


TABLE	OF	CONTENTS
EDK	II	Multi-String	.UNI	File	Format	Specification

1	Introduction

1.1	Related	Information

1.2	Terms

1.3	Conventions	used	in	this	document

2	Unicode	Strings	File	Format

2.1	Common	EBNF

3	HII	String	Packs

3.1	Example	file

4	Redacted

5	Font	Support

5.1	#font

5.2	#fontdef

5.3	#string	Extensions

Tables

Table	1	.uni	File	Font	Escape	Characters

EDK	II	Multi-String	.UNI	File	Format	Specification

2Revision	1.40



EDK	II	Multi-String	.UNI	File	Format	Specification
Revision	1.40

12/01/2020	05:53:14

Acknowledgements
Redistribution	and	use	in	source	(original	document	form)	and	'compiled'	forms	(converted	to	PDF,
epub,	HTML	and	other	formats)	with	or	without	modification,	are	permitted	provided	that	the	following
conditions	are	met:

1.	 Redistributions	of	source	code	(original	document	form)	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	as	the	first	lines	of	this	file	unmodified.

2.	 Redistributions	in	compiled	form	(transformed	to	other	DTDs,	converted	to	PDF,	epub,	HTML	and
other	formats)	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials	provided	with	the	distribution.

THIS	DOCUMENTATION	IS	PROVIDED	BY	TIANOCORE	PROJECT	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	TIANOCORE	PROJECT	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR
PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF
THE	USE	OF	THIS	DOCUMENTATION,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Copyright	(c)	2016-2017,	Intel	Corporation.	All	rights	reserved.

Revision	History

Revision Description Date

1.0 Initial	Release. February
2014

1.1 Updated	EBNF	to	follow	syntax	specified	in	EBNF	by	the	ANTLR
project. August	2014

Added	content	related	to	EDK	II	Meta-Data	Unicode	files.

Restructured	document.

Removed	security	and	C	format	GUID	definitions,	not	required	for	HII
or	other	UNI	files.

Removed	invalid	escape	code	sequences.

1.2 Added	optional	font	formatting September
2014

1.2
Errata	A Correct	misspelling	of:		STR_PROPERTIES_MODULE_NAME	 April	2015

1.3 Added:	Syntax	for	non-ascii	characters	inside	quoted	strings. March	2016

EDK	II	Multi-String	.UNI	File	Format	SpecificationEDK	II	Multi-String	.UNI	File	Format	Specification

3Revision	1.40



1.4 Convert	to	GitBook	format April	2017

#506	UNI	Spec:	Clean	up	Related	Information	section

#507	UNI	Spec:	Clarify	that	.uni	files	maybe	UTF-8	without	a	BOM

EDK	II	Multi-String	.UNI	File	Format	SpecificationEDK	II	Multi-String	.UNI	File	Format	Specification

4Revision	1.40

https://bugzilla.tianocore.org/show_bug.cgi?id=506
https://bugzilla.tianocore.org/show_bug.cgi?id=507


1	INTRODUCTION
This	document	describes	file	format	for	Unicode	string	files.	This	file	format	supports	multiple	layouts
and	formats	in	the	Unicode	file.	This	versatility	allows	strings	to	be	grouped	either	by	language	or	by
string	identifier.

1.1	Related	Information
The	following	publications	and	sources	of	information	may	be	useful	to	you	or	are	referred	to	by	this
specification:

Unified	Extensible	Firmware	Interface	Specification,	http://www.uefi.org.

http://www.tianocore.org/docs/EDK_II_Documents.html

EDK	II	Build	Specification,	Intel,	2016.
EDK	II	DEC	File	Specification,	Intel,	2016.
EDK	II	INF	File	Specification,	Intel,	2016.
EDK	II	DSC	File	Specification,	Intel,	2016.
EDK	II	FDF	File	Specification,	Intel,	2016.
EDK	II	Expression	Syntax	Specification,	Intel,	2015.
EDK	II	C	Coding	Standards	Specification,	Intel,	2015.

1.2	Terms
The	following	terms	are	used	throughout	this	document	to	describe	varying	aspects	of	input
localization:

BDS

Framework	Boot	Device	Selection	phase.

