemainingDevicePath			OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverBindingStop	(

		IN	EFI_DRIVER_BINDING_PROTOCOL		*This,

		IN	EFI_HANDLE																			ControllerHandle,

		IN	UINTN																								NumberOfChildren,

		IN	EFI_HANDLE																			*ChildHandleBuffer			OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

//

//	Implementations	of	the	APIs	in	the	produced	protocols

//	The	following	template	is	for	the	mth	function	of	the	nth	protocol	produced

//	It	also	shows	how	to	retrieve	the	private	context	structure	from	this	arg

//

EFI_STATUS

EFIAPI

<<DriverName>><<ProtocolNamePn>><<FunctionNameM>>	(

		IN	EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL						*This,

		//

		//	Additional	function	arguments	here.

		//

)

{

		<<DRIVER_NAME>>_PRIVATE_DATA	*Private;

		//

		//	Use	This	pointer	to	retrieve	the	private	context	structure

		//

		Private	=	<<DRIVER_NAME>>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pn>>_THIS	(This);

}

A.1.5		<<ProtocolName>>.c		File

More	complex	UEFI	drivers	may	break	the	implementation	into	several	source	files.	The	natural	boundary
is	to	implement	one	protocol	per	file.

A	UEFI	Driver	protocol	source	file	contains:

	#include		statement	for		<<DriverName>>.h	.

Global	variable	declaration.	This	declaration	applies	only	to	protocols	such	as	the	Component	Name
Protocols	and	Driver	Diagnostics	Protocols.	Protocols	that	produce	I/O	services	should	never	be
declared	as	a	global	variable.	Instead,	they	are	declared	in	the	private	context	structure	that	is
dynamically	allocated	in	the		Start()		function	(see	Chapter	8	of	this	guide).

Implementation	of	the	APIs	from	the	produced	protocols.

The	template	in	the	example	below	shows	the	main	source	file	for	a	protocol	produced	by	a	UEFI	driver.
This	template	contains	empty	protocol	function	implementations.	The	remaining	sections	of	this
appendix	shows	template	files	for	all	the	optional	UEFI	Driver	protocols.

Example	A-5-UEFI	Driver	protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

716DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

**/

#include	"<<DriverName>>.h"

//

//	Protocol	Global	Variables

//

EFI_	<<PROTOCOL_NAME_PN>>_PROTOCOL	g<<DriverName>><<ProtocolNamePn>>	=	{

		//	.	.

};

//

//	Implementations	of	the	APIs	in	the	produced	protocols

//	The	following	template	is	for	the	mth	function	of	the	nth	protocol	produced

//	It	also	shows	how	to	retrieve	the	private	context	structure	from	the	This

//	parameter.

//

EFI_STATUS

EFIAPI

<<DriverName>><<ProtocolNamePn>><<FunctionName1M>>	(

		IN	EFI_<<PROTOCOL_NAME_PN>>_PROTOCOL						*This,

		//

		//	Additional	function	arguments	here.

		//

)

{

		<<DRIVER_NAME>>_PRIVATE_DATA	Private;

		//

		//	Use	This	pointer	to	retrieve	the	private	context	structure

		//

		Private	=	<<DRIVER_NAME>_PRIVATE_DATA_FROM_<<PROTOCOL_NAME_Pn>>_THIS	(This);

}

A.1	UEFI	Driver	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

717DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2	UEFI	Driver	Optional	Protocol	Templates

This	section	contains	templates	for	the	implementation	of	optional	protocols	that	may	be	part	of	a	UEFI
Driver	implementation.	This	includes	the	following:

Component	Name	Protocols

Driver	Configuration	Protocols

HII	Config	Access	Protocol

Driver	Health	Protocol

Driver	Family	Override	Protocol

Bus	Specific	Driver	Override	Protocol

Driver	Diagnostics	Protocols

A.2	UEFI	Driver	Optional	Protocol	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

718DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.1	ComponentName.c	File

Example	A-6-Component	Name	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME_PROTOCOL	g<<DriverName>>ComponentName	=	{

		(EFI_COMPONENT_NAME_GET_DRIVER_NAME)	<<DriverName>>ComponentNameGetDriverName,

		(EFI_COMPONENT_NAME_GET_CONTROLLER_NAME)	<<DriverName>>ComponentNameGetControllerName,

		"<<Iso639SupportedLanguages>>"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_COMPONENT_NAME2_PROTOCOL	g<<DriverName>>ComponentName2	=	{

		<<DriverName>>ComponentNameGetDriverName,

		<<DriverName>>ComponentNameGetControllerName,

		"<<Rfc4646SupportedLanguages>>"

};

EFI_STATUS

EFIAPI

<<DriverName>>ComponentNameGetDriverName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**DriverName

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>ComponentNameGetControllerName	(

		IN		EFI_COMPONENT_NAME2_PROTOCOL		*This,

		IN		EFI_HANDLE																				ControllerHandle,

		IN		EFI_HANDLE																				ChildHandle,		OPTIONAL

		IN		CHAR8																									*Language,

		OUT	CHAR16																								**ControllerName

)

{

}

A.2.1	ComponentName.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

719DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.2	DriverConfiguration.c	File

Example	A-7-Driver	Configuration	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_CONFIGURATION_PROTOCOL	g<<DriverName>>DriverConfiguration	=	{

		(EFI_DRIVER_CONFIGURATION_SET_OPTIONS)				<<DriverName>>DriverConfigurationSetOptions,

		(EFI_DRIVER_CONFIGURATION_OPTIONS_VALID)		<<DriverName>>DriverConfigurationOptionsValid,

		(EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS)	<<DriverName>>DriverConfigurationForceDefaults,

		"<<Iso639SupportedLanguages>>"

};

///

///	Driver	Configuration	2	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_CONFIGURATION2_PROTOCOL	g<<DriverName>>DriverConfiguration2	=	{

		<<DriverName>>DriverConfigurationSetOptions,

		<<DriverName>>DriverConfigurationOptionsValid,

		<<DriverName>>DriverConfigurationForceDefaults,

		"<<Rfc4646SupportedLanguages>>"

};

EFI_STATUS

EFIAPI

<<DriverName>>DriverConfigurationSetOptions	(

		IN		EFI_DRIVER_CONFIGURATION2_PROTOCOL								*This,

		IN		EFI_HANDLE																																ControllerHandle,

		IN		EFI_HANDLE																																ChildHandle,							OPTIONAL

		IN		CHAR8																																					*Language,

		OUT	EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED		*ActionRequired

)

{

		return	EFI_UNSUPPORTED;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverConfigurationOptionsValid	(

		IN	EFI_DRIVER_CONFIGURATION2_PROTOCOL									*This,

		IN	EFI_HANDLE																																	ControllerHandle,

		IN	EFI_HANDLE																																	ChildHandle								OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverConfigurationForceDefaults	(

		IN		EFI_DRIVER_CONFIGURATION2_PROTOCOL								*This,

		IN		EFI_HANDLE																																ControllerHandle,

		IN		EFI_HANDLE																																ChildHandle,							OPTIONAL

		IN		UINT32																																				DefaultType,

		OUT	EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED		*ActionRequired

)

{

		return	EFI_UNSUPPORTED;

}

A.2.2	DriverConfiguration.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

720DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.2	DriverConfiguration.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

721DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.3	HiiConfigAccess.c	File

Example	A-8-Driver	Health	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_HII_CONFIG_ACCESS_PROTOCOL	g<<DriverName>>HiiConfigAccess	=	{

		<<DriverName>>HiiConfigAccessExtractConfig,

		<<DriverName>>HiiConfigAccessRouteConfig,

		<<DriverName>>HiiConfigAccessCallback

};

EFI_STATUS

EFIAPI

<<DriverName>>HiiConfigAccessExtractConfig	(

		IN		CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL				*This,

		IN		CONST	EFI_STRING																								Request,

		OUT	EFI_STRING																														*Progress,

		OUT	EFI_STRING																														*Results

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>HiiConfigAccessRouteConfig	(

		IN		CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL				*This,

		IN		CONST	EFI_STRING																								Configuration,

		OUT	EFI_STRING																														*Progress

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>HiiConfigAccessCallback	(

		IN					CONST	EFI_HII_CONFIG_ACCESS_PROTOCOL		*This,

		IN					EFI_BROWSER_ACTION																				Action,

		IN					EFI_QUESTION_ID																							QuestionId,

		IN					UINT8																																	Type,

		IN	OUT	EFI_IFR_TYPE_VALUE																				*Value,

		OUT				EFI_BROWSER_ACTION_REQUEST												*ActionRequest

)

{

}

A.2.3	HiiConfigAccess.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

722DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.4	DriverHealth.c	File

Example	A-9-Driver	Health	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_HEALTH_PROTOCOL	g<<DriverName>>DriverHealth	=	{

<<DriverName>>DriverHealthGetHealthStatus,

		<<DriverName>>DriverHealthRepair

};

EFI_STATUS

EFIAPI

<<DriverName>>DriverHealthGetHealthStatus	(

		IN		EFI_DRIVER_HEALTH_PROTOCOL															*This,

		IN		EFI_HANDLE																															ControllerHandle,		OPTIONAL

		IN		EFI_HANDLE																															ChildHandle,							OPTIONAL

		OUT	EFI_DRIVER_HEALTH_STATUS																	*HealthStatus,

		OUT	EFI_DRIVER_HEALTH_HII_MESSAGE												**MessageList,					OPTIONAL

		OUT	EFI_HII_HANDLE																											*FormHiiHandle					OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

EFI_STATUS

EFIAPI

<<DriverName>>DriverHealthRepair	(

		IN	EFI_DRIVER_HEALTH_PROTOCOL																*This,

		IN	EFI_HANDLE																																ControllerHandle,

		IN	EFI_HANDLE																																ChildHandle,											OPTIONAL

		IN	EFI_DRIVER_HEALTH_REPAIR_PROGRESS_NOTIFY		ProgressNotification			OPTIONAL

)

{

		return	EFI_UNSUPPORTED;

}

A.2.4	DriverHealth.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

723DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.5	DriverFamilyOverride.c	File

Example	A-10-Driver	Family	Override	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL	g<<DriverName>>DriverFamilyOverride	=	{

		<<DriverName>>DriverFamilyOverrideGetVersion

};

UINT32

EFIAPI

<<DriverName>>DriverFamilyOverrideGetVersion	(

		IN	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL		*This

)

{

		return	0;

}

A.2.5	DriverFamilyOverride.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

724DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.6	BusSpecificDriverOverride.c	File

Example	A-11-Bus	Specific	Driver	Override	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL	g<<DriverName>>BusSpecificDriverOverride	=	{

		<<DriverName>>BusSpecificDriverOverrideGetDriver

};

EFI_STATUS

EFIAPI

<<DriverName>>BusSpecificDriverOverrideGetDriver	(

		IN					EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL		*This,

		IN	OUT	EFI_HANDLE																																	*DriverImageHandle

)

{

		return	EFI_NOT_FOUND;

}

A.2.6	BusSpecificDriverOverride.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

725DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.2.7	DriverDiagnostics.c	File

Example	A-12-Driver	Diagnostics	Protocols	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS_PROTOCOL	g<<DriverName>>DriverDiagnostics	=	{

		(EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS)	<<DriverName>>DriverDiagnosticsRunDiagnostics,

		"<<Iso639SupportedLanguages>>"

};

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL	g<<DriverName>>DriverDiagnostics2	=	{

<<DriverName>>DriverDiagnosticsRunDiagnostics,

		"<<Rfc4646SupportedLanguages>>"

};

EFI_STATUS

EFIAPI

<<DriverName>>DriverDiagnosticsRunDiagnostics	(

		IN		EFI_DRIVER_DIAGNOSTICS2_PROTOCOL		*This,

		IN		EFI_HANDLE																								ControllerHandle,

		IN		EFI_HANDLE																								ChildHandle,							OPTIONAL

		IN		EFI_DRIVER_DIAGNOSTIC_TYPE								DiagnosticType,

		IN		CHAR8																													*Language,

		OUT	EFI_GUID																										**ErrorType,

		OUT	UINTN																													*BufferSize,

		OUT	CHAR16																												**Buffer

)

{

}

A.2.7	DriverDiagnostics.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

726DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3	UEFI	Driver	I/O	Protocol	Templates

This	section	contains	templates	for	the	implementation	of	protocols	that	provide	I/O	services	or	services
to	abstract	a	specific	type	of	device	hardware.	This	includes	the	following:

USB	Host	Controllers

SCSI	Host	Controllers

ATA	Host	Controllers

Simple	Text	Input	Devices

Simple	Text	Output	Devices

Serial	Port	(UART)	Controllers

Graphics	Controllers

Network	Interface	Controllers

Mass	Storage	Device	(Hard	Disk,	CD-ROM,	DVD-ROM,	FLASH	drive)

User	Credential	Devices	(Smart	Card,	Fingerprint	Readers,	etc.)

A.3	UEFI	Driver	I/O	Protocol	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

727DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.1	Usb2Hc.c	File

Example	A-13-USB	2	Host	Controller	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	`<<DriverName>>.h`

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_USB2_HC_PROTOCOL	g<<DriverName>>Usb2HostController	=	{

		<<DriverName>>Usb2HostControllerGetCapability,

		<<DriverName>>Usb2HostControllerReset,

		<<DriverName>>Usb2HostControllerGetState,

		<<DriverName>>Usb2HostControllerSetState,

		<<DriverName>>Usb2HostControllerControlTransfer,

		<<DriverName>>Usb2HostControllerBulkTransfer,

		<<DriverName>>Usb2HostControllerAsyncInterruptTransfer,

		<<DriverName>>Usb2HostControllerSyncInterruptTransfer,

		<<DriverName>>Usb2HostControllerIsochronousTransfer,

		<<DriverName>>Usb2HostControllerAsyncIsochronousTransfer,	

		<<DriverName>>Usb2HostControllerGetRootHubPortStatus,

		<<DriverName>>Usb2HostControllerSetRootHubPortFeature,

		<<DriverName>>Usb2HostControllerClearRootHubPortFeature,

		<<UsbSpecificationMajorRevision>>,

		<<UsbSpecificationMinorRevision>>

};

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerGetCapability	(

		IN		EFI_USB2_HC_PROTOCOL		*This,

		OUT	UINT8																	*MaxSpeed,

		OUT	UINT8																	*PortNumber,

		OUT	UINT8																	*Is64BitCapable

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerReset	(

		IN	EFI_USB2_HC_PROTOCOL			*This,

		IN	UINT16																	Attributes

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerGetState	(

		IN		EFI_USB2_HC_PROTOCOL		*This,

		OUT	EFI_USB_HC_STATE						*State

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerSetState	(

		IN	EFI_USB2_HC_PROTOCOL			*This,

		IN	EFI_USB_HC_STATE							State

)

{

}

A.3.1	Usb2Hc.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

728DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerControlTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															DeviceSpeed,

		IN					UINTN																															MaximumPacketLength,

		IN					EFI_USB_DEVICE_REQUEST														*Request,

		IN					EFI_USB_DATA_DIRECTION														TransferDirection,

		IN	OUT	VOID																																*Data,																OPTIONAL

		IN	OUT	UINTN																															*DataLength,										OPTIONAL

		IN					UINTN																															TimeOut,

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,

		OUT				UINT32																														*TransferResult

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerBulkTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															EndPointAddress,

		IN					UINT8																															DeviceSpeed,

		IN					UINTN																															MaximumPacketLength,

		IN					UINT8																															DataBuffersNumber,

		IN	OUT	VOID																																*Data[EFI_USB_MAX_BULK_BUFFER_NUM],

		IN	OUT	UINTN																															*DataLength,

		IN	OUT	UINT8																															*DataToggle,

		IN					UINTN																															TimeOut,

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,

		OUT				UINT32																														*TransferResult

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerAsyncInterruptTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															EndPointAddress,					IN	UINT8	DeviceSpeed

		IN					UINTN																															MaxiumPacketLength,

		IN					BOOLEAN																													IsNewTransfer,

		IN	OUT	UINT8																															*DataToggle,

		IN					UINTN																															PollingInterval,					OPTIONAL

		IN					UINTN																															DataLength,										OPTIONAL

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,									OPTIONAL

		IN					EFI_ASYNC_USB_TRANSFER_CALLBACK					CallBackFunction,				OPTIONAL

		IN					VOID																																*Context													OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerSyncInterruptTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															EndPointAddress,

		IN					UINT8																															DeviceSpeed,

		IN					UINTN																															MaximumPacketLength,

		IN	OUT	VOID																																*Data,

		IN	OUT	UINTN																															*DataLength,

		IN	OUT	UINT8																															*DataToggle,

		IN					UINTN																															TimeOut,

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,

		OUT				UINT32																														*TransferResult

)

{

A.3.1	Usb2Hc.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

729DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerIsochronousTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															EndPointAddress,

		IN					UINT8																															DeviceSpeed,

		IN					UINTN																															MaximumPacketLength,

		IN					UINT8																															DataBuffersNumber,

		IN	OUT	VOID																																*Data[EFI_USB_MAX_ISO_BUFFER_NUM],

		IN					UINTN																															DataLength,

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,

		OUT				UINT32																														*TransferResult

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerAsyncIsochronousTransfer	(

		IN					EFI_USB2_HC_PROTOCOL																*This,

		IN					UINT8																															DeviceAddress,

		IN					UINT8																															EndPointAddress,

		IN					UINT8																															DeviceSpeed,

		IN					UINTN																															MaximumPacketLength,

		IN					UINT8																															DataBuffersNumber,

		IN	OUT	VOID																																*Data[EFI_USB_MAX_ISO_BUFFER_NUM],

		IN					UINTN																															DataLength,

		IN					EFI_USB2_HC_TRANSACTION_TRANSLATOR		*Translator,

		IN					EFI_ASYNC_USB_TRANSFER_CALLBACK					IsochronousCallBack,

		IN					VOID																																*Context																												OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerGetRootHubPortStatus	(

		IN		EFI_USB2_HC_PROTOCOL		*This,

		IN		UINT8																	PortNumber,

		OUT	EFI_USB_PORT_STATUS			*PortStatus

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerSetRootHubPortFeature	(

		IN	EFI_USB2_HC_PROTOCOL			*This,

		IN	UINT8																		PortNumber,

		IN	EFI_USB_PORT_FEATURE			PortFeature

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>Usb2HostControllerClearRootHubPortFeature	(

		IN	EFI_USB2_HC_PROTOCOL			*This,

		IN	UINT8																		PortNumber,

		IN	EFI_USB_PORT_FEATURE			PortFeature

)

{

}

A.3.1	Usb2Hc.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

730DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.1	Usb2Hc.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

731DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.2	ExtScsiPassThru.c	File

Example	A-14-Extended	SCSI	Pass	Thru	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_EXT_SCSI_PASS_THRU_PROTOCOL	g<<DriverName>>ExtScsiPassThru	=	{	NULL,

		<<DriverName>>ExtScsiPassThruPassThru,

		<<DriverName>>ExtScsiPassThruGetNextTargetLun,

		<<DriverName>>ExtScsiPassThruBuildDevicePath,

		<<DriverName>>ExtScsiPassThruGetTargetLun,

		<<DriverName>>ExtScsiPassThruResetChannel,

		<<DriverName>>ExtScsiPassThruResetTargetLun,

		<<DriverName>>ExtScsiPassThruGetNextTarget

};

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruPassThru	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL													*This,

		IN					UINT8																																							*Target,

		IN					UINT64																																						Lun,

		IN	OUT	EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET		*Packet,

		IN					EFI_EVENT																																			Event					OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruGetNextTargetLun	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL													*This,

		IN	OUT	UINT8																																							**Target,

		IN	OUT	UINT64																																						*Lun

)

{	

}

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruBuildDevicePath	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL													*This,

		IN					UINT8																																							*Target,

		IN					UINT64																																						Lun,

		IN	OUT	EFI_DEVICE_PATH_PROTOCOL																				**DevicePath

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruGetTargetLun	(

		IN		EFI_EXT_SCSI_PASS_THRU_PROTOCOL																*This,

		IN		EFI_DEVICE_PATH_PROTOCOL																							*DevicePath,

		OUT	UINT8																																										**Target,

		OUT	UINT64																																									*Lun

)

{

}

EFI_STATUS

EFIAPI

A.3.2	ExtScsiPassThru.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

732DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

<<DriverName>>ExtScsiPassThruResetChannel	(

		IN	EFI_EXT_SCSI_PASS_THRU_PROTOCOL																	*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruResetTargetLun	(

		IN	EFI_EXT_SCSI_PASS_THRU_PROTOCOL																	*This,

		IN	UINT8																																											*Target,

		IN	UINT64																																										Lun

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>ExtScsiPassThruGetNextTarget	(

		IN					EFI_EXT_SCSI_PASS_THRU_PROTOCOL													*This,

		IN	OUT	UINT8																																							**Target

)

{

}

A.3.2	ExtScsiPassThru.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

733DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.3	AtaPassThru.c	File

Example	A-15-ATA	Pass	Thru	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_ATA_PASS_THRU_PROTOCOL	g<<DriverName>>AtaScsiPassThru	=	{	NULL,

		<<DriverName>>AtaPassThruPassThru,

		<<DriverName>>AtaPassThruGetNextPort,

		<<DriverName>>AtaPassThruGetNextDevice,

		<<DriverName>>AtaPassThruBuildDevicePath,

		<<DriverName>>AtaPassThruGetDevice,

		<<DriverName>>AtaPassThruResetPort,

		<<DriverName>>AtaPassThruResetDevice

};

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruPassThru	(

		IN					EFI_ATA_PASS_THRU_PROTOCOL								*This,

		IN					UINT16																												Port,

		IN					UINT16																												PortMultiplierPort,

		IN	OUT	EFI_ATA_PASS_THRU_COMMAND_PACKET		*Packet,

		IN					EFI_EVENT																									Event																OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruGetNextPort	(

		IN					EFI_ATA_PASS_THRU_PROTOCOL								*This,

		IN	OUT	UINT16																												*Port

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruGetNextDevice	(

		IN					EFI_ATA_PASS_THRU_PROTOCOL								*This,

		IN					UINT16																												Port,

		IN	OUT	UINT16																												*PortMultiplierPort

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruBuildDevicePath	(

		IN					EFI_ATA_PASS_THRU_PROTOCOL								*This,

		IN					UINT16																												Port,

		IN					UINT16																												PortMultiplierPort,

		IN	OUT	EFI_DEVICE_PATH_PROTOCOL										**DevicePath

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruGetDevice	(

A.3.3	AtaPassThru.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

734DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN		EFI_ATA_PASS_THRU_PROTOCOL											*This,

		IN		EFI_DEVICE_PATH_PROTOCOL													*DevicePath,

		OUT	UINT16																															*Port,

		OUT	UINT16																															*PortMultiplierPort

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruResetPort	(

		IN	EFI_ATA_PASS_THRU_PROTOCOL												*This,

		IN	UINT16																																Port

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>AtaPassThruResetDevice	(

		IN	EFI_ATA_PASS_THRU_PROTOCOL												*This,

		IN	UINT16																																Port,

		IN	UINT16																																PortMultiplierPort

)

{

}

A.3.3	AtaPassThru.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

735DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.4	SimpleTextInput.c	File

Example	A-16-Simple	Text	Input	Protocols	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Simple	Text	Input	Ex	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL	g<<DriverName>>SimpleTextInputEx	=	{