BNF

BNF	is	an	acronym	for	"Backus	Naur	Form."	John	Backus	and	Peter	Naur	introduced	for	the	first	time	a
formal	notation	to	describe	the	syntax	of	a	given	language.

Component

An	executable	image.	Components	defined	in	this	specification	support	one	of	the	defined	module
types.

DXE	SAL

Framework	Driver	Execution	Environment	phase.	A	special	class	of	DXE	module	that	produces	SAL
Runtime	Services.	DXE	SAL	modules	differ	from	DXE	Runtime	modules	in	that	the	DXE	Runtime	modules
support	Virtual	mode	OS	calls	at	OS	runtime	and	DXE	SAL	modules	support	intermixing	Virtual	or	Physical
mode	OS	calls.

DXE	SMM

A	special	class	of	DXE	module	that	is	loaded	into	the	System	Management	Mode	memory.

DXE	Runtime

Special	class	of	DXE	module	that	provides	Runtime	Services

1	IntroductionEDK	II	Multi-String	.UNI	File	Format	Specification

5Revision	1.40

http://www.uefi.org
http://www.tianocore.org/docs/EDK_II_Documents.html


EFI

Generic	term	that	refers	to	one	of	the	versions	of	the	EFI	specification:	EFI	1.02,	EFI	1.10,	or	UEFI	2.0.

EFI	1.10	Specification

Intel	Corporation	published	the	Extensible	Firmware	Interface	Specification.	Intel	donated	the	EFI
specification	to	the	Unified	EFI	Forum,	and	the	UEFI	now	owns	future	updates	of	the	EFI	specification.
See	UEFI	Specifications.

Foundation

The	set	of	code	and	interfaces	that	glue	implementations	of	EFI	together.

Framework

Intel(R)	Platform	Innovation	Framework	for	EFI	consists	of	the	Foundation,	plus	other	modular
components	that	characterize	the	portability	surface	for	modular	components	designed	to	work	on	any
implementation	of	the	Tiano	architecture.

GUID

Globally	Unique	Identifier.	A	128-bit	value	used	to	name	entities	uniquely.	An	individual	without	the	help
of	a	centralized	authority	can	generate	a	unique	GUID.	This	allows	the	generation	of	names	that	will
never	conflict,	even	among	multiple,	unrelated	parties.

HII

Human	Interface	Infrastructure.	This	generally	refers	to	the	database	that	contains	string,	font,	and	IFR
information	along	with	other	pieces	that	use	one	of	the	database	components.

IFR

Internal	Forms	Representation.	This	is	the	binary	encoding	that	is	used	for	the	representation	of	user
interface	pages.

Library	Class

A	library	class	defines	the	API	or	interface	set	for	a	library.	The	consumer	of	the	library	is	coded	to	the
library	class	definition.	Library	classes	are	defined	via	a	library	class	.h	file	that	is	published	by	a
package.	See	the	EDK	2.0	Module	Development	Environment	Library	Specification	for	a	list	of	libraries
defined	in	this	package.

Library	Instance

An	implementation	of	one	or	more	library	classes.	See	the	EDK	2.0	Module	Development	Environment
Library	Specification	for	a	list	of	library	defined	in	this	package.

Module

A	module	is	either	an	executable	image	or	a	library	instance.	For	a	list	of	module	types	supported	by
this	package,	see	module	type.

Module	Type

All	libraries	and	components	belong	to	one	of	the	following	module	types:		BASE	,		SEC	,		PEI_CORE	,		PEIM	,
	DXE_CORE	,		DXE_DRIVER	,		DXE_RUNTIME_DRIVER	,		DXE_SMM_DRIVER	,		DXE_SAL_DRIVER	,		UEFI_DRIVER	,	or		UEFI_APPLICATION	.	These
definitions	provide	a	framework	that	is	consistent	with	a	similar	set	of	requirements.	A	module	that	is	of
module	type		BASE	,	depends	only	on	headers	and	libraries	provided	in	the	MDE,	while	a	module	that	is	of
module	type		DXE_DRIVER		depends	on	common	DXE	components.	For	a	definition	of	the	various	module
types,	see	module	type.