		<<DriverName>>SimpleTextInputReset,

		<<DriverName>>SimpleTextInputReadKeyStrokeEx,

		NULL,

		<<DriverName>>SimpleTextInputSetState,

		<<DriverName>>SimpleTextInputRegisterKeyNotify,

		<<DriverName>>SimpleTextInputUnregisterKeyNotify

};

///

///	Simple	Text	Input	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SIMPLE_TEXT_INPUT_PROTOCOL	g<<DriverName>>SimpleTextInput	=	{

		(EFI_INPUT_RESET)	<<DriverName>>SimpleTextInputReset,

		<<DriverName>>SimpleTextInputReadKeyStroke,

		NULL

};

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputReset	(

		IN	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL			*This,

		IN	BOOLEAN																													ExtendedVerification

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputReadKeyStrokeEx	(

		IN		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL		*This,

		OUT	EFI_KEY_DATA																							*KeyData

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputSetState	(

		IN	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL			*This,

		IN	EFI_KEY_TOGGLE_STATE																*KeyToggleState

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputRegisterKeyNotify	(

		IN		EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL			*This,

		IN		EFI_KEY_DATA																								*KeyData,

		IN		EFI_KEY_NOTIFY_FUNCTION													KeyNotificationFunction,

A.3.4	SimpleTextInput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

736DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		OUT	EFI_HANDLE																										*NotifyHandle

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputUnregisterKeyNotify	(

		IN	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL				*This,

		IN	EFI_HANDLE																											NotificationHandle

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextInputReadKeyStroke	(

		IN		EFI_SIMPLE_TEXT_INPUT_PROTOCOL						*This,

		OUT	EFI_INPUT_KEY																							*Key

)

{

}

A.3.4	SimpleTextInput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

737DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.5	SimpleTextOutput.c	File

Example	A-17-Simple	Text	Output	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Simple	Text	Output	Protocol	Mode	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SIMPLE_TEXT_OUTPUT_MODE	g<<DriverName>>SimpleTextOutputMode	=	{

		0,																																															//	MaxMode

		0,																																															//	Mode

		EFI_TEXT_ATTR	(EFI_WHITE,	EFI_BACKGROUND_BLACK),	//	Attribute

		0,																																															//	CursorColumn

		0,																																															//	CursorRow

		TRUE																																													//	CursorVisible

};

///

///	Simple	Text	Output	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL	g<<DriverName>>SimpleTextOutput	=	{

		<<DriverName>>SimpleTextOutputReset,

		<<DriverName>>SimpleTextOutputOutputString,	

		<<DriverName>>SimpleTextOutputTestString,

		<<DriverName>>SimpleTextOutputQueryMode,	

		<<DriverName>>SimpleTextOutputSetMode,

		<<DriverName>>SimpleTextOutputSetAttribute,

		<<DriverName>>SimpleTextOutputClearScreen,

		<<DriverName>>SimpleTextOutputSetCursorPosition,

		<<DriverName>>SimpleTextOutputEnableCursor,

		&g<<DriverName>>SimpleTextOutputMode

};

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputReset	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	BOOLEAN																												ExtendedVerification

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputOutputString	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	CHAR16																													*String

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputTestString	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	CHAR16																													*String

)

{

}

A.3.5	SimpleTextOutput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

738DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputQueryMode	(

		IN		EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL			*This,

		IN		UINTN																													ModeNumber,

		OUT	UINTN																													*Columns,

		OUT	UINTN																													*Rows

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputSetMode	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	UINTN																														ModeNumber

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputSetAttribute	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	UINTN																														Attribute

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputClearScreen	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputSetCursorPosition	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	UINTN																														Column,

		IN	UINTN																														Row

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleTextOutputEnableCursor	(

		IN	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL				*This,

		IN	BOOLEAN																												Visible

)

{

}

A.3.5	SimpleTextOutput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

739DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.6	SerialIo.c	File

Example	A-18-Serial	I/O	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Serial	I/O	Protocol	Mode	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SERIAL_IO_MODE	g<<DriverName>>SerialIoMode	=	{

		0x00000000,													//	ControlMask

		0,																						//	Timeout

		0,																						//	BaudRate

		0,																						//	ReceiveF	ifoDepth

		0,																						//	DataBits

		DefaultParity,										//	Parity

		DefaultStopBits									//	StopBits

};

///

///	Serial	I/O	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SERIAL_IO_PROTOCOL	g<<DriverName>>SerialIo	=	{

		EFI_SERIAL_IO_PROTOCOL_REVISION,

		<<DriverName>>SerialIoReset,

		<<DriverName>>SerialIoSetAttributes,	

		<<DriverName>>SerialIoSetControl,

		<<DriverName>>SerialIoGetControl,

		<<DriverName>>SerialIoWrite,

		<<DriverName>>SerialIoRead,

		&g<<DriverName>>SerialIoMode

};

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoReset	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoSetAttributes	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This,

		IN	UINT64																						BaudRate,

		IN	UINT32																						ReceiveFifoDepth,

		IN	UINT32																						Timeout,

		IN	EFI_PARITY_TYPE													Parity,

		IN	UINT8																							DataBits,

		IN	EFI_STOP_BITS_TYPE										StopBits

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoSetControl	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This,

		IN	UINT32																						Control

A.3.6	SerialIo.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

740DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoGetControl	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This,

		OUT	UINT32																					*Control

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoWrite	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This,

		IN	OUT	UINTN																			*BufferSize,

		IN	VOID																								*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SerialIoRead	(

		IN	EFI_SERIAL_IO_PROTOCOL						*This,

		IN	OUT	UINTN																			*BufferSize,

		OUT	VOID																							*Buffer

)

{

}

A.3.6	SerialIo.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

741DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.7	GraphicsOutput.c	File

Example	A-19-Graphics	Output	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Graphics	Output	Protocol	Mode	structure

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE	g<<DriverName>>GraphicsOutputMode	=	{

		0,																		//	MaxMode

		0,																		//	Mode

		NULL,															//	Info

		0,																		//	SizeOfInfo

		0,																		//	FrameBufferBase

		0																			//	FrameBufferSize

};

///

///	Graphics	Output	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_GRAPHICS_OUTPUT_PROTOCOL	g<<DriverName>>GraphicsOutput	=	{

		<<DriverName>>GraphicsOutputQueryMode,

		<<DriverName>>GraphicsOutputSetMode,	

		<<DriverName>>GraphicsOutputBlt,

		&g<<DriverName>>GraphicsOutputMode

};

EFI_STATUS

EFIAPI

		<<DriverName>>GraphicsOutputQueryMode	(

		IN		EFI_GRAPHICS_OUTPUT_PROTOCOL										*This,

		IN		UINT32																																ModeNumber,

		OUT	UINTN																																	*SizeOfInfo,

		OUT	EFI_GRAPHICS_OUTPUT_MODE_INFORMATION		**Info

)

{

}

EFI_STATUS

EFIAPI

				<<DriverName>>GraphicsOutputSetMode	(

		IN	EFI_GRAPHICS_OUTPUT_PROTOCOL											*This,

		IN	UINT32																																	ModeNumber

)

{

}

EFI_STATUS

EFIAPI

				<<DriverName>>GraphicsOutputBlt	(

		IN	EFI_GRAPHICS_OUTPUT_PROTOCOL											*This,

		IN	EFI_GRAPHICS_OUTPUT_BLT_PIXEL										*BltBuffer,				OPTIONAL

		IN	EFI_GRAPHICS_OUTPUT_BLT_OPERATION						BltOperation,

		IN	UINTN																																		SourceX,

		IN	UINTN																																		SourceY,

		IN	UINTN																																		DestinationX,

		IN	UINTN																																		DestinationY,

		IN	UINTN																																		Width,

		IN	UINTN																																		Height,

A.3.7	GraphicsOutput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

742DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	UINTN																																		Delta										OPTIONAL

)

{

}

A.3.7	GraphicsOutput.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

743DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.8	BlockIo.c	File

Example	A-20-Block	I/O,	Block	I/O	2,	and	Storage	Security	Protocols	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Block	I/O	Media	structure

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_BLOCK_IO_MEDIA	g<<DriverName>>BlockIoMedia	=	{

		0,											//	MediaId

		FALSE,							//	RemovableMedia	

		FALSE,							//	MediaPresent

		TRUE,								//	LogicalPartition

		FALSE,							//	ReadOnly

		FALSE,							//	WriteCaching

		512,									//	BlockSize

		0,											//	IoAlign

		0,											//	LastBlock

		0,											//	LowestAlignedLba

		0,											//	LogicalBlocksPerPhysicalBlock

		0												//	OptimalTransferLengthGranularity

};

///

///	Block	I/O	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_BLOCK_IO_PROTOCOL	g<<DriverName>>BlockIo	=	{

		EFI_BLOCK_IO_PROTOCOL_REVISION3,														//	Revision	

		&g<<DriverName>>BlockIoMedia,																	//	Media

		(EFI_BLOCK_RESET)	<<DriverName>>BlockIoReset,	//	Reset

		<<DriverName>>BlockIoReadBlocks,														//	ReadBlocks

		<<DriverName>>BlockIoWriteBlocks,													//	WriteBlocks

		<<DriverName>>BlockIoFlushBlocks														//	FlushBlocks

};

///

///	Block	I/O	2	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_BLOCK_IO2_PROTOCOL	g<<DriverName>>BlockIo2	=	{

		&g<<DriverName>>BlockIoMedia,																	//	Media

		<<DriverName>>BlockIoReset,																			//	Reset

		<<DriverName>>BlockIoReadBlocksEx,												//	ReadBlocks

		<<DriverName>>BlockIoWriteBlocksEx,											//	WriteBlocks

		<<DriverName>>BlockIoFlushBlocksEx												//	FlushBlocks

};

///

///	Storage	Securtity	Command	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL	g<<DriverName>>StorageSecurityCommand	=	{

		<<DriverName>>StorageSecurityCommandReceiveData,

		<<DriverName>>StorageSecurityCommandSendData

};

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoReadBlocks	(

A.3.8	BlockIo.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

744DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN		EFI_BLOCK_IO_PROTOCOL																					*This,

		IN		UINT32																																				MediaId,

		IN	EFI_LBA																																				Lba,

		IN		UINTN																																					BufferSize,

		OUT	VOID																																						*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoWriteBlocks	(

		IN	EFI_BLOCK_IO_PROTOCOL																						*This,

		IN	UINT32																																					MediaId,

		IN	EFI_LBA																																				Lba,

		IN	UINTN																																						BufferSize,

		IN	VOID																																							*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoFlushBlocks	(

		IN	EFI_BLOCK_IO_PROTOCOL																					*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoReset	(

		IN	EFI_BLOCK_IO2_PROTOCOL																				*This,

		IN	BOOLEAN																																			ExtendedVerification

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoReadBlocksEx	(

		IN					EFI_BLOCK_IO2_PROTOCOL																*This,

		IN					UINT32																																MediaId,

		IN	EFI_LBA																																			LBA,

		IN	OUT	EFI_BLOCK_IO2_TOKEN																			*Token,

		IN					UINTN																																	BufferSize,

		OUT				VOID																																		*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoWriteBlocksEx	(

		IN					EFI_BLOCK_IO2_PROTOCOL																*This,

		IN					UINT32																																MediaId,

		IN	EFI_LBA																																			LBA,

		IN	OUT	EFI_BLOCK_IO2_TOKEN																			*Token,

		IN					UINTN																																	BufferSize,

		IN					VOID																																		*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>BlockIoFlushBlocksEx	(

		IN					EFI_BLOCK_IO2_PROTOCOL																*This,

		IN	OUT	EFI_BLOCK_IO2_TOKEN																			*Token

)