Module	Surface	Area	(MSA)

1	IntroductionEDK	II	Multi-String	.UNI	File	Format	Specification

6Revision	1.40



The	MSA	is	an	XML	description	of	how	the	module	is	coded.	The	MSA	contains	information	about	the
different	construction	options	for	the	module.	After	the	module	is	constructed	the	MSA	can	describe	the
interoperability	requirements	of	a	module.

Package

A	package	is	a	container.	It	can	hold	a	collection	of	files	for	any	given	set	of	modules.	Packages	may	be
described	as	one	of	the	following	types	of	modules:

Source	modules,	containing	all	source	files	and	descriptions	of	a	module

Binary	modules,	containing	EFI	Sections	or	a	Framework	File	System	and	a	description	file	specific	to
linking	and	binary	editing	of	features	and	attributes	specified	in	a	Platform	Configuration	Database
(PCD,)

Mixed	modules,	with	both	binary	and	source	modules

Multiple	modules	can	be	combined	into	a	package,	and	multiple	packages	can	be	combined	into	a
single	package.

Protocol

An	API	named	by	a	GUID	as	defined	by	the	EFI	specification.

PCD

Platform	Configuration	Database.

PEI

Pre-EFI	Initialization	Phase.

PPI

A	PEIM-to-PEIM	Interface	that	is	named	by	a	GUID	as	defined	by	the	PEI	CIS.

SAL

System	Abstraction	Layer.	A	firmware	interface	specification	used	on	Intel(R)	Itanium(R)	Processor	based
systems.

Runtime	Services

Interfaces	that	provide	access	to	underlying	platform-specific	hardware	that	might	be	useful	during	OS
runtime,	such	as	time	and	date	services.	These	services	become	active	during	the	boot	process	but
also	persist	after	the	OS	loader	terminates	boot	services.

SEC

Security	Phase	is	the	code	in	the	Framework	that	contains	the	processor	reset	vector	and	launches	PEI.
This	phase	is	separate	from	PEI	because	some	security	schemes	require	ownership	of	the	reset	vector.

UEFI	Application

An	application	that	follows	the	UEFI	specification.	The	only	difference	between	a	UEFI	application	and	a
UEFI	driver	is	that	an	application	is	unloaded	from	memory	when	it	exits	regardless	of	return	status,
while	a	driver	that	returns	a	successful	return	status	is	not	unloaded	when	its	entry	point	exits.

UEFI	Driver

A	driver	that	follows	the	UEFI	specification.

UEFI	Specification	Version	2.0

1	IntroductionEDK	II	Multi-String	.UNI	File	Format	Specification

7Revision	1.40



Current	version	of	the	EFI	specification	released	by	the	Unified	EFI	Forum.	This	specification	builds	on
the	EFI	1.10	specification	and	transfers	ownership	of	the	EFI	specification	from	Intel	to	a	non-profit,
industry	trade	organization.

Unified	EFI	Forum

A	non-profit	collaborative	trade	organization	formed	to	promote	and	manage	the	UEFI	standard.	For
more	information,	see	http://www.uefi.org

1.3	Conventions	used	in	this	document
This	document	uses	the	typographic	and	illustrative	conventions	described	below.

1.3.1	Pseudo-code	conventions
Pseudo	code	is	presented	to	describe	algorithms	in	a	more	concise	form.	None	of	the	algorithms	in	this
document	are	intended	to	be	compiled	directly.	The	code	is	presented	at	a	level	corresponding	to	the
surrounding	text.

In	describing	variables,	a	list	is	an	unordered	collection	of	homogeneous	objects.	A	queue	is	an	ordered
list	of	homogeneous	objects.	Unless	otherwise	noted,	the	ordering	is	assumed	to	be	First	In	First	Out
(FIFO).

Pseudo	code	is	presented	in	a	C-like	format,	using	C	conventions	where	appropriate.	The	coding	style,
particularly	the	indentation	style,	is	used	for	readability	and	does	not	necessarily	comply	with	an
implementation	of	the	Extensible	Firmware	Interface	Specification.