{

}

A.3.8	BlockIo.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

745DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

EFI_STATUS

EFIAPI

<<DriverName>>StorageSecurityCommandReceiveData	(

		IN		EFI_STORAGE_SECURITY_COMMAND_PROTOCOL				*This,

		IN		UINT32																																			MediaId,

		IN		UINT64																																			Timeout,

		IN		UINT8																																				SecurityProtocolId,

		IN		UINT16																																			SecurityProtocolSpecificData,

		IN		UINTN																																				PayloadBufferSize,	

		OUT	VOID																																					*PayloadBuffer

		OUT	UINTN																																				*PayloadTransferSize

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>StorageSecurityCommandSendData	(

		IN	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL					*This,

		IN	UINT32																																				MediaId,

		IN	UINT64																																				Timeout,

		IN	UINT8																																					SecurityProtocolId,

		IN	UINT16																																				SecurityProtocolSpecificData,

		IN	UINTN																																					PayloadBufferSize,

		IN	VOID																																						*PayloadBuffer

)

{

}

A.3.8	BlockIo.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

746DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.9	NiiUndi.c	File

Example	A-21-Network	Interface	Identifier	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Network	Interface	Identifier	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL	g<<DriverName>>Nii	=	{

		EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_REVISION,		//	Revision

		0,																																																			//	Id

		0,																																																			//	ImageAddr

		0,																																																			//	ImageSize

		{	'U',	'N',	'D',	'I'	},																														//	StringId

		EfiNetworkInterfaceUndi,																													//	Type

		PXE_ROMID_MAJORVER,																																		//	MajorVer

		PXE_ROMID_MINORVER,																																		//	MinorVer

		FALSE,																																															//	Ipv6Supported

		0																																																				//	IfNum	

};

A.3.9	NiiUndi.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

747DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.10	SimpleNetwork.c	File

Example	A-22-Simple	Network	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Simple	Network	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_SIMPLE_NETWORK_PROTOCOL	g<<DriverName>>SimpleNetwork	=	{

		EFI_SIMPLE_NETWORK_PROTOCOL_REVISION,							//	Revision

		<<DriverName>>SimpleNetworkStart,											//	Start

		<<DriverName>>SimpleNetworkStop,												//	Stop

		<<DriverName>>SimpleNetworkInitialize,						//	Initialize	

		<<DriverName>>SimpleNetworkReset,											//	Reset

		<<DriverName>>SimpleNetworkShutdown,								//	Shutdown

		<<DriverName>>SimpleNetworkReceiveFilters,		//	ReceiveFilters

		<<DriverName>>SimpleNetworkStationAddress,		//	StationAddress	

		<<DriverName>>SimpleNetworkStatistics,						//	Statistics

		<<DriverName>>SimpleNetworkMCastIpToMac,				//	MCastIpToMac	

		<<DriverName>>SimpleNetworkNvData,										//	NvData

		<<DriverName>>SimpleNetworkGetStatus,							//	GetStatus

		<<DriverName>>SimpleNetworkTransmit,								//	Transmit

		<<DriverName>>SimpleNetworkReceive,									//	Receive

		NULL,																																							//	WaitForPacket

		NULL																																								//	Mode	

};

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkStart	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkStop	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkInitialize	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This,

		IN	UINTN																																				ExtraRxBufferSize,		OPTIONAL

		IN	UINTN																																				ExtraTxBufferSize			OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkReset	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This

		IN	BOOLEAN																																		ExtendedVerification

)

{

A.3.10	SimpleNetwork.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

748DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkShutdown	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkReceiveFilters	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL															*This,

		IN	UINT32																																				Enable,

		IN	UINT32																																				Disable,

		IN	BOOLEAN																																			ResetMCastFilter,

		IN	UINTN																																					MCastFilterCnt,				OPTIONAL

		IN	EFI_MAC_ADDRESS																											*MCastFilter							OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkStationAddress	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL															*This,

		IN	BOOLEAN																																			Reset,

		IN	EFI_MAC_ADDRESS																											*New				OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkStatistics	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL															*This,

		IN	BOOLEAN																																			Reset,

		IN	OUT	UINTN																																	*StatisticsSize,			OPTIONAL

		OUT	EFI_NETWORK_STATISTICS																			*StatisticsTable			OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkMCastIpToMac	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL															*This,

		IN	BOOLEAN																																			IPv6,

		IN	EFI_IP_ADDRESS																												*IP,

		OUT	EFI_MAC_ADDRESS																										*MAC

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkNvData	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This,

		IN	BOOLEAN																																		ReadWrite,		

		IN	UINTN																																				Offset

		IN	UINTN																																				BufferSize,

		IN	OUT	VOID																																	*Buffer

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkGetStatus	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This,

		OUT	UINT32																																		*InterruptStatus,		OPTIONAL

A.3.10	SimpleNetwork.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

749DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		OUT	VOID																																				**TxBuf												OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkTransmit	(

		IN	EFI_SIMPLE_NETWORK_PROTOCOL														*This,

		IN	UINTN																																				HeaderSize,

		IN	UINTN																																				BufferSize,

		IN	VOID																																					*Buffer,

		IN	EFI_MAC_ADDRESS																										*SrcAddr,			OPTIONAL

		IN	EFI_MAC_ADDRESS																										*DestAddr,		OPTIONAL

		IN	UINT16																																			*Protocol			OPTIONAL

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>SimpleNetworkReceive	(

		IN					EFI_SIMPLE_NETWORK_PROTOCOL										*This,

		OUT				UINTN																																*HeaderSize,	OPTIONAL

		IN	OUT	UINTN																																*BufferSize,

		OUT				VOID																																	*Buffer,

		OUT				EFI_MAC_ADDRESS																						*SrcAddr,				OPTIONAL

		OUT				EFI_MAC_ADDRESS																						*DestAddr,			OPTIONAL

		OUT				UINT16																															*Protocol				OPTIONAL

)

{

}

A.3.10	SimpleNetwork.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

750DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.11	UserCredential.c	File

Example	A-23-User	Credential	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	User	Credential	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_USER_CREDENTIAL2_PROTOCOL	g<<DriverName>>UserCredential	=	{

		{	0x0,	0x0,	0x0,	{0x0,	0x0,	0x0,	0x0,	0x0,	0x0,	0x0,	0x0}},	//	Identifier

		{	0x0,	0x0,	0x0,	{0x0,	0x0,	0x0,	0x0,	0x0,	0x0,	0x0,	0x0}},	//	Type

		<<DriverName>>UserCredentialEnroll,																									//	Enroll

		<<DriverName>>UserCredentialForm,																											//	Form

		<<DriverName>>UserCredentialTile,																											//	Tile

		<<DriverName>>UserCredentialTitle,																										//	Title

		<<DriverName>>UserCredentialUser,																											//	User

		<<DriverName>>UserCredentialSelect,																									//	Select

		<<DriverName>>UserCredentialDeselect,																							//	Deselect

		<<DriverName>>UserCredentialDefault,																								//	Default

		<<DriverName>>UserCredentialGetInfo,																								//	GetInfo

		<<DriverName>>UserCredentialGetNextInfo,																				//	GetNextInfo

		0,																																																										//	Capabilities

		<<DriverName>>UserCredentialDelete																										//	Delete	

};

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialEnroll	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN							EFI_USER_PROFILE_HANDLE																												User

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialForm	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		OUT						EFI_HII_HANDLE																																					*Hii,

		OUT						EFI_GUID																																											*FormSetId,

		OUT						EFI_FORM_ID																																								*FormId

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialTile	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN	OUT			UINTN																																														*Width,

		IN	OUT			UINTN																																														*Height,

		OUT						EFI_HII_HANDLE																																					*Hii,

		OUT						EFI_IMAGE_ID																																							*Image

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialTitle	(

A.3.11	UserCredential.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

751DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		OUT						EFI_HII_HANDLE																																					*Hii,

		OUT						EFI_STRING_ID																																						*String

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialUser	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN							EFI_USER_PROFILE_HANDLE																												User,

		OUT						EFI_USER_INFO_IDENTIFIER																											*Identifier

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialSelect	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		OUT						EFI_CREDENTIAL_LOGON_FLAGS																									*AutoLogon

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialDeselect	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialDefault	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		OUT						EFI_CREDENTIAL_LOGON_FLAGS																									*AutoLogon

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialGetInfo	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN							EFI_USER_INFO_HANDLE																															UserInfo,

		OUT						EFI_USER_INFO																																						*Info,

		IN	OUT			UINTN																																														*InfoSize

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialGetNextInfo	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN	OUT	EFI_USER_INFO_HANDLE																																	*UserInfo

)

{

}

EFI_STATUS

EFIAPI

<<DriverName>>UserCredentialDelete	(

		IN	CONST	EFI_USER_CREDENTIAL2_PROTOCOL																						*This,

		IN	EFI_USER_PROFILE_HANDLE																																		User

)

{

}

A.3.11	UserCredential.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

752DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.11	UserCredential.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

753DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.3.12	LoadFile.c	File

Example	A-24-Load	File	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	Load	File	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_LOAD_FILE_PROTOCOL	g<<DriverName>>LoadFile	=	{

		<<DriverName>>LoadFileLoadFile

};

EFI_STATUS

EFIAPI

<<DriverName>>LoadFileLoadFile	(

		IN					EFI_LOAD_FILE_PROTOCOL						*This,

		IN					EFI_DEVICE_PATH_PROTOCOL				*FilePath,

		IN					BOOLEAN																					BootPolicy,

		IN	OUT	UINTN																							*BufferSize,

		IN					VOID																								*Buffer			OPTIONAL

)

{

}

A.3.12	LoadFile.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

754DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.4	Platform	Specific	UEFI	Driver	Templates

This	section	contains	templates	for	the	implementation	of	protocols	that	are	typically	provided	with	the
UEFI	platform	firmware.

A.4	Platform	Specific	UEFI	Driver	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

755DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.4.1	EdidOverride.c	File

Example	A-25-EDID	Override	Protocol	implementation	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#include	"<<DriverName>>.h"

///

///	EDID	Override	Protocol	instance

///

GLOBAL_REMOVE_IF_UNREFERENCED

EFI_EDID_OVERRIDE_PROTOCOL	g<<DriverName>>EdidOverride	=	{

		<<DriverName>>EdidOverrideGetEdid

};

EFI_STATUS

EFIAPI

<<DriverName>>EdidOverrideGetEdid	(

		IN					EFI_EDID_OVERRIDE_PROTOCOL		*This,

		IN					EFI_HANDLE																		*ChildHandle,

		OUT				UINT32																						*Attributes,

		IN	OUT	UINTN																							*EdidSize,

		IN	OUT	UINT8																							**Edid

)

{

}

A.4.1	EdidOverride.c	FileEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

756DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5	EDK	II	Package	Extension	Templates

This	section	contains	templates	for	the	extending	the	contents	of	an	EDK	II	package.	This	is	not	a
common	operation,	but	some	UEFI	Driver	implementations	may	choose	to	define	new	protocols,	new
GUIDs,	or	new	library	classes.	This	section	also	covers	how	to	include	protocols,	GUIDs,	and	library
classes	in	a	UEFI	Driver.

A.5	EDK	II	Package	Extension	TemplatesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

757DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5.1	Protocol	File	Template

The	.h	files	for	protocols	are	placed	in	the	include	directories	of	EDK	II	packages.	The	typical	path	to	a
protocol	.h	file	is		<<PackageName>>/Include/Protocol/<<ProtocolName>>.h	.	For	example,	all	the	protocols	defined	in
the	UEFI	Specification	can	be	found	in	the	EDK	II		MdePkg		in		/MdePkg/Include/Protocol	.	When	a	new	protocol	is
defined	and	added	to	an	include	directory	of	an	EDK	II	package,	the	protocol	must	also	be	added	to	the
	[Protocols]		section	of	a	package's	.dec	file.	The	.dec	file	is	where	the	C	variable	name	for	the	protocol	is
declared	and	mapped	to	GUID	value	for	the	protocol.	Defining	a	new	protocol	is	not	commonly	required
when	implementing	a	new	UEFI	Driver.	If	a	UEFI	Driver	implementation	does	require	a	new	protocol
definition,	then	the	new	protocol	is	usually	added	to	the	same	EDK	II	package	that	contains	the	UEFI
Driver	implementation.