1.3.2	Typographic	conventions
This	document	uses	the	typographic	and	illustrative	conventions	described	below:

Convention Description

Plain	text The	normal	text	typeface	is	used	for	the	vast	majority	of	the	descriptive	text	in	a
specification.

Plain	text
(blue)

Any	plain	text	that	is	underlined	and	in	blue	indicates	an	active	link	to	the	cross-
reference.	Click	on	the	word	to	follow	the	hyperlink.	USE	ONLY	IF	YOU	MAKE	AN
ACTUAL	CROSS-REFERENCE	LINK.

Bold
In	text,	a	Bold	typeface	identifies	a	processor	register	name.	In	other	instances,	a
Bold	typeface	can	be	used	as	a	running	head	within	a	paragraph.	or	as	a
definition	heading	(GlossTerm)

Italic In	text,	an	Italic	typeface	can	be	used	as	emphasis	to	introduce	a	new	term	or	to
indicate	a	manual	or	specification	name.

	Monospace	

Computer	code,	example	code	segments,	and	all	prototype	code	segments	use	a
	BOLD	Monospace		typeface	with	a	dark	red	color.	These	code	listings	normally	appear	in
one	or	more	separate	paragraphs,	though	words	or	segments	can	also	be
embedded	in	a	normal	text	paragraph.

	Monospace

(blue)	

Words	in	a		Monospace		typeface	that	is	underlined	and	in	blue	indicate	an	active
hyperlink	to	the	code	definition	for	that	function	or	type	definition.	Click	on	the
word	to	follow	the	hyperlink.	USE	ONLY	IF	YOU	MAKE	AN	ACTUAL	HYPERLINK.

Italic	Bold In	code	or	in	text,	words	in	Italic	Monospace	indicate	placeholder	names	for
variable	information	that	must	be	supplied	(i.e.,	arguments).

1	IntroductionEDK	II	Multi-String	.UNI	File	Format	Specification

8Revision	1.40

http://www.uefi.org


1	IntroductionEDK	II	Multi-String	.UNI	File	Format	Specification

9Revision	1.40



2	UNICODE	STRINGS	FILE	FORMAT
EDK	II	Unicode	files	are	used	for	mapping	token	names	to	localized	strings	that	are	identified	by	an
RFC4646	language	code.	The	format	for	storing	EDK	II	Unicode	files	on	disk	is	UTF-8	(without	a	BOM
character)	or	UTF-16LE	(with	a	BOM	character).	The	character	content	must	be	UCS-2.

Strings	ends	are	determined	by	the	first	of	the	following	items	found:

a	control	character
a	comment
the	end	of	the	file
a	blank	line

Comments	may	appear	anywhere	within	the	string	file.

All	UTF-16LE	files	must	begin	with	a	Unicode	BOM	character.	All	UTF-8	files	must	not	begin	with	a	Unicode
BOM	character.

NOTE:	Please	make	sure	you	select	an	editor	that	supports	UCS-2	characters	that	can	be	stored	in
either	a	UTF-8	(without	a	BOM	character)	or	a	UTF-16LE	file	(with	a	BOM	character).

2.1	Common	EBNF
The	following	EBNF	uses	quoted	(double	quotes)	encapsulated	characters	to	represent	UCS-2	string
literals.	In	the	following	definitions,	the	semi-colon	is	used	to	denote	a	comment.

<US>											::=	"	"

<Letter>							::=	{(\u0041-\u005A)}	;	Characters	A	-	Z

																			{(\u0061-\u007A)}	;	Characters	a	-	z

<Digit>								::=	(\u0030-\u0039)			;	Characters	0	-	9

<MS>											::=	<US>+

<ME>											::=	{<MS>}	{<EOL>}

<CommentLine>		::=	"//"	<US>*	<PCHars>	<EOL>

<BlankLine>				::=	<EOL>

<Chars>								::=	(\u0001-\uF6FF)

<PChars>							::=	{(\u0020-\uF6FF)}	{<OpChar>}

<OpChars>						::=	"\x"	[{<Letter>}	{<Digit>}]{4}	"\"

<VChars>							::=	(\u0021-\uF6FF)