The	example	below	shows	a	template	for	adding	a	new	protocol	to	the		[Protocols]		section	of	an	EDK	II
package	.dec	file.	Example	A-26	shows	the	template	for	the	.h	files	for	protocols	placed	in	the	include
directory	of	an	EDK	II	package.

Example	A-26-Add	protocol	to	an	EDK	II	package

[Protocols]

		Include/Protocol/<<ProtocolName>>.h

		gEfi<<ProtocolName>>ProtocolGuid	=	<<GUID_STRUCT>>

Example	A-27-Protocol	include	file	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#ifndef	__<<PROTOCOL_NAME>>_H__

#define	__<<PROTOCOL_NAME>>_H__

#define	EFI_<<PROTOCOL_NAME>>_PROTOCOL_GUID	\

		<<GUID_STRUCT>>

///

///	Forward	declaration

///

typedef	struct	_EFI_<<PROTOCOL_NAME>>_PROTOCOL	EFI_<<PROTOCOL_NAME>>_PROTOCOL;

///

///	Function	prototypes

///

typedef

EFI_STATUS

(EFIAPI	*	EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_1>>)(

		IN	EFI_<<PROTOCOL_NAME>>_PROTOCOL													*This

		//

		//	Place	additional	function	arguments	here

		//

);

typedef	EFI_STATUS

(EFIAPI	*EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_2>>)(

		IN	EFI_<<PROTOCOL_NAME>>_PROTOCOL														*This

		//

		//	Place	additional	function	arguments	here

		//

);

typedef	EFI_STATUS

(EFIAPI	*EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_N>>)(

A.5.1	Protocol	File	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

758DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		IN	EFI_<<PROTOCOL_NAME>>_PROTOCOL														*This

		//

		//	Place	additional	function	arguments	here

		//

);

///

///	Protocol	structure

///

typedef	struct_EFI_<<PROTOCOL_NAME>>_PROTOCOL	{

		EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_1>>		<<FunctionName1>>;

		EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_2>>		<<FunctionName2>>;

		//	.	.	.

		EFI_<<PROTOCOL_NAME>>_<<FUNCTION_NAME_N>>		<<FunctionNameN>>;

		//

		//	Place	protocol	data	fields	here

		//

}

extern	EFI_GUID	gEfi	<<ProtocolName>>ProtocolGuid;

#endif

A.5.1	Protocol	File	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

759DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5.2	GUID	File	Template

GUIDs	and	their	associated	data	structures	are	declared	just	like	protocols.	The	only	difference	is	that
GUIDs	are	typically	placed	in	a	different	subdirectory	of	an	EDK	II	package.	The	typical	path	to	a	protocol
.h	file	is		<<PackageName>>/Include/Guid/<<GuidName>>.h	.	For	example,	all	the	GUIDs	defined	in	the	UEFI	Specification
can	be	found	in	the	EDK	II	MdePg	in	/MdePkg/Include/Guid.	When	a	new	GUID	is	defined	and	added	to	an
include	directory	of	an	EDK	II	package,	the	GUID	must	also	be	added	to	the	[Guids]	section	of	a
package's	.dec	file.	The	.dec	file	is	where	the	C	variable	name	for	the	GUID	is	declared	and	mapped	to
GUID	value	for	the	protocol.	Defining	a	new	GUID	is	not	commonly	required	when	implementing	a	new
UEFI	Driver.	If	a	UEFI	Driver	implementation	does	require	a	new	GUID	definition,	then	the	new	GUID	is
usually	added	to	the	same	EDK	II	package	that	contains	the	UEFI	Driver	implementation.

The	following	example	shows	a	template	for	adding	a	new	GUID	to	the	[Guids]	section	of	an	EDK	II
package	.dec	file.	Following	that,	Example	A-29	shows	the	template	for	the	.h	files	for	GUIDs	placed	in
the	include	directory	of	an	EDK	II	package.

Example	A-28-Add	GUID	to	an	EDK	II	package

[Guids]

		Include/Guid/<<GuidName>>.h

		gEfi<<GuidName>>Guid	=	<<GUID_STRUCT>>

Example	A-29-GUID	include	file	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#ifndef	__<<GUID_NAME>>_H__

#define	__<<GUID_NAME>>_H__

#define	EFI_<<GUID_NAME>>_GUID	\

		<<GUID_STRUCT>>

///

///	GUID	specific	defines

///

///

///	GUID	specific	structures

///

typedef	struct	{

		//

		//	Place	GUID	specific	data	fields	here

		//

}	EFI_<<GUID_NAME>>_GUID;

extern	EFI_GUID	gEfi	<<GuidName>>Guid;

#endif

A.5.2	GUID	File	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

760DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5.3	Library	Class	File	Template

Library	Classes	and	their	associated	functions,	defines,	and	data	structures	are	declared	very	similar	to
protocols	and	GUIDs.	The	difference	is	that	Library	Classes	are	typically	placed	in	a	different
subdirectory	of	an	EDK	II	package.	The	typical	path	to	a	library	.h	file	is
	<<PackageName>>/Include/Library/<<LibraryName>>.h	.	For	example,	all	the	libraries	classes	defined	by	the	MdePkg
can	be	found	in	the	EDK	II	/MdePkg/Include/Library.	When	a	new	library	class	is	defined	and	added	to	an
include	directory	of	an	EDK	II	package,	the	library	class	must	also	be	added	to	the	[LibraryClasses]
section	of	a	package's	.dec	file.	The	.dec	file	is	where	the	mapping	between	the	name	of	the	library
class	and	the	path	to	the	include	file	for	the	library	class	is	declared.	Defining	a	new	library	class	is	not
commonly	required	when	implementing	a	new	UEFI	Driver.	If	a	UEFI	Driver	implementation	does	require	a
new	library	class,	then	the	new	library	class	is	usually	added	to	the	same	EDK	II	package	that	contains
the	UEFI	Driver	implementation.

Example	A-30	shows	a	template	for	adding	a	new	library	class	to	the	[LibraryClasses]	section	of	an	EDK	II
package	.dec	file.	Following	that,	Example	A-31	shows	the	template	for	the	.h	files	for	a	library	class
placed	in	the	include	directory	of	an	EDK	II	package.	All	public	functions	provided	by	a	library	class	must
use	the		EFIAPI		calling	convention.	The	return	type	for	a	library	class	function	is	not	required	to	be
	EFI_STATUS	.		EFI_STATUS		is	only	shown	in	this	template	as	an	example.

Example	A-30-Add	Library	Class	to	an	EDK	II	package

[LibraryClasses]

		##	@libraryclass	<<BriefDescription>>

		##

		<<LibraryClassName>>|Include/Library/<<LibraryClassName>>.h

Example	A-31-Library	Class	include	file	template

/**	@file

		<<BriefDescription>>

		<<DetailedDescription>>

		<<Copyright>>

		<<License>>

**/

#ifndef	__<<LIBRARY_CLASS_NAME>>_H__

#define	__<<LIBRARY_CLASS_NAME>>_H__

///

///	Library	class	public	defines

///

///

///	Library	class	public	structures/unions

///

///

///	Library	class	public	functions

///

EFI_STATUS

EFIAPI

LibraryFunction1	(

		//

		//	Additional	function	arguments	here.

		//

);

VOID

EFIAPI

LibraryFunction2	(

		//

		//	Additional	function	arguments	here.

		//

A.5.3	Library	Class	File	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

761DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

);

UINT8

EFIAPI

LibraryFunction3	(

		//

		//	Additional	function	arguments	here.

		//

);

#endif

A.5.3	Library	Class	File	TemplateEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

762DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

A.5.4	Including	Protocols,	GUIDs,	and	Library	Classes

A	UEFI	Driver	that	produces	or	consumes	a	protocol	or	GUID	must	include	the	protocol	or	GUID
definitions	using		#include		statements	and	also	declare	the	usage	of	those	Protocols	or	GUIDs	in	the
	[Protocols]		and		[Guids]		sections	of	the	INF	file	for	the	UEFI	Driver.	A	UEFI	Driver	that	uses	defines,
structures,	unions,	or	functions	from	a	library	class	must	include	the	those	definitions	using	an		#include	
statement.

The		#include		statements	use	paths	in	EDK	II	packages	to	the	.h	files	for	the	required	protocols	or	GUIDs
or	library	classes.	The	include	paths	that	an	EDK	II	package	supports	are	declared	in	the	[Includes]
section	of	an	EDK	II	package.	An	EDK	II	package	typically	uses	an	include	directory	called	Include	and
use	subdirectories	called

Protocol	and	Guid	and	Library	for	.h	files.	The	example	below	shows	some	example		#include		statements
for	a	UEFI	Driver	that	uses	protocols	and	GUIDs	and	library	classes	from	the		MdePkg	.	The		MdePkg		contains
all	the	protocols	and	GUIDs	defined	in	the	UEFI	Specification	along	with	a	number	of	library	classes	that
are	very	useful	to	UEFI	Drivers.	The	include	file	Uefi.h	pulls	in	all	the	standard	definitions	from	the	UEFI
Specification.	This	file	must	be	included	before	any	other	include	files.	This	next	three	include
statements	pull	in	the	Block	I/O	Protocol,	the	Driver	Binding	Protocol,	and	the	Component	Name	2
Protocol.	The	next	2	include	statements	pull	in	the	definitions	for	the	UEFI	Global	Variable	GUID	and	the
GUID	associated	with	the	SMBIOS	table	that	may	be	registered	in	the	UEFI	System	Table.	The	last	set	of
include	statements	pull	in	the	definitions	from	a	number	of	library	classes	that	are	commonly	used	by
UEFI	Drivers.

Example	A-32-Protocol,	GUID,	and	Library	Class	include	statements

#include	<Uefi.h>

#include	<Protocol/DriverBinding.h>

#include	<Protocol/ComponentName2.h>

#include	<Protocol/BlockIo.h>

#include	<Guid/GlobalVariable.h>

#include	<Guid/Smbios.h>

#include	<Library/UefiBootServicesTableLib.h>

#include	<Library/MemoryAllocationLib.h>

#include	<Library/BaseMemoryLib.h>

#include	<Library/BaseLib.h>

#include	<Library/UefiLib.h>

#include	<Library/DebugLib.h>

Example	A-33,	below,	shows	a	portion	of	an	INF	file	for	the	same	UEFI	Driver	that	requires	the	protocols
and	GUIDs	included	in	Example	A-32	above.	A	UEFI	Driver	must	declare	the	Protocols,	GUIDs,	and	Library
Classes	the	UEFI	Driver	uses	in	the	INF	file.	The	comment	blocks	associated	with	each	Protocol	and	GUID
and	optional,	but	they	describe	how	each	Protocol	and	GUID	is	used	by	the	UEFI	Driver.	This	specific
example	shows	that	this	UEFI	Driver	produces	the	Driver	Binding	Protocol	and	the	Component	Name
Protocol,	and	it	consumes	the	Block	I/O	Protocol	in	the		Start()		function	of	the	Driver	Binding	Protocol.	It
also	shows	that	UEFI	Global	Variable	GUID	is	used	to	access	the	variable	called		ConIn		and	that	the
SMBIOS	Table	GUID	is	used	to	lookup	the	SMBIOS	Table	in	the	UEFI	System	Table.

Example	A-33-Protocol	and	GUID	INF	statements

[LibraryClasses]

		UefiBootServicesTableLib

		MemoryAllocationLib

		BaseMemoryLib

		BaseLib

		UefiLib

A.5.4	Including	Protocols,	GUIDs,	and	Library	ClassesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

763DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

		DebugLib

[Protocols]

		gEfiDriverBindingProtocolGuid			##	PRODUCES	

		gEfiComponentName2ProtocolGuid		##	PRODUCES	

		gEfiBlockIoProtocolGuid									##	TO_START

[Guids]

		gEfiGlobalVariableGuid										##	CONSUMES	##	Variable:L"ConIn"	

		gEfiSmbiosTableGuid	##	CONSUMES

A.5.4	Including	Protocols,	GUIDs,	and	Library	ClassesEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

764DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Appendix	B	EDK	II	Sample	Drivers
This	appendix	lists	sample	UEFI	Drivers	in	the	EDK	II	open	source	project	along	with	their	UEFI	Driver
related	properties.	This	is	not	an	exhaustive	list	of	UEFI	Drivers	available	from	the	EDK	II	open	source
project.	Instead,	a	set	of	UEFI	Drivers	that	provide	examples	of	each	major	UEFI	Driver	feature	this	guide
describes	are	listed.	This	appendix	may	be	used	to	review	UEFI	Driver	implementations	that	implement	a
specific	UEFI	Driver	feature.	Or	it	may	be	used	to	find	an	example	UEFI	Driver	with	a	feature	set	that
closely	matches	the	features	required	for	a	new	UEFI	Driver	so	an	existing	driver	can	be	cloned	as	a
starting	point.

Appendix	B	EDK	II	Sample	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

765DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	47-UEFI	Driver	Properties

Field Field	value Description

DB Number	of	Driver	Binding	Protocols	installed	in	the	driver	entry	point.

CFG 1 Driver	Configuration	Protocol	is	installed	in	the	driver	entry	point.

2 Driver	Configuration	2	Protocol	is	installed	in	the	driver	entry	point.

* Both	Driver	Configuration	and	Driver	Configuration	2	are	installed.

H HII	packages	are	installed	in	the	driver	entry	point	for	configuration.

DIAG 1 Driver	Diagnostics	Protocol	is	installed	in	the	driver	entry	point.

2 Driver	Diagnostics	2	Protocol	is	installed	in	the	driver	entry	point.

* Both	Driver	Diagnostics	and	Driver	Diagnostics	2	are	installed.

CN 1 Component	Name	Protocol	is	installed	in	the	driver	entry	point.

2 Component	Name	2	Protocol	is	installed	in	the	driver	entry	point.

* Both	Component	Name	and	Component	Name	2	are	installed.

Class B Bus	driver.

D Device	driver.

H Hybrid	driver.

R Root	bridge	driver.

S Service	driver.

I Initializing	driver.

Child All All	child	handles	in	first	call	to	Start().

1/All Can	create	1	child	handle	at	a	time	or	all	child	handles	in	Start().

1 Creates	at	most	1	child	handle	in	Start().

0 Create	no	child	handles	in	Start().	Used	for	hot-plug	bus	types.

Parent Number	of	parent	drivers	to	this	driver

	Field	 	Field	 	Description	

	value	

Type B UEFI	Boot	Services	Driver.	UEFI	Runtime	Driver.

R

UL Y Driver	is	unloadable.

HP Y Driver	supports	a	Hot	Plug	device	or	bus

Appendix	B	EDK	II	Sample	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

766DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Table	48-Sample	UEFI	Driver	Properties

Driver DB CFG DIAG CN CLASS

IntelFrameworkModulePkg/Bus/Isa/		IsaBusDxe	 1 - - * B

IntelFrameworkModulePkg/Bus/Isa/		IsaFloppyDxe	 1 - - * D

IntelFrameworkModulePkg/Bus/Isa/		IsaSerialDxe	 1 - - * B

IntelFrameworkModulePkg/Bus/Isa/		Ps2KeyboardDxe	 1 - - * D

IntelFrameworkModulePkg/Bus/Isa/		Ps2MouseDxe	 1 - - * D

MdeModulePkg/Bus/Pci/	PciBusDxe	 1 - - * B

DuetPkg/	PciBusNoEnumerationDxe	 1 - - * B

MdeModulePkg/Bus/Pci/	UhciDxe	 1 - - * D

MdeModulePkg/Bus/Pci/	EhciDxe	 1 - - * D

MdeModulePkg/Bus/Pci/	XhciDxe	 1 - - * D

OptionRomPkg/	UndiRuntimeDxe	 1 - - - B

OptionRomPkg/	CirrusLogic5430Dxe	 1 - - * D

MdeModulePkg/Bus/Scsi/	ScsiBusDxe	 1 - - * B

MdeModulePkg/Bus/Scsi/	ScsiDiskDxe	 1 - - * D

MdeModulePkg/Bus/Ata/		AtaAtapiPassThruDxe	 1 - - * D

MdeModulePkg/Bus/Ata/	AtaBusDxe	 1 - - * B

MdeModulePkg/Bus/Usb/	UsbBusDxe	 1 - - * B

MdeModulePkg/Bus/Usb/	UsbKbDxe	 1 - - * D

MdeModulePkg/Bus/Usb/		UsbMassStorageDxe	 1 - - * D

MdeModulePkg/Bus/Usb/	UsbMouseDxe	 1 - - * D

IntelFrameworkModulePkg/Bus/Pci/		IdeBusDxe	 1 1 * * H

FatPkg/	EnhancedFatDxe	 1 - - * D

MdeModulePkg/Universal/Console/		ConPlatfomDxe	 2 - - * D

MdeModulePkg/Universal/Console/		ConSplitterDxe	 4 - - * B

MdeModulePkg/Universal/Console/		TerminalDxe	 1 - - * H

MdeModulePkg/Universal/	EbcDxe	 - - - - S

PcAtChipsetPkg/	PciHostBridgeDxe	 - - - - R

MdeModulePkg/Universal/Network/		Ip4ConfigDxe	 1 H - * H

MdeModulePkg/Universal/		HiiResourcesSampleDxe	 - H - - S

Appendix	B	EDK	II	Sample	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

767DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Driver CHILD PARENT TYPE UL HP

IntelFrameworkModulePkg/Bus/Isa/		IsaBusDxe	 All 1 B - -

IntelFrameworkModulePkg/Bus/Isa/		IsaFloppyDxe	 - 1 B - -

IntelFrameworkModulePkg/Bus/Isa/		IsaSerialDxe	 1 1 B - -

IntelFrameworkModulePkg/Bus/Isa/		Ps2KeyboardDxe	 - 1 B - -

IntelFrameworkModulePkg/Bus/Isa/		Ps2MouseDxe	 - 1 B - -

MdeModulePkg/Bus/Pci/	PciBusDxe	 1/All 1 B - Y

DuetPkg/	PciBusNoEnumerationDxe	 1/All 1 B - -

MdeModulePkg/Bus/Pci/	UhciDxe	 - 1 B - -

MdeModulePkg/Bus/Pci/	EhciDxe	 - 1 B - -

MdeModulePkg/Bus/Pci/	XhciDxe	 - 1 B - -

OptionRomPkg/	UndiRuntimeDxe	 1 1 R - -

OptionRomPkg/	CirrusLogic5430Dxe	 - 1 B - -

MdeModulePkg/Bus/Scsi/	ScsiBusDxe	 1/All 1 B - -

MdeModulePkg/Bus/Scsi/	ScsiDiskDxe	 - 1 B - -

MdeModulePkg/Bus/Ata/		AtaAtapiPassThruDxe	 - 1 B - -

MdeModulePkg/Bus/Ata/	AtaBusDxe	 1/All 1 B - -

MdeModulePkg/Bus/Usb/	UsbBusDxe	 0 1 B - Y

MdeModulePkg/Bus/Usb/	UsbKbDxe	 - 1 B - -

MdeModulePkg/Bus/Usb/		UsbMassStorageDxe	 - 1 B - -

MdeModulePkg/Bus/Usb/	UsbMouseDxe	 - 1 B - -

IntelFrameworkModulePkg/Bus/Pci/		IdeBusDxe	 1/All 1 B - -

FatPkg/	EnhancedFatDxe	 - 1 B Y -

MdeModulePkg/Universal/Console/		ConPlatfomDxe	 - 1 B - -

MdeModulePkg/Universal/Console/		ConSplitterDxe	 All >1 B - -

MdeModulePkg/Universal/Console/		TerminalDxe	 1 1 B - -

MdeModulePkg/Universal/	EbcDxe	 - - B - -

PcAtChipsetPkg/	PciHostBridgeDxe	 - - B - -

MdeModulePkg/Universal/Network/		Ip4ConfigDxe	 All 1 B Y -

MdeModulePkg/Universal/		HiiResourcesSampleDxe	 - - B Y -

Appendix	B	EDK	II	Sample	DriversEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

768DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

Appendix	C	Glossary
The	following	table	defines	terms	used	in	this	document.	See	the	glossary	in	the	UEFI	Specification	for
definitions	of	additional	terms.

Table	49-Definitions	of	terms

Term Definition

'' Element	of	an	enumeration.	Type	INTN.

ACPI Advanced	Configuration	and	Power	Interface.

ANSI American	National	Standards	Institute.

API Application	programming	interface.

ASCII American	Standard	Code	for	Information	Interchange.

ATAPI Advanced	Technology	Attachment	Packet	Interface.

BAR Base	Address	Register.

BBS BIOS	Boot	Specification.

BC Base	Code.

BEV Bootstrap	Entry	Vector.	A	pointer	that	points	to	code	inside	an	option	ROM
that	directly	loads	an	OS.

BIOS Basic	input/output	system.

BIS Boot	Integrity	Services.

BM Boot	manager.

BOOLEAN Logical	Boolean.	1-byte	value	containing	a	0	for		FALSE		or	a	1	for		TRUE	.	Other
values	are	undefined.

BOT Bulk-Only	Transport.

BS EFI	boot	services	table	or	EFI	Boot	Service(s).

CBI Control/Bulk/Interrupt	Transport.

CBW Command	Block	Wrapper.

CHAR16
2-byte	character.	Unless	otherwise	specified,	all	strings	are	stored	in	the
UTF-16	encoding	format	as	defined	by	Unicode	2.1	and	ISO/IEC	10646
standards.

CHAR8 1-byte	character.

CID Compatible	ID.

CONST Declares	a	variable	to	be	of	type	const.	This	modifier	is	a	hint	to	the	compiler
to	enable	optimization	and	stronger	type	checking	at	compile	time.

CR Containing	Record.

CRC Cyclic	Redundancy	Check.

CSW Command	Status	Wrapper.

DAC Dual	Address	Cycle.

DHCP4 Dynamic	Host	Configuration	Protocol	Version	4.

DID Device	ID.

Appendix	C	GlossaryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

769DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

DIG64 Developer's	Interface	Guide	for	64-bit	Intel	Architecture-based	Servers.

DMA Direct	Memory	Access.

EBC EFI	Byte	Code.

ECR Engineering	Change	Request.

EFI Extensible	Firmware	Interface.

EFI_EVENT Handle	to	an	event	structure.	Type	VOID	*.

EFI_GUID 128-bit	buffer	containing	a	unique	identifier	value.	Unless	otherwise
specified,	aligned	on	a	64-bit	boundary.

EFI_HANDLE A	collection	of	related	interfaces.	Type	VOID	*.

EFI_IP_ADDRESS 16-byte	buffer	aligned	on	a	4-byte	boundary.	An	IPv4	or	IPv6	internet	protocol
address.

EFI_Ipv4_ADDRESS 4-byte	buffer.	An	IPv4	internet	protocol	address.

EFI_Ipv6_ADDRESS 16-byte	buffer.	An	IPv6	internet	protocol	address.

EFI_LBA Logical	block	address.	Type	UINT64.

EFI_MAC_ADDRESS 32-byte	buffer	containing	a	network	Media	Access	Controller	address.

EFI_STATUS Status	code.	Type	INTN.

EFI_TPL Task	priority	level.	Type	UINTN.

EISA Extended	Industry	Standard	Architecture.

FAT File	allocation	table.

FIFO First	In	First	Out.

FPSWA Floating	Point	Software	Assist.

FRU Field	Replaceable	Unit.

FTP File	Transfer	Protocol.

GPT Guided	Partition	Table.