<UnicodeLines>	::=	<Token>	<ME>

																			[<Ldef>	[<String>	<ME>]+]+

<Ldef>									::=	<CtrlChar>	"language"	<MS>	<LangCode>	<ME>

<HexDigit>					::=	{<Digit>}

																			{(\u0041-\u0046)}	;	Characters	A	-	F

																			{(\u0061-\u0066)}	;	Characters	a	-	f

<CtrlChar>					::=	<US>*	"#"

<Token>								::=	<CtrlChar>	"string"	<MS>	<Identifier>

<Identifier>			::=	<Letter>	[{<Letter>}	{<Digit>}	{<UN>}]*

<LangCode>					::=	<RFC4646>

<RFC4646>						::=	<Letter>{2,8}	[<ShortExt>	<LongExt>*]

<ShortExt>					::=	"-"	[{<Letter>}	{<Digit>}]{1,8}

<LongExt>						::=	"-"	[{<Letter>}	{<Digit>}]{1,}

<UDblQuote>				::=	\u0022		;	Double	Quote	Character,	"

<String>							::=	<UDblQuote>	<SContent>*	<UDblQuote>

<SContent>					::=	{<PChars>}	{<Attributes>}

<Attributes>			::=	"\"	{"narrow"}	{"wide"}	{<UDblQuote>}

																			{"n"}	{"r"}	{"t"}	{"nbr"}	{"\"}	{"'"}

2	Unicode	Strings	File	FormatEDK	II	Multi-String	.UNI	File	Format	Specification

10Revision	1.40



2.1.1	Definitions
LanguageCodes

The	language	code	must	be	a	valid	RFC4646	language	code.

EscChar

In	order	to	include	some	standard	characters,	such	as	the	"\"	back-slash	character	within	a	string,	the
character	must	be	prefixed	with	the	escape	character.	Characters	that	may	require	a	prefixed	escape
character	include	the	following,	back	slash	"\"	character,	single-quote	"'"	character,	double-quote	'"'
character	and	the	forward	slash	"/"	character.	The	back	slash	always	requires	the	escape	character.

Token

The	token	(strong	identifier)	may	only	contain	numbers,	upper	and	lower	case	letters,	underscore
character,	and	dash	character.

Include

An	include	line	is	used	to	parse	another	file,	also	compliant	with	this	specification,	as	if	it	was	in	the	file.
The	tokens	should	not	overlap	between	the	file	for	the	same	language.

2	Unicode	Strings	File	FormatEDK	II	Multi-String	.UNI	File	Format	Specification

11Revision	1.40



3	HII	STRING	PACKS
Unicode	files	used	for	creating	HII	String	Packs	have	the	following	format:

<StringFileFormat>	::=	<CommentLine>*

																							<LanguageDefs>

																							<Content>+

The	following	EBNF	describes	content	is	specific	to	the	Unicode	files	used	for	generating	HII	String
Packs.

<Content>	::=	{<CommentLine>}	{<BlankLine>}

														{<UnicodeLines>}	{<ControlRefactor>}

														{<LanguageDefs>}	{<SecurityLines>}

														{<IncludeLines>}

Additional	Definitions	used	for	Unicode	files	used	to	create	HII	String	Packs.

<LanguageDefs>				::=	<CtrlChar>	"langdef"	<MS>	<LangCode>	<MS>

																						<LangDesc>	<EOL>

<LangDesc>								::=	<UDblQuote>	<Chars>	<UDblQuote>

<IncludeLines>				::=	<CtrlChar>	"include"	<UniFile>	<EOL>

<UniFile>									::=	<UDblQuote>	<UniFilename>	<UDblQuote>

<UniFilename>					::=	<FilenameChars>	<MoreFNameChars>*	{".uni"}	{".UNI"}

<FilenameChars>			::=	{<Letter>}	{<Digit>}

<MoreFNameChars>		::=	{<Letter>}	{<Digit>}	{"_"}

<CtrlChar>								::=	"/"

<ControlRefactor>	::=	<CtrlChar>	"="	<NewCtrlChar>	<EOL>

<NewCtrlChar>					::=	(0x0021	-	0xF6FF)

NOTE:	Unicode	files	that	are	used	for	generating	HII	String	Packs	are	the	only	type	of	Unicode	file	that
allows	for	refactoring	the	control	character	(providing	backward	compatibility),		<CtrlChar>	.