GUID Globally	Unique	Identifier.

HC Host	controller.

HID Hardware	ID.

I/O Input/output.

IA32 32-bit	Intel	architecture.

IBV Independent	BIOS	vendor.

IDE Integrated	Drive	Electronics.

IEC International	Electrotechnical	Commission.

IHV Independent	hardware	vendor.

IN Datum	is	passed	to	the	function.

INT Interrupt.

INT16 2-byte	signed	value.

INT32 4-byte	signed	value.

INT64 8-byte	signed	value.

Appendix	C	GlossaryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

770DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

INT8 1-byte	signed	value.

INTN Signed	value	of	native	width.	(4	bytes	on	IA32,	8	bytes	on	X64	and	IPF)

IPF Itanium	processor	family.

Ipv4 Internet	Protocol	Version	4.

Ipv6 Internet	Protocol	Version	6.

ISA Industry	Standard	Architecture.

ISO Industry	Standards	Organization.

iSCSI SCSI	protocol	over	TCP/IP.

KB Keyboard.

LAN Local	area	network.

LUN Logical	Unit	Number.

MAC Media	Access	Controller.

MMIO Memory	Mapped	I/O.

NIC Network	interface	controller.

NII Network	Interface	Identifier.

NVRAM Nonvolatile	RAM.

OEM Original	equipment	manufacturer.

OHCI Open	Host	Controller	Interface.

OpROM Option	ROM.

OPTIONAL Datum	that	is	passed	to	the	function	is	optional,	and	a		NULL		may	be	passed
if	the	value	is	not	supplied.

OS Operating	system.

OUT Datum	is	returned	from	the	function.

PCI Peripheral	Component	Interconnect.

PCMCIA Personal	Computer	Memory	Card	International	Association.

PE Portable	Executable.

PE/COFF PE32,	PE32+,	or	Common	Object	File	Format.

PNPID Plug	and	Play	ID.

POST Power	On	Self	Test.

PPP Point-to-Point	Protocol.

PUN Physical	Unit	Number.

PEI Pre-boot	Execution	Environment.

PXE	BC	(or	PxeBc) PXE	Base	Code	Protocol.

QH Queue	Head.

RAID Redundant	Array	of	Inexpensive	Disks.

RAM Random	access	memory.

ROM Read-only	memory.

RT EFI	Runtime	Table	and	EFI	Runtime	Service(s).

Appendix	C	GlossaryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

771DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

SAL System	Abstraction	Layer.

SCSI Small	Computer	System	Interface.

SIG Special	Interest	Group.

S.M.A.R.T. Self-Monitoring	Analysis	Reporting	Technology.

SMBIOS System	Management	BIOS.

SMBus System	Management	Bus.

SNP Simple	Network	Protocol.

SPT SCSI	Pass	Thru.

ST EFI	System	Table

STATIC The	function	has	local	scope.	This	modifier	replaces	the	standard	C	static
key	word,	so	it	can	be	overloaded	for	debugging.

TCP/IP Transmission	Control	Protocol/Internet	Protocol.

TD Transfer	Descriptor.

TPL Task	Priority	Level.

UART Universal	Asynchronous	Receiver-Transmitter.

UHCI Universal	Host	Controller	Interface.

UID Unique	ID.

UINT16 2-byte	unsigned	value.

UINT32 4-byte	unsigned	value.

UINT64 8-byte	unsigned	value.

UINT8 1-byte	unsigned	value.

Appendix	C	GlossaryEDK	II	Driver	Writer's	Guide	for	UEFI	2.3.1[DRAFT]

772DRAFT	FOR	REVIEW	[12/01/2020	06:32:57]

	Tables
	Figures
	Examples
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Organization of this document
	1.3 Related information
	1.3.1 UEFI Specifications
	1.3.2 Industry Standard Bus Specifications
	1.3.3 Other specifications
	1.3.4 EDK II and UDK2010 Development Kit

	1.4 Typographic conventions

	2 UEFI Driver Implementation Checklist
	2.1 Design and implementation of UEFI drivers
	2.2 How to implement features in EDK II

	3 Foundation
	3.1 Basic programming model
	3.2 Objects managed by UEFI-based firmware
	3.3 UEFI system table
	3.4 Handle database
	3.5 GUIDs
	3.6 Protocols and handles
	3.6.1 Protocols are produced and consumed
	3.6.2 Protocol interface structure
	3.6.3 Protocols provided in addition to the UEFI Specification
	3.6.4 Multiple protocol instances
	3.6.5 Tag GUID

	3.7 UEFI images
	3.7.1 Applications
	3.7.2 Drivers

	3.8 Events and task priority levels
	3.8.1 Defining priority
	3.8.2 Creating locks
	3.8.3 Using callbacks

	3.9 UEFI device paths
	3.9.1 How drivers use device paths
	3.9.2 IPF Considerations for device path data structures
	3.9.3 Environment variables

	3.10 UEFI driver model
	3.10.1 Device driver
	3.10.2 Bus driver
	3.10.3 Hybrid driver

	3.11 Service Drivers
	3.12 Root Bridge Driver
	3.13 Initializing Driver
	3.14 UEFI Driver Model Connection Process
	3.14.1 ConnectController()
	3.14.2 Loading UEFI option ROM drivers
	3.14.3 DisconnectController()

	3.15 Platform initialization
	3.15.1 Connecting PCI Root Bridges
	3.15.2 Connecting the PCI bus
	3.15.3 Connecting consoles
	3.15.4 Console drivers
	3.15.5 Console variables
	3.15.6 ConIn
	3.15.7 ConOut
	3.15.8 ErrOut
	3.15.9 Boot Manager Connect All Processing
	3.15.10 Boot Manager Driver List Processing
	3.15.11 Boot Manager BootNext Processing
	3.15.12 Boot Manager Boot Option Processing

	4 General Driver Design Guidelines
	4.1 Common Coding Practices
	4.1.1 Type Checking
	4.1.2 Avoid Name Collisions
	4.1.3 Maximize Warning Levels
	4.1.4 Compiler Optimizations

	4.2 Maximize Platform Compatibility
	4.2.1 Never Assume all UEFI Drivers are Executed
	4.2.2 Eliminate System Memory Assumptions
	4.2.3 Use UEFI Memory Allocation Services
	4.2.4 Do not make assumptions
	4.2.5 Never Directly Access Hardware Resources
	4.2.6 Memory ordering
	4.2.7 DMA
	4.2.8 Supporting Older EFI Specifications and UEFI Specifications
	4.2.9 Reduce Poll Frequency
	4.2.10 Minimize Time in Notification Functions
	4.2.11 Use Proper Task Priority Levels
	4.2.12 Design to be re-entrant
	4.2.13 Do not use hidden PCI Option ROM Regions
	4.2.14 Store Configuration Data with Device
	4.2.15 Do not use hard-coded device path nodes
	4.2.16 Do not cause errors on shared storage devices
	4.2.17 Limit use of Console Services
	4.2.18 Offer alternatives to function keys

	4.3 Maximize CPU Compatibility
	4.3.1 Assignment and comparison operators
	4.3.2 Casting pointers
	4.3.3 Converting pointers
	4.3.4 UEFI Data Type Sizes
	4.3.5 Negative Numbers
	4.3.6 Returning Pointers in a Function Parameter
	4.3.7 Array Subscripts
	4.3.8 Piecemeal Structure Allocations

	4.4 Optimization Techniques
	4.4.1 Size Reduction
	4.4.2 Performance Optimizations
	4.4.3 CopyMem() and SetMem() Operations

	5 UEFI Services
	5.1 Services that UEFI drivers commonly use
	5.1.1 Memory Allocation Services
	5.1.2 Miscellaneous Services
	5.1.3 Handle Database and Protocol Services
	5.1.4 Task Priority Level(TPL) Services
	5.1.5 Event services
	5.1.6 SetTimer()
	5.1.7 Stall()

	5.2 Services that UEFI drivers rarely use
	5.2.1 ConnectController() and DisconnectController()
	5.2.2 ReinstallProtocolInterface()
	5.2.3 LocateDevicePath()
	5.2.4 LoadImage() and StartImage()
	5.2.5 GetVariable() and SetVariable()
	5.2.6 QueryVariableInfo ()
	5.2.7 GetTime()
	5.2.8 CalculateCrc32()
	5.2.9 ConvertPointer()
	5.2.10 InstallConfigurationTable()
	5.2.11 GetNextMonotonicCount()

	5.3 Services that UEFI drivers should not use
	5.3.1 InstallProtocolInterface()
	5.3.2 UninstallProtocolInterface()
	5.3.3 HandleProtocol()
	5.3.4 LocateHandle()
	5.3.5 ProtocolsPerHandle()
	5.3.6 RegisterProtocolNotify()
	5.3.7 UnloadImage()
	5.3.8 GetNextVariableName()
	5.3.9 SetWatchdogTimer()
	5.3.10 SetTime(), GetWakeupTime(), and SetWakeupTime()
	5.3.11 GetMemoryMap()
	5.3.12 ExitBootServices()
	5.3.13 SetVirtualAddressMap()
	5.3.14 QueryCapsuleCapabilities()
	5.3.15 UpdateCapsule()
	5.3.16 ResetSystem()
	5.3.17 Exit()
	5.3.18 GetNextHighMonotonicCount()

	6 UEFI Driver Categories
	6.1 Device drivers
	6.1.1 Required Device Driver Features
	6.1.2 Optional Device Driver Features
	6.1.3 Compatibility with Older EFI/UEFI Specifications
	6.1.4 Device drivers with one driver binding protocol
	6.1.5 Device drivers with multiple driver binding protocols
	6.1.6 Device driver protocol management

	6.2 Bus drivers
	6.2.1 Required Bus Driver Features
	6.2.2 Optional Bus Driver Features
	6.2.3 Bus drivers with one driver binding protocol
	6.2.4 Bus drivers with multiple driver binding protocols
	6.2.5 Bus driver protocol and child management
	6.2.6 Bus drivers that produce one child in Start()
	6.2.7 Bus drivers that produce all children in Start()
	6.2.8 Bus drivers that produce at most one child in Start()
	6.2.9 Bus drivers that produce no children in Start()
	6.2.10 Bus drivers that produce children with multiple parents

	6.3 Hybrid drivers
	6.3.1 Required Hybrid Driver Features
	6.3.2 Optional Hybrid Driver Features

	6.4 Service Drivers
	6.5 Root Bridge Drivers
	6.6 Initializing Drivers

	7 Driver Entry Point
	7.1 Optional Features
	7.2 UEFI Driver Model
	7.2.1 Single Driver Binding Protocol
	7.2.2 Multiple Driver Binding Protocols
	7.2.3 Adding Driver Health Protocol Feature
	7.2.4 Adding Driver Family Override Protocol Feature

	7.3 Adding the Driver Supported EFI Version Protocol Feature
	7.4 Adding HII Packages Feature
	7.5 Adding HII Config Access Protocol Feature
	7.6 Adding the Unload Feature
	7.7 Adding the Exit Boot Services feature
	7.8 Initializing Driver entry point
	7.9 Service Driver entry point
	7.10 Root bridge driver entry point
	7.11 Runtime Drivers

	8 Private Context Data Structures
	8.1 Containing Record Macro
	8.2 Data structure design
	8.3 Allocating private context data structures
	8.4 Freeing private context data structures
	8.5 Retrieving private context data structures

	9 Driver Binding Protocol
	9.1 Driver Binding Protocol Implementations
	9.2 Driver Binding Protocol Template
	9.3 Testing Driver Binding Protocol

	10 UEFI Service Binding Protocol
	10.1 Service Binding Protocol Implementations
	10.2 Service Driver
	10.3 UEFI Driver Model Driver

	11 UEFI Driver and Controller Names
	11.1 Component Name Protocol Implementations
	11.2 GetDriverName() Implementations
	11.3 GetControllerName() Implementations
	11.3.1 Device Drivers
	11.3.2 Bus Drivers and Hybrid Drivers