3.1	Example	file

//

//	Cpu	I/O	Strings

//

//	Copyright	(c)	2006,	Intel	Corporation.	All	rights	reserved.<BR>

//

//	This	program	and	the	accompanying	materials	are	licensed	and	made

//	available	under	the	terms	and	conditions	of	the	BSD	License	which

//	accompanies	this	distribution.	The	full	text	of	the	license	may

//	be	found	at:

//				http://opensource.org/licenses/bsd-license.php

//

//	THE	PROGRAM	IS	DISTRIBUTED	UNDER	THE	BSD	LICENSE	ON	AN	"AS	IS"	BASIS,

//	WITHOUT	WARRANTIES	OR	REPRESENTATIONS	OF	ANY	KIND,	EITHER	EXPRESS

//	OR	IMPLIED.

//

/=	#

#langdef		en-US		"English,	US"

#langdef		fr-FR		"Français"

#string	STR_PROCESSOR_VERSION

#language	en-US	"NT32	Emulated	Processor"

3	HII	String	PacksEDK	II	Multi-String	.UNI	File	Format	Specification

12Revision	1.40



#language	fr-FR	"Processeur	Émulé	par	NT32"

3	HII	String	PacksEDK	II	Multi-String	.UNI	File	Format	Specification

13Revision	1.40



4	REDACTED
Formerly	"Meta-Data	UNI	Files".	This	chapter	intentionally	removed.

4	RedactedEDK	II	Multi-String	.UNI	File	Format	Specification

14Revision	1.40



5	FONT	SUPPORT
This	chapter	defines	the	optional	attributes	and	entries	in	EDK	II	Unicode	files	to	support	font	selection.

Syntax
The	following	sections	describe	extensions	to	the	.uni	format.

The	extensions	add	support	for	fonts	into	the	.uni	format	by	introducing	the		#fontdef		and		#font	
commands,	extending	the		#string		command	and	adding	new	escape	characters	into	the	strings.

Fonts
Every	string	is	associated	with	a	font.	Each	font	has	a	font	identifier,	a	font	name,	a	size	(in	pixel	height)
and	a	style	(normal,	bold,	etc.).	By	default,	strings	will	be	associated	with	the	font	identifier		sysdefault	.
Usually	this	is	associated	with	the	font	sysdefault,	19,	normal	(the	standard	UEFI	font).

The	default	font	associated	with	strings	can	be	changed	from	sysdefault	to	another	font	identifier	using
the		#font		command.	All	strings	after	the		#font		command	will	use	the	specified	font	identifier.

Strings	can	use	a	different		#font		identifier	by	using	the	font	attribute	of	the		#string		command	(before
the	first		#language		attribute).	A	string	in	a	specific	language	can	use	a	different	font	identifier	by	using
the		#font		attribute	after	the	language	attribute.

Characters	within	a	string	can	use	a	different	font	identifier,	a	different	font	size	or	a	different	font	style
by	using	the		\f		escape	sequences	described	below.	These	escape	characters	extend	those	described
in	the	EDK2	Build	Specification.

Table	1	.uni	File	Font	Escape	Characters

Font	Control
Character Description

\" Insert	a	double-quote.

	\\	 Insert	a	single	backslash.

\br Breaking	code.

\f!identifier! Select	the	font	identifier	for	the	characters	which	follow.

\fb Toggle	the	current	bold	style	for	characters	that	follow	in	the	current	string.

\fd Toggle	the	current	double-underline	style.	If	the	current	style	is	underline,	the
style	becomes	double-underline.

\fe Toggle	the	current	emboss	style	for	the	characters	that	follow.

\fh!integer! Select	the	font	size	(in	pixels)	for	the	characters	that	follow.

\fi Toggle	the	current	italic	style	for	the	characters	that	follow	in	the	current
string.

\fs Toggle	the	current	shadow	style	for	the	characters	that	follow	in	the	current
string.

\fu Toggle	the	current	underline	style	for	the	characters	that	follow	in	the	current
string.