	11.4 Testing Component Name Protocols

	12 UEFI Driver Configuration
	12.1 HII overview
	12.1.1 HII Database and Package Lists

	12.2 General steps for implementing HII functionality
	12.3 HII Protocols
	12.3.1 HII Database Protocol and HII String Protocol
	12.3.2 HII Config Routing Protocol
	12.3.3 HII Config Access Protocol
	12.3.4 Rarely used HII protocols

	12.4 HII functionality
	12.4.1 Branding, and displaying a banner
	12.4.2 Specifying supported languages
	12.4.3 Specifying configuration information
	12.4.4 Making configuration data available to other drivers
	12.4.5 Check to see if configuration parameters are valid

	12.5 Forms and VFR files
	12.6 HII Implementation Recommendations
	12.6.1 Minimize callbacks
	12.6.2 Don't reparse the package list
	12.6.3 Concentrate on critical aspects of the driver
	12.6.4 Perform usability testing

	12.7 Porting to UEFI HII functionality

	13 UEFI Driver Diagnostics
	13.1 Driver Diagnostics Protocol Implementations
	13.2 RunDiagnostics() Implementations
	13.2.1 Device Drivers
	13.2.2 Bus Drivers and Hybrid Drivers
	13.2.3 RunDiagnostics() as a UEFI Application

	13.3 Testing Driver Diagnostics Protocols

	14 Driver Health Protocol
	14.1 Driver Health Protocol Implementation
	14.2 GetHealthStatus() Implementations
	14.2.1 Device Drivers
	14.2.2 Bus Drivers and Hybrid Drivers

	14.3 Repair() Implementation
	14.3.1 Device Drivers
	14.3.2 Bus Drivers and Hybrid Drivers

	15 Driver Family Override Protocol
	15.1 Driver Family Override Protocol Implementation
	15.2 GetVersion() Implementation

	16 Driver Supported EFI Version Protocol
	16.1 Driver Supported EFI Version Protocol Implementation

	17 Bus-Specific Driver Override Protocol
	17.1 Bus Specific Driver Override Protocol Implementation
	17.2 Private Context Data Structure
	17.3 Bus Specific Driver Override Protocol Installation
	17.4 GetDriver() Implementation
	17.5 Adding Driver Image Handles

	18 PCI Driver Design Guidelines
	18.1 PCI Root Bridge I/O Protocol Drivers
	18.2 PCI Bus Drivers
	18.2.1 Hot-plug PCI buses

	18.3 PCI drivers
	18.3.1 Supported()
	18.3.2 Start() and Stop()
	18.3.3 PCI Cards with Multiple PCI Controllers

	18.4 Accessing PCI resources
	18.4.1 Memory-mapped I/O ordering issues
	18.4.2 Hardfail/Softfail
	18.4.3 When a PCI device does not receive resources

	18.5 PCI DMA
	18.5.1 Map() Service Cautions
	18.5.2 Weakly ordered memory transactions
	18.5.3 Bus Master Read and Write Operations
	18.5.4 Bus Master Common Buffer Operations
	18.5.6 DMA Bus Master Read Operation
	18.5.7 DMA Bus Master Write Operation
	18.5.8 DMA Bus Master Common Buffer Operation

	18.6 PCI Optimization Techniques
	18.6.1 PCI I/O fill operations
	18.6.2 PCI I/O FIFO operations
	18.6.3 PCI I/O CopyMem() Operations
	18.6.4 PCI Configuration Header Operations
	18.6.5 PCI I/O MMIO Buffer Operations
	18.6.6 PCI I/O Polling Operations

	18.7 PCI Option ROM Images
	18.7.1 EfiRom Utility
	18.7.2 Using INF File to Generate PCI Option ROM Image
	18.7.3 Using FDF File to Generate PCI Option ROM Image

	19 USB Driver Design Guidelines
	19.1 USB Host Controller Driver
	19.1.1 Driver Binding Protocol Supported()
	19.1.2 Driver Binding Protocol Start()
	19.1.3 Driver Binding Protocol Stop()
	19.1.4 USB 2 Host Controller Protocol Data Transfer Services

	19.2 USB Bus Driver
	19.3 USB Device Driver
	19.3.1 Driver Binding Protocol Supported()
	19.3.2 Driver Binding Protocol Start() and Stop()
	19.3.3 I/O Protocol Implementations
	19.3.4 State machine consideration

	19.4 Debug Techniques
	19.4.1 Debug Message Output
	19.4.2 USB Bus Analyzer
	19.4.3 USBCheck/USBCV Tool

	19.5 Nonconforming USB Devices

	20 SCSI Driver Design Guidelines
	20.1 SCSI Host Controller Driver
	20.1.1 Single-Channel SCSI Adapters
	20.1.2 Multi-Channel SCSI Adapters
	20.1.3 SCSI Adapters with RAID
	20.1.4 Implementing driver binding protocol
	20.1.5 Implementing Extended SCSI Pass Thru Protocol
	20.1.6 SCSI command set device considerations
	20.1.7 Discover a SCSI channel
	20.1.8 SCSI Device Path

	20.2 SCSI Bus Driver
	20.3 SCSI Device Driver
	20.3.1 Driver Binding Protocol Supported()
	20.3.2 Driver Binding Protocol Start() and Stop()
	20.3.3 I/O Protocol Implementations

	21 ATA Driver Design Guidelines
	21.1 ATA Host Controller Driver
	21.1.1 Implementing Driver Binding Protocol
	21.1.2 Implementing ATA Pass Thru Protocol
	21.1.3 ATA Command Set Considerations
	21.1.4 ATA Device Paths

	21.2 ATA Bus Driver

	22 Text Console Driver Design Guidelines
	22.1 Assumptions
	22.2 Simple Text Input Protocol Implementation
	22.2.1 Reset() Implementation
	22.2.2 ReadKeyStroke() and ReadKeyStrokeEx() Implementation
	22.2.3 WaitForKey and WaitForKeyEx Notification Implementation
	22.2.4 SetState() Implementation
	22.2.5 RegisterKeyNotify() Implementation
	22.2.6 UnregisterKeyNotify() Implementation

	22.3 Simple Text Output Protocol Implementation
	22.3.1 Reset() Implementation
	22.3.2 OutputString() Implementation
	22.3.3 TestString() Implementation
	22.3.4 QueryMode() Implementation
	22.3.5 SetMode() Implementation
	22.3.6 SetAttribute() Implementation
	22.3.7 ClearScreen() Implementation
	22.3.8 SetCursorPosition() Implementation
	22.3.9 EnableCursor() Implementation

	22.4 Serial I/O Protocol Implementations
	22.4.1 Reset() Implementation
	22.4.2 SetAttributes() Implementation
	22.4.3 SetControl() and GetControl() Implementation
	22.4.4 Write() and Read() Implementation

	23 Graphics Driver Design Guidelines
	23.1 Assumptions
	23.2 Graphics Output Protocol Implementation
	23.2.1 Single output graphics adapters
	23.2.2 Multiple output graphics adapters
	23.2.3 Driver Binding Protocol Implementation
	23.2.4 QueryMode(), SetMode(), and Blt() Implementation

	23.3 EDID Discovered Protocol Implementation
	23.4 EDID Active Protocol Implementation
	23.5 EDID Override Protocol Implementation
	23.5.1 GetEdid() Implementation

	24 Mass Storage Driver Design Guidelines
	24.1 Assumptions
	24.2 Block I/O Protocol Implementations
	24.2.1 Reset() Implementation
	24.2.2 ReadBlocks() and ReadBlocksEx() Implementation
	24.2.3 WriteBlocks() and WriteBlockEx() Implementation
	24.2.4 FlushBlocks() and FlushBlocksEx() Implementation

	24.3 Storage Security Protocol Implementation

	25 Network Driver Design Guidelines
	25.1 Assumptions
	25.2 NII Protocol and UNDI Implementations
	25.2.1 Exit Boot Services Event
	25.2.2 Set Virtual Address Map Event
	25.2.3 Memory leaks caused by UNDI

	25.3 Simple Network Protocol Implementations
	25.4 Managed Network Protocol Implementations

	26 User Credential Driver Design Guidelines
	26.1 Assumptions
	26.2 User Credential Protocol Implementation

	27 Load File Driver Design Guidelines
	27.1 Assumptions
	27.2 Load File Protocol Implementation
	27.2.1 LoadFile() Implementation

	28 IPF Platform Porting Considerations
	28.1 General notes about porting to IPF platforms
	28.2 Alignment Faults
	28.3 Casting Pointers
	28.4 Packed Structures
	28.5 UEFI Device Paths
	28.6 PCI Configuration Header 64-bit BAR
	28.7 Speculation and floating point register usage

	29 EFI Byte Code Porting Considerations
	29.1 No Assembly Support
	29.2 No C++ Support
	29.3 No Floating Point Support
	29.4 Use of sizeof()
	29.4.1 Global Variable Initialization
	29.4.2 CASE Statements

	29.5 Natural Integers and Fixed Size Integers
	29.6 Memory ordering
	29.7 Performance considerations
	29.7.1 Performance considerations for data types

	29.8 UEFI Driver Entry Point

	30 Building UEFI Drivers
	30.1 Prerequisites
	30.2 Create EDK II Package
	30.3 Create UEFI Driver Directory
	30.3.1 Disk I/O Driver Example
	30.3.2 Reserved Directory Names
	30.3.3 EBC Virtual Machine Driver Example

	30.4 Adding a UEFI Driver to DSC File
	30.5 Building a UEFI driver

	31 Testing and Debugging UEFI Drivers
	31.1 Native and EBC
	31.2 Compiler Optimizations
	31.3 UEFI Shell Debugging
	31.3.1 Testing Specific Protocols
	31.3.2 Other Testing
	31.3.3 Loading UEFI drivers
	31.3.4 Unloading UEFI drivers
	31.3.5 Connecting UEFI Drivers
	31.3.6 Driver and Device Information
	31.3.7 Testing the Driver Configuration Protocol
	31.3.8 Testing the Driver Diagnostics Protocols

	31.4 Debugging code statements
	31.4.1 Configuring DebugLib with EDK II
	31.4.2 Capturing Debug Messages

	31.5 POST codes
	31.5.1 POST Card Debug
	31.5.2 Other options

	32 Distributing UEFI Drivers
	32.1 PCI Option ROM
	32.2 Integrated in Platform FLASH
	32.3 EFI System Partition

	Appendix A EDK II File Templates
	A.1 UEFI Driver Template
	A.2 UEFI Driver Optional Protocol Templates
	A.2.1 ComponentName.c File
	A.2.2 DriverConfiguration.c File
	A.2.3 HiiConfigAccess.c File
	A.2.4 DriverHealth.c File
	A.2.5 DriverFamilyOverride.c File
	A.2.6 BusSpecificDriverOverride.c File
	A.2.7 DriverDiagnostics.c File

	A.3 UEFI Driver I/O Protocol Templates
	A.3.1 Usb2Hc.c File
	A.3.2 ExtScsiPassThru.c File
	A.3.3 AtaPassThru.c File
	A.3.4 SimpleTextInput.c File
	A.3.5 SimpleTextOutput.c File
	A.3.6 SerialIo.c File
	A.3.7 GraphicsOutput.c File
	A.3.8 BlockIo.c File
	A.3.9 NiiUndi.c File
	A.3.10 SimpleNetwork.c File
	A.3.11 UserCredential.c File
	A.3.12 LoadFile.c File

	A.4 Platform Specific UEFI Driver Templates
	A.4.1 EdidOverride.c File

	A.5 EDK II Package Extension Templates
	A.5.1 Protocol File Template
	A.5.2 GUID File Template
	A.5.3 Library Class File Template
	A.5.4 Including Protocols, GUIDs, and Library Classes

	Appendix B EDK II Sample Drivers
	Appendix C Glossary