\n Insert	a	carriage-return	and	line-feed.

\narrow Display	the	following	characters	as	"narrow"	characters.

\nbr Non-breaking	code.

5	Font	SupportEDK	II	Multi-String	.UNI	File	Format	Specification

15Revision	1.40



\nbr Non-breaking	code.

\r Insert	a	carriage-return.

\wide Display	the	following	characters	as	"wide"	characters

Font	identifiers	are	created	by	using	the		#fontdef	.

5.1	#font
Set	the	default	font	to	use	with	all	subsequent		#strings	.

Syntax
	"#font"	<MS>	font-identifier	

Attributes
font-identifier

C	style	identifier	associated	with	the	font.

5.2	#fontdef
Associated	a	font	identifier	with	a	specific	font	family,	size	and	style.

Syntax

"#fontdef"	<MS>	_font-identifier_	<MS>	<FontOptions>	<EOL>

<FontOptions>			::=	font-name	<MS>	font-size	[<MS>	font-style-list]

font-style-list	::=	<UDblQuote>	[fs-entries]	<UDblQuote>

fs-entries						::=	font-style	["|"	font-style]*

font-style						::=	{"bold"}	{"italic"}	{"underline"}	{"dblunder"}

																				{"shadow"}	{"emboss"}	{"normal"}

font-size							::=	(1-9)	(0-9)*

Attributes
font-identifier

C-style	identifier.

font-name

Quoted	string	that	specifies	a	font	family	name.	For	example,	"Arial"	or	"Times	New	Roman"

font-size

Unsigned	integer	that	specifies	the	height	of	the	font	character	cell,	in	pixels.	For	example,	the	UEFI
standard	font	is	size	19	because	the	cell	is	19	pixels	high.

font-style

Quoted	string	that	contains	zero	or	more	keywords	that	specify	the	font	style,	separated	by	a	"|".	If
"normal"	is	used,	then	it	may	not	be	combined	with	any	other	font	style.	If	there	is	no	font	style
specified,	then	"normal"	is	assumed.

5	Font	SupportEDK	II	Multi-String	.UNI	File	Format	Specification

16Revision	1.40



5.3	#string	Extensions
The	EDK	II	build	command	is	responsible	for	parsing	the	.uni	files	specified	in	INF	files'		[Sources]		sections.
The	tool	uses	python	objects	to	convert	the	syntax	in	the	HII	string	files	to	byte	arrays	in	the	AutoGen.c
file	for	each	module.

Refer	to	the	EDK	II	Build	Specification	for	details	on	the	process	of	creating	the	byte	arrays.

Syntax

<UnicodeLines>	::=	"#string"	<MS>	<Identifier>	<ME>

																			[<FontId>]

																			[<LangLine>]+

<LangLine>					::=	"#language"	<MS>	lang-code	<ME>	<FontString>

<FontString>			::=	[<FontId>]	[<strings>]+

<FontId>							::=	["#font"	<MS>	font-identifier>	<ME>]

<strings>						::=	<String>	<ME>

[Extension	to	#string	command	in	the	EDK2	Build	Specification]
The	font	attribute	specifies	the	default	font	that	will	be	used	for	the	characters	in	string.	If		#font		is	not
specified,	then	the	default	font	identifier	will	be	used.

If	the		#font		attribute	appears	before	the	first		#language		identifier,	then	it	applies	to	all	characters	for	all
languages.	If	the		#font		attribute	appears	after	a		#language		identifier,	it	applies	only	to	the	string
characters	in	that	language.	It	is	permissible	for		#font		to	appear	in	more	than	one	place,	in	which	case
the	language-specific	font	identifier	will	have	priority.

Description
The		#fontdef		command	introduces	a	font	identifier	and	associates	it	with	a	font	of	a	particular	family,
size	and	style.	If	the	font	identifier	has	been	previously	defined,	then	the	new	definition	is	ignored.

5	Font	SupportEDK	II	Multi-String	.UNI	File	Format	Specification

17Revision	1.40


	EDK II Multi-String .UNI File Format Specification
	1 Introduction
	2 Unicode Strings File Format
	3 HII String Packs
	4 Redacted
	5 Font Support

